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ABSTRACT

We study the soliton flow on the domain of a twistorial harmonic morphism between
Riemannian manifolds of dimensions four and three. Assuming real-analyticity, we
prove that, for the Gibbons-Hawking construction, any soliton flow is uniquely deter-
mined by its restriction to any local section of the corresponding harmonic morphism.
For the Beltrami fields construction, we identify a contour integral whose vanishing

characterises the trivial soliton flows.

1. INTRODUCTION

A solution of the Ricci flow which evolves by scaling and diffeomorphism is called a
Ricci soliton. Specifically, if g, = c41)} g satisfies the equation

gt M
— = —2"Ric
ot (9t)
on some time interval [0,d), where ¢; is a family of positive scalars such that ¢y = 1

and 1) is a family of diffeomorphisms satisfying 19 = id, then
(1.1) MRic+ag+%EEg:0;

where 2a = ¢, and the vector field E, called the soliton flow, is given at each x € M
by E, = %wt(ﬂf)h:o- Conversely, a solution to on a Riemannian manifold (M, g)
gives a small time solution to the Ricci flow equation, under a completeness assump-
tion. Ricci solitons occur as rescaled limits at singularity formation and as asymptotic
limits of immortal solutions, that is solutions that exist for all future time [9] . Both of
these limits are interpreted in terms of Cheeger-Gromov-Hamilton pointed convergence
of Ricci flows [6] . In the case when E = gradf is the gradient of a function, then the
soliton is said to be of gradient type. A soliton is called shrinking, steady or expanding
according as the constant a is negative, zero or positive, respectively. See the reference
[5] for an overview.
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Any soliton metric which is Einstein is called ¢rivial. In dimension 3, any compact
soliton is trivial [7]. On the other hand, in dimension 4, non-trivial soliton metrics
in the form of Kéhler metrics of cohomogeneity one on certain projective bundles on
CP™ have been found by Koiso [8]. Also, on R™ there exist the well-known Gaussian
solitons with flow given by F = grad(—%|x — xo\Z) , where g € R™ is some arbitrary
point.

In this article we are particularly concerned with questions of existence and unique-
ness in dimension 4. In order to address these issues, we make the additional assump-
tion that the metric g supports a twistorial harmonic morphism onto a 3-manifold (see
below). Up to homotheties, any such harmonic morphism ¢ : (M,g) — (N, h), with
nonintegrable horizontal distribution, is locally given either by the so-called Gibbons—
Hawking or by the Beltrami fields constructions. Both of these methods for constructing
a metric involve specifying data on the codomain N from which the metric g is derived.
A similar idea was applied in [2] to construct 3-dimensional solitons, by supposing the
existence of a semi-conformal mapping onto a surface. Note that by a result in [3], any
horizontally conformal conformal submersion from a 3-dimensional conformal manifold
to a surface P can be extended to a unique twistorial map from its 4-dimensional heaven
space to P.

In Section, we suppose that (M, g) is given by applying the Gibbons-Hawking con-
struction to a real-analytic Riemannian 3-manifold (N, k), in particular, g is expressed
in terms of a harmonic function on (N, h). As a consequence, this defines a twistorial
harmonic morphism ¢ : (M,g) — (N,h). Then we show that any real-analytic soli-
ton flow on (M, g) is uniquely determined by its restriction to any local section of ¢
(Theorem [3.1]). We, also, obtain an ansatz for the construction of a soliton flow from
a harmonic function and a solution to the monopole equation on N (Theorem [4.5/).

In Section , we suppose that (M, g) is given by the Beltrami fields construction.
Now, the metric g is given in terms of a 1-form on (N, h) satisfying the Beltrami fields
equation. Theorem shows the equivalence between the triviality of any real-analytic
soliton flow E and the vanishing of a contour integral involving the complexification
(L£h)C to a local complexification of N.

2. SOLITON FLOWS ON THE DOMAIN OF A TWISTORIAL HARMONIC MORPHISM

A harmonic morphism between Riemannian manifolds is a map which, locally, pulls
back harmonic functions to harmonic functions (see [4] for more information on har-
monic morphisms).

Let ¢ : (M,g) — (N,h) be a submersive harmonic morphism, with M and N ori-
ented, dimM =4, dim N = 3. Denote by A the dilation of ¢ and let 7" = kerdy and
A = ¥+ be the vertical and horizontal distributions of ¢, respectively. We orient ¥
and ¢ such that the isomorphisms TM = ¥ @ 2 and 7 = ¢*(T'N) be orientation
preserving.
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Let V be the (fundamental) vertical vector field, characterised by the fact that it is
vertical, positive and g(V, V) = A2. Then, locally, g = A~2 ©*(h) + A2 2, where @ is the
vertical dual of V; that is, (V) =1 and 6| » =0.

Then ¢ is twistorial (with respect to the opposite orientation on M) if and only if
the following relation holds [12] :

(2.1) d7(A72) = %0,

where ) = d . It follows that, at least outside the set where Q = 0, we have ¢ = V/(\~2)
is constant (on each component) and the Ricci tensors MRic and Ric of (M, g) and
(N, h), respectively, are given by the following relations [11] :

MRicly =0, MRiclygr =0,
(2.2) 2
MRic | = ¢*("Ric) — B ©*(h) .
Furthermore, we have the following facts (see [I1], [12] and the references therein):
e (N, h) has constant sectional curvature if and only if (M, g) is self-dual;
e (N,h) has constant sectional curvature equal to % if and only if (M,g) is
Einstein; moreover, if (M, g) is Einstein then it is Ricci-flat self-dual.

From now on, we shall assume 0, # 0, at each z € M (if Q = 0 then, locally, g is a
warped-product; see [1] and the references therein for results on soliton flows on such
metrics). Then there exists a unique basic vector field Z such that ¢z = 0 and which
is projected onto a unit vector field on (N, h).

Proposition 2.1. Let ¢ : (M, g) — (N, h) be a twistorial harmonic morphism, and let
E be a vector field on M; denote by f and F the function and the horizontal vector
field, respectively, such that E = fV + F.

Then E is a soliton flow, with the corresponding constant a , if and only if, locally,
the following five relations hold:

V(f)+a—3iN(fe+2Q(X,Y)) =0,
X(f) - yQ(X Y)+ A V() =0,
23) Y(f)+zQX,Y)+ XV (y) =0,
Z(f)+1"WV(2) =0,
Lr(p*(h) + X (= + fe+2QX,Y) +2aA?)*(h)
+ 222" (NRic) =0 on /7,
where (X,Y, Z) is a horizontal frame, projected by ¢ onto a positive orthonormal frame

n (N,h), and x,y, z are functions characterised by F = X +yY + zZ.

Proof. Firstly, note that (2.3]) does not dependent of the pair (X,Y’), having the stated
properties. Also, (2.1)) is (locally) equivalent to the conditions X (\) = Y(A) = 0 and
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Z(A%) = Q(X,Y). Thus, by also using V(A72) = ¢, we obtain

(2.4) E(ln\) = —1 feA? — L22%Q(X,Y) ,

which implies

(2.5) EmXN) +V(f)+a=V(f)+a—iX(fc+2Q(X,Y)) .

Also, we have

(Leg)(V,V) = (Livg)(V,V) + (Lrg)(V,V)
= fV(N%) +29([V, fV], V) + F(X%) + 2¢([V, F], V)
(2.6) = fVIN) + F(\3) 4+ 2V (f)\?
= E(\?) +2X2V (f)
=2\ (E(InA) + V(f)) .
Now, , and show that the first relation of is equivalent to )

restricted to 7.
Further, for any horizontal vector field S, we have
(Leg)(V,S5) = g([V, E], S) + g(V, [S, E])
=g(V(H)V +[V.FL.S) +g(V,S(N)V + S, F])
= g([V. F],8) + X2S(f) = \*Q(S, F)
= X(S(f) = S, F) + 276" (h)(IV. F, 9)) -

(2.7)

From ([2.7) we deduce that the second, third and fourth relations of (2.3 are equiv-
alent to (1.1, restricted to ¥ ® 2.
Next, we have
(Leg)lw = (LA 20" (h))|r
= EA )" (W) + A2 (Le " (R))|2
(2.8) = E\ )" (W) + ALy " (W) + A2 (Lre*(h)) |
= E\ )" (h)| e + A2 (Lre*(h))| 2
= —2AE(In \)¢*(h)| e + A2 (Lre*(h)) | -

From and we obtain
(2.9) (Lrg)lw = (fe+ 20X, V)" (B) e + A (Lre*(R)) | -

From (2.2) and (2.9) we deduce that the fifth relation of ({2.3)) is equivalent to (1.1)),
restricted to J7. O
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3. RICCI SOLITONS AND THE GIBBONS—HAWKING CONSTRUCTION

Let ¢ : (M,g) — (N, h) be a twistorial harmonic morphism with V/(A=2) = 0. This
is equivalent to the fact that, locally, there exists a function u and a one-form A on N
satisfying the monopole equation du = *dA and such that

g=uh+u"(dt + A)?,
with ¢ : M = N x R — N the projection; in particular, \™2 = u, V = % is a Killing
vector field, and 0 = dt + A.
Note that, if (N, h) is real-analytic then, as u and A satisfy Au =0 and AA =0,

we have that, also, g is real-analytic.
Next, we state the main result of this section.

Theorem 3.1. Let (M, g) be given by the Gibbons-Hawking construction, with (N, h)
real-analytic.

Then any real-analytic soliton flow on (M, g) is uniquely determined by its restriction
to any local section of ¢ .

The proof of Theorem will be given below.

From now on, in this section, we shall denote by X, Y and Z the projections onto N
of the corresponding vector fields appearing in . Then, as 2 = dA, we have Z =
ﬁ gradu, X (u) = Y (u) = 0. Hence, the horizontal lift of X is X = —A(X)% +X
and, similarly, for Y and Z . Consequently, Q(X,Y) = Z(u) = |du|.

Thus, Proposition [2.1] gives the following result.

Corollary 3.2. Let (M,g) be given by the Gibbons—Hawking construction. Then a
vector field E = fV + F, with F horizontal, is a soliton flow on (M,g), with the cor-
responding constant a , if and only if the following five relations hold:

aa{—}—a—;zu_1|du]:0,

—A(X)Z{—I—X(f)—ydu\—&-uzgf—o,
(3.1) —A(Y)%:+Y(f)+x|du|+u2§; =0,

—A(Z)%+Z(f)+u2%:0,

Lrh+ 2u~! MRic +u_1(2 |du| 4 2au)h =0 on .
Assuming real-analyticity, Corollary gives the following result.
Corollary 3.3. Let (M, g) be given by the Gibbons—Hawking construction, with (N, h)

real-analytic. Let E = fV + F be a real-analytic vector field on (M, g), where F is
horizontal.

On writing, locally, f =22, tf; and F = >0 tjﬁ; , with f; functions on N, and
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Fj the horizontal lifts of vector fields F; = x; X +vy;Y +2;Z on N, we have that E is a
soliton flow on (M, g), with the corresponding constant a , if and only if the following
relations hold:

fi1 = 2(1 2utdul, (j € N\ {0}) ,

j+1)
Lo

fi= §Z0u |du| —a,
= ( + DAX) fin + X(f) — yjldul + (j + Duaji =0, (j EN),
— (j+ DAY fir1 + Y (f) + ajldul + (5 + DuPyjp1 =0, (j €N),
— G+ DAD) fii+ Z(f) + (G + DuPz41 =0, (j €N),
Lph=2(j+1)A® F) —zu|dulh, (j € N\{0}),
Lryh+ 20~ MRic +(2a + zou | du|)h — 240 F} =0,

where © denotes he symmetric product.

(3.2)

Proof. 1t is easy to see that the first four relations of (3.1 are equivalent to the first

five relations of ({3.2]). _ N
Let S be a vector field on N and let S be its horizontal lift. As S = —A(S)% + S,

we have S(#/) = —jA(S)t~!. Hence,
(L7 h)(S,S) =t/(Lp,h)(S,S) — 2t (A F))(S, ),

tiF;
from which the last two relations follow quickly. O

Now, we can give the proof of Theorem [3.1].

Proof of Theorem [3.1] Tt is sufficient to prove that F is determined by its restriction
to N x {0}.
The first and the fifth equations of (3.2)) give

1 1 .
—3 zjutdu|A(Z) + % Z(zj—wuMdul) + (j + DuPzjp1 =0,

for any j € N\ {0}.
Also, the second and the fifth relations of (3.2)) give
1
(3.3) ~3 zou" Y| dulA(Z) + aA(Z) + Z(fo) + u?z = 0.
Thus, z; and f; are determined by zg and fo, for any j € N.
To complete the proof, just note that the third and fourth relations of (3.2) imply
that x; and y; are determined by ¢, o, 20 and fo, for any j € N. O

We, also, obtain that if F is a real analytic soliton flow on a Riemannian manifold,
given by the Gibbons—Hawking construction, then its vertical part is determined by its
horizontal part, up to the choice of fy satisfying (3.3 .
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4. A PARTICULAR CASE

In this section, we continue the study of Section [3] by tackling a particular case.

Corollary 4.1. Let (M, g) be given by the Gibbons—Hawking construction, with (N, h)
real-analytic. Let E = fV + tﬁ be a real-analytic vector field on (M, g), where E 18
the horizontal lift of the vector field Fy on N.

Then E is a soliton flow on (M, g), with the corresponding constant a , if and only
if f=fo—at+ ibt2 , where b is a constant, fy is a function on N, and the following
relations hold:

b=u"tF(u),
bA =2du x F? |

(4.1) aA+dfy+u’F =0,
Lph=—bh,
MRic4+auh—uA®F =0 .

Proof. From the first two relations of (3.2) we obtain that f; = 0, for any j > 3,

fo= izlu_1|du| ,and f1 = —a.

Note that the third, fourth and fifth relations of (3.2)) are equivalent to
(4.2) — G+ Dfj1A+dfj+dux F} + (G + )u*F}y =0,
for any 57 € N.

Now, if j > 3 then is trivially satisfied, whilst for j = 2 it gives that dfy = 0.
Thus, b = z;u~!|du| is constant; equivalently, b = u~'F} (u) is constant.

The second and third relations of are equivalent to with j =1 and 5 =0,
respectively.

Finally, the last two relations of are equivalent to the last two relations of

B2). O

With the same notations as in Corollary [3.3], it is easy to see that we can weaken
the hypotheses of Corollary to (IV, h) real-analytic and Fp = F» = 0.

Also, the second relations of imply A(gradu) = 0 (condition which can always
be satisfied, locally). Moreover, the first two relations of determine Fp, whilst
the third requires d(aA + uzFf ) = 0 to determine fy, locally, up to a constant. Con-
sequently, b = 0 if and only if F; = 0 which implies a = 0, fy is constant (otherwise,
dA =0), and (M, g) is Ricci flat self-dual.

Therefore from now on we shall assume b #£ 0.

Lemma 4.2. Let u be a harmonic function on a three-dimensional Riemannian man-
ifold (N,h). Let B be a local solution of the monopole equation du = xdB and let w
be a function satisfying (grad w)(u) = bu® + aB(u) .
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Then there exists functions v and fo such that the first three relations of (4.1) are
satisfied, with A = B+ dv and Fy = —au 2B + u~2gradw, if and only if

(4.3) bdv — 2u"?du x dw + bB + 2au " ?du x B=0 .

Consequently, the first three equations of can be, locally, solved, up to a gauge
transformation, if and only if there exists a function w such that the following two
assertions hold:

(i) (gradu)(w) = bu® + aB*(u) ;
(ii) —2u?du x dw + bB + 2au~2du x B is closed.

Proof. As A satisfies du = *xdA, it must (locally) be of the form A = B + dv, for a
suitable function v.

Also, the third relation of is satisfied, for a suitable fy, if and only if adu =
— % d(uQFf) . Thus, F} = —au"2B* + u~2 gradw for a suitable function w. Then the
first relation of is satisfied if and only if grad w = bu® + aB(grad u) .

To complete the proof, just note that, now, the second relation of is equivalent
to (4.3)) . O

We do not have a reference for the following simple and easy to prove lemma.

Lemma 4.3. Let o and B be two one-forms on a Riemannian manifold, and let d* be
the codifferential. Then

* * * b
d(anB) = (d*a) f —a(d*f) — [of, 5] .

Next, we use Lemma, to characterise the suitable functions w of Lemma, |4.2].
Proposition 4.4. The first three equations of (4.1) can be, locally, solved, up to a
gauge transformation, if and only if there exists a function w on (N, h) such that the
following two equations hold:

(grad u)(w) = bu® + aB*(u),
(4.4) (2u‘2Aw —2au~2d*B + b) du + 2 [u‘z grad u, grad w — aBﬁ]b
— 4u73|dul*(dw — aB) = 0.

Proof. We have to show that the second relation of (4.4)) holds if and only if the one-
form appearing in (ii) of Lemma is closed; equivalently,

(4.5) * d(72u_2 % (du A dw) + 2au™? x (du A B) +bB) =0 .
We calculate the left hand side of by using that *dB = du and Lemma |4.3|:
—2d*((u"?du) A (dw — aB)) + bdu
(4.6) = —2(d*(v?du))(dw — aB) +2(d*dw — ad*B)u*du
+2 [u_2 grad u, grad w — aBﬁ] +bdu .

Now, just note that, as v is harmonic, we have d*(u=2 du) = 2u~3|du|?. O
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Note that, the first two relations of (4.7)), below, are tensorial in gradw .

Theorem 4.5. Let u be a harmonic function on a three-dimensional real-analytic
Riemannian manifold (N,h). Let B be a (local) solution of the monopole equation
du = xdB and let w be a function on N satisfying
(4.7)
(grad w)(u) = bu® + aB*(u) ,

Varadw du = —u~"|duf?(dw — aB) + 5 bu? du — a[grad u, BY]” + L a(L:h) (gradu, -) |

Vdw = %aﬁBuh— %bu2h+2u71du® (dw—aB) ,

where a,b e R, b#0.

Then, locally on N, there exist functions v and fo, unique up to constants, such
that if (M,g) is given by (N,h), u and A = B + dv, through the Gibbons—Hawking
construction, and E = (fo —at + ith)% + tF, where F is the horizontal lift of
w2 (gradw — aBﬁ) , then the following assertions are equivalent:

(i) E is a soliton flow on (M, g), with the corresponding constant a ;
(ii) MRic+auh —utA® (dw —aB) =0.
Moreover, any soliton flow on a real-analytic Riemannian manifold, given by the

Gibbons—Hawking construction (with u nonconstant), is obtained this way, if its hori-
zontal part is t times a nonzero basic vector field.

Proof. If we denote G = gradw — aB* then adu = — * dG”, and is equivalent to
G(u) = bu®
2[u?gradu, G] = —(2u>d*G + b) grad u + 4u~*|du[*G .
Further, as F; = F = v~ 2@, the fourth relation of holds if and only if
(4.9) Loh = —bulh+4u " du e G .

Then and the first relation of imply &*G = —% (which, together with
the second relation of , gives G(|dul?) = 3bu?|dul?).

Thus, if holds then is equivalent to the first relation of and the
following [grad u, G] = 2u~!|dul?G — 2bu? grad u ; further, the latter is equivalent to
(4.10)

Vgradu(grad w) = Vgragw(grad u)+a [grad u, Bﬁ] +2u71 |du\2(grad w—aBﬁ) —2bu’® grad u .

On the other hand, (4.9)) is equivalent to
(4.11) Vdw = %aﬁBnh—%bu2h+2u_1du®(dw—aB) ;

(4.8)

which, together with G(u) = bu?, implies
(4.12) Vradu(dw) = % a(ﬁBu h) (grad u, ) + % bu® du 4wt |du)? (dw - aB) .

Thus, if (4.11]) holds then (4.10)) is equivalent to the second relation of (4.7)) .
We have, thus, shown that the first four relations of (4.1 can be locally solved, with
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a suitable A = B +dv and fo, if and only if (4.7) holds. Together with Corollary [4.1],
this completes the proof. O

We end this section with the following application of Theorem [4.5. We omit the
proof.

Corollary 4.6. Let (M, g) be given by the Gibbons—Hawking construction, with (N, h)
real-analytic, and the fibres of u are flat and geodesic.

Let E = fV + tF be a real-analytic vector field on (M, g) , where F is the horizontal
lift of the vector field F on N.

Then E is a soliton flow on (M, g), with the corresponding constant a, if and only
if F=0,a=0, fois constant, and (M, g) is Ricci flat self-dual.

5. RICCI SOLITONS AND THE BELTRAMI FIELDS CONSTRUCTION

Let ¢ : (M, g) — (N, h) be a twistorial harmonic morphism with V' (A72) # 0. Then,
up to homotheties, we may suppose that V(\72) = 2. It follows that, locally, there
exists a one-form A on N satisfiying the Beltrami fields equation dA +2 % A = 0 and
such that

g=p"h+p2(pdp+ A)?,
with ¢ : M = N x (0,00) — N the projection; in particular, A = p=1, V = pfla% , and
0=pdp+ A.

Note that, if (N, h) is real-analytic then, as A satisfies AA = 4A | we have that, also,

g is real-analytic. Furthermore, the complexification of g is defined on N© x (C \ {0}).

Theorem 5.1. Let E be a real-analytic soliton flow on a Riemannian manifold (M, g)
given by the Beltrami fields construction.
Suppose that E admits a complexification on a set containing U X ~v, where U is an
open subset of N and 7y is a circle on C, centred at 0.
Then the following assertions are equivalent:
(i) (M, g) is Einstein;
(ii) fvp(ﬁEh)C dp=0, on U®.
Furthermore, a sufficient condition for (i) and (ii) to hold is that there exists j €
N\ {0} such that the trace-free part of [ PP (LEh)C dp is zero, on UT.

The proof of Theorem [5.1] will be given below.

From now on, in this section, we shall denote by X, Y and Z the projections onto
N of the corresponding vector fields appearing in . Then, as 2 = dA, we have
Z = |—}l|Aﬁ, A(X)=A(Y) = 0. Hence, the horizontal lifts of X, Y and Z are X, Y and
—]A\pfla% + Z, respectively. Consequently, Q(X,Y) = (—|A]p*16% +2)(p*) = —2|4].

Thus, Proposition [2.1] gives the following result.

Corollary 5.2. Let (M, g) be given by the Beltrami fields construction. Then a vector
field E = fV+F, with F horizontal, is a soliton flow on (M, g) , with the corresponding
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constant a , if and only if the following five relations hold:

pgj.j+ap2—f+z|A| =0,
X(f)+2y|A|+p3gjj=o,

5-1) V() - 20l 4 5L =0,
Az =0,

p2ﬁph+2NRic+2(f—z|A| + ap® — 2)h =0 on 2.

We shall, now, rewrite (5.1)) under the hypothesis of Theorem [5.1|.
Corollary 5.3. Let (M,g) be given by the Beltrami fields construction, with (N,h)
real-analytic. Let E = fV + F be a real-analytic vector field on (M, g), where F is
horizontal.

Suppose that E admits a complezification on a set containg U x v, where U is an
open subset of N and ~y is a circle on C, centred at 0. .

Then f and F admit Laurent seriesixpansions f= Z;-’ifoo P fiand F = Z;’ifoo P,
where f; are functions on N, and F; are the horizontal lifts of vector fields F; =
; X +y;Y +2;Z on N .

Furthermore, E is a soliton flow on (M,g), with the corresponding constant a , if
and only if the following relations hold:

(G—=1fi+2lA =0, (jeZ\{2}),

fo+ z|Al+a=0,

X(f;) + 2yl Al + (G —2)zj2=0, (j €Z),

Y (fj) —2x]Al+ (G —2)y;—2 =0, (j €Z),

— G+ DA fir2 + Z(f)) + (G —2)2j2=0, (j €Z),
Lp,_,h—2jA0F) +2(f; — z]A)h =0, (j € Z\ {0, 2}) ,
Lr_,h+2"Ric+2(fo — 20|A| —2)h =0,
Lryh—4A0 F5 +2(fs — 2|A| +a)h =0,

(5.2)

Proof. We shall denote by the same symbol an object and its complexification. Also,
all the objects are assumed complex-analytic.

As the domain (of the complexification) of E contains U times a circle, with U C N
open, it, also, contains U times an open annulus. Then the existence of the Laurent
series expansions, for f, x, y, z, and, consequently, F', follows by applying a standard
argument.
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It is easy to see that the first four relations of (5.1 are equivalent to the first five

relations of (5.2)) .
Let S be a vector field on N and let S be its horizontal lift. As S = —A(S)pfla%—i-s,

we have S(p) = —jA(S)p'~2. Consequently,
(£,57 W)(S,8) = ¢ (Lr; h)(S,S) = 2jp' > (A F})(S.5)
from which the last three relations follow quickly. O

We can, now, give the proof of Theorem [5.1].

Proof of Theorem [5.1. The equivalence of assertions (i) and (ii) is a consequence of the
seventh formula of (5.2]).
On working with homogeneous quadratic polynomials, instead of symmetric bilinear

forms, and identifying forms and vector fields on N, through A, the sixth formula of
(5.2) is equivalent to the following:

—5 Lry o h=(f; = 2| ANX? + (f; — | ADY? + (f; — 22| A) 2
— Jja;|AIX Z — jy;|AlY Z .
The last assertion follows quickly from the first formula of (5.2)) and (5.3]) . O

(5.3)

Remark 5.4. Under the same hypotheses as in Theorem [5.1], and with similar proofs,
the following three statements follow quickly:

(a) The vertical part of E is determined by the horizontal part (in fact, by z = A(E) ).

(b) (M,g) is self-dual if and only if the trace-free part of fvp(ﬁEh)C dp is zero,
on U®.

(c) Fy and F uniquely determine all Fj, with j € N.

We end with a particular case.

Corollary 5.5. Let (M,g) be a Riemannian manifold given by the Beltrami fields
construction, with A the corresponding one-form on N.
Suppose that E admits a complexification on a set containg U X v, where U is an
open subset of N and ~ is a circle on C, centred at 0.
Then E = fV + F, with F = xX +yY + z2Z and z a function on N, is a soliton
flow, with the corresponding constant a , if and only if the following assertions hold:
(i)a=0, f==zA| and Z(f) =0;
(i) = +iy = we v 1Al 4 ﬁ(X +1iY)(f), where u is a function on N;
(ii)) [, p(Leh)®dp+ 2 Ric—4h =0, on U%;
(iv) [, p It LEh)Cdp=A0 I p 7Y (F")Cdp, on U, for any j € 7.\ {0} .

Proof. As g—; = 0, the first assertion of (5.1]) is equivalent to

0 —1 —1 _n.
%(P f+ap—p2A]) =0;
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equivalently, f = —ap? 4+ vp + z|A|, where v is a function on N.
By using this, we obtain that the fourth relation of (5.1)) is equivalent to

A (v — 2ap) + p Z(v) + Z(z]A]) = 05

that is,a =v = Z(v) =0.

Then the second and the third relations of (5.1)) are equivalent to assertion (ii) . Also,
by using Corollary , we obtain that the fifth relation of (5.1) is equivalent to (iii)
and (iv) . O
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