
NUMERICAL SCHEMES FOR THE NONLINEAR
SCHRÖDINGER EQUATION

LIVIU I. IGNAT AND ENRIQUE ZUAZUA

Abstract. We consider semidiscrete approximation schemes for the
linear Schrödinger equation and analyze whether the classical dispersive
properties of the continuous model hold for these approximations. For
the conservative finite difference semi-discretization scheme of the linear
Schrödinger equation, we show that, as the mesh-size tends to zero, the
semidiscrete approximate solutions loose the dispersion property. We
prove this property by constructing solutions concentrated at the points
of the spectrum where the second order derivatives of the symbol of
the discrete laplacian vanish. Therefore this phenomenon is due to the
presence of numerical spurious high-frequencies.

To recover the dispersive properties of the solutions at the discrete
level, we introduce three numerical remedies: Fourier filtering; numerical
viscosity; two-grid preconditioner. For each of them we prove Strichartz-
like estimates and the local space smoothing effect, uniformly on the
mesh size. The methods we employ are based on classical estimates
for oscillatory integrals. These estimates allow us to treat nonlinear
problems with L2-initial data, without additional regularity hypotheses.
We prove the convergence of the proposed methods for nonlinearities
that cannot be handled by energy arguments and which, even in the
continuous case, require Strichartz estimates.

1. Introduction

Let us consider the linear (LSE) and the nonlinear (NSE) Schrödinger
equations

(1.1)
{
iut + ∆u = 0, x ∈ Rd, t 6= 0,
u(0, x) = ϕ(x), x ∈ Rd.

.

This equation is solved by u(x, t) = S(t)ϕ, where S(t) = eit∆ is the free
Schrödinger operator. The linear semigroup has two important properties.
First, the conservation of the L2-norm

(1.2) ‖u(t)‖L2(Rd) = ‖ϕ‖L2(Rd)
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and a dispersive estimate of the form:

(1.3) |S(t)ϕ(x)| = |u(t, x)| ≤ 1
(4π|t|)d/2

‖ϕ‖L1(Rd), x ∈ Rd, t 6= 0.

The Space-Time Estimate

(1.4) ‖S(·)ϕ‖L2+4/d(R, L2+4/d(Rd)) ≤ C‖ϕ‖L2(Rd),

due to Strichartz [37], is deeper. It guarantees that the solutions decay in
some sense as t becomes large and that they gain some spatial integrability.

Inequality (1.4) was generalized by Ginibre and Velo [16]. They proved
the Mixed Space-Time Estimate

(1.5) ‖S(·)ϕ‖Lq(R, Lr(Rd)) ≤ C(q, r)‖ϕ‖L2(R)

for the so-called d/2-admissible pairs (q, r), excepting the limit case (q, r) =
(∞, 2) in dimension d = 2. We recall that a σ-admisible pair satisfies (cf.
[23]): 2 ≤ q, r ≤ ∞ and

(1.6)
1
q

= σ

(
1
2
− 1
r

)
.

The extension to the inhomogeneous linear Schrödinger equation is due to
Yajima [43] and Cazenave and Weissler [7]. The estimates presented before
play an important role in the proof of the well-posedness of the nonlin-
ear Schrödnger equation (NSE). Typically the dispersive estimates are used
when the energy methods fail to provide well-posedness results for nonlinear
problems.

These estimates can be extended to a larger class of equations for which
the laplacian is replaced by any self-adjoint operator so that the L∞-norm
of the fundamental solution behaves like t−d/2 [23].

The nonlinear problem with nonlinearity F (u) = |u|p−1u, p < 4/d and
initial data in L2(Rd) has been first analyzed by Tsutsumi [40]. The author
proved that, in this case, NSE is globally well posed in L∞(R, L2(Rd)) ∩
Lqloc(R, L

r(Rd)), where (q, r) is an d/2-admissible pair depending on the
nonlinearity F . Also, Cazenave and Weissler [8] proved the local existence
in the critical case p = 4/d. The case of H1-solutions has been analyzed by
Baillon, Cazenave and Figueira [3], Lin and Strauss [26], Ginibre and Velo
[14, 15], Cazenave [5], and, in a more general context, by Kato [21, 22].

The Schrödinger equation has another remarkable property guaranteeing
the gain of one half space derivative in L2

x,t (cf. [32], [10], [11] and [24]):

(1.7) sup
x0,R

1
R

∫
B(x0,R)

∫ ∞

−∞
|(−∆)1/4eit∆ϕ|2dtdx ≤ C‖ϕ‖2

L2(Rd).

It has played a crucial role in the study of the nonlinear Schrödinger equation
with nonlinearities involving derivatives (see [25]). For other deep results on
the Schrödinger equations we refer to [38], [6] and the bibliography therein.
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In this paper we analyze whether semidiscrete schemes for LSE have dis-
persive properties similar to (1.3), (1.5) and (1.7), uniform with respect
to the mesh sizes. The study of these dispersion properties for these ap-
proximation schemes is relevant for introducing convergent schemes in the
nonlinear context. Since, as mentionated above, the well-posedness of the
nonlinear Schrödinger equation requires a fine use of the dispersion prop-
erties, the convergence of the numerical schemes cannot be proved if these
dispersion properties are not verified at the numerical level.

Estimates similar to (1.7) on discrete solutions will give sufficient con-
ditions to guarantee their compactness and thus the convergence towards
the solution of the nonlinear Schrödinger equation. Without such an es-
timate, despite the uniform boundedness of the discrete solutions in the
space L∞(R, l2(hZd))∩Lqloc(R, l

r(hZd)), one cannot pass to the limit in the
nonlinear term.

To better illustrate the problems we shall address, let us first consider the
conservative semidiscrete numerical scheme

(1.8)

 i
duh

dt
+ ∆hu

h = 0, t > 0,

uh(0) = ϕh.

Here uh stands for the infinite unknown vector {uhj }j∈Zd , uj(t) being the
approximation of the solution at the node xj = jh, and ∆h is the classical
second order finite difference approximation of ∆:

(∆hu
h)j = h−2

d∑
k=1

(uhj+ek
+ uhj−ek

− 2uhj ).

In the one-dimensional case, the lack of uniform dispersive estimates for
the solutions of (1.8) has been observed by the authors in [19, 20]. In
that case the symbol of the Laplacian, ξ2, is replaced by a discrete one
4/h2 sin2(ξh/2) which vanishes its first and second derivative at the points
±π/h and ±π/2h of the spectrum. By concentrating wave packets at these
pathological points it is possible to prove the lack of any uniform estimate
of the type (1.3), (1.5) or (1.7). For the semidiscrete Schrödinger equation
we also refer to [34]. In that paper the authors analyze the Schrödinger
equation on the lattice hZd without concentrating on parameter h. They
obtain Strichartz-like estimates in a class of exponents q and r larger than
in the continuous one, none being independent of the parameter h.

In the case of fully discrete schemes, Nixon [28] considers an approxi-
mation of the one-dimensional KdV equation based on the backward Euler
approximation of the linear semigroup and proves space time estimates for
that approximation. For the Schrödinger equation in [18] necessary and
sufficient conditions to guarantee the existence, at the discrete level, of dis-
persive properties for the Schrödinger equation are given.
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The paper is organized as follows. In Section 2 we consider a numerical
scheme for the one-dimensional cubic NSE and prove the existence of solu-
tions that blow-up in any auxiliar space Lqloc(R, l

r(hZ)). This implies that
there are no uniform dispersive estimates for the linear semigroup generated
by scheme (1.8). If there exists any dispersive estimate similar to the ones in
(1.5), the nonlinear problem will admit solutions which will remain bounded
in some auxiliary space Lqloc(R, l

r(hZ)) which is not the case.

In Section 3 we analyze the conservative approximations (1.8). We prove
that this scheme does not gain any uniform integrability or local smoothing
of the solutions with respect to the initial data. Afterwards, once we have
understood what are the pathologies of the numerical scheme (1.8), we pro-
pose a frequency filtering of initial data which will recover both integrability
and local smoothing of the continuous model.

We then introduce two numerical schemes for which the estimates are
uniform. The first one uses an artificial numerical viscosity term and the
second one involves a two-grid algorithm to precondition the initial data.
Both approximation schemes of the linear semigroup converge and have uni-
form dispersion properties. This allows us to build two convergent numerical
schemes for the NSE in the class of L2(Rd) initial data.

In Section 4 we introduce a numerical scheme containing a numerical vis-
cosity term of the form ia(h)∆hu. We prove that choosing a convenient a(h)
we are able to recover the properties mentioned above. We then consider
an approximation of NSE based on the approximation of LSE introduced
before and prove the convergence of its solutions towards the solutions of
NSE.

Section 5 is dedicated to the analysis of the method based on the two-
grid preconditioning of the initial data. We analyze the action of the linear
semigroup exp(it∆h) on the subspace of l2(hZd) constituted by the slowly
oscillating sequences generated by the two-grid method. Once we obtain
Strichartz-like estimates in this subspace we apply them to approximate the
NSE. The nonlinear term is approximated in a such way that permits the
use of the Strichartz estimates in the class of slowly oscillating sequences.

2. On the cubic NSE

In this section we will consider an approximation of the one-dimensional
NSE with nonlinearity 2|u|2u which has explicit solutions. This will consti-
tute a first example of a numerical scheme for NSE that has solutions which
blow up in any Lqloc(R, l

r(hZ))-norm with r > 2.

To explain the necessity of analyzing the dispersive properties at numer-
ical level let us consider the following discretization of the NSE that was
proposed in [1] and is accordingly often referred to as the Ablowitz-Ladik
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NSE of the form:

(2.9) i∂tu
h
n + (∆hu

h)n = |uhn|2(uhn+1 + uhn−1),

with initial condition uh(0) = ϕh, ϕh being an approximation of the initial
data in NSE.

Let us assume the existence of a positive T such that for any h > 0, there
exists uh ∈ L∞([0, T ], l2(hZd)) solution of (2.9).

The uniform boundedness of {uh}h>0 in L∞([0, T ], l2(hZ)) does not allow
us to prove its convergence towards the solution of the NSE. We recall that,
as explained above, in order to prove the well-posedness of NSE we have to
introduce an auxiliary space Lqloc(R, L

r(R)) with suitable q and r. One then
needs to analyze whether the solutions of (2.9) belong to one of the auxiliary
spaces Lqloc(R, l

r(hZ)), a property that will guarantee that any eventually
limit point of {uh}h>0 belongs to Lq([0, T ], Lr(R)).

For any h > 0, equation (2.9) has explicit travelling soliton solutions. We
remark that any solution uh satisfies

uhn(t) =
1
h
u1
n

(
t

h2

)
, n ∈ Z, t ≥ 0,

where u1 is the solution on the mesh size h = 1. In this case there are
explicit solutions of (2.9) (cf. [2], p. 84) of the form:

u1
n(t) = A exp(i(an− bt)) sech(cn− dt)

for suitable constants A, a, b, c, d (for the explicit values we refer to [2]).

The solutions of (2.9) obtained by scaling on t of this one are not uniformly
bounded as h→ 0 in any auxiliary space Lq([0, T ], lr(hZ)) with r > 2. More
precisely, a scaling argument shows that

‖uh‖Lq([0,T ], lr(hZ))

‖uh(0)‖l2(hZ)
= h

1
r
+ 2

q
− 1

2
‖u1‖Lq([0,T/h2], lr(Z))

‖u1(0)‖l2(Z)
.

Observe that for any t > 0, the lr(Z)-norm behaves as a constant:

‖u1(t)‖lr(Z) '
(∫

R
sechr(cx− dt)dx

)1/r
=
(∫

R
sechr(cx)dx

)1/r
.

Thus, for all T > 0 and h > 0 the solution u1 satisfies

‖u1‖Lq([0,T/h2], lr(Z)) ' (Th−2)1/q.

Consequently for any r > 2 the solution uh on the lattice hZ satisfies:

‖uh‖Lq([0,T ], lr(hZ))

‖uh(0)‖l2(hZ)
' h

1
r
− 1

2 →∞, h→ 0.

In view of the above example, in the case of a general numerical scheme
for NSE one cannot expect that its solutions will have a limit point in
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Lqloc(R, L
r(R)). We point out that this is compatible with the convergence

of the numerical scheme (2.9) for smooth initial data [1, 2]

This motivates us to follow, at the semidiscrete level, the main steps of
the theory of the well posedness of NSE and analyze whether we can derive
similar dispersive properties for the linear part of the numerical scheme.
However, this does not imply the existence of ϕ ∈ L2(R) and ϕh ∈ l2(hZ)
such that ϕh → ϕ in L2(R) and ‖ϕh‖Lq([0,T ], lr(hZ)) → ∞. The existence of
such an example remains an open problem.

The blow-up of the solutions of the nonlinear problem (2.9) implies that
there are no uniform dispersive estimates for the linear equation iuht +
∆hu

h = 0. Indeed, if were exists any dispersive estimates similar to (1.5),
the nonlinear problem would admit solutions which would remain bounded
in some auxiliary space Lqloc(R, l

r(hZ)) which is not the case.

3. A conservative scheme

In this section we analyze the conservative scheme (1.8). This scheme
satisfies the classical properties of consistency and stability which imply L2-
convergence. As we have seen in the previous section, there are no uniform
dispersive properties for its solutions. We will treat to understand these
pathologies by constructing explicit solutions for scheme (1.8) for which at
the discrete level, nor (1.5) or 1.7 hold uniformly with respect to parameter
h.

In our analysis, we make use of the semidiscrete Fourier transform (SDFT)
(we refer to [39] for the mains properties of the SDTF). For any v ∈ l2(hZd)
we define its SDFT at the scale h by:

(3.10) v̂(ξ) = (Fhv)(ξ) = hd
∑
j∈Zd

e−iξ·jhvj, ξ ∈ [−π/h, π/h]d.

To avoid the presence of constants, we will use the notation A . B to
report the inequality A ≤ constant×B, where the constant is independent
of h. The statement A ' B is equivalent to A . B and B . A.

Taking SDFT in (1.8) we obtain that uh(t) = Sh(t)ϕ solution of (1.8)
satisfies

(3.11) iûht (t, ξ) + ph(ξ)ûh(t, ξ) = 0, t ∈ R, ξ ∈
[
−π
h
,
π

h

]d
,

where the function ph : [−π/h, π/h]d → R is defined by

(3.12) ph(ξ) =
4
h2

d∑
k=1

sin2

(
ξkh

2

)
.

Solving ODE (3.11) we obtain that uh is given in Fourier variable by

(3.13) ûh(t, ξ) = e−itph(ξ)ϕ̂h(ξ), ξ ∈
[
−π
h
,
π

h

]d
.
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Observe that the new symbol is different from the continuous one: |ξ|2. In
the one-dimensional case, the symbol ph(ξ) changes convexity at the points
ξ = ±π/2h and has critical points also at ξ = ±π/h, two properties that
the continuous symbol does not have. Using that

inf
ξ∈[−π/h,π/h]

|p′′h(ξ)|+ |p′′′h (ξ)| > 0,

in [20] (see also [34] for h = 1) it has been proved that

(3.14) ‖uh(t)‖l∞(hZ) . ‖ϕh‖l1(hZ)

( 1
t1/2

+
1

(th)1/3

)
.

Note that the estimate (3.14) blows-up as h→ 0, therefore it does not yield
uniform Strichartz estimates.

In dimension d, similar results can be obtained in terms of the number of
nonvanishing principal curvatures of the symbol and its gradient. Observe
that, at the points ξ = (±π/2h, . . . ,±π/2h) all the eigenvalues of the hessian
matrix Hph

= (∂ijph)ij vanish. We also mention that if k-components of the
vector ξ equal ±π/2h then the rank of Hph

at these points is d− k instead
of d in the continuous case. This will imply that in this case the solutions
of equation (1.8) will behave as t−(d−k)/2(th)−hk/3 instead of t−d/2.

On the other hand, at the points ξ = (±π/h, . . . ,±π/h), the gradient
of the symbol ph(ξ) vanishes. As we will see, these pathologies affect the
dispersive properties of the semidiscrete scheme (1.8).

The first pathology, i.e. the fact thatHp((±π/2h, . . . ,±π/2h)) = 0, shows
that there are no uniform estimates similar to (1.3) at the discrete level.
Consequently the solutions of the semidiscrete scheme (1.8) have no uniform
(with respect to h) Lq(lr(hZd)) integrability properties. This condition is
necessary to prove the uniform boundedness of the semidiscrete solutions.

Because of the second pathology, i.e. the existence of critical points of
the semidiscrete symbol, solutions of (1.8) do not fulfill the regularizing
property (1.7) uniformly on h > 0 needed to guarantee the compactness of
the semidiscrete solutions. This constitute an obstacle when passing to the
limit as h→ 0 in the nonlinear semidiscrete models.

3.1. Lack of uniform dispersive estimates. As we have seen in Section
2 there are not uniform dispersive estimates for the solutions of (1.8). This
means that there is no uniform decay of solutions as in (1.3) nor a space
time estimate similar to (1.5). In this section we construct explicit examples
of solutions of equation (1.8) for which all the classical estimates of the
continuous case (1.5) blow-up.

Theorem 3.1. Let T > 0, r0 ≥ 1 and r > r0. Then

(3.15) sup
h>0, ϕ∈lr0 (hZd)

‖Sh(T )ϕ‖lr(hZd)

‖ϕ‖lr0 (hZd)

= ∞
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and

(3.16) sup
h>0, ϕ∈lr0 (hZd)

‖Sh(·)ϕ‖L1((0,T ),lr(hZd)

‖ϕ‖lr0 (hZd)

= ∞.

Let Ih be an interpolator, piecewise constant or linear. For any fixed
T > 0, the uniform boundedness principle guarantees the existence of a
function ϕ ∈ L2(Rd) and a sequence ϕh such that Ihϕh → ϕ in L2(Rd) and
the corresponding solutions uh of (1.8) satisfy

‖Ihuh‖L1((0,T ), Lr(Rd)) →∞.

This guarantees the existence of an initial datum ϕ and approximations ϕh

such that the solutions of (1.8) have no limit point in any auxiliary space
Lqloc(R, L

r(Rd)).

Proof of Theorem 3.1. First, observe that it is sufficient to deal with the
one-dimensional case. For any sequence {ψj}j∈Z set ϕj = ψj1 . . . ψjd , j =
(j1, j2, . . . , jd). Then, for any t the following holds:

(Sh(t)ϕ)j = (S1,h(t)ψ)j1(S
1,h(t)ψ)j2 . . . (S

1,h(t)ψ)jd ,

where S1,h(t) is the linear semigroup generated by the equation (1.8) in
the one-dimensional case. Thus it is obvious that (3.15) and (3.16) hold in
dimension d ≥ 2, once we prove them in the one-dimensional case d = 1.

In the following we will consider the one-dimensional case d = 1. Using
the properties of the SDTF it is easy to see that Sh(t)ϕ = S1(t/h2)ϕ. A
scaling argument in (3.15) and (3.16) shows that

(3.17)
‖Sh(T )ϕ‖lq(hZ)

‖ϕ‖lq0 (hZ)
= h

1
q
− 1

q0
‖S1(T/h2)ϕ‖lq(Z)

‖ϕ‖lq0 (Z)

and

(3.18)
‖Sh(·)ϕ‖L1((0,T ), lq(hZ))

‖ϕ‖lq0 (hZ)
= h

2+ 1
q
− 1

q0
‖S1(·)ϕ‖L1((0,T/h2), lq(Z))

‖ϕ‖lq0 (Z)
.

Let us introduce the operator S1(t) defined by

(3.19) (S1(t)ϕ)(x) =
∫ π

−π
e−itp1(ξ)eixξϕ̂(ξ)dξ.

We point out that for any sequence {ϕj}j∈Z, S1(t)ϕ as in (3.19), which
is defined for all x ∈ R, is in fact the band-limited interpolator of the
semi-discrete function S1(t)ϕ. The results of Magyar et al. [27] (see also
Plancherel and Polya [29]) on band-limited functions show that the following
inequality holds for any q > q0 ≥ 1 and for all continuous, 2π-periodic
functions ϕ̂:

(3.20)
‖S1(t)ϕ‖lq(Z)

‖ϕ‖lq0 (Z)
≥ c(q, q0)

‖S1(t)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
.
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In view of this property it is sufficient to deal with the operator S1(t).

Denoting τ = T/h2, by (3.17) and (3.18) the proof of (3.15) and (3.16) is
reduced to the proof of the following ones on the new operator S1(t):

(3.21) lim
τ→∞

τ
1
2

“
1
q0
− 1

q

”
sup

supp bϕ⊂[−π,π]

‖S1(τ)ϕ‖lq(R)

‖ϕ‖lq0 (R)
= ∞

and

(3.22) lim
τ→∞

τ
−1+ 1

2

“
1
q0
− 1

q

”
sup

supp bϕ⊂[−π,π]

‖S1(·)ϕ‖L1((0,τ), Lq(R))

‖ϕ‖Lq0 (R)
= ∞.

The following lemma is the key point in the proof of the last two estimates.

Lemma 3.1. There exists a positive constant c such that for all τ sufficiently
large, there exists a function ϕτ that satisfies ‖ϕτ‖Lp(R) ' τ1/3p for all p ≥ 1
and

(3.23) |(S1(t)ϕτ )(x)| ≥
1
2

for all |t| ≤ cτ and |x− tp′1(π/2)| ≤ cτ1/3.

Remark 3.1. comparatie cu cazul continuu

The proof of Lemma 3.1 will be given later.

We now prove (3.21). The proof of (3.22) is similar. In view of Lemma
3.1, for sufficiently large τ the following holds:

sup
supp bϕ⊂[−π,π]

‖S1(τ)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
& τ

1
3q
− 1

3q0 .

Thus

lim
τ→∞

τ
1
2

“
1
q0
− 1

q

”
sup

supp bϕ⊂[−π,π]

‖S1(τ)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
& lim

τ→∞
τ

1
6
( 1

q0
− 1

q
) = ∞,

which finishes the proof of (3.21). �

A finer analysis can be done. Let us consider the class of functions ϕ̂ with
their support in

Ωk =
{
ξ = (ξ1, . . . , ξd) ∈ [−π, π]d : ξk+1, . . . , ξd 6=

π

2

}
, 1 ≤ k ≤ d.

Then the following

supbϕ∈Ωk

‖S1(τ)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
& τ

k
3
( 1

q
− 1

q0
)
τ

d−k
2

( 1
q
− 1

q0
)

holds for large enough τ . As a consequence we also obtain (3.15) and (3.16).
This shows that on the hyperplane (xk+1, . . . , xd) we have the right decay
τ−(d−k)/2 and the bad one τ−k/3 on the hyperplane (x1, . . . , xk).
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Proof of Lemma 3.1. The techniques used below are similar to those used
in [13] to get lower bounds on oscillatory integrals.

We define the relevant initial data through its Fourier transform. Let us
first fix a positive function ϕ̂ supported on (−1, 1) such that

∫ π
−π ϕ̂ = 1. For

all positive τ , we set:

ϕ̂τ (ξ) = τ1/3ϕ̂(τ1/3(ξ − π/2)).

We define ϕτ as the inverse Fourier transform of ϕ̂τ . Observe that ϕ̂τ is
supported in the interval (π/2 − τ−1/3, π/2 + τ−1/3) and

∫ π
−π ϕ̂τ = 1. Also

using that ϕτ (x) = ϕ1(τ1/3x) we get ‖ϕτ‖Lp(R) ' τ−1/3p for any p ≥ 1.

The mean value theorem applied to the integral occurring in the right
hand side of (3.19) shows that

(3.24) |S1(t)ϕτ (x)| ≥

(
1− 2τ−1/3 sup

ξ∈ supp bϕτ

|x− tp′1(ξ)|

)∫ π

−π
ϕ̂τ (ξ)dξ.

Using that the second derivative of p1 vanishes at ξ = π/2 we obtain the
existence of a positive constant c1 such that

|x− tp′1(ξ)| ≤ |x− tp′1(π/2)|+ tc1|ξ − π/2|2, ξ ∼ π/2.

In particular for all ξ ∈ [π/2− τ−1/3, π/2 + τ−1/3] the following holds

|x− tp′1(ξ)| ≤ |x− tp′1(π/2)|+ tc1τ
−2/3.

Thus there exists a (small enough) positive constant c such that for all x
and t satisfying |x− tp′1(π/2)| ≤ cτ1/3 and t ≤ cτ :

2τ−1/3 sup
ξ∈ supp bϕτ

|x− tp′1(ξ)| ≤
1
2
.

This yields (3.23) and finishes the proof. �

3.2. Lack of uniform local smoothing effect. In order to analyze the
local smoothing effect at the discrete level we introduce the discrete frac-
tional derivatives on the lattice hZd. We define for any s ≥ 0, the fractional
derivative (−∆h)s/2u at the scale h as:

(3.25) ((−∆h)s/2u)j =
∫

[−π/h,π/h]d
p
s/2
h (ξ)eij·ξhFh(u)(ξ)dξ, j ∈ Zd

where Fh(u) is the SDFT of the sequence {uj}j∈Zd at the scale h .

Concerning the local smoothing effect we have the following result:

Theorem 3.2. Let be T > 0 and s > 0. Then

(3.26) sup
h>0,ϕ∈l2(hZd)

hd
∑
|j|h≤1

|((−∆h)s/2Sh(T )ϕ)j|2

‖ϕ‖2
l2(hZd)

= ∞
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and

(3.27) sup
h>0,ϕ∈l2(hZd)

hd
∑
|j|h≤1

∫ T

0
|((−∆h)s/2Sh(t)ϕ)j|2dt

‖ϕ‖2
l2(hZd)

= ∞.

In contrast with the proof of Theorem 3.1 we cannot reduce it to the
one-dimensional case. This is due to the extra factor ps/2h (ξ) which does
not allow us to use separation of variables . The proof consists in reducing
(3.26) and (3.27) to the case h = 1 and the following lemma.

Lemma 3.2. Let be s > 0. There is a positive constant c such that for all
τ sufficiently large there exists a function ϕτ with ‖ϕτ‖l2(Zd) = τd/2 and

(3.28) |((−∆1)s/2S1(t)ϕτ )j| ≥ 1/2

for all |t| ≤ cτ2, |j| ≤ cτ .

We postpone the proof of Lemma 3.2 and proceed with the proof of The-
orem 3.2.

Proof of Theorem 3.2. We consider the case of (3.26), the other being sim-
ilar. As in the previous section we reduce the proof to the case h = 1. By
the definition of (−∆h)s/2 for any j ∈ Zd we have that(

(−∆h)s/2Sh(t)ϕ
)

j
= h−s

(
(−∆1)s/2S1

(
t/h2

)
ϕ
)

j
, j ∈ Zd.

Thus

hd
∑
|j|h≤1

|((−∆h)s/2Sh(T )ϕ)j|2

‖ϕ‖2
l2(hZd)

=

h−2s
∑

|j|≤1/h

|((−∆1)s/2S1(T/h2)ϕ)j|2

‖ϕ‖2
l2(Zd)

.

With c and ϕτ given by Lemma 3.2 and τ such that cτ2 = T/h2, i.e. τ =
(T/c)1/2h−1, we have ‖ϕτ‖2

l2(Z) = τd and

lim
τ→∞

h−2s
∑

|j|≤1/h

|((−∆1)s/2S1(T/h2)ϕτ )j|2

‖ϕτ‖2
l2(Zd)

& lim
τ→∞

τ2sτd

τd
= ∞.

This finishes the proof. �

Proof of Lemma 3.2. As in the proof of Lemma 3.1 we choose a function ϕ̂
supported in the unit ball with

∫
Rd ϕ̂ = 1. Set for all τ ≥ 1

ϕ̂τ (ξ) = τdϕ̂ (τ(ξ − πd)) ,

where πd = (π, . . . , π). We define ϕτ as the inverse Fourier transform of
ϕ̂τ . Thus ϕ̂τ is supported in {ξ : |ξ − πd| ≤ τ−1},

∫
[−π,π]d ϕ̂τ = 1 and

‖ϕτ‖l2(Zd) ' τd/2. Applying mean value theorem to the oscillatory integral
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occurring in the definition of (−∆1)s/2S1(t)ϕ and using that p1(ξ) behaves
as a positive constant in the support of ϕ̂τ we obtain that for some positive
constant c0:

|((−∆1)s/2S1(t)ϕτ )j| ≥

(
1− 2τ−1 sup

ξ∈ supp bϕτ

|j− t∇p1(ξ)|

)∫
[−π,π]d

p
s/2
1 (ξ)ϕ̂τ (ξ)dξ

≥ c0

(
1− 2τ−1 sup

ξ∈ supp bϕτ

|j− t∇p1(ξ)|

)∫
[−π,π]d

ϕ̂τ (ξ)dξ.

Using that ∇p1 vanishes at ξ = πd we obtain the existence of a positive
constant c1 such that

|j− t∇p1(ξ)| ≤ |j|+ tc1|ξ − πd|, ξ ∼ πd.

Then there exists a positive constant c such that for all j and t satisfying
|j| ≤ cτ and t ≤ cτ2 the following holds:

2τ−1 sup
ξ∈ supp bϕτ

|j− t∇p1(ξ)| ≤
1
2
.

Thus for all t and j as above (3.28) holds. This finishes the proof. �

3.3. Filtering of the initial data. As we have seen in the previous section
the conservative scheme does not reflect the dispersive properties of the LSE.
In this section we prove that a suitable filtering of the initial data in the
Fourier space provides uniform dispersive properties and a local smoothing
effect. The key point to recover the decay rates (1.3) at the discrete level is
to choose initial data with their SDFT supported away from the pathological
points

Mh
1 =

{
ξ = (ξ1, . . . , ξd) ∈

[
− π

h
,
π

h

]d
: ∃i ∈ {1, . . . , d} such that ξi =

π

2h

}
or

Mh
2 =

{
ξ = (ξ1, . . . , ξd) ∈

[
− π

h
,
π

h

]d
: ∃i ∈ {1, . . . , d} such that ξi =

π

h

}
.

For any positive ε < π/2 we define Ωh
ε , the set of all the points inside the

cube [−π/h, π/h]d whose distance is at least ε/h from the set where ph(ξ)
vanishes at least one of its second order derivatives:

Ωh
ε,d =

{
ξ = (ξ1, . . . , ξd) ∈

[
−π
h
,
π

h

]d
:
∣∣∣ξi ∓ π

2h

∣∣∣ ≥ ε

h
, i = 1, . . . , d

}
.

Let us define the class of functions Ihε ⊂ l2(hZd), whose SDFT is supported
on Ωh

ε,d:

(3.29) Ihε,d = {ϕ ∈ l2(hZd) : supp ϕ̂ ⊂ Ωh
ε,d}.

The following Theorem shows that for initial data that have been filtered in
a convenient way, the semigroup Sh(t) has the same long time behaviour as
the continuous one and moreover this behaviour is independent of h.
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Theorem 3.3. Let be 0 < ε < π/2 and p ≥ 2. There exists a positive
constant C(ε, p, d) such that

(3.30) ‖Sh(t)ϕ‖lp(hZd) ≤
C(ε, p, d)

|t|
d
2

“
1− 2

p

” ‖ϕ‖lp′ (hZd), t 6= 0

holds for all ϕ ∈ lp′(hZd) ∩ Ihε,d, uniformly on h > 0.

Proof. A scaling argument reduces the proof to the case h = 1. For any
ϕ ∈ Iε,d1 the solution of (1.8) is given by S1(t)ϕ = K1,ε ∗ ϕ where

K1,ε
d (t, j) =

∫
Ω1

ε,d

eitp1(ξ)eijξdξ, j ∈ Zd.

As a consequence of Young’s inequality it is sufficient to prove that

(3.31) ‖K1,ε
d (t)‖lp(Z) ≤ c(ε, d)|t|−d/2(1−1/p)

for any p ≥ 2 and for all t 6= 0. The case p = 2 easily follows by Plancherel’s
identity. We consider the case p = ∞, the others come by Hölder’s inequal-
ity. Observe that for any j = (j1, . . . , jd) ∈ Zd the following holds:

K1,ε
d (t, j) =

d∏
l=1

K1,ε
1 (t, jl).

It is then sufficient to prove (3.31) in the one-dimensional case. Using that
the second derivative of the function sin2(ξ/2) is positive on Ω1

ε,1 we ob-
tain by the Van der Corput Lemma (Prop. 2, Ch. 8, p. 332, [36]) that
‖K1,ε

d (t)‖l∞ ≤ c(ε)|t|−1/2 which finishes the proof.

�

A similar result for the local smoothing effect can be stated. For a positive
ε, let us define the set Ahε of all points situated at a distance of at least ε
from the points (±π/h)d:

Ahε =
{
ξ ∈ [−π

h
,
π

h
]d :
∣∣∣ξi ∓ π

h

∣∣∣ ≥ ε

h
, i = 1, . . . , d

}
.

Observe that on Ahε the symbol ph(ξ) has no critical points different from
the origin. A similar argument as in [24] shows that the linear semigroup
Sh(t) gains 1/2-space discrete derivative in L2

t,x with respect to the initial
datum.

Theorem 3.4. Let be ε > 0. There exists a positive constant C(ε, d) such
that for any R > 0

hd
∑
|jh|≤R

∫ ∞

−∞
|(−∆h)1/4eit∆hϕ)j|2dt ≤ C(ε, d)R‖ϕ‖2

l2(hZd)

holds for all ϕ ∈ l2(hZd) with supp ϕ̂ ∈ Ahε , uniformly on h > 0.
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3.4. Strichartz estimates for filtered data. In this section we derive
Strichartz-like estimates for the operator Sh(t) when it acts on functions
belonging to Ihε,d, the class of functions defined in (3.29).

The main ingredient in obtaining Strichartz estimates is the following
result due to Keel and Tao, [23].

Proposition 3.1. ([23], Theorem 1.2) Let H be a Hilbert space, (X, dx)
be a measure space and U(t) : H → L2(X) be a one parameter family of
mappings, which obey the energy estimate

(3.32) ‖U(t)f‖L2(X) ≤ C‖f‖H
and the decay estimate

(3.33) ‖U(t)U(s)∗g‖L∞(X) ≤ C|t− s|−σ‖g‖L1(X)

for some σ > 0. Then

‖U(t)f‖Lq(R, Lr(X)) ≤ C‖f‖L2(X),(3.34) ∥∥∥∫
R
(U(s))∗F (s, ·))ds

∥∥∥
L2(X)

≤ C‖F‖Lq′ (R, Lr′ (X)),(3.35) ∥∥∥∫ t

0
U(t)(U(s))∗F (s)ds

∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′ (R, Lr̃′ (X))(3.36)

for all (q, r) and (q̃, r̃), σ-admissible pairs.

Remark 3.2. With the same arguments as in [23], the following also holds
for all (q, r) and (q̃, r̃), σ-admissible pairs:

(3.37)
∥∥∥∫ t

0
U(t− s)F (s)ds

∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′ (R, Lr̃′ (X)).

In the case of the Schrödinger semigroup, S(t−s) = S(t)S(s)∗, so (3.37) and
(3.36) are the same. In our applications we will often deal with operators
that do not satisfy S(t− s) = S(t)S(s)∗.

Let us choose positive ε < π/2, K1,ε
d as in Theorem 3.3 and U(t)ϕ =

K1,ε
d ∗ ϕ. We apply the above proposition to U(t), X = Zd, dx the counter

measure and H = l2(Zd). We obtain Strichartz estimates for the semigroup
S1(t) when acts on function belonging to I1

ε,d, i.e. when h = 1. Thus, by a
scaling argument, we obtain the following result for filtered initial data.

Theorem 3.5. Let 0 < ε < π/2 and (q, r), (q̃, r̃) two d/2-admissible pairs.
i) There exists a positive constant C(d, r, ε) such that

(3.38) ‖Sh(·)ϕ‖Lq(R, lr(hZd)) ≤ C(d, r, ε)‖ϕ‖l2(hZd)

holds for all functions ϕ ∈ Ihε,d and for all h > 0.
ii) There exists a positive constant C(d, r, r̃, ε) such that

(3.39)
∥∥∥∫ t

0
Sh(t− s)f(s)ds

∥∥∥
Lq(R, lr(hZd))

≤ C(d, r, r̃, ε)‖f‖Lq̃′ (R, lr̃′ (hZd))
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holds for all functions f ∈ Lq̃
′
(R, lr̃′(hZd)) with f(t) ∈ Ihε,d for all t ∈ R,

and for all h > 0.

4. A dissipative scheme

In the previous section we analyzed the Fourier filtering method for the
conservative scheme (1.8). Another possible remedy to the lack of dispersive
estimates is to introduce a scheme containing a numerical viscosity term in
order to compensate the artificial numerical dispersion.

We propose the following viscous semidiscretization of (1.1):

(4.40)


i
duh

dt
+ ∆hu

h = ia(h) sgn(t)∆hu
h, t 6= 0,

uh(0) = ϕh,

where a(h) is a positive function which tends to zero as h tends to zero.

We remark that the proposed scheme is a combination of the conservative
approximation of the Schrödinger equation (1.8) and a semi-discretization
of the heat equation in a suitable time-scale:

duh

dt
= a(h)∆hu

h, t > 0,

which may be viewed as a discretization of

ut = a(h)∆u, t > 0.

The scheme (4.40) generates a semigroup of contractions in l2(hZd), Sh+(t),
for t > 0. Similarly one may define Sh−(t), for t < 0. In the sequel we denote
by Sh(t) the two operators.

In this Section 4.1 we will obtain norm decay estimates for the operator
Sh(t). We first analyze the l1(hZd) − l∞(hZd) decay of Sh(t). In contrast
with the continuous case where ‖u(t)‖L∞(Rd) . t−d/2 for all t 6= 0, the be-
haviour of the l∞-norm of the solutions will be different when t → 0 and
when t → ∞. The low frequency components determine the behaviour for
large time t, similar to the continuous one t−d/2. For t ∼ 0, the behaviour is
given by the high frequency components. Once the l1(hZd)−l∞(hZd) analy-
sis will have been done, we will prove in Section 4.2 Strichartz-like estimates
for the linear operator Sh(t). Section 4.3 is devoted to the analysis of the
local smoothing properties of the operator Sh(t). Finally, in Section 4.4 we
give an application to a nonlinear problem. We will consider a numerical
scheme for NSE based on the dissipative scheme (4.40).

4.1. Dispersive estimates on the operator Sh(t). The following The-
orem gives an estimate for the l∞(hZd) norm of the solutions of equation
(4.40).
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Theorem 4.1. Let α > d/2 and a(h) be a positive function such that

(4.41) inf
h>0

a(h)

h2− d
α

> 0.

There exist positive constants c(d, α) such that

(4.42) ‖Sh(t)ϕ‖l∞(hZ) ≤ c(d, α)

[
1

|t|
d
2

+
1
|t|α

]
‖ϕ‖l1(hZd).

holds for all t 6= 0, ϕ ∈ l1(hZd) and h > 0.

The decay of Sh(t) for large time t is the same as in the continuous case.
However, when looking for global Strichartz estimates the behavior at t = 0
also plays a role. According to (4.42) the behaviour at t ∼ 0 is more singular
since α > d/2. It is condition (4.41) imposed on a(h) the one that guarantees
that the high frequency components of the fundamental solutions of (4.40)
behave in l∞(hZd)-norm as |t|−α as t ∼ 0.

Proof. Taking SDTF in (4.40) we obtain that, in Fourier variable Sh(t)ϕ is
given by:

Ŝh(t)ϕ(ξ) = exp(−itph(ξ)− |t|a(h)ph(ξ))ϕ̂(ξ).

Let us define the operators Sh,j(t)ϕ = Kh,j(t) ∗ ϕ, j = 1, 2, where

Kh,1(t, j) =
∫

[− π
4h
, π
4h

]d
e−itph(ξ)e−|t|a(h)ph(ξ)eij·ξhdξ, j ∈ Zd

and

Kh,2(t, j) =
∫

Ωh

e−itph(ξ)e−|t|a(h)ph(ξ)eij·ξhdξ, j ∈ Zd,

Ωh being defined as Ωh = [−π/h, π/h]d \ [−π/4h, π/4h]d. Sh,1 (respectively
Sh,2) take account of the low (respectively high) frequency components.

We will prove that for some constant c(d, α), independent of h, the two
operators satisfy:

‖Sh,1(t)ϕ‖l∞(hZ) ≤
c(d, α)
|t|d/2

‖ϕ‖l1(hZd)

and

‖Sh,2(t)ϕ‖l∞(hZ) ≤
c(d, α)
|t|α

‖ϕ‖l1(hZd).

This immediately implies (4.42).

Young’s inequality reduces the proof of (4.42) to the following estimates
on the two kernels:

(4.43) |Kh,1(t)|l∞(hZd) ≤
c(d, α)
|t|d/2

; |Kh,2(t)|l∞(hZd) ≤
c(d, α)
|t|α

t 6= 0.
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The kernel Kh,1(t) behaves as the conservative kernel associated with
(1.8) since the Hessian matrix Hph

(ξ) = (∂ijph(ξ))di,j=1 always has the rank
d in [−π/4h, π/4h]d. In other words, no artificial viscosity is needed for this
low frequency range to ensure the optimal decay. To estimate the second
kernel Kh,2(t) we use in an essential way the dissipative effect introduced by
the term exp(−|t|ph(ξ)) away from the origin ξ ∼ 0. Note however that, for
the second one, we obtain the decay rate |t|−α instead of |t|−d/2. The critical
exponent α = d/2 can not be reached by a viscous approximation of the LSE
as in (4.40). Indeed, in view of (4.41) if one takes α = d/2, (4.40) becomes
an approximation of the viscous Schrödinger equation iut + ∆u = i∆u.

The kernel Kh,2 satisfies for all t 6= 0 the following rough estimate:

|Kh,2(t)|l∞(hZd) ≤
∫

Ωh

e−|t|a(h)ph(ξ)dξ ≤
∫

Ωh

exp
(
−4d sin2(

π

8
)
|t|a(h)
h2

)
dξ

≤ c(α, d)
hd

(
h2

|t|a(h)

)α
≤ c(α, d)

|t|α

[
inf
h>0

a(h)
h2−d/α

]−α
≤ c(α, d)

|t|α
.

Note that in the last inequality assumption (4.41) plays a key role.

Going back to Kh,1, it is convenient to rewrite it as:

Kh,1(t) = Kh,3(t) ∗ exp(|t|a(h)∆h)

where Kh,3(t, ·) is given by:

(4.44) Kh,3(t, j) =
∫

[− π
4h
, π
4h

]d
e−itph(ξ)eij·ξhdξ, j ∈ Zd,

i.e. the conservative semidiscrete kernel restricted to the frequency set
[−π/4h, π/4h]d.

We recall that the operator exp(|t|∆h) is a contraction in l1(hZd) (see for
instance [12], Theorem 1.3.3, p. 14):

(4.45) ‖ exp (|t|∆h)‖l1(hZd)−l1(hZd) ≤ 1.

Applying Theorem 3.3 and (4.45) we obtain that ‖Kh,1(t)‖l∞(hZd) ≤ c(d)|t|−d/2,
which finishes the proof. �

4.2. Strichartz like Estimates. In this section we derive space-time es-
timates for the linear operator Sh(t). The estimates are different from the
ones obtained in the continuous case, the behaviour of the semigroup as
t→∞ and t→ 0 being different, as we have seen above. As a consequence,
our estimates for Sh(t) will be given in spaces of the form Lq(R, lr(hZd)) +
Lq1(R, lr(hZd)). More precisely the term |t|−d/2 in the l∞(hZd)-norm of
Sh(t) gives us estimates in the space Lq(R, lr(hZd)) with (q, r) an d/2-
admissible pair. The second one, |t|−α, provides estimates in the space
Lq1(R, lr(hZd)) with (q1, r) an α-admissible pair.

We recall that the Strichartz estimates are used to prove the local ex-
istence for the nonlinear problem. So, a local version of them suffices
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to prove the local well possedness of the nonlinear problem. Using that
α > d/2 and q > q1, the global ones will provide local estimates in the space
Lq1(I, lr(hZd)), I being a bounded interval. This fails on unbounded time
intervals, where the Lq-norm cannot be compared to the Lq1 one.

Theorem 4.2. Let α ∈ (d/2, d] and a(h) be satisfying (4.41). Also let
us consider d/2-admissible pairs (q, r), (q̃, r̃) and α-admissible pairs (q1, r),
(q̃1, r̃).
i) There exists a positive constant C(d, α, r) such that

(4.46) ‖Sh(·)ϕ‖Lq(R, lr(hZd))+Lq1 (R, lr(hZd)) ≤ C(d, α, r)‖ϕ‖l2(hZd)

holds for all ϕ ∈ l2(hZd), uniformly on h > 0.
ii) There exists a positive constant C = C(d, α, r, r1) such that∥∥∫ t

0
Sh(t− s)f(s)ds

∥∥
Lq(R,lr(hZd))+Lq1 (R,lr(hZd))

≤ C‖f‖Lq̃′ (R,lr̃′ (hZd))∩Lq̃1
′
(R,lr̃′ (hZd))

holds for all f ∈ Lq̃′(R, lr̃′(hZd)) ∩ Lq̃1′(R, lr̃′(hZd)), uniformly on h > 0.

The following Corollary represents a simple consequence of the above
Theorem.

Corollary 4.1. Let I be a bounded interval, (q, r) and (q̃, r̃), 1/2-admissible
pairs and (q1, r) and (q̃1, r̃) α-admissible ones. Then

i) There exists a positive constant C = C(I, d, α, r) such that

(4.47) ‖Sh(t)ϕ‖Lq1 (I, lr(hZd)) ≤ C‖ϕ‖l2(hZd).

ii) There exists a positive constant C = C(I, d, α, r, r1) such that

(4.48)
∥∥∥∫ t

0
Sh(t− s)f(s)ds

∥∥∥
Lq1 (I, lr(hZd))

≤ C‖f‖Lq̃1
′
(I, lr̃

′ (hZd)).

Proof of Theorem 4.2. We write the semigroup Sh(t) as in the proof of The-
orem 4.1: Sh(t) = Sh,1(t) +Sh,2(t). Observe that Sh,1(t) and Sh,2(t) satisfy
the hypothesis of Proposition 3.1 with σ = d/2 and σ = α respectively. Ap-
plying Proposition 3.1 to each of the operators Sh,1(t) and Sh,2(t) we obtain
the desired result on Sh(t). �

Once Theorem 4.2 has been proved, Corollary 4.1 follows by using only the
definition of the sum spaces involved in Theorem 4.2 and Hölder inequality.

4.3. Local smoothing effect. As we mentioned in the introduction the
local smoothing property is very useful in proving the convergence in the
nonlinear context. In this section we consider the piecewise linear and con-
tinuous interpolator Ph

1 and we analyze the local smoothing property of
Ph

1S
h(t). This result will be applied later in Section 4.5 to provie the con-

vergence of a numerical scheme for NSE.
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We use the piecewise lineal interpolator instead of a piecewise constant one
since the last one does not belong to H1/2

loc (Rd), having less regularity than
the continuous Schrödinger semigroup. The following Theorem concerns the
local smoothing property of Ph

1S
h(t).

Theorem 4.3. Let I be a bounded interval, α ∈ (d/2, d] and χ ∈ C∞
c (Rd).

Then
i) There exists a positive constant C(I, χ) such that the following

(4.49)
∫
I

∫
Rd

χ2|(I−∆)1/4Ph
1S

h(t)ϕ|2dsdt ≤ C(I, χ)‖ϕ‖l2(hZd)

holds for all ϕ ∈ l2(hZd) and h > 0.
ii)There exists a positive constant C(I, χ) such that the following
(4.50)∫
I

∫
Rd

χ2
∣∣∣(I−∆)1/4Ph

1

(∫ t

0
Sh(t−s)f(s)ds

)∣∣∣2dxdt ≤ C(I, χ)‖f‖2
L1(I, l2(hZd))

holds for all f ∈ L1(I, l2(hZd)) and h > 0.
iii) Let (q, r) be an α-admissible pair such that (q, r) 6= (2, 2α/(α−1)). Then
there is a positive constant s = s(r, d) such that the following
(4.51)∫
I

∫
Rd

χ2
∣∣∣(I−∆)sPh

1

(∫ t

0
Sh(t− s)f(s)ds

)∣∣∣2dxdt ≤ C(I, χ)‖f‖2
Lq′ (I, lr′ (hZd))

holds for all f ∈ Lq′(I, lr′(hZd)) and h > 0.

In the continuous case, estimate (4.51) holds for s(r) = 1/4. The homoge-
nous case has been proved by Kenig, Ponce and Vega [24]. The inhomoge-
neous case is reduced to the homogenous one by using the results of Christ
and Kiselev [9] and Strichartz estimates.

In our case the arguments of [9] can not be applied. The key point in
their proof is that the Schrödinger semigroup satisfies S(t− s) = S(t)S(s)∗

for all reals t and s, identity which does not hold in our case, the operator
Sh(t)Sh(s)∗ being more dissipative than Sh(t− s).

Proof. We divide the proof in three steps, each one corresponds to the one
of estimates (4.49), (4.50) and (4.51).

Step I. Proof of (4.49). Let us write Ph
1S

h(t)ϕ as Ph
1S

h(t)ϕ = I1ϕ(t)+
I2ϕ(t), where

Î1ϕ(t)(ξ) = 1{|ξ|≤π/2h}(P
h
1S

h(t)ϕ)̂ (ξ)

and

Î1ϕ(t)(ξ) = 1{|ξ|>π/2h}(P
h
1S

h(t)ϕ)̂ (ξ).

We then define I1ϕ(t) and I2ϕ(t) by inverting the Fourier transform.
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We will prove that, for any R > 0, the two terms satisfy the following
inequalities ∫

|x|<R

∫ ∞

−∞
|(−∆)1/4I1ϕ|2dtdx ≤ C(R)‖ϕ‖2

l2(hZd)

and ∫
Rd

∫ ∞

−∞
|(−∆)d/4αI2ϕ|2dtdx ≤ C(R)‖ϕ‖2

l2(hZd).

Finally taking into account that α ≤ d we obtain (4.49).

Case a). Estimates on I1ϕ. By definition

(I1ϕ)(t, x) =
∫
|ξ|≤π/2h

e−itph(ξ)e−|t|a(h)ph(ξ)eixξP̂h
1ϕ(ξ)dξ.

We will reduce the estimates on I1ϕ to those of Jϕ, where Jϕ is defined by

(Jϕ)(t, x) =
∫
|ξ|≤π/2h

e−itph(ξ)eixξP̂h
1ϕ(ξ)dξ.

Defining Ψ(t, x) as follows

Ψ(t, x) = sup
s≥0

∣∣∣∣∣
∫
|ξ|≤π/2h

|ξ|1/2e−itph(ξ)e−sph(ξ)eixξP̂h
1ϕ(ξ)dξ

∣∣∣∣∣
the following

|(−∆)1/4(I1ϕ)(t, x)| ≤ Ψ(t, x)

holds for any t and x. Classical properties of Poisson’s integrals ([35], Th. 1,
p. 62, Ch. III) shows that the function Ψ satisfies

‖Ψ(·, x)‖L2(Rt) . ‖(−∆)1/4Jϕ(·, x)‖L2(Rt).

It remains to prove that Jϕ satisfies

(4.52)
∫
|x|<R

∫ ∞

−∞
|(−∆)1/4Jϕ(t, x)|2dtdx . C(R)‖Ph

1ϕ‖L2(Rd).

To prove the last inequality we make use of the following Lemma.

Lemma 4.1. (Theorem 4.1, [24]) Let O be an open set in Rd
ξ , and ψ be a

C1(O) function such that ∇ψ(ξ) 6= 0 for any ξ ∈ O. Assume that there is
N ∈ N such that for any (ξ1, . . . , ξd−1) ∈ Rd−1

ξ and r ∈ R the equations

ψ(ξ1, . . . , ξk, ξ, ξk+1, . . . , ξd−1) = r, k = 0, . . . , d− 1,

have at most N solutions ξ ∈ R. For a ∈ L∞(Rd×R) and f ∈ S(Rd) define

W (t)f(x) =
∫
O
ei(tψ(ξ)+xξ)a(x, ψ(ξ))f̂ (ξ)dξ;
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then for any R > 0∫
|x|≤R

∫ ∞

−∞
|W (t)f(x)|2dtdx ≤ cRN

∫
O

|f̂ (ξ)|2

|∇ψ(ξ)|
dξ

where c is independent of R and N and f .

Applying this lemma with O = {ξ ∈ Rd : |ξ| ≤ π/4h}, W = J and ψ = ph
we obtain that∫
|x|<R

∫ ∞

−∞
|Jϕ(t, x)|2dtdx ≤ CR

∫
|ξ|≤π/2h

|P̂h
1ϕ(ξ)|2

|∇ph(ξ)|
dξ . R

∫
|ξ|≤π/2h

|P̂h
1ϕ(ξ)|2

|ξ|
dξ,

which proves (4.52).

Case b). Estimates on I2ϕ. Using in essential manner the assumption
(4.41) on the function a(h), the term I2ϕ satisfies∫

Rd

|(−∆)d/4αI2ϕ(t, x)|2dx . h2−d/α
∫
|ξ|≥ π

2h

|ξ|2| ̂Ph
1S

h(t)ϕ|2dξ

. a(h)‖∇(Ph
1S

h(t)ϕ)‖2
L2(Rd) = a(h)‖∇hS

h(t)ϕ‖2
l2(hZd)

= a(h)
∫

[−π/h,π/h]d
ph(ξ)e−2ta(h)ph(ξ)|ϕ̂(ξ)|2dξ.

Integrating the last inequality on time we get∫
R

∫
Rd

|(−∆)d/4αI2ϕ|2dxdt . ‖ϕ‖2
l2(hZd).

Step II. Proof of (4.50). Let us denote

Ψf =
∫ t

0
ISh(t− s)f(s)ds.

Without loss of generality we consider I = (0, T ). For any χ ∈ C∞
c (Rd) we

have

(4.53) ‖χΨf (t)‖H1/2(Rd) ≤
∫ t

0
g(t, s)ds,

where g(t, s) = ‖χPh
1S

h(t− s)f(s)‖H1/2(Rd).

Integrating inequality (4.53) on time variable t we obtain

‖χΨf‖L2((0,T ), H1/2(Rd) =
∥∥∥∫ T

0
1(0,t)(s)g(t, s)ds

∥∥∥
L2

t ((0,T ))

≤
∫ T

0
‖1(s,T )(t)g(t, s)‖L2

t ((0,T ))ds.
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Using (4.49) on the homogenous term we have

‖1(s,T )(t)g(t, s)‖2
L2

t ((0,T )) =
∫ T

s
|g(t, s)|2dt =

∫ T

s
‖χPh

1S
h(t− s)f(s)‖2

H1/2(Rd)
dt

≤ C(T, χ)‖f(s)‖2
L2(Rd).

Integrating on t ∈ (0, T ) the last inequality we obtain

‖χΨf‖L2((0,T ),H1/2(Rd)) ≤ C(T, χ)‖f‖L1((0,T ), L2(Rd)).

Step III. Proof of (4.51). Estimate (4.51) follows by interpolation of
(4.50) and the Strichartz estimate (4.48) applied for a suitable α-admissible
pair (q1, r1). More precisely, by (4.48)
(4.54)∫

I

∫
Rd

χ2
∣∣∣Ph

1

(∫ t

0
Sh(t− s)f(s)ds

)∣∣∣2dxdt ≤ C(I, χ)‖f‖2

Lq′1 (I, lr
′
1 (hZd))

.

for any α-admisible pair (q1, r1). Using the fact that our estimates do
not involve the endpoint (2, 2α/(α − 1)) we apply (4.54) with (q1, r1) =
(2, 2α/(α − 1)), α-admissible pair. An interpolation between (4.50) and
(4.54) gives us the existence of a positive constant s(r, d), independent of h,
such that (4.51) is satisfied. �

4.4. Application to a Nonlinear Problem. We concentrate on the semi-
linear NSE equation in Rd :

(4.55)
{
iut + ∆u = |u|pu, t > 0,
u(0, x) = ϕ(x), x ∈ Rd,

the case when nonlinearity is given by f(u) = −|u|pu being the same. In
fact, the key point in the global existence of the solutions is that the L2-
scalar product (f(u), u) is a real number. All the results extend to more
general nonlinearities f(u) (see [6], Ch. 4.6, p. 109, for L2-solutions).

The first existence and uniqueness result for (4.55) for L2 initial data is
as follows.

Theorem 4.4. (Global existence in L2(Rd), Tsutsumi, [40]). For 0 ≤ p <
4/d and ϕ ∈ L2(Rd), there exists a unique solution u in C(R, L2(Rd)) ∩
Lqloc(R, L

p+2(Rd)) with q = 4(p+1)/pd that satisfies the L2-norm conserva-
tion property and depends continuously on the initial condition in L2(Rd).

The proof uss standard arguments, the key ingredient been to work in
the space C(R, L2Rd) ∩ Lqloc(R, L

p+2(Rd)) which requires and is intimately
related to the Strichartz estimates.

Local existence is proved by applying a fixed point argument to the in-
tegral formulation of (4.55). Global existence holds because of the L2(Rd)-
conservation property which excludes finite-time blow-up.
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In order to introduce a numerical approximation of equation (4.55) it is
convenient to give the definition of the weak solution of equation (4.55).

Definition 4.1. We say that u is a weak solution of (4.55) if
i) u ∈ C(R, L2(Rd)) ∩ Lqloc(R, L

p+2(Rd))
ii) u(0) = ϕ a.e. and

(4.56)
∫

R

∫
Rd

u(−iψt + ∆ψ)dxdt =
∫

R

∫
Rd

|u|puψdxdt

for all ψ ∈ D(R, H2(Rd)), where p and q are as in the statement of Theorem
4.4.

In this section we consider the following viscous numerical approximation
scheme of (4.55):

(4.57)

 i
duh

dt
+ ∆hu

h = i sgn(t)a(h)∆hu
h + |uh|puh, t 6= 0,

uh(0) = ϕh,

with 0 < p < 4/d and a(h) = h2−d/α(h) such that α(h) ↓ d/2 and a(h) → 0
as h ↓ 0. The critical case p = 4/d will be analyzed in Section 4.6.

The main result on the convergence of (4.57) in the subcritical case p <
4/d is the following:

Theorem 4.5. Let p ∈ (0, 4/d) and α(h) ∈ (d/2, 2/p). Set

1
q(h)

= α(h)
(

1
2
− 1
p+ 2

)
so that (q(h), p+2) is an α(h)-admissible pair. Then for any h > 0 and every
ϕh ∈ l2(hZd), there exists a unique global solution uh ∈ C(R, l2(hZd)) ∩
L
q(h)
loc (R, lp+2(hZd)) of (4.57). Moreover, uh satisfies

(4.58) ‖uh‖L∞(R, l2(hZd)) ≤ ‖ϕh‖l2(hZd)

and for any finite interval I

(4.59) ‖uh‖Lq(h)(I, lp+2(hZd)) ≤ c(I)‖ϕh‖l2(hZd)

where the above constant is independent of h.

The restriction α(h) < 2/p, guarantees that q(h) > p+ 2. The condition
q(h) > p + 2 is always satisfied in the subcritical case p < 4/d and allows
us to apply Banach’s fix point theorem for small time T . In the critical
case p = 4/d, this condition is not fulfilled and additional hypotheses on the
initial data have to be imposed (see Section 4.6).

Proof. Let us choose T and M positive. We consider the metric space

Eh = {u ∈ L∞((−T, T ), l2(hZd)) ∩ Lq(h)((−T, T ), lp+2(hZd)),
‖u‖L∞((−T,T ), l2(hZd)) + ‖u‖Lq(h)((−T,T ), lp+2(hZd)) ≤M},
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equipped with the distance

d(u, v) = ‖u− v‖L∞((−T,T ), l2(hZd)) + ‖u− v‖Lq(h)((−T,T ), lp+2(hZd)).

We also consider the nonlinear map

Hh(u)(t) = Sh(t)ϕh + i

∫ t

0
Sh(t− s)|u|pu(s)ds.

The Strichartz-like estimates for the α(h)-admissible pair (q(h), p+2), given
by Corollary 4.1, allow us proving that for small enough T , independent of
h, and M = 2‖ϕh‖l2(hZd), Hh(u) is a contraction on Eh. Thus we obtain
the local existence and uniqueness of the solutions and estimates (4.58) and
(4.59). To prove the global existence of the solutions we observe that the
l2(hZd)-norm of the solutions remains uniformly bounded:

d

dt
‖uh(t)‖2

l2(hZd) = 2a(h)Re
(∑

j∈Zd

(∆hu
h)juhj

)
≤ 0.

Here and in the sequel Re denotes the real part of a complex number. �

4.5. Convergence of the method. Let us consider the piecewise constant
interpolator Ph

0u
h. This choice is motivated by the fact that it commutes

with the nonlinearity. Let ϕ ∈ L2(Rd) and ϕh such that Ph
0ϕ

h → ϕ strongly
in L2(Rd). Clearly ‖Ph

0ϕ
h‖L2(Rd) ≤ C(‖ϕ‖L2(Rd)). Theorem 4.5 shows that

‖Ph
0u

h‖L∞(R, L2(Rd)) ≤ C. Moreover for any finite interval I:

(4.60) ‖Ph
0u

h‖Lq(h)(I, Lp+2(Rd)) ≤ C(I, ‖ϕ‖L2(Rd)),

and

(4.61) ‖|Ph
0u

h|pEuh‖Lq′ (I, L(p+2)′ (Rd)) ≤ C(I, ‖ϕ‖L2(Rd)).

Multiplying (4.57) by a test function ψ ∈ C∞
c (Rd+1) we obtain that Euh

satisfies∫
R

∫
Rd

Ph
0u

h(−iψt + ∆hψ)dxdt =
∫

R

∫
Rd

|Ph
0u

h|pPh
0u

hψdxdt

+ a(h)
∫

R

∫
Rd

sgn(t)Ph
0u

h∆hψdxdt.(4.62)

These uniform estimates and the regularity property proved in the previ-
ous section allow us proving the following result on the convergence of the
scheme.

Theorem 4.6. The sequence Ph
0u

h satisfies

Ph
0u

h ?
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in Lsloc(R, Lp+2(Rd)),∀ s < q,

Ph
0u

h → u in L2
loc(R×Rd), |Ph

0u
h|p|Ph

0u
h|⇀ |u|pu in Lq

′

loc(R, L
(p+2)′(Rd))

where u is the unique weak solution of NSE.
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Proof. In view of estimate (4.58) there exists a function u ∈ L∞(R, L2(Rd))
such that Ph

0u
h ∗
⇀u in L∞(R, L2(Rd)).

Let us choose an s < q. For h sufficiently small, s ≤ q(h) < q. Esti-
mate (4.60) and Hölder’s inequality show that Ph

0u
h is uniformly bounded

in Ls(I, Lp+2(Rd)). This implies that u ∈ Ls(I, Lp+2(Rd)), Ph
0u

h ⇀ u in
Ls(I, Lp+2(Rd)) and

‖u‖Ls(I, Lp+2(Rd)) ≤ lim inf
h

‖Ph
0u

h‖Lq(h)(I, Lp+2(Rd)) ≤ C(I, ‖ϕ‖L2(Rd)).

Fatou’s Lemma shows that u ∈ Lq(R, Lp+2(Rd)).

In the following we prove the existence of a function v such that Ph
0u

h → v
in L2

loc(R1+d) and then Ph
0u

h → v almost everywhere. This allows us to pass
to the limit in the nonlinear term. To do that we consider the piecewise
linear interpolator I and prove that Iuh converges strongly in L2

loc(Rd+1) to
a function v. Finally, we will transfer the strong convergence of Ph

1u
h to

Ph
0u

h by proving that Ph
1u

h −Ph
0u

h tends to zero in L2(Rd+1).

We proceed with the proof of the strong convergence of Ph
1u

h. Let us
consider a bounded interval I ⊂ R and a bounded domain Ω ⊂ Rd. Theo-
rem 4.3 gives us the existence of a positive s, independent of h, such that
‖Ph

1u
h‖L2(I,Hs(Ω)) ≤ C(I,Ω, ‖ϕ‖L2(Rd)). We also have the uniform bound-

edness of its time derivative:∥∥∥∥dPh
1u

h

dt

∥∥∥∥
L1(I,H−2(Rd))

≤ ‖∆hPh
1u

h‖L1(I,H−2(Rd)) + ‖Ph
1(|uh|puh)‖L1(I,H−2(Rd))

≤ ‖Ph
1u

h‖L1(I, L2(Rd)) + ‖Ph
1(|uh|puh)‖L1(I, L(p+2)′ (Rd))

≤ C(I, ‖ϕ‖L2(Rd)).

Using the embeddings Hs(Ω) ↪→
comp

L2(Ω) ↪→ H−2(Ω) and the compactness

results of [31] we obtain the existence of a function v such that Ph
1u

h →
v in L2

loc(R× Rd).

In the following we prove that Ph
1u

h −Ph
0u

h → 0 in L2(Rd+1). Classical
result on interpolation ([30], Th. 3.1.5, p. 122) give us that∫

Rd

|Ph
1u

h(t)−Ph
0u

h(t)|2dx ≤ h2‖∇hu
h(t)‖2

l2(hZd)

= h2

∫
[−π/h,π/h]d

ph(ξ)e−2|t|ph(ξ)a(h)|ϕ̂h(ξ)|2dξ.

Integrating the last inequality on time and using that α(h) → 1/2 as h→ 0
we obtain∫

R

∫
Rd

|Ph
1u

h(t)−Ph
0u

h(t)|2dxdt ≤ h2

a(h)
C(‖ϕ‖L2(Rd)) = h1/α(h)C(‖ϕ‖L2(Rd)) → 0.
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The strong convergence Ph
1u

h −Ph
0u

h → 0 in L2(Rd+1) shows that u = v
and Ph

0u
h → u in L2

loc(R×Rd). Moreover, up to a subsequence Ph
0u

h→u a.e.
in R × Rd and thus |Ph

0u
h|pPh

0u
h → |u|pu a.e. in R × Rd. Using (4.61) we

obtain that |Ph
0u

h|pPh
0u

h ⇀ |u|pu in Lq
′
(R, Lp+2(Rd)). All the above weak

convergence of Ph
0u

h and (4.62) show that u satisfies (4.56).

It remains to prove that u ∈ C(R, L2(Rd)) and u(0) = ϕ. To prove that
u ∈ C(R, L2(Rd)) it is sufficient to prove its continuity at t = 0.

We remark that for any positive 0 ≤ t ≤ T :

‖uh(t)− Sh(t)ϕh‖l2(hZd) ≤
∥∥∥∫ t

0
Sh(t− s)|uh|puhds

∥∥∥
L∞([0,T ],l2(Zd))

≤ ‖|uh|puh‖Lq′ ([0,T ], l(p+2)′ (hZd)) ≤ TαC(‖ϕ‖L2(Rd)) ≤ CTα

for some positive α and C independent of h. Using the weak convergence
Ph

0u
h −Ph

0S
h(·)ϕh ∗

⇀u− S(·)ϕ in L∞([0, T ], L2(Rd)) we get

‖u(t)− S(t)ϕ‖L2(Rd) ≤ lim inf
h→0

‖Ph
0u

h −Ph
0S

h(·)Π̃ϕh‖L∞([0,T ], L2(Rd)) ≤ Tα

which proves that u(t) → ϕ in L2(Rd) as t→ 0. �

4.6. The Critical Case p = 4/d. Our method works similarly in the crit-
ical case p = 4/d for small initial data. It suffices to modify the approxi-
mation scheme by taking a nonlinear term of the form |uh|2/α(h)uh in the
semidiscrete equation (4.57) with a(h) = h2−d/α(h) and α(h) ↓ d/2, a(h) ↓ 0,
so that, asymptotically, it approximates the critical nonlinearity of the con-
tinuous Schrödinger equation. In this way the critical continuous exponent
p = 4/d is approximated by semidiscrete critical problems. The critical
semidiscrete problem presents the same difficulties as the continuous one.
Thus, the initial datum needs to be assumed to be small. But the small-
ness condition is independent of the mesh-size h > 0. More precisely, the
following holds.

Theorem 4.7. Let α(h) > d/2 and p(h) = 2/α(h). There exists a con-
stant ε, independent of h, such that for all ‖ϕh‖l2(hZd) < ε, the semidis-
crete critical equation has a unique global solution uh ∈ C(R, l2(hZd)) ∩
L
p(h)+2
loc (R, lp(h)+2(hZd)). Moreover, for any α(h)-admissible pairs (q, r)

‖uh‖Lq(I,lr(hZd) ≤ C(q, I)‖ϕh‖l2(hZd)

for all finite interval I.

Observe that, in particular, (d + 2)/α(h), 4/d + 2) is an α(h)-admissible
pair. This allows us to bound the solutions uh in any space Lsloc(R, L4/d+2(R))
with s < 4/d+ 2. With the same notation as in the subcritical case the fol-
lowing convergence result holds.
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Theorem 4.8. When p = 4/d and under the smallness assumption on the
initial datum u0, the sequence Ph

0u
h satisfies

Ph
0u

h ?
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in Lsloc(R, L4/d+2(Rd)) ∀ s < 4/d+2,

Ph
0u

h → u in L2
loc(R×Rd), |Ph

0u
h|p(h)|Ph

0u
h|⇀ |u|4/du in L

(4/d+2)′

loc (R, L(4/d+2)′(Rd))
where u is the unique weak solution of critical NSE.

5. A two-grid algorithm

In this section to compensate the lack of dispersion proved in Section 3
we propose a two-grid algorithm (inspired by [17]) and that, to some extent,
acts as a filter for those unwanted high frequency components.

The method is roughly as follows. We consider two meshes: the coarse
one of size 4h, h > 0, 4hZd, and the finer one, hZd, of size h > 0. The
method relies basically on solving the finite-difference semi-discretization
(1.8) on the fine mesh hZd, but only for slow data, interpolated from the
coarse grid 4hZd. As we shall see, the 1/4 ratio between the two meshes
is important to guarantee the convergence of the method. This particular
structure of the data cancels the two pathologies of the discrete symbol
mentioned above. Indeed, a careful Fourier analysis of those initial data
(we refer to [42] for the theory of multi-grid methods) shows that their
discrete Fourier transform vanishes quadratically in each variable at the
points ξ = (±π/2h)d and ξ = (±π/h)d. As we shall see, this suffices to
recover the dispersive properties of the continuous model.

Once we get the discrete version of the dispersive properties we are able to
apply it to a semi-discretization of the NSE with nonlinearity f(u) = |u|pu.
The nonlinear term is approximated in a such way that it allows to apply the
dispersive estimates of the linear semigroup. We recall that such estimates
are valid only in a subspace of l2(hZn) of data interpolated from the coarse
grid. In the subcritical case we prove the global existence of the solutions
for initial data in l2(hZd). We also consider the critical case p = 4/d for
small initial data.

We introduce the space of the slowly oscillating sequences (SOS). The
SOS on the fine grid hZd are those which are obtained from the coarse grid
4hZd by an interpolation process. Any function defined on the lattice hZd
can be viewed as a function on the lattice Zd. This is the way we will proceed
in the definition of the projection operator Π̃ and its adjoint.

Let us consider the multilinear interpolator I acting on the coarse grid
4Zd. We define the operator Π̃ : l2(4Zd) → l2(Zd) by

(5.63) (Π̃f)j = (If)j, j ∈ Zd

and its adjoint Π̃∗ : l2(Zd) → l2(4Zd):

(5.64) (Π̃f, g)l2(Zd) = (f, Π̃∗g)l2(4Zd),
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where (·, ·)l2(Zd) and (·, ·)l2(4Zd) are the inner products on l2(Zd) respectively
l2(4Zd).

In Section 3, we proved that there is no gain (uniformly in h) of inte-
grability or local smoothing effect of the linear semigroup Sh(t) generated
by the conservative scheme (1.8). However, there are subspaces of l2(hZd),
namely Π̃(4hZd), where Sh(t) has appropriate decay properties, uniformly
on h > 0. The main results concerning the gain of integrability are given in
the following Theorem.

Theorem 5.1. Let p ≥ 2 and (q, r), (q̃, r̃) two 1/2-admissible pairs. The
following properties hold

i) There exists a positive constant C(d, p) such that

(5.65) ‖Sh(t)Π̃ϕ‖lp(hZd) ≤ C(d, p)|t|−d(
1
2
− 1

p
)‖Π̃ϕ‖lp′ (hZd)

for all ϕ ∈ lp′(4hZd), h > 0 and t 6= 0.

ii) There exists a positive constant C(d, r) such that

(5.66) ‖Sh(t)Π̃ϕ‖Lq(R, lr(hZd)) ≤ C(d, r)‖Π̃ϕ‖l2(hZd)

for all ϕ ∈ l2(4hZd) and h > 0.

iii) There exists a positive constant C(d, r) such that

(5.67)
∥∥∥∫ ∞

−∞
Sh(t)∗Π̃f(s)ds

∥∥∥
l2(hZd)

≤ C(d, r)‖Π̃f‖Lq′ (R,lr′ (hZd))

for all f ∈ Lq′(R, lr̃′(4hZd)) and h > 0.

iv) There exists a positive constant C(d, r, r̃) such that

(5.68)
∥∥∥∫ t

0
Sh(t− s)Π̃f(s)ds

∥∥∥
Lq(R, lr(hZd))

≤ C(d, r, r̃)‖Π̃f‖Lq̃′ (R, lr̃′ (hZd))

for all f ∈ Lq̃′(R, lr̃′(4hZd)) and h > 0.

The following lemma gives a characterization of data that are obtained
by a two-grid algorithm involving the meshes 4hZd and hZd. Its proof uses
only the definition of the discrete Fourier transform and for that we omit it.

Lemma 5.1. Let ψ ∈ l2(4hZd). Then for all ξ ∈ [−π/h, π/h]d

̂̃Πψ(ξ) = 4dΠ̂ψ(ξ)
d∏

k=1

cos2(ξkh) cos2
(
ξkh

2

)
,

where (Πψ)j = ψj if j ∈ 4Zd and vanishes elsewhere.

Remark 5.1. A simpler construction may be done by interpolating 2hZd
sequences. We then get for all ψ ∈ l2(2hZd) and ξ ∈ [−π/h, π/h]d

̂̃Πψ(ξ) = 2dΠ̂ψ(ξ)
d∏

k=1

cos2
(
ξkh

2

)
,
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with (Πψ)j = ψj if j ∈ 2Zd and vanishes elsewhere. This cancels the spuri-
ous numerical solutions at the frequencies {±π/h}d, but not at {±π/2h}d.
In this case, as we proved in Section 3, the Strichartz estimates fail to be
uniform on h. Thus we rather choose 1/4 as the ratio between the grids for
the two-grid algorithm.

Proof. Let us define the family of weighted operators Ahα(t) : l2(hZd) →
l2(hZd) by

̂(Ahα(t)f)(ξ) = e−itph(ξ)|g(ξh)|αf̂(ξ), ξ ∈
[
−π
h
,
π

h

]
,

where

g(ξ) =
d∏

k=1

cos(ξk) cos
(
ξk
2

)
.

We will prove that for any α ≥ 1/4, Ahα(t) satisfies the hypothesis of
Proposition 3.1. Then, observing that Sh(t)Π̃ϕ = Ah2(t)Πϕ, we obtain
(5.66), (5.67) and (5.68).

Is easy to see that ‖Ahα(t)ϕ‖l2(hZd) ≤ ‖ϕ‖l2(hZd). It remains to prove that
for any α ≥ 1/4 and t 6= s the following holds:

(5.69) ‖Ahα(t)Ahα(s)∗ψ‖l∞(hZd) ≤ c(α, d)|t− s|−d/2‖ψ‖l1(hZd).

A scaling argument reduces the proof to the case h = 1. We claim that
(5.69) holds once

(5.70) ‖A1
β(t)‖l∞(hZd) ≤ c(β, d)|t|−d/2‖ψ‖l1(hZd)

holds for all β ≥ 1/2. Indeed, using that the operator A1
α(t) satisfies

A1
α(t)∗ = A1

α(−t) for all real t, we obtain

‖A1
α(t)A1

α(s)∗ψ‖l∞(Zd) = ‖A1
α(t)A1

α(−s)ψ‖l∞(Zd)

= ‖A1
2α(t− s)ψ‖l∞(Zd) . |t− s|−d/2‖ψ‖l1(Zd),

for all t 6= s and ψ ∈ l1(Zd).
In the following we prove (5.70). We writeA1

β(t) as a convolutionA1
β(t)ψ =

Kt
β ∗ ψ where K̂t

β(ξ) = e−itp1(ξ)|g(ξ)|β. By Young’s inequality it is sufficient
to prove that for any β ≥ 1/2 and t 6= 0 the following holds:

‖Kt
β‖l∞(Zd) ≤ c(β, d)|t|−d/2.

We observe that Kt
β can be written by separation of variables as

K̂t
β(ξ) =

d∏
k=1

e−4it sin2(
ξk
2

)

∣∣∣∣cos(ξk) cos
(
ξk
2

)∣∣∣∣β =
d∏
j=1

K̂t
1,β(ξj).

It remains to prove that ‖Kt
1,β‖l∞(Z) ≤ c(β)|t|−1/2. We make use of the

following Lemma:
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Lemma 5.2. (Corollary 2.9, [24]) Let (a, b) ⊂ R and ψ ∈ C3(a, b) be such
that ψ′′ has a finite number of changes of monotonicity. Then∣∣∣∣∫ b

a
ei(tψ(ξ)−xξ)|ψ′′(ξ)|1/2φ(ξ)dξ

∣∣∣∣ ≤ cψ|t|−1/2

{
‖φ‖L∞(a,b) +

∫ b

a
|φ′(ξ)|dξ

}
.

holds for all real numbers x and t.

Applying the above Lemma with φ(ξ) = | cos ξ|β−1/2| cos(ξ/2)|β, β ≥ 1/2,
and ψ(ξ) = −4 sin2(ξ/2), we obtain that ‖Kt

1,β‖l∞(Z) ≤ c(β)|t|−1/2, which
finishes the proof. �

5.1. A conservative approximation of the NSE. We concentrate on the
semilinear NSE equation (4.55). We consider the following semi-discretization

(5.71) i
duh

dt
+ ∆hu

h = Π̃f(Π̃∗uh), t ∈ R; uh(0) = Π̃ϕh,

where f(u) = |u|pu. In order to prove the global well-posedness of (5.71), it
is sufficient to guarantee the conservation of the l2(hZd)-norm of solutions,
a property that the solutions of NSE satisfy. The choice Π̃f(Π̃∗uh) as an
approximation of the nonlinear term f(u) is motivated by the following
identity:

(5.72) (Π̃f(Π̃∗uh), uh)l2(hZd) = (f(Π̃∗uh), Π̃∗uh)l2(4hZd) ∈ R.

This will allow us to prove the conservation of the l2(hZd)-norm of the
solutions and their global existence.

The following holds:

Theorem 5.2. Let p ∈ (0, 4/d) and q = 4(p + 2)/dp. Then for all h > 0
and for every ϕh ∈ l2(4hZd), there exists a unique global solution uh ∈
C(R, l2(hZd)) ∩ Lqloc(R, l

p+2(hZd)) of (5.71). Moreover, uh satisfies

‖uh‖L∞(R, l2(hZd)) ≤ ‖Π̃ϕh‖l2(hZd) and ‖uh‖Lq(I, lp+2(hZd)) ≤ c(I)‖Π̃ϕh‖l2(hZd)

for all finite intervals I, where the above constants are independent of h.

Proof of Theorem 5.2. The local existence and uniqueness are consequences
of the Strichartz-like estimates given in Theorem 5.1 and of a fixed point
argument in the space L∞((−T, T ), l2(hZd))∩Lq((−T, T ), lp+2(hZd)) where
T has to be assumed small. Identity (5.72) proves the global existence of
the solution. �

5.2. Convergence of the method. In the sequel we consider the piecewise
constant interpolator Ph

0 . We choose (ϕhj )j∈Zd , an approximation of the
initial datum ϕ ∈ L2(Rd), such that Ph

0Π̃ϕh converges strongly to ϕ in
L2(Rd). Thus, in particular, ‖Ph

0Π̃ϕh‖L2(Rd) ≤ C(‖ϕ‖L2(Rd)).

The main convergence result is the following:
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Theorem 5.3. Let p and q be as in Theorem 5.2 and uh be the unique
solution of (5.71). Then the sequence Ph

0u
h satisfies

(5.73) Ph
0u

h ?
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in Lqloc(R, L

p+2(Rd)),

(5.74)
Ph

0u
h → u in L2

loc(Rd+1), Ph
0Π̃f(Π̃∗uh) ⇀ |u|pu in Lq

′

loc(R, L
(p+2)′(Rd))

where u is the unique solution of NSE.

The main difficulty in the proof of Theorem 5.3 is the strong convergence
Ph

0u
h → u in L2

loc(Rd+1). Once it is obtained, the second convergence in
(5.74) easily follows. Without the strong convergence of Ph

0u
h towards u we

are not able to pass to the limit in the nonlinear term. Another difficulty
comes from the fact that the interpolator E has no compact support in the
Fourier space. To simplify the proof we consider the band-limited interpo-
lator Ph

∗ (cf. [41], Ch. II) and prove the compactness for Ph
∗ . Once this is

obtained we transfer the L2-strong convergence of Ph
∗u

h to Ph
0u

h. This is a
consequence of the following property of the piecewise constant interpolator
Ph

0u
h (cf. [30], Th. 1.3.5, p. 122):

(5.75) ‖Ph
0u

h(t)−Ph
∗u

h(t)‖L2(Ω) ≤ h‖Ph
∗u

h(t)‖H1(Ω),

which holds for all real t and Ω ⊂ Rd.

We will prove that Ph
∗u

h is uniformly bounded in L2
loc(R, H

1/2
loc (Rd)). Also

we will obtain estimates on the L2
loc(R, H1

loc(Rd))-norm. The last ones are
not uniform on h but give us sufficient information to ensure that Ph

0u
h −

Ph
∗u

h strongly converges to zero in L2
loc(Rd+1). The following lemma gives

estimates of the local Hs-norm of Ph
∗u

h.

Lemma 5.3. Let be s ≥ 1/2, I ⊂ R a bounded interval and χ ∈ C∞
c (Rd).

Then there is a constant C(I, χ) such that

(5.76) ‖χPh
∗(S

h(t)Π̃ϕh)‖L2(I,Hs(Rd)) ≤
C(I, χ)
hs−1/2

‖Π̃ϕh‖l2(hZd)

holds for all functions ϕh ∈ lr(4hZd). Moreover for any 1/2-admissible pair
(q, r)
(5.77)∥∥∥∥χPh

∗

(∫ t

0
Sh(t− τ)Π̃fh(τ)dτ

)∥∥∥∥
L2(I,Hs(Rd))

≤ C(I, χ)
hs−1/2

‖Π̃fh‖Lq′ (I,lr′ (hZd))

for all fh ∈ Lq′(I, lr′(4hZd)).

Proof of Lemma 5.3. Step I. Regularity of the homogenous term. To
prove (5.76) it is sufficient to prove for any R > 0 the existence of a positive
constant C(I,R) such that∫

I

∫
|x|<R

|(−∆)s/2Ph
∗(S

h(t)Π̃ϕh)|2dxdt ≤ C(I,R)
h2s−1

∫
[−π/h,π/h]d

|ϕ̂h(ξ)|2dξ.
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Let us consider ψh ∈ l2(hZd). Applying Lemma 4.1 to the function
I∗(Sh(t)ψh) we obtain∫
I

∫
|x|<R

|(−∆)s/2Ph
∗(S

h(t)ψh)|2dxdt ≤ C(I,R)
∫

[−π/h,π/h]d

|ξ|2s|P̂h
∗ψ

h(ξ)|2dξ
|∇ph(ξ)|

≤ C(I,R)h1−2s

∫
[−π/h,π/h]d

(
∑d

j=1 ξ
2
j )

1/2|ψ̂h(ξ)|2dξ
(
∑d

j=1 sin2(ξjh)/h2)1/2

. C(I,R)h1−2s

∫
[−π/h,π/h]d

|ψ̂h(ξ)|2dξ∏d
j=1 | cos(ξjh/2)|

,(5.78)

provided that all terms make sense. Now, we apply the last estimates to
ψh = Π̃ϕh. Thus∫
I

∫
|x|<R

|(−∆)s/2Ph
∗(S

h(t)Π̃ϕh)|2dxdt ≤ C(I,R)
h2s−1

∫
[−π/h,π/h]d

| ̂̃Πϕh(ξ)|2dξ∏d
j=1 | cos(ξjh/2)|

≤ C(I,R)
h2s−1

∫
[−π/h,π/h]d

|ϕ̂h(ξ)|2
d∏
j=1

| cos(ξjh/2)|3dξ

≤ C(I,R)
h2s−1

‖ϕh‖l2(hZd).

Step II. Regularity of the inhomogeneous part. In the following we
prove (5.77). This estimate will be reduced to the homogenous one (5.76) by
using the argument of Christ and Kiselev [9] (see also [4], [33] in the context
of PDE). A simplified version, useful in PDE application is given in [33] :

Lemma 5.4. Let X and Y be Banach spaces and assume that K(t, s) is a
continuous function taking its values in B(X,Y ), the space of bounded linear
mappings from X to Y . Suppose that −∞ ≤ a < b ≤ ∞ and set

Tf(t) =
∫ b

a
K(t, s)f(s)ds, Wf(t) =

∫ t

a
K(t, s)f(s)ds.

Assume that 1 ≤ p < q ≤ ∞ and ‖Tf‖Lq([a,b],Y ) ≤ ‖f‖Lp([a,b],X). Then

‖Wf‖Lq([a,b],Y ) ≤ ‖f‖Lp([a,b],X).

Without less generality we can consider I = [0, T ]. In view of the above
Lemma it is sufficient to prove that the operator

Tf(t) = χPh
∗

(∫ T

0
Sh(t− τ)Π̃fh(τ)dτ

)
satisfies

‖Tf‖L2([0,T ], Hs(Rd)) ≤ C(T, χ)‖Π̃fh‖Lq′ ([0,T ], lr′ (hZd)).
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Writing Tf in the following form

Tf(t) = χPh
∗S

h(t)Π̃
(∫ T

0
Sh(−τ)fh(τ)dτ

)
and using estimate (5.76) we obtain that

‖Tf‖L2([0,T ], Hs(Rd)) ≤ C(I, χ)
hs−1/2

∥∥∥Π̃(∫ T

0
Sh(τ)∗fh(τ)dτ

)∥∥∥
l2(hZd)

=
C(I, χ)
hs−1/2

∥∥∥∫ T

0
Sh(τ)∗Π̃fh(τ)dτ

∥∥∥
l2(hZd)

.

Estimate (5.67) given by Theorem 5.1 shows that the right hand side of the
last estimate is uniformly bounded by the Lq

′
([0, T ], lr

′
(hZd))-norm of Π̃fh,

finishing the proof. �

Proof of Theorem 4.6. Theorem 5.2 shows that Ph
0u

h satisfies ‖Ph
0u

h‖L∞(R, L2(Rd)) ≤
C(‖ϕ‖L2(Rd)) and for any finite interval I the following:

(5.79) ‖Ph
0u

h‖Lq(I, Lp+2(Rd)) ≤ C(I, ‖ϕ‖L2(Rd)),

and

(5.80) ‖Ph
0Π̃f(uh)‖Lq′ (I, L(p+2)′ (Rd)) ≤ C(I, ‖ϕ‖L2(Rd))

hold, uniformly on h.

Moreover, multiplying (5.71) by a function ψ ∈ C∞
c (Rd+1), Ph

0u
h satisfies

(5.81)
∫

R

∫
Rd

Ph
0u

h(−iψt + ∆hψ)dxdt =
∫

R

∫
Rd

Ph
0Π̃f(Π̃∗uh)ψdxdt.

Step i). Weak convergence.
The uniform boundedness of Ph

0u
h in L∞(R, L2(Rd)), guarantees that there

is a function u ∈ L∞(R, L2(Rd)) such that up to a subsequnce Ph
0u

h ?
⇀u in

L∞(R, L2(Rd)). By (5.79) we obtain that u ∈ Lq(I, Lp+2(Rd)) and up to a
subsequence

(5.82) Ph
0u

h ⇀ u in Lq(I, Lp+2(Rd)).

Step ii). Strong Convergence of Ph
0u

h.
Using Lemma 5.3 with s = 1/2 we obtain that for any smooth function χ,
Ph
∗u

h satisfies

‖χPh
∗u

h‖L2(I,H1/2(Rd)) ≤ C(I, χ, ‖ϕh‖l2(hZd)).

Let I be a finite interval and Ω ⊂ Rd bounded. The same arguments as
in Section 4.5 show the existence of a function v such that Ph

∗u
h → v in

L2(I × Ω). By a diagonal process we get that Ph
∗u

h → v in L2
loc(R× R2).
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In the following we transfer the strong convergence of Ph
∗u

h to Ph
0u

h.
Classical properties of the interpolator Ph

0u
h (see [30], Th. 3.1.5, p. 122)

give us ∫
Ω
|Ph

0u
h −Ph

∗u
h|2dx ≤ h2‖Ph

∗u
h‖2
H1(Ω).

Applying Lemma 5.3 with s = 1 we obtain for any χ ∈ C∞
c (Rd)∫

I

∫
Rd

χ2|Ph
0u

h −Ph
∗u

h|2dxdt ≤ h2

∫
I

∫
Rd

χ2|(I −∆)1/2Ph
∗u

h|2dxdt

≤ hC(I, ‖Π̃ϕh‖2
l2(hZd)) → 0, h→ 0.

This shows that Ph
0u

h − Ph
∗u

h → 0 in L2
loc(R × Rd). Using the strong

convergence of Ph
∗u

h towards v, we obtain that v = u and

Ph
0u

h → u in L2
loc(R× Rd).

Let Γ ⊂ Zd be a finite set. Thus for any s ∈ Γ we have Ph
0u

h(·+ sh) → u in
L2
loc(R× Rd) and

Ph
0u

h(·+ sh) → u a.e. in R× Rd.

The operators Π̃ and Π̃∗ involve only a finite number of translations. Then

pcΠ̃f(Π̃∗uh) → |u|pu a.e. in R× Rd.

and

(5.83) Ph
0Π̃f(Π̃∗uh) ⇀ |u|pu in Lq

′
(I, L(p+2)′(Rd)).

All the above weak convergences of Euh and (5.81) show that u satisfies
(4.56).

Step iii). Continuity of u in L2(Rd) and identification of the
initial datum. To prove that u ∈ C(R, L2(Rd)) it is sufficient to prove the
continuity at t = 0. We remark that for any positive 0 ≤ t ≤ T :

‖uh(t)− Sh(t)Π̃ϕh‖l2(hZd) ≤
∥∥∥∥∫ t

0
Sh(t− s)Π̃f(Π̃∗uh(s))ds

∥∥∥∥
L∞([0,T ],l2(Zd))

≤ ‖|uh|p+1‖
Lq′ ([0,T ], l(p+2)′(hZd))

≤ Tα‖uh‖β
Lq(R, lp+2(hZd))

≤ CTα

for some positive α, β and C independent of h. Using the weak convergence
Ph

0u
h(t)−Ph

0S
h(t)Π̃ϕh ⇀ v(t)− S(t)ϕ in L2(Rd) we get

‖v(t)− S(t)ϕ‖L2(Rd) ≤ lim inf
h

‖Ph
0u

h(t)−Ph
0S

h(t)Π̃ϕh‖L2(Rd) ≤ Tα

which prove that v(t) → ϕ in L2(Rd) as t→ 0. This finishes the proof. �
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5.3. The critical case p = 4. Our method works similarly in the critical
case p = 4/d for small initial data. The initial datum needs to be assumed to
be small, but the smallness condition is independent of the mesh-size h > 0.
More precisely, the following holds.

Theorem 5.4. There exists a constant ε, independent of h, such that for all
initial data ‖ϕh‖l2(hZd) < ε, the semidiscrete critical equation (5.71) with p =

4/d has a unique global solution uh ∈ C(R, l2(hZd))∩L4/d+2
loc (R, l4/d+2(hZd)).

Moreover for any 1/2-admissible pair (q, r), uh ∈ Lqloc(R, l
r(hZd)) and

‖uh‖Lq(I, lr(hZd) ≤ C(q, I)‖ϕh‖l2(hZd)

for all finite intervals I, uniformly on h.

With the same notation as in the subcritical case the following conver-
gence result holds.

Theorem 5.5. Let p = 4/d. Under the smallness assumption of Theorem
5.4, the sequence Ph

0u
h satisfies

Ph
0u

h ?
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in L

4/d+2
loc (R, L4/d+2(Rd)),

Ph
0u

h → u in L2
loc(R×Rd), Ph

0Π̃(f(Π̃∗uh)) ⇀ |u|4/du in L
(4/d+2)′

loc (R, L(4/d+2)′(Rd))

where u is the unique weak solution of the critical NSE with p = 4/d.
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