NUMERICAL SCHEMES FOR THE NONLINEAR
SCHRODINGER EQUATION

LIVIU I. IGNAT AND ENRIQUE ZUAZUA

ABSTRACT. We consider semidiscrete approximation schemes for the
linear Schrédinger equation and analyze whether the classical dispersive
properties of the continuous model hold for these approximations. For
the conservative finite difference semi-discretization scheme of the linear
Schrédinger equation, we show that, as the mesh-size tends to zero, the
semidiscrete approximate solutions loose the dispersion property. We
prove this property by constructing solutions concentrated at the points
of the spectrum where the second order derivatives of the symbol of
the discrete laplacian vanish. Therefore this phenomenon is due to the
presence of numerical spurious high-frequencies.

To recover the dispersive properties of the solutions at the discrete
level, we introduce three numerical remedies: Fourier filtering; numerical
viscosity; two-grid preconditioner. For each of them we prove Strichartz-
like estimates and the local space smoothing effect, uniformly on the
mesh size. The methods we employ are based on classical estimates
for oscillatory integrals. These estimates allow us to treat nonlinear
problems with L2-initial data, without additional regularity hypotheses.
We prove the convergence of the proposed methods for nonlinearities
that cannot be handled by energy arguments and which, even in the
continuous case, require Strichartz estimates.

1. INTRODUCTION

Let us consider the linear (LSE) and the nonlinear (NSE) Schrodinger
equations

(1.1) {iut+Au:0,$€Rd,t7§O,

u(0,7) = ¢(z), z € R4

This equation is solved by u(z,t) = S(t)p, where S(t) = e is the free
Schrodinger operator. The linear semigroup has two important properties.
First, the conservation of the L?-norm

(1.2) lu@) | 2@ey = llellL2@e
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2 L. I. IGNAT AND E. ZUAZUA

and a dispersive estimate of the form:

1
(1.3) 1S ()] = |ult, )] < 3 llellimay, z €RY, E£0.

(4rlt])
The Space-Time Estimate
(1.4) ISC)ll Lo+asa, L2+aragayy < Cllellr2(ray,

due to Strichartz [37], is deeper. It guarantees that the solutions decay in
some sense as t becomes large and that they gain some spatial integrability.

Inequality (1.4) was generalized by Ginibre and Velo [16]. They proved
the Mixed Space-Time Estimate

(1.5) 1Sl o, Lr ey < Cla: 7))@l 2w

for the so-called d/2-admissible pairs (g, r), excepting the limit case (¢q,r) =
(00,2) in dimension d = 2. We recall that a o-admisible pair satisfies (cf.
[23]): 2 < ¢q,7 < o0 and

(1.6) ;:“G_i)'

The extension to the inhomogeneous linear Schrodinger equation is due to
Yajima [43] and Cazenave and Weissler [7]. The estimates presented before
play an important role in the proof of the well-posedness of the nonlin-
ear Schrodnger equation (NSE). Typically the dispersive estimates are used
when the energy methods fail to provide well-posedness results for nonlinear
problems.

These estimates can be extended to a larger class of equations for which
the laplacian is replaced by any self-adjoint operator so that the L°°-norm
of the fundamental solution behaves like t~%?2 [23].

The nonlinear problem with nonlinearity F(u) = |u|P~!u, p < 4/d and
initial data in L?(R?) has been first analyzed by Tsutsumi [40]. The author
proved that, in this case, NSE is globally well posed in L>¥(R, L?(R%)) N
LI (R, L"(R%)), where (¢,r) is an d/2-admissible pair depending on the
nonlinearity F. Also, Cazenave and Weissler [8] proved the local existence
in the critical case p = 4/d. The case of H'-solutions has been analyzed by
Baillon, Cazenave and Figueira [3], Lin and Strauss [26], Ginibre and Velo

[14, [15], Cazenave [5], and, in a more general context, by Kato [21], 22].

The Schrodinger equation has another remarkable property guaranteeing
the gain of one half space derivative in L2, (cf. [32], [10], [11] and [24]):

(L7) sup /B( R)/ A) e B Pdtde < Cllel g,
X0, X0,

It has played a crucial role in the study of the nonlinear Schrodinger equation
with nonlinearities involving derivatives (see [25]). For other deep results on
the Schrodinger equations we refer to [38], [6] and the bibliography therein.
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In this paper we analyze whether semidiscrete schemes for LSE have dis-
persive properties similar to , and , uniform with respect
to the mesh sizes. The study of these dispersion properties for these ap-
proximation schemes is relevant for introducing convergent schemes in the
nonlinear context. Since, as mentionated above, the well-posedness of the
nonlinear Schrodinger equation requires a fine use of the dispersion prop-
erties, the convergence of the numerical schemes cannot be proved if these
dispersion properties are not verified at the numerical level.

Estimates similar to on discrete solutions will give sufficient con-
ditions to guarantee their compactness and thus the convergence towards
the solution of the nonlinear Schrodinger equation. Without such an es-
timate, despite the uniform boundedness of the discrete solutions in the
space L®(R, [?(hZ%))N L} (R, I"(hZ?)), one cannot pass to the limit in the
nonlinear term.

To better illustrate the problems we shall address, let us first consider the
conservative semidiscrete numerical scheme

(1.8) i— + Apu =0, t>0,

Here u” stands for the infinite unknown vector {th}jGZd, u;(t) being the
approximation of the solution at the node zj; = jh, and Ay, is the classical
second order finite difference approximation of A:

d
h -2 h h h
(Apu)y = h72 Y (ufye, + Ui, —2u5).
k=1

In the one-dimensional case, the lack of uniform dispersive estimates for
the solutions of (1.8 has been observed by the authors in [19, 20]. In
that case the symbol of the Laplacian, £2, is replaced by a discrete one
4/h?sin?(€h/2) which vanishes its first and second derivative at the points
+7/h and £7/2h of the spectrum. By concentrating wave packets at these
pathological points it is possible to prove the lack of any uniform estimate
of the type , or . For the semidiscrete Schrodinger equation
we also refer to [34]. In that paper the authors analyze the Schrodinger
equation on the lattice hZ® without concentrating on parameter h. They
obtain Strichartz-like estimates in a class of exponents ¢ and r larger than
in the continuous one, none being independent of the parameter h.

In the case of fully discrete schemes, Nixon [28] considers an approxi-
mation of the one-dimensional KdV equation based on the backward Euler
approximation of the linear semigroup and proves space time estimates for
that approximation. For the Schrodinger equation in [I8] necessary and
sufficient conditions to guarantee the existence, at the discrete level, of dis-
persive properties for the Schrodinger equation are given.
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The paper is organized as follows. In Section [2| we consider a numerical
scheme for the one-dimensional cubic NSE and prove the existence of solu-
tions that blow-up in any auxiliar space L (R, I"(hZ)). This implies that
there are no uniform dispersive estimates for the linear semigroup generated
by scheme . If there exists any dispersive estimate similar to the ones in
, the nonlinear problem will admit solutions which will remain bounded

in some auxiliary space L (R, {"(hZ)) which is not the case.

In Section [3| we analyze the conservative approximations . We prove
that this scheme does not gain any uniform integrability or local smoothing
of the solutions with respect to the initial data. Afterwards, once we have
understood what are the pathologies of the numerical scheme , we pro-
pose a frequency filtering of initial data which will recover both integrability
and local smoothing of the continuous model.

We then introduce two numerical schemes for which the estimates are
uniform. The first one uses an artificial numerical viscosity term and the
second one involves a two-grid algorithm to precondition the initial data.
Both approximation schemes of the linear semigroup converge and have uni-
form dispersion properties. This allows us to build two convergent numerical
schemes for the NSE in the class of L?(R9) initial data.

In Section [4 we introduce a numerical scheme containing a numerical vis-
cosity term of the form ia(h)Apu. We prove that choosing a convenient a(h)
we are able to recover the properties mentioned above. We then consider
an approximation of NSE based on the approximation of LSE introduced
before and prove the convergence of its solutions towards the solutions of
NSE.

Section [9] is dedicated to the analysis of the method based on the two-
grid preconditioning of the initial data. We analyze the action of the linear
semigroup exp(itAy) on the subspace of 12(hZ%) constituted by the slowly
oscillating sequences generated by the two-grid method. Once we obtain
Strichartz-like estimates in this subspace we apply them to approximate the
NSE. The nonlinear term is approximated in a such way that permits the
use of the Strichartz estimates in the class of slowly oscillating sequences.

2. ON THE cuUBIC NSE

In this section we will consider an approximation of the one-dimensional
NSE with nonlinearity 2|u|?u which has explicit solutions. This will consti-
tute a first example of a numerical scheme for NSE that has solutions which
blow up in any L} (R, {"(hZ))-norm with r > 2.

loc
To explain the necessity of analyzing the dispersive properties at numer-
ical level let us consider the following discretization of the NSE that was
proposed in [1] and is accordingly often referred to as the Ablowitz-Ladik
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NSE of the form:
(2.9) i0puly + (Apu" ) = [ulP(uly ) +uly),

with initial condition u"(0) = ", ©" being an approximation of the initial
data in NSE.

Let us assume the existence of a positive T" such that for any h > 0, there
exists u" € L>([0,T], (?(hZ%)) solution of (2.9).

The uniform boundedness of {u"},~q in L>([0, T], I>(hZ)) does not allow
us to prove its convergence towards the solution of the NSE. We recall that,
as explained above, in order to prove the well-posedness of NSE we have to
introduce an auxiliary space L} (R, L"(R)) with suitable ¢ and 7. One then

loc

needs to analyze whether the solutions of (2.9) belong to one of the auxiliary
spaces L (R, I"(hZ)), a property that will guarantee that any eventually

loc

limit point of {u”};~0 belongs to Li([0,T], L"(R)).

For any h > 0, equation (2.9) has explicit travelling soliton solutions. We
remark that any solution u” satisfies

1 t
h _ 1
un(t)*ﬁun <hg>7 HGZ, tZO,

where u! is the solution on the mesh size h = 1. In this case there are
explicit solutions of (2.9)) (cf. [2], p. 84) of the form:

ul(t) = Aexp(i(an — bt))sech(cn — dt)
for suitable constants A, a, b, ¢,d (for the explicit values we refer to [2]).

The solutions of ([2.9)) obtained by scaling on ¢ of this one are not uniformly
bounded as h — 0 in any auxiliary space L4([0, T, {"(hZ)) with r > 2. More
precisely, a scaling argument shows that

™\l La(o,71, 17 (h2)) _pie2-d lut | Lago,r/m2), 17 (2))
[u"(0)li2(rz) [u(0)li2(z)
Observe that for any ¢ > 0, the ["(Z)-norm behaves as a constant:

1/r 1/r
||u1(t)||lr(z) ~ (/ sech” (cx — dt)da:) = (/ sech“c:n)dx) .
R R

Thus, for all T > 0 and h > 0 the solution u' satisfies
1/q

u || Laqo,/m2), 17 (zy) = (Th™?)
Consequently for any r > 2 the solution u” on the lattice hZ satisfies:

"l Laqo,ry, e nzyy 11
YT ~hr"2 — 00, h — 0.
[w(0)[[12(nz)

In view of the above example, in the case of a general numerical scheme
for NSE one cannot expect that its solutions will have a limit point in
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Ll (R, L"(R)). We point out that this is compatible with the convergence
of the numerical scheme ([2.9) for smooth initial data [1 2]

This motivates us to follow, at the semidiscrete level, the main steps of
the theory of the well posedness of NSE and analyze whether we can derive
similar dispersive properties for the linear part of the numerical scheme.
However, this does not imply the existence of ¢ € L?(R) and ¢ € I?(hZ)
such that ¢ — ¢ in L?(R) and ||g0h”Lq([07T]JT(hZ)) — o0. The existence of
such an example remains an open problem.

The blow-up of the solutions of the nonlinear problem implies that
there are no uniform dispersive estimates for the linear equation iu? +
Apul = 0. Indeed, if were exists any dispersive estimates similar to ,
the nonlinear problem would admit solutions which would remain bounded
in some auxiliary space L (R, "(hZ)) which is not the case.

3. A CONSERVATIVE SCHEME

In this section we analyze the conservative scheme (|1.8). This scheme
satisfies the classical properties of consistency and stability which imply L>-
convergence. As we have seen in the previous section, there are no uniform
dispersive properties for its solutions. We will treat to understand these
pathologies by constructing explicit solutions for scheme for which at
the discrete level, nor or hold uniformly with respect to parameter
h.

In our analysis, we make use of the semidiscrete Fourier transform (SDFT)
(we refer to [39] for the mains properties of the SDTF). For any v € 12(hZ?)
we define its SDFT at the scale h by:

(3.10) 0(€) = (Fuv)(§) = n* Y e My & € [—7/h,m/h]".

jezd

To avoid the presence of constants, we will use the notation A < B to
report the inequality A < constant x B, where the constant is independent
of h. The statement A ~ B is equivalent to A < B and B < A.

Taking SDFT in (1.8) we obtain that u"(t) = S"(t)¢ solution of (1.8)
satisfies

(811) i@ E) + pa(§)" (L) =0, tER, €€ [~

where the function py, : [~7/h,7/h]? — R is defined by

d
(3.12) pr(§) = 2 kg_l sin (2 .
Solving ODE (3.11)) we obtain that u” is given in Fourier variable by

(3.13) @'(t,6) = e OF ), g€ |-

wil

wil
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Observe that the new symbol is different from the continuous one: |£|?. In
the one-dimensional case, the symbol pp(§) changes convexity at the points
¢ = +m/2h and has critical points also at £ = +7/h, two properties that
the continuous symbol does not have. Using that

inf YO+ [p)(€)] >0,
el 2/ PR ()] + |ph (€)]

in [20] (see also [34] for h = 1) it has been proved that

1 1

h h

(3.14) I Olloa) S 16" low) (575 + o)

Note that the estimate (3.14) blows-up as h — 0, therefore it does not yield

uniform Strichartz estimates.

In dimension d, similar results can be obtained in terms of the number of
nonvanishing principal curvatures of the symbol and its gradient. Observe
that, at the points £ = (£7/2h, ..., £m/2h) all the eigenvalues of the hessian
matrix H,, = (0;jpn)i; vanish. We also mention that if k-components of the
vector § equal +7/2h then the rank of Hp, at these points is d — k instead
of d in the continuous case. This will imply that in this case the solutions
of equation will behave as t~(4=k)/2(th)~"k/3 instead of t~/2.

On the other hand, at the points £ = (£n/h,...,+x/h), the gradient
of the symbol p,(§) vanishes. As we will see, these pathologies affect the
dispersive properties of the semidiscrete scheme (|1.8]).

The first pathology, i.e. the fact that H,((£n/2h,...,+mw/2h)) = 0, shows
that there are no uniform estimates similar to at the discrete level.
Consequently the solutions of the semidiscrete scheme have no uniform
(with respect to h) LI(I"(hZ%)) integrability properties. This condition is
necessary to prove the uniform boundedness of the semidiscrete solutions.

Because of the second pathology, i.e. the existence of critical points of
the semidiscrete symbol, solutions of do not fulfill the regularizing
property uniformly on A > 0 needed to guarantee the compactness of
the semidiscrete solutions. This constitute an obstacle when passing to the
limit as A — 0 in the nonlinear semidiscrete models.

3.1. Lack of uniform dispersive estimates. As we have seen in Section
there are not uniform dispersive estimates for the solutions of . This
means that there is no uniform decay of solutions as in nor a space
time estimate similar to . In this section we construct explicit examples
of solutions of equation for which all the classical estimates of the
continuous case blow-up.

Theorem 3.1. LetT >0, rg > 1 and r > rg. Then

1S™(T) o llyr (nza) _

(3.15)
h>0, pelro (hZd) H‘PHzro(th)
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and

Shy(. .
(3.16) sup 157 ( )‘P”Ll((oj)J (hzd) _ -

h>0, pelro (hZd) e lliro (hZ%)

Let I" be an interpolator, piecewise constant or linear. For any fixed
T > 0, the uniform boundedness principle guarantees the existence of a
function ¢ € L?(R?%) and a sequence " such that I"¢" — ¢ in L?(R?) and
the corresponding solutions u” of satisfy

11" ™| L2 0.1y, £ (mty) — 0©-

This guarantees the existence of an initial datum ¢ and approximations ¢"
such that the solutions of (1.8) have no limit point in any auxiliary space
LI (R, L"(R%)).

Proof of Theorem[3.1] First, observe that it is sufficient to deal with the
one-dimensional case. For any sequence {9;};jcz set ¢; = ¥j, ... Y5, j =
(j1,7J2,---,Ja). Then, for any ¢ the following holds:

(S™(1)p)5 = (ST ()1, (SY (O o - - (SV ()95
where S1(t) is the linear semigroup generated by the equation (I.§) in

the one-dimensional case. Thus it is obvious that (3.15) and (3.16]) hold in
dimension d > 2, once we prove them in the one-dimensional case d = 1.

In the following we will consider the one-dimensional case d = 1. Using
the properties of the SDTF it is easy to see that S(t)p = S'(t/h?®)p. A
scaling argument in (3.15)) and (3.16) shows that

1S™(T)pll1a(nz) 11 I1SHT/h*)oll1a(z)

(3.17) 12 2 00lekz) _
¢ llia0 (nz) e lli20 (z)
and
h
(3.18) 15"l Lo, 19(hz)) _ i Hsl(')‘PHLl((O,T/hZ),lq(Z))'
¢ ll90 () ll¢ll90 (2

Let us introduce the operator S;(¢) defined by
(3.19) ($:09)@) = [ e OeEpe)de

We point out that for any sequence {¢;}jez, Si(t)¢ as in (3.19), which
is defined for all x € R, is in fact the band-limited interpolator of the
semi-discrete function S*(t)p. The results of Magyar et al. [27] (see also
Plancherel and Polya [29]) on band-limited functions show that the following
inequality holds for any ¢ > g9 > 1 and for all continuous, 2m-periodic
functions @:

1S ()@ lliaz)

[1S1()ell La(r)
ll¢ll90 2

3.20
(8.20) el 9o ()

> ¢(q,q0)
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In view of this property it is sufficient to deal with the operator Si(t).

Denoting 7 = T'/h?, by (3.17) and (3.18) the proof of (3.15) and ([3.16)) is
reduced to the proof of the following ones on the new operator Si(t):

1(1_1 S
(3.21) im A s 18D
To0 supp $C [—7,7) HSOHZ‘IO(]R)
and
Cei(i1 Si(. .
(3.22) lim 7 1+§(‘110 ;) sup 15:C) el 0. Loz = 00.
T—00 supp FC [~ 7] el 9o (w)

The following lemma is the key point in the proof of the last two estimates.

Lemma 3.1. There exists a positive constant ¢ such that for all T sufficiently
large, there exists a function o, that satisfies ||z || r () =~ T30 for all p > 1
and

(3.23) [(S1(B)er) ()] =

for all |t| < et and |z — tp!(7/2)| < /3.

N =

Remark 3.1. comparatie cu cazul continuu

The proof of Lemma [3.1] will be given later.

We now prove (3.21)). The proof of (3.22)) is similar. In view of Lemma
[3:1] for sufficiently large 7 the following holds:

1S1 (Tl ey < Ak
supp @C[—m,7] HQDHL‘?O (R)
Thus
lim T%<%_%) sup M > lim T%(%_é) = 00,
T—00 supp@cl-ma]  ®llLao(r) T—00
which finishes the proof of (3.21)). O

A finer analysis can be done. Let us consider the class of functions @ with
their support in

Qk: {52(517"'7£d) € [_7777T]d:£k+17"'7£d7ég}7 1<k <d.

Then the following

E(l_i) M(l_i)
> r3%¢ 9’7 2 ‘a qo
~Y

[1S1(T) @l a(r)
sear  @llLom)

holds for large enough 7. As a consequence we also obtain (3.15)) and (3.16]).
This shows that on the hyperplane (zyy1,...,24) we have the right decay

7=(d=k)/2 and the bad one 7=%/% on the hyperplane (z1,...,xy).
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Proof of Lemma|3.1. The techniques used below are similar to those used
in [I3] to get lower bounds on oscillatory integrals.

We define the relevant initial data through its Fourier transform. Let us
first fix a positive function @ supported on (—1,1) such that ffﬂ @ = 1. For
all positive 7, we set:

6r(€) = TPB(r (€ —7/2)).
We define ¢, as the inverse Fourier transform of .. Observe that @, is
supported in the interval (7/2 — 7= Y/3 /2 4+ 7=1/3) and 7 &; =1. Also
using that ¢, (z) = 1 (7'/3z) we get o]l Lr(r) = 7713 for any p > 1.

The mean value theorem applied to the integral occurring in the right
hand side of (3.19)) shows that

(3.24) \sl<t>m:c>|z<1—zf—1/3 susz—tpa(s)r) / Br(€)de.
§Esupp pr -

Using that the second derivative of p; vanishes at £ = 7/2 we obtain the
existence of a positive constant ¢; such that

|z = tp (€)] < |z — tp (m/2)] + ter|€ — /2%, € ~ /2.
In particular for all £ € [7/2 — 7=/, 7/2 + 771/3] the following holds
& — tp1(§)] < |& — tpy (m/2)] + terT 2/,

Thus there exists a (small enough) positive constant ¢ such that for all z
and t satisfying |z — tp) (7/2)| < er'/3 and t < er:

1
20 sup o —tpi(€)] < 3.
£€ supp pr 2
This yields (3.23)) and finishes the proof. O

3.2. Lack of uniform local smoothing effect. In order to analyze the
local smoothing effect at the discrete level we introduce the discrete frac-
tional derivatives on the lattice hZ?. We define for any s > 0, the fractional
derivative (—Ap)*/?u at the scale h as:

62) (A= [ O )€ § e 2
[—7/h,m/h]¢
where Fj,(u) is the SDFT of the sequence {u;};czqe at the scale h .
Concerning the local smoothing effect we have the following result:

Theorem 3.2. Let be T > 0 and s > 0. Then
R (= An) 28T )5

ljlh<1

= o0

(3.26) sup 5
h>0,p€l2(hZ4) ”@Hp(hzd)
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and

T
WY [l s s
(3.27) sup i<t 5

h>0,0€12(hZ3) H@le(hzd)

= Q.

In contrast with the proof of Theorem [3.1] we cannot reduce it to the

one-dimensional case. This is due to the extra factor pf/ 2({) which does

not allow us to use separation of variables . The proof consists in reducing
(3.26) and (3.27)) to the case h = 1 and the following lemma.

Lemma 3.2. Let be s > 0. There is a positive constant ¢ such that for all
7 sufficiently large there exists a function or with |[¢r|l;2(z4) = 742 and

(3.28) ((—A1)*28 (t)er)s] > 1/2
for all [t| < er?, |j| < er.

We postpone the proof of Lemma [3.2 and proceed with the proof of The-
orem

Proof of Theorem[3.3. We consider the case of (3.26)), the other being sim-
ilar. As in the previous section we reduce the proof to the case h = 1. By
the definition of (—A,)%/? for any j € Z¢ we have that

((—Ah)S/QSh(t)cp)j =07 ((~A0)*28 (1/n?) go)j , jezt
Thus

RS (=AM (T h72 Y (A 2SN T /R?)e);
iln<1 - il<1/n

H<‘0||l22(th) B ||90Hl22(zd)
With ¢ and ¢, given by Lemma and 7 such that ct? = T/h? ie. 7 =
(T/c)'/?h~1, we have HgoTHlQQ(Z) =74 and

ST (A0 SN T/ e )i

. 2s,.d
. il<1/h . TT
L 2 <A T =
”So‘rle(Zd) T
This finishes the proof. ([

Proof of Lemma[3.4. As in the proof of Lemma [3.1] we choose a function @
supported in the unit ball with fRd @ =1. Set for all 7 > 1

or(€) =70 (1(€ — ma))

where 74 = (m,..., 7). We define ¢, as the inverse Fourier transform of
@r. Thus @, is supported in {€ : |€ — my| < 7711, f[_ﬁ y @y = 1 and
/2

o7 lli2(zay = 7. Applying mean value theorem to the oscillatory integral
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occurring in the definition of (—A1)*/251(t)¢ and using that pi(£) behaves
as a positive constant in the support of ¢, we obtain that for some positive
constant cgp:

[(—A1)¥2SY (t)er);] > (1—271 sup !j—th1(§)|> /[ ]dpi/z(f)@(ﬁ)df

&€ supp @r

> ¢ (1—271 sup U—tvpl(f)|> /[ ]d@(f)df-

&€ supp @r

Using that Vp; vanishes at £ = m; we obtain the existence of a positive
constant ¢; such that

j — tVp1(9)] < || + ter|€ — mal, & ~ 7.

Then there exists a positive constant ¢ such that for all j and ¢ satisfying
li| < cr and t < er? the following holds:

_ . 1
217t sup  |j—tVp(6)] < 7
§€supp o
Thus for all ¢ and j as above (3.28|) holds. This finishes the proof. O

3.3. Filtering of the initial data. As we have seen in the previous section
the conservative scheme does not reflect the dispersive properties of the LSE.
In this section we prove that a suitable filtering of the initial data in the
Fourier space provides uniform dispersive properties and a local smoothing
effect. The key point to recover the decay rates at the discrete level is
to choose initial data with their SDFT supported away from the pathological
points

d
Mi = {62(51,---,@) S [—%%] :Elie{1,...,d}suchthat§i:%}
or

Mh:{£=(§1,---,fd)€[

T T

TR

™

d
} :3di e {1,...,d}such that & = h}'

For any positive ¢ < 7/2 we define Q”, the set of all the points inside the
cube [—7/h,7/h]¢ whose distance is at least ¢/h from the set where py,(€)
vanishes at least one of its second order derivatives:

d s €
Qh :{ = sy [—Evz] . 1 7‘>*’:1,d}
E,d &- (51 fd) E h h &-Z :F 2h - h 4 9
Let us define the class of functions Z" C 1?(hZ?), whose SDFT is supported
on Q? PE

(3.29) Igd ={p€ l2(th) : supp @ C di}.

The following Theorem shows that for initial data that have been filtered in
a convenient way, the semigroup S”(¢) has the same long time behaviour as
the continuous one and moreover this behaviour is independent of h.
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Theorem 3.3. Let be 0 < € < 7/2 and p > 2. There exists a positive
constant C(e,p,d) such that
C(e,p,d)
(3-30) I15™ () llwrzay < —r5%
df1_2
9#0-3)

holds for all ¢ € 1P’ (hZ%) ﬂfgd, uniformly on h > 0.

||‘P”lp’(hzd)a t#0

Proof. A scaling argument reduces the proof to the case h = 1. For any
pE If’d the solution of (1.8)) is given by S*(t)p = K< % ¢ where

Ky(t,§) = /1 e ©eiltge j e 77,
e,d

As a consequence of Young’s inequality it is sufficient to prove that
(3.31) 1Ky (8) ez < (e, )|~/ =HP)

for any p > 2 and for all ¢ # 0. The case p = 2 easily follows by Plancherel’s
identity. We consider the case p = co, the others come by Holder’s inequal-
ity. Observe that for any j = (ji,...,jq) € Z¢ the following holds:

d
1,6 . 1,5 .
Kd (ta.]) = HKI (tajl)
=1

It is then sufficient to prove in the one-dimensional case. Using that
the second derivative of the function sin?(£/2) is positive on Q! we ob-
tain by the Van der Corput Lemma (Prop. 2, Ch. 8, p. 332, [36]) that
K 7€ (t)|lie < c(€)[t|~/? which finishes the proof.

O

A similar result for the local smoothing effect can be stated. For a positive
¢, let us define the set A of all points situated at a distance of at least e
from the points (£ /h)%:
T
A= e Ty
Observe that on A” the symbol pp,(€) has no critical points different from
the origin. A similar argument as in [24] shows that the linear semigroup
Sh(t) gains 1/2-space discrete derivative in L?}x with respect to the initial
datum.

s €
NG F |2+ i=1,... .
GF |5 i=1...d)

Theorem 3.4. Let be € > 0. There exists a positive constant C(e,d) such
that for any R > 0

Y / |(=Ap) /1B Pdt < C(e, d) R oIl 0,

holds for all o € 1?(hZ%) with supp $ € AP, uniformly on h > 0.

€
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3.4. Strichartz estimates for filtered data. In this section we derive
Strichartz-like estimates for the operator S™(t) when it acts on functions
belonging to [ Qw the class of functions defined in ([3.29)).

The main ingredient in obtaining Strichartz estimates is the following
result due to Keel and Tao, [23].

Proposition 3.1. ([23], Theorem 1.2) Let H be a Hilbert space, (X,dx)
be a measure space and U(t) : H — L*(X) be a one parameter family of
mappings, which obey the energy estimate

(3.32) U@ fllzex) < Clflla

and the decay estimate

(3.33) IUOU(s)* gl Lo (x) < Clt = 5[ |lgllrx)
for some o > 0. Then

(3.34) U@ fllLar, orx)) < Clfll2x)

I [ e

La(R, L7 (X)) < Ol b g, 1 (x))

(3.36) H /O U(t)(U(s))*F(s)ds‘

for all (q,r) and (G,7), o-admissible pairs.

Remark 3.2. With the same arguments as in [23], the following also holds
for all (q,r) and (q,7), o-admissible pairs:

(3.37) H / (t = 5)F(s)ds ‘ La(R, LT(X))

In the case of the Schrodinger semigroup, S(t—s) = S(t)S(s)*, so (3.37) and
(13.36) are the same. In our applications we will often deal with operators

that do not satisfy S(t —s) = S(t)S(s)*.

CIF oz 1 (x))

Let us choose positive € < 7/2, Ké’e as in Theorem and U(t)p =
K;’E * . We apply the above proposition to U(t), X = Z¢, dx the counter
measure and H = [2(Z%). We obtain Strichartz estimates for the semigroup
S1(t) when acts on function belonging to I cd» 1-e. when h = 1. Thus, by a
scaling argument, we obtain the following result for filtered initial data.

Theorem 3.5. Let 0 < e < w/2 and (q,7), (¢,7) two d/2-admissible pairs.
i) There exists a positive constant C(d,r,€) such that

(3.38) 15" (ol o, i (nzyy < C(dsr, €)@l (hzay

holds for all functions ¢ € Ihd and for all h > 0.
ii) There exists a positive constant C(d,r,T,€) such that

t
39 | [ she= s < O, 7, O Lt 1 sy

L4(R, 1" (hZ))
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holds for all functions f € LT (R, I” (hZ%)) with f(t) € I, for all t € R,
and for all h > 0.

4. A DISSIPATIVE SCHEME

In the previous section we analyzed the Fourier filtering method for the
conservative scheme . Another possible remedy to the lack of dispersive
estimates is to introduce a scheme containing a numerical viscosity term in
order to compensate the artificial numerical dispersion.

We propose the following viscous semidiscretization of ((1.1)):

d h
iy Apu = ia(h) sgn(t)Apu®, t £ 0,
(4.40) dt
u"(0) = ¢",

where a(h) is a positive function which tends to zero as h tends to zero.

We remark that the proposed scheme is a combination of the conservative
approximation of the Schrédinger equation and a semi-discretization
of the heat equation in a suitable time-scale:

du
dt
which may be viewed as a discretization of

ug = a(h)Au, t > 0.

= a(h)Apu®, t >0,

The scheme 1' generates a semigroup of contractions in [2(hZ%), S jﬁ (1),
for t > 0. Similarly one may define S” (¢), for ¢ < 0. In the sequel we denote

by S"(t) the two operators.

In this Section we will obtain norm decay estimates for the operator
Sh(t). We first analyze the I'(hZ?%) — 1°°(hZ?) decay of S"(t). In contrast
with the continuous case where [[u(t)|| oo (ray S t=4/2 for all t # 0, the be-
haviour of the [*°-norm of the solutions will be different when ¢ — 0 and
when ¢ — oco. The low frequency components determine the behaviour for
large time ¢, similar to the continuous one t~%2. For t ~ 0, the behaviour is
given by the high frequency components. Once the ' (hZ4) —1*°(hZ%) analy-
sis will have been done, we will prove in Section Strichartz-like estimates
for the linear operator S™(t). Section is devoted to the analysis of the
local smoothing properties of the operator S”(¢). Finally, in Section we
give an application to a nonlinear problem. We will consider a numerical
scheme for NSE based on the dissipative scheme (4.40]).

4.1. Dispersive estimates on the operator S”(t). The following The-

orem gives an estimate for the [*°(hZ?) norm of the solutions of equation
(&.40).
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Theorem 4.1. Let o > d/2 and a(h) be a positive function such that

(4.41) R WINY
h>0 p2—%

There exist positive constants c(d, «) such that

1 1

(4.42) 15" ()l (nzy < c(d, ) W [t

H@Hzl hzd)-

holds for all t # 0, ¢ € IY(hZ?) and h > 0.

The decay of S"(t) for large time ¢ is the same as in the continuous case.
However, when looking for global Strichartz estimates the behavior at ¢t = 0
also plays a role. According to (4.42]) the behaviour at ¢t ~ 0 is more singular
since o > d/2. It is condition (4.41]) imposed on a(h) the one that guarantees
that the high frequency components of the fundamental solutions of
behave in 1°°(hZ%)-norm as [t|~* as t ~ 0.

Proof. Taking SDTF in (4.40) we obtain that, in Fourier variable S"(t)¢ is
given by:
Sh(t)(8) = exp(—itpp(§) — [tla(h)pn(£))P(S)-
Let us define the operators S™7(t)¢ = K™ (t) x ¢, j = 1,2, where

Kh’l(t,j) _ / e—itph(E)€—|t\a(h)ph(§)eij~€hd§, je 74
[_7

and
KM2(1,5) = / e=iton(€) o~ ltlalh)pn (@) i ehge e 7,
Qp,

Qy, being defined as Q, = [~7/h, 7 /h]?\ [~7/4h, 7 /4h]¢. S™1 (respectively
Sh2) take account of the low (respectively high) frequency components.

We will prove that for some constant ¢(d, «), independent of h, the two
operators satisfy:

c(d, o
e
and
c(d, o
15Ol < el

This immediately implies (4.42)).
Young’s inequality reduces the proof of (4.42)) to the following estimates
on the two kernels:

c(d, )

(4.43) | K" ()] joe izt < AT IKh’2()Im(th>_ c(d, o)

e 70



NUMERICAL SCHEMES FOR NSE 17

The kernel K''(t) behaves as the conservative kernel associated with

since the Hessian matrix H,, (§) = (&-jph(f))f’j:l always has the rank
d in [~ /4h,7/4h]%. In other words, no artificial viscosity is needed for this
low frequency range to ensure the optimal decay. To estimate the second
kernel K™2(t) we use in an essential way the dissipative effect introduced by
the term exp(—|t|py(§)) away from the origin £ ~ 0. Note however that, for
the second one, we obtain the decay rate |t|~® instead of |t|~%2. The critical

exponent o = d/2 can not be reached by a viscous approximation of the LSE

as in (4.40). Indeed, in view of (4.41)) if one takes o« = d/2, (4.40) becomes

an approximation of the viscous Schrédinger equation iu; + Au = iAwu.
The kernel K2 satisfies for all t # 0 the following rough estimate:
K20y < / e~ Itlahpn(©) gg < / exp (_ Adsin? (g) Itlzgh)> 2
Qp Qp
cla,d h? * elayd) T, ah) 17¢  cla,d
< 5 () < lmtes] <
Note that in the last inequality assumption plays a key role.
Going back to K™ it is convenient to rewrite it as:
K™ () = KM (t) # exp(|tla(h) A)
where K"3(t,-) is given by:

(4.44) KM3(t,5) = e (O eithge  j e 7,
[~ar-anl?
i.e. the conservative semidiscrete kernel restricted to the frequency set

[—7/4h, 7 /4h)%.

We recall that the operator exp(|t|Ay,) is a contraction in ' (hZ?) (see for
instance [12], Theorem 1.3.3, p. 14):

(4.45) | exp ([t|AR) 1 (hzt)—11 (hzey < 1.
Applying Theorem 3.3)and (£.45) we obtain that || K" (£)|] (z4) < c(d)[t| =42,
which finishes the proof. ([

4.2. Strichartz like Estimates. In this section we derive space-time es-
timates for the linear operator S”(t). The estimates are different from the
ones obtained in the continuous case, the behaviour of the semigroup as
t — oo and t — 0 being different, as we have seen above. As a consequence,
our estimates for S"(¢) will be given in spaces of the form LI(R, I"(hZ%)) +
L9 (R, I"(hZ%)). More precisely the term [t|~%? in the 1°°(hZ%)-norm of
Sh(t) gives us estimates in the space LI(R, I"(hZ%)) with (q,r) an d/2-
admissible pair. The second one, [t|™%, provides estimates in the space
L% (R, I"(hZ%)) with (q1,7) an a-admissible pair.

We recall that the Strichartz estimates are used to prove the local ex-
istence for the nonlinear problem. So, a local version of them suffices
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to prove the local well possedness of the nonlinear problem. Using that
a > d/2 and q > q1, the global ones will provide local estimates in the space
L@ (1,1"(hZ%)), I being a bounded interval. This fails on unbounded time
intervals, where the L9-norm cannot be compared to the L% one.

Theorem 4.2. Let o € (d/2,d] and a(h) be satisfying (4.41). Also let
us consider d/2-admissible pairs (q,7), (¢,7) and a-admissible pairs (q1,1),
(q1,7).

i) There exists a positive constant C(d,a,r) such that

(4.46) 1S™ (ol o, ir (hzy)+ Lo (=, 1 rzyy < C(ds o) |02 iz

holds for all o € 1?(hZ%), uniformly on h > 0.
ii) There exists a positive constant C = C(d, o, r,r1) such that
" on
H /0 St - S)f(s)dSHLQ(R,I”(th))+L‘11 (R,I"(hZ1)) B CHfHLé’(R,zf’(th))qu”l’(R,zf’(th))
holds for all f € LY (R, I (hZ%)) N L9 (R, 1" (hZ%)), uniformly on h > 0.

The following Corollary represents a simple consequence of the above
Theorem.

Corollary 4.1. Let I be a bounded interval, (q,r) and (q,7), 1/2-admissible
pairs and (q1,7) and (G1,7) a-admissible ones. Then

i) There exists a positive constant C = C(I,d, «,r) such that
(4.47) [ERGE P (1,17 (hze)) < Clleolliz(nzay-

ii) There exists a positive constant C = C(I,d,c,r,r1) such that

(a49) | /O “sh(i— s) F(s)ds|

< CHfHan’(I,zf’(th))‘

La1(I, 17 (hZd))

Proof of Theorem [[.3. We write the semigroup S”(t) as in the proof of The-
orem Sh(t)y = SMI(t) + S™2(t). Observe that S™!(t) and S™2(t) satisfy
the hypothesis of Proposition with 0 = d/2 and o = « respectively. Ap-
plying Proposition [3.1]to each of the operators S™!(t) and S™2(t) we obtain
the desired result on S”(t). O

Once Theorem 4.2 has been proved, Corollary [4.1]follows by using only the
definition of the sum spaces involved in Theorem and Holder inequality.

4.3. Local smoothing effect. As we mentioned in the introduction the
local smoothing property is very useful in proving the convergence in the
nonlinear context. In this section we consider the piecewise linear and con-
tinuous interpolator Plf and we analyze the local smoothing property of
P%S"(t). This result will be applied later in Section to provie the con-
vergence of a numerical scheme for NSE.
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We use the piecewise lineal interpolator instead of a piecewise constant one

since the last one does not belong to H llo/f (RY), having less regularity than
the continuous Schrodinger semigroup. The following Theorem concerns the
local smoothing property of P#S"(t).

Theorem 4.3. Let I be a bounded interval, o € (d/2,d] and x € C°(R?).
Then
i) There exists a positive constant C(I,x) such that the following

@) [ [ 0 AP OglPasat < O llellgzy

holds for all p € 1>(hZ%) and h > 0.
ii) There exists a positive constant C'(I,x) such that the following
(4.50)

i 2
/I/Rd Xz‘(I—A)IMP?(/O Sh(t—s)f(s)ds)‘ dedt < CUI 217, gz

holds for all f € L*(I, I>(hZ%)) and h > 0.

iii) Let (q,r) be an a-admissible pair such that (q,r) # (2,2a/(a—1)). Then
there is a positive constant s = s(r,d) such that the following

(4.51)

XQ‘(I—A)SPh( tsh(t—s)f(s)ds)fdxdt <IN
1 Jra o = ’ L9 (1,1 (hZ4))
holds for all f € LY (I, 1" (hZ%)) and h > 0.

In the continuous case, estimate holds for s(r) = 1/4. The homoge-
nous case has been proved by Kenig, Ponce and Vega [24]. The inhomoge-
neous case is reduced to the homogenous one by using the results of Christ
and Kiselev [9] and Strichartz estimates.

In our case the arguments of [9] can not be applied. The key point in
their proof is that the Schrodinger semigroup satisfies S(t — s) = S(¢)S(s)*
for all reals t and s, identity which does not hold in our case, the operator
Sh(t)S"(s)* being more dissipative than S"(t — s).

Proof. We divide the proof in three steps, each one corresponds to the one

of estimates , and .
Step I. Proof of (£.49). Let us write P7S"(t)p as P1.S" ()¢ = Lip(t) +
Iyp(t), where
Lo ()(€) = Lgi<n/on (PLS" (D) (€)
and
T (D)(€) = Liign/ny (P1S" (D) E).
We then define I1¢(t) and I2p(t) by inverting the Fourier transform.
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We will prove that, for any R > 0, the two terms satisfy the following
inequalities

/ / 1/4[ o|?dtdr < C(R )H<P||l22(hzd)
lz|<R
and
/ / A)e Ly Pdtdr < C(R)|¢ll za-
Rd

Finally taking into account that @ < d we obtain (4.49)).
Case a). Estimates on I1¢. By definition

(Iip)(t, ) = /5 o e itPn(©) ¢ [Halhpn(€) izt Py ) g

We will reduce the estimates on ¢ to those of Jg, where Jy is defined by
Uelta) = [ e imOceplag) e,
[€|<7/2h
Defining ¥(¢, z) as follows

U(t,x) = sup
s>0

/|£|< /2h|§|1/26—itph(£)e—SPh(E)eirﬁﬁfﬁp(f)dg

the following
(=) (L) (t,2)| < W(t,2)

holds for any ¢t and z. Classical properties of Poisson’s integrals ([35], Th. 1,
p. 62, Ch. III) shows that the function ¥ satisfies

N 2)l 2 S (=240, 2) | 2y -

It remains to prove that Jy satisfies
(4.52) / / AT (t, ) Pdtde < C(R)|[Pho| 2.
|z|<R

To prove the last inequality we make use of the following Lemma.

Lemma 4.1. (Theorem 4.1, [24]) Let O be an open set in RS, and v be a

CY(O) function such that Vi (§) # 0 for any € € O. Assume that there is
N € N such that for any (&1, ...,84-1) € Rgil and r € R the equations

w(fla"'7§k7§7§k+17"'7§d71) =r, k=0,...,d—1,
have at most N solutions € R. For a € L°(R? xR) and f € S(R?) define

W@ﬂm=/aW@%wawwﬂ&w

(@]
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then for any R >0

1 (&)
/|x|<R/ o) dtde < RN o |V¢(§)|OZf

where ¢ is independent of R and N and f.

Applying this lemma with O = {¢€ € R?: [¢| < w/4h}, W = J and ¥ = py,
we obtain that

P
/ / \J(ptac\dtdx<CR/ R/ PP e
le|<R \|<n/2h |Vph i€|<n/2h |§!
which proves (4.52]).

Case b). Estimates on lrp. Using in essential manner the assumption
(4.41)) on the function a(h), the term Iy satisfies

B R A el N S A TR DR

€12 3%

a(h)|V (PLS (0)0) 122 gty = alh)| Vi S™ (00 Pazay

—an) | pa(E)e 2O |3(¢) Pae.
[=7/h,7/h]
Integrating the last inequality on time we get
| [ aye o dadt < ol 0,
R JR4
Step II. Proof of (4.50). Let us denote

v, :/ ISh(t — 5)f(s)ds.

0

Without loss of generality we consider I = (0,7). For any x € C°(R%) we
have

t
(4.53) I £ () 7172ty < /0 olt, )ds,

where g(t, s) = [|[XP1S"(t — 5)f(s)]l gr1/2(re)-
Integrating inequality (4.53]) on time variable ¢ we obtain

||X\I’f||L2 OT H1/2 ]Rd = H/ 1(0t ) (t S)d )L%((O,T))

T
< [ 1 @t )iz ods
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Using (4.49) on the homogenous term we have

T T
Ot ) Baary = [ ot o)Pde= [ INPES(t = 5)£(6) o

C(T)1f ()72 ray-

Integrating on t € (0,7T) the last inequality we obtain

IN

X sl 20,0y, 1172y < CT X fllrgo,m), £2(ReY)-

Step III. Proof of (4.51)). Estimate (4.51]) follows by interpolation of
(4.50) and the Strichartz estimate (4.48)) applied for a suitable a-admissible

pair (q1,71). More precisely, by (4.48])

(4.54)
R Q‘Ph( tSh(t —35)] (s)ds) )2d$dt <C( )||f||2
I d X 1 0 - X Lqi , lr/l (th)).

for any a-admisible pair (q1,71). Using the fact that our estimates do
not involve the endpoint (2,2a/(a — 1)) we apply with (q1,71) =
(2,2a/(av — 1)), a-admissible pair. An interpolation between and
gives us the existence of a positive constant s(r, d), independent of h,
such that is satisfied. O

4.4. Application to a Nonlinear Problem. We concentrate on the semi-
linear NSE equation in R? :

iug + Au = |ulPu, t > 0,
(459 o oy v
the case when nonlinearity is given by f(u) = —|u|Pu being the same. In

fact, the key point in the global existence of the solutions is that the L*-
scalar product (f(u),u) is a real number. All the results extend to more
general nonlinearities f(u) (see [6], Ch. 4.6, p. 109, for L?-solutions).

The first existence and uniqueness result for (4.55) for L? initial data is
as follows.

Theorem 4.4. (Global existence in L*(R?), Tsutsumi, [40]). For 0 < p <
4/d and ¢ € L*(R?), there exists a unique solution u in C(R, L*(R%)) N
LI (R, LPT2(RY)) with ¢ = 4(p+1)/pd that satisfies the L?-norm conserva-
tion property and depends continuously on the initial condition in LQ(Rd).

The proof uss standard arguments, the key ingredient been to work in
the space C(R, L*R?) N LY (R, LPT2(R?)) which requires and is intimately
related to the Strichartz estimates.

Local existence is proved by applying a fixed point argument to the in-
tegral formulation of (4.55). Global existence holds because of the L?(R%)-

conservation property which excludes finite-time blow-up.
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In order to introduce a numerical approximation of equation (4.55) it is
convenient to give the definition of the weak solution of equation (4.55).

Definition 4.1. We say that u is a weak solution of if
i) u € C(R, L*(RY)) N L] (R, LPT2(RY))
ii) u(0) = ¢ a.e. and

(4.56) / / —ithy + A)dadt = /R /R NufPuydadt

for all+p € DR, H*(R?)), where p and q are as in the statement of Theorem
144}

In this section we consider the following viscous numerical approximation

scheme of (4.55):
du” L ‘ . -
(4.57) i At = isgn(t)a(h) Apu” + [uPut, 1 £ 0,

ut(0) = ",
with 0 < p < 4/d and a(h) = h*~¥*") such that a(h) | d/2 and a(h) — 0
as h | 0. The critical case p = 4/d will be analyzed in Section

The main result on the convergence of (4.57)) in the subcritical case p <
4/d is the following:

Theorem 4.5. Let p € (0,4/d) and «(h) € (d/2,2/p). Set

1 1 1
—ah) (- ——
q(h) ®) (2 p+ 2)
so that (q(h), p+2) is an a(h)-admissible pair. Then for any h > 0 and every
o € 12(hZ?), there exists a unique global solution u" € C(R, I>(hZ%)) N
qutfg) (R, 1P*2(hZ%)) of . Moreover, u” satisfies
(4.58) 6" oo (R, 12 (nzty) < 19" iz nze)
and for any finite interval 1
(4.59) 1™ | oo (1, 2 nzayy < (D" 2z

where the above constant is independent of h.

The restriction a(h) < 2/p, guarantees that g(h) > p + 2. The condition
q(h) > p + 2 is always satisfied in the subcritical case p < 4/d and allows
us to apply Banach’s fix point theorem for small time 7. In the critical
case p = 4/d, this condition is not fulfilled and additional hypotheses on the
initial data have to be imposed (see Section .

Proof. Let us choose T and M positive. We consider the metric space
Eh = {U € LOO((_Tv T)7 l2(th)) N Lq(h)((_T7 T)? lp+2(th))a

lull oo ((—1,1), 12 (nzy) + [l Lo (—1,1), w2 (nzyy < MY
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equipped with the distance

d(u,v) = [Ju = V|| oo (—1.1), 2(hz)) T 1w = Vll Latr (1,1, 142 (n20Y) -

We also consider the nonlinear map

HM(w)(t) = S™ ()" + i / SP(t — s)|ulPu(s)ds
0

The Strichartz-like estimates for the a(h)-admissible pair (¢(h), p+2), given
by Corollary allow us proving that for small enough 7', independent of
h, and M = 2||g0h|]lz(hzd), H"(u) is a contraction on Ej. Thus we obtain
the local existence and uniqueness of the solutions and estimates and
(4.59). To prove the global existence of the solutions we observe that the
12(hZ%)-norm of the solutions remains uniformly bounded:

%Huh(t)uz%(hzd) = 2a(h)Re< Z(Ahu );U J) <0.

jezd

Here and in the sequel Re denotes the real part of a complex number. [

4.5. Convergence of the method. Let us consider the piecewise constant
interpolator Ph h. This choice is motivated by the fact that it commutes
with the nonlinearity. Let ¢ € L?(R%) and " such that Phgoh — p strongly
in L2(R%). Clearly ||[Ph"|| 2 @) < C(lloll L2(ray)- Theorem . 5| shows that

HPguhHLoo(R r2(rey) < C. Moreover for any ﬁnite interval I:

(4.60) PG| ot (7, po+2(rayy < CUL Il r2ray),
and
(4.61) H|Pguh|pEuhHLq’(1, L»+2) (Rd) <C(I, ||90||L2(Rd))~

Multiplying ([£.57) by a test function 1) € C°(R4*!) we obtain that Eu”
satisfies

/ / PRul(—ithy + Apy)dadt = / / PR PR pdadt
R4 R JRd

(4.62) +a(h)// sgn(t)Ppul AMypdadt.
R JRd

These uniform estimates and the regularity property proved in the previ-
ous section allow us proving the following result on the convergence of the
scheme.

Theorem 4.6. The sequence P ul satisfies
Plu" 2w in L®°(R, L*(RY)), Phu" — w in Lj (R, LP*3(RY)),Vs < q,
Piu" — win L}.(R x RY), |PhuP|Phul| = [ulPu in LL (R, P+ (RY))

where u is the unique weak solution of NSE.
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Proof. In view of estimate there exists a function u € L>®°(R, L*(R?))
such that Ppu® = v in L=(R, L2(R%)).

Let us choose an s < ¢. For h sufficiently small, s < ¢q(h) < ¢. Esti-
mate and Holder’s inequality show that Pguh is uniformly bounded
in L*(I, LP*?(R%)). This implies that u € L*(I, LP*2(R%)), Phu — v in
L*(I, LPT?(RY)) and

||UHLS(I,LP+2(R<1)) < hmhinf ||P8Uh”Lq(h>(1, Lr+2(R4)) < C(I, H%OHL?(Rd))-

Fatou’s Lemma shows that u € LI(R, LP+2(R%)).

In the following we prove the existence of a function v such that Pfu” — v
in L2 (R!'T9) and then PAu" — v almost everywhere. This allows us to pass
to the limit in the nonlinear term. To do that we consider the piecewise
linear interpolator I and prove that Tu” converges strongly in L; oc(Rd“) to
a function v. Finally, we will transfer the strong convergence of P’fuh

Phu” by proving that Pfu® — Phu” tends to zero in L2(R4*1).

We proceed with the proof of the strong convergence of P’fuh. Let us
consider a bounded interval I ¢ R and a bounded domain Q C R?. Theo-
rem gives us the existence of a positive s, independent of h, such that
”PilluhHLQ(I, as@)) < O, |l¢llL2(ray). We also have the uniform bound-
edness of its time derivative:

dP?Uh h, h h(l, hp, h
7 < AP L1 (1, -2 (ray) + [IPT(u"Pu™) | g1 -2 ray)
LY(I,H=2(R%))
< HP}fUhHLl(J,H(Rd)) + HP?(\uh\puh)HLl(z, L(+2) (Rd))
< CW, el r2me)-

Using the embeddings H*(Q2) — L?(2) — H~2(Q) and the compactness
comp
results of [31] we obtain the existence of a function v such that Phu” —

vin L2 (R x R9).

loc

In the following we prove that Pu" — Ppu” — 0 in L2(R%*1). Classical
result on interpolation ([30], Th. 3.1.5, p. 122) give us that

, |P}1‘uh(t) — Pguh(t)|2daj < h2||thh(t)||122(th)
e / p(€)e™21Pr©am 50 (¢) 2.
[—7/h,m/h]d

Integrating the last inequality on time and using that a(h) — 1/2 as h — 0
we obtain

h? o
/ y [P (t uM(t)Pdedt - < @C(Ilwllm(w) W MC(lel 2(gay) — 0.
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The strong convergence Phu” — Phu — 0 in L2(R%*1) shows that u = v
and Pguh — u in LIQOC(R X ]Rd). Moreover, up to a subsequence Pguh—m a.e.
in R x R? and thus |PRu/|PPRu” — |uPu a.e. in R x RY. Using (4.61) we
obtain that |Phu/PPRu" — |u[Pu in L7 (R, LP*?(R%)). All the above weak
convergence of Pfu" and (4.62) show that u satisfies (£.56).

It remains to prove that u € C(R, L?(R?%)) and u(0) = ¢. To prove that
u € C(R, L*(R%)) it is sufficient to prove its continuity at ¢ = 0.

We remark that for any positive 0 <t < T

t
hipyy _ qh h < hy hip, h
o0 = 80 lgzn < | [ St sptptas] o
< |||uh‘puhHLq’([o7T]7l(p+2)’(hzd)) < TQC(”SOHH(Rd)) <CT*

for some positive a and C independent of h. Using the weak convergence
Plul — PSH(-)oh - u — S()p in L(0, T, L2(RY)) we get

lu(t) = S@)¢ll L2(may < liminf [Phu — PES" (V" | oo 0.1, 2wy < T

which proves that u(t) — ¢ in L2(R%) as ¢ — 0. O

4.6. The Critical Case p = 4/d. Our method works similarly in the crit-
ical case p = 4/d for small initial data. It suffices to modify the approxi-
mation scheme by taking a nonlinear term of the form |u"?/*(My? in the
semidiscrete equation (4.57) with a(h) = h>~¥*") and a(h) | d/2, a(h) | 0,
so that, asymptotically, it approximates the critical nonlinearity of the con-
tinuous Schrodinger equation. In this way the critical continuous exponent
p = 4/d is approximated by semidiscrete critical problems. The critical
semidiscrete problem presents the same difficulties as the continuous one.
Thus, the initial datum needs to be assumed to be small. But the small-
ness condition is independent of the mesh-size h > 0. More precisely, the
following holds.

Theorem 4.7. Let a(h) > d/2 and p(h) = 2/a(h). There exists a con-
stant €, independent of h, such that for all ||g0h||lz(hzd) < €, the semidis-

crete critical equation has a unique global solution u" € C(R, I>(hZ%)) N
Lf(h)H(R, PM+2(h74)). Moreover, for any a(h)-admissible pairs (q,r)

oc
HuhHL‘I(I,lT(th) < C(QaI)HSOth?(th)

for all finite interval 1.

Observe that, in particular, (d 4+ 2)/a(h),4/d + 2) is an a(h)-admissible
pair. This allows us to bound the solutions u" in any space L;, (R, L*/4*2(R))
with s < 4/d+ 2. With the same notation as in the subcritical case the fol-
lowing convergence result holds.
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Theorem 4.8. When p = 4/d and under the smallness assumption on the
matial datum ug, the sequence Pguh satisfies

Phu 2y in LR, LA(RY), Phu — w in Lj (R, LY2(RY)) Vs < 4/d+2,

loc

Piul — win L3, (RxRY), [PRulPW PRyl — |u¥ Dy in L (R, L/ (RY))

lo
where u is the unique weak solution of critical NSE.

5. A TWO-GRID ALGORITHM

In this section to compensate the lack of dispersion proved in Section
we propose a two-grid algorithm (inspired by [17]) and that, to some extent,
acts as a filter for those unwanted high frequency components.

The method is roughly as follows. We consider two meshes: the coarse
one of size 4h, h > 0, 4hZ?, and the finer one, hZ%, of size h > 0. The
method relies basically on solving the finite-difference semi-discretization
(1.8) on the fine mesh hZ<, but only for slow data, interpolated from the
coarse grid 4hZ?. As we shall see, the 1/4 ratio between the two meshes
is important to guarantee the convergence of the method. This particular
structure of the data cancels the two pathologies of the discrete symbol
mentioned above. Indeed, a careful Fourier analysis of those initial data
(we refer to [42] for the theory of multi-grid methods) shows that their
discrete Fourier transform vanishes quadratically in each variable at the
points ¢ = (£m/2h)% and ¢ = (£n/h)? As we shall see, this suffices to
recover the dispersive properties of the continuous model.

Once we get the discrete version of the dispersive properties we are able to
apply it to a semi-discretization of the NSE with nonlinearity f(u) = |u[Pu.
The nonlinear term is approximated in a such way that it allows to apply the
dispersive estimates of the linear semigroup. We recall that such estimates
are valid only in a subspace of [?(hZ") of data interpolated from the coarse
grid. In the subcritical case we prove the global existence of the solutions
for initial data in 1?(hZ?). We also consider the critical case p = 4/d for
small initial data.

We introduce the space of the slowly oscillating sequences (SOS). The
SOS on the fine grid hZ? are those which are obtained from the coarse grid
4hZ% by an interpolation process. Any function defined on the lattice hZ4
can be viewed as a function on the lattice Z?. This is the way we will proceed
in the definition of the projection operator IT and its adjoint.

Let us consider the multilinear interpolator I acting on the coarse grid
474. We define the operator II : 12(4Z%) — 1?(Z%) by

(5.63) (If);=(If);, jez’
and its adjoint IT* : [2(Z4) — [2(4Z9):
(564) (ﬁfa g)IQ(Zd) = (f7 ﬁ*g)l2(4Zd)a



28 L. I. IGNAT AND E. ZUAZUA

where (-, +);2(z4) and (-, -);2(4z4) are the inner products on 12(Z9) respectively
12(47.%).
In Section |3} we proved that there is no gain (uniformly in h) of inte-

grability or local smoothing effect of the linear semigroup S”(¢) generated
by the conservative scheme (I.8)). However, there are subspaces of 12(hZ9),

namely (4th), where S”(t) has appropriate decay properties, uniformly
on h > 0. The main results concerning the gain of integrability are given in
the following Theorem.

Theorem 5.1. Let p > 2 and (q,r), (¢,7) two 1/2-admissible pairs. The
following properties hold

i) There exists a positive constant C(d,p) such that
(5.65) 15" ()Tl (uze) < Cd,p) ]~ |Tip] (hzd)
for all € 1P (4hZ%), h > 0 and t # 0.

it) There exists a positive constant C(d,r) such that
(5.66) 15" (O] page, i (nzayy < C(ds )12 (70
for all o € 12(4hZ%) and h > 0.

i11) There exists a positive constant C(d,r) such that

(5.67) H/ Sh()*TLf(s)ds < C(d, )T Lo i ey

for all f € LY (R, I" (4hZ%)) and h > 0.

iv) There exists a positive constant C(d,r,7) such that
(5.68) H/ Sh(t — $)TLf (s)ds ‘

for all f € LT (R, I” (4hZ4)) and h > 0.

12(hzZ)

La(R, 17 (hZ4)) <C(d,r, f)”Hf”Lé’(R,ﬁ’(th))

The following lemma gives a characterization of data that are obtained
by a two-grid algorithm involving the meshes 4hZ¢ and hZ?. Its proof uses
only the definition of the discrete Fourier transform and for that we omit it.

Lemma 5.1. Let ¢ € I2(4hZ%). Then for all £ € [—7/h,w/h]?
ﬁ;b(f) = 4dH¢ Hcos (&kh) cos <£k > ,

where (IIY); =5 if j € 477 and vanishes elsewhere.

Remark 5.1. A simpler construction may be done by interpolating 2hZ%
sequences. We then get for all ¢ € 12(2hZ%) and € € [—n/h, w/h]?

ﬁw( = 29Ty (¢) Hcos< )
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with (ITy); = 45 if j € 27.% and vanishes elsewhere. This cancels the spuri-
ous numerical solutions at the frequencies {#r/h}?, but not at {£m/2h}.
In this case, as we proved in Section [3, the Strichartz estimates fail to be
uniform on h. Thus we rather choose 1/4 as the ratio between the grids for
the two-grid algorithm.

Proof. Let us define the family of weighted operators A" (t) : 1?(hZ%) —
12(hZ%) by

(LD = e OlgenI*fle), € [-7. 7]

where .
o1 = [T eosteycos (%)
k=1

We will prove that for any a > 1/4, Ag(t)~ satisfies the hypothesis of
Proposition Then, observing that S"(t)Ilp = AR(t)Ilp, we obtain
(5.66), (5.67) and (5.68).

Is easy to see that HAg(t)gong(th) < l¢lli2(nzey- It remains to prove that
for any o > 1/4 and t # s the following holds:

(5.69) | AL ()AL (8) 100 (nza) < e, )|t — 5|_d/2||¢||zl(hzd)‘

A scaling argument reduces the proof to the case h = 1. We claim that
(5.69) holds once

(5.70) IAG®)l1oe (zay < (B, d)[E™ 21191 (e

holds for all 3 > 1/2. Indeed, using that the operator Al(t) satisfies
AL(t)* = AL(—t) for all real t,