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Abstract

We introduce and analyze some one- and two-level additive

Schwarz methods for variational and quasi-variational inequalities

of the second kind. The methods are introduced as subspace cor-

rection algorithms for problems in a reflexive Banach space. We

prove that these methods are globally convergent and give, under

some assumptions, error estimates. If we utilize the finite element

spaces the introduced algorithms are in fact one- and two-level

Schwarz methods. In this case we prove that the assumptions we

made for the general convergence result hold, and are able to write

the convergence rate depending on the overlapping and mesh pa-

rameters. We get that our methods have an optimal convergence

rate, i.e. their converge is the same as in the case of linear equa-

tions. In this way, we prove that the two-level introduced methods

are very efficient for this type of problems because their conver-

gence is almost independent of the mesh and overlapping param-

eters.

Keywords: domain decomposition methods, subspace correction meth-
ods, variational inequalities, multilevel methods
AMS subject classification: 65N55, 65N30, 65J15

∗Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700

Bucharest, Romania (e-mail: lori.badea@imar.ro)

1



1 Introduction

Schwarz methods are widely used for linear problems because they pro-
vide robust and efficient solution methods. However, their generaliza-
tion to non–linear problems is not straightforward, in particular the
estimate of the convergence rate for the multilevel methods is far from
being trivial. The convergence of the projected Gauss–Seidel relaxation
(or successive coordinate minimization) for variational inequalities of the
second kind in Rd has been proved in [9]. There, the non-differentiable
term has been decomposed as a sum of terms, each of them depend-
ing only on one vector component. Such a localizing decomposition
can be obtained, for instance, if the continuous problem is discretized
by finite elements and the non-differentiable term is approximated by
numerical integration. The projected Gauss-Seidel method is a particu-
lar case of a Schwarz method in which the domain is decomposed into
the interior of the supports of the nodal basis functions. Consequently,
the above representation of the non-differentiable term can be viewed
as a decomposition in concordance with the domain decomposition. A
straightforward generalization of the convergence proof in [9] to more
general decompositions can be obtained using this idea, but it fails if, in
order to get a faster convergence of the non-linear Schwarz method, a
two-level or multilevel method is considered. This is due to the fact that
on the coarser levels the nonlinearities are not decoupled. A remedy can
be found in adapting minimization techniques for the construction and
analysis of multigrid and domain decomposition methods, see [11]–[13].
In [4], two-level multiplicative Schwarz methods have been proposed for
variational and quasi-variational inequalities of the second kind. The
convergence rates of these methods are almost independent of the mesh
and overlapping parameters. On the other hand, it is well-known that
the additive methods are the best on parallel machines even if their con-
vergence is a little more slow. In this paper, we prove that the additive
variants of the methods in [4] are also globally convergent and have an
optimal convergence rate.

The paper is organized as follows. Section 2 is devoted to a general
framework in a reflexive Banach space. We introduce here an assumption
on the convex set and the correction subspaces, which will be necessary
in the convergence proof of the algorithms. Mainly, this hypothesis refers
to the decomposition of the elements in the convex set, and introduces
a constant C0 which will play an important role in the writing of the
convergence rate. In Section 3, we introduce a subspace correction al-
gorithm for variational inequalities of the second kind, and prove that,
under the above assumption, it is globally convergent. We also estimate
its convergence rate. In Section 4, we introduce two subspace correc-
tion algorithms for the quasi-variational inequalities. As in the previous
section, we prove their convergence and estimate the convergence rate,
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using the assumption introduced in Section 2 and asking that the non-
differentiable term to satisfy a certain property. Using this property, we
also show that the quasi-variational inequality has an unique solution,
and the convergence condition of the algorithms and the existence and
uniqueness condition of the solution are of the same type. Section 5
is devoted to the one- and two-level methods. If we associate the cor-
rection subspaces to a domain decomposition, the abstract algorithms
introduced in Sections 3 and 4 are Schwarz methods. We show that
the assumption introduced in Section 2 holds for general enough con-
vex sets and we explicitly write the constant C0 depending on the mesh
and domain decomposition parameters. In this way, we get that the
convergence rates of the one- and two-level methods for the variational
and quasi-variational inequalities of the second kind are similar with the
convergence rates obtained for equations, ie., we get an optimal con-
vergence. In the case of the two-level methods, the convergence rate is
almost independent of the mesh and domain decomposition parameters.

2 General framework

Let V be a reflexive Banach space and V1, · · · , Vm be some closed sub-
spaces of V . Also, let K ⊂ V be a non empty closed convex set for
which we make the following

Assumption 2.1. There exists a constant C0 > 0 such that for any
w, v ∈ K there exist vi ∈ Vi, i = 1, · · · , m, which satisfy

w + vi ∈ K for i = 1, · · · , m,(2.1)

v − w =
m
∑

i=1

vi, and(2.2)

m
∑

i=1

||vi|| ≤ C0||v − w||.(2.3)

We consider a Gâteaux differentiable functional F : V → R, and
assume that there exist two real numbers p, q > 1 such that for any real
number M > 0 there exist two constants αM , βM > 0 for which

αM‖v − u‖p ≤ 〈F ′(v) − F ′(u), v − u〉, and(2.4)

‖F ′(v) − F ′(u)‖V ′ ≤ βM‖v − u‖q−1,(2.5)

for any u, v ∈ V with ‖u‖, ‖v‖ ≤ M . Above, we have denoted by F ′ the
Gâteaux derivative of F , and we have marked that the constants αM

and βM may depend on M . It is evident that if (2.4) and (2.5) hold,
then for any u, v ∈ V , ‖u‖, ‖v‖ ≤ M , we have

(2.6) αM‖v − u‖p ≤ 〈F ′(v) − F ′(u), v − u〉 ≤ βM‖v − u‖q.
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Following the way in [10], we can prove that for any u, v ∈ V , ‖u‖, ‖v‖ ≤
M , we have

(2.7)
〈F ′(u), v − u〉 + αM

p
‖v − u‖p ≤ F (v) − F (u) ≤

〈F ′(u), v − u〉 + βM

q
‖v − u‖q.

We point out that since F is Gâteaux differentiable and satisfies (2.4),
F is a convex functional (see Proposition 5.5 in [8], pag. 25). Also, we
can prove that q ≤ 2 ≤ p.

3 Subspace correction algorithm for variational

inequalities of the second kind

Let ϕ : V → R be a convex lower semicontinuous functional and we
assume that F + ϕ is coercive in the sense that

(3.1)
F (v) + ϕ(v)

‖v‖
→ ∞, as ‖v‖ → ∞, v ∈ K,

if K is not bounded. In addition to the hypotheses of Assumption 2.1,
we suppose that

(3.2)
m
∑

i=1

ϕ(w + vi) ≤ (m − 1)ϕ(w) + ϕ(v)

for any v, w ∈ K and vi ∈ Vi, i = 1, . . . , m, which satisfy Assumption
2.1.

Now, we consider the problem

(3.3) u ∈ K : 〈F ′(u), v − u〉 + ϕ(v) − ϕ(u) ≥ 0, for any v ∈ K.

It is well known (see [14], Theorem 8.5, page 251, for instance) that the
above problem has a unique solution, and it is also the unique solution
of the minimization problem

(3.4) u ∈ K : F (u) + ϕ(u) ≤ F (v) + ϕ(v), for any v ∈ K.

From (2.7) we see that, for a given M > 0 such that the solution u of
(3.3) satisfies ‖u‖ ≤ M , we have

(3.5)
αM

p
‖v − u‖p ≤ F (v) − F (u) + ϕ(v) − ϕ(u),

for any v ∈ K, ‖v‖ ≤ M.

The proposed algorithm corresponding to the subspaces V1, · · · , Vm

and the convex set K is written as follows
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Algorithm 3.1. We start the algorithm with an arbitrary u0 ∈ K. At
iteration n + 1, having un ∈ K, n ≥ 0, we simultaneously solve the
inequalities

(3.6)

wn+1
i ∈ Vi, un + wn+1

i ∈ K :

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 + ϕ(un + vi) − ϕ(un + wn+1
i ) ≥ 0,

for any vi ∈ Vi, un + vi ∈ K,

for i = 1, · · · , m, and then we update un+1 = un +
r

m

m
∑

i=1

wn+1
i , where

0 < r ≤ 1 is a fixed constant.

This algorithm does not assume a decomposition of the convex set K
depending on the subspaces Vi. Evidently, problem (3.6) has an unique
solution, and it is equivalent with

(3.7)

wn+1
i ∈ Vi, un + wn+1

i ∈ K :

F (un + wn+1
i ) + ϕ(un + wn+1

i ) ≤ F (un + vi) + ϕ(un + vi),

for any vi ∈ Vi, un + vi ∈ K.

We have the following general convergence result.

Theorem 3.1. Let V be a reflexive Banach, V1, · · · , Vm some closed
subspaces of V , and K a non empty closed convex subset of V which
satisfies Assumption 2.1. Also, we assume that F is Gâteaux differ-
entiable and satisfies (2.4) and (2.5), the functional ϕ is convex and
lower semicontinuous, satisfies (3.2), and F + ϕ is coercive if K is not
bounded. If u is the solution of problem (3.3) and un, n ≥ 0, are its ap-
proximations obtained from Algorithm 3.1, then there exists an M > 0
such that max(‖u‖, max

n≥0
‖un‖, max

n≥0,1≤i≤m
‖un +wn+1

i ‖) ≤ M and we have

the following error estimations:
(i) if p = q = 2 we have

(3.8)
F (un) + ϕ(un) − F (u) − ϕ(u) ≤
(

C1
C1+1

)n
[

F (u0) + ϕ(u0) − F (u) − ϕ(u)
]

,

(3.9) ‖un − u‖2 ≤ 2
αM

(

C1
C1+1

)n
[

F (u0) + ϕ(u0) − F (u) − ϕ(u)
]

.

(ii) if p > q we have

(3.10)

F (un) + ϕ(un) − F (u) − ϕ(u) ≤
F (u0)+ϕ(u0)−F (u)−ϕ(u)

[

1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1

]

q−1
p−q

,

5



(3.11)
‖u − un‖p ≤ p

αM

F (u0)+ϕ(u0)−F (u)−ϕ(u)
[

1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1

]

q−1
p−q

.

The constants C1 and C2 are given in (3.26) and (3.30), respectively.

Proof. This proof is similar with that given for the minimization of non-
quadratic functionals in [3]. Except the part concerning the functional
ϕ, which will be detailed, we will point out here only the main steps
of the proof. Also, the proof uses the same techniques of that in the
multiplicative case in [4] or [6].

In view of the convexity of F , we get

F (un+1) = F (un +
r

m

m
∑

i=1

wn+1
i ) = F ((1 − r)un +

m
∑

i=1

r

m
(un + wn+1

i )) ≤

(1 − r)F (un) +
r

m

m
∑

i=1

F (un + wn+1
i )

A similar result can be obtained for ϕ, ie., we have

(3.12)

F (un+1) ≤ (1 − r)F (un) +
r

m

m
∑

i=1

F (un + wn+1
i )

ϕ(un+1) ≤ (1 − r)ϕ(un) +
r

m

m
∑

i=1

ϕ(un + wn+1
i )

Using equation (3.7) and these inequalities, we get

F (un+1) + ϕ(un+1) ≤ F (un) + ϕ(un)

Therefore, using (3.4), for any n ≥ 0 and i = 1, · · · , m, we get

(3.13)
F (u) + ϕ(u) ≤ F (un + wn+1

i ) + ϕ(un + wn+1
i ) ≤

F (un) + ϕ(un) ≤ F (u0) + ϕ(u0),

Consequently, from the coerciveness of F + ϕ if K is not bounded, we
get that there exists M > 0, such that

(3.14)
‖u‖ ≤ M, ‖un‖ ≤ M, ‖un + wn+1

i ‖ ≤ M

for any n ≥ 0, i = 1, · · · , m.

From (3.6) and (2.7), for any n ≥ 0 and i = 1, · · · , m, we have

(3.15)
F (un) − F (un + wn+1

i ) + ϕ(un) − ϕ(un + wn+1
i ) ≥

αM

p
‖wn+1

i ‖p,
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and, in view of (3.5), we have

(3.16)
F (un + wn+1

i ) − F (u) + ϕ(un + wn+1
i ) − ϕ(u) ≥

αM

p
||un + wn+1

i − u||p,

for any n ≥ 0 and i = 1, · · · , m, and

(3.17) F (un+1) − F (u) + ϕ(un+1) − ϕ(u) ≥ αM

p
||un+1 − u||p,

for any n ≥ 0. Writing

(3.18) un+1 = un +
m
∑

i=1

wn+1
i ,

from the convexity of F , we get

(3.19) F (un+1) ≤ (1 −
r

m
)F (un) +

r

m
F (un+1)

Applying Assumption 2.1 for w = un and v = u, we get a decomposition
un

1 , · · · , un
m of u − un. From (2.1), we can replace vi by un

i in (3.6), and
from (3.19) and (2.7), we obtain

F (un+1) − F (u) + ϕ(un+1) − ϕ(u) + r
m

αM

p
||u − un+1||p ≤

(1 − r
m

) [F (un) − F (u)] + r
m

[

F (un+1) − F (u) + αM

p
||u − un+1||p

]

+

ϕ(un+1) − ϕ(u) ≤

(1 − r
m

)[F (un) − F (u)] + r
m
〈F ′(un+1), un+1 − u〉 + ϕ(un+1) − ϕ(u) ≤

(1 −
r

m
)[F (un) − F (u)] +

r

m

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉+

r

m

m
∑

i=1

[ϕ(un + un
i ) − ϕ(un + wn+1

i )] + ϕ(un+1) − ϕ(u)

Consequently, we have

(3.20)

F (un+1) − F (u) + ϕ(un+1) − ϕ(u) + r
m

αM

p
||u − un+1||p ≤

(1 −
r

m
)[F (un) − F (u) + ϕ(un) − ϕ(u)]+

r

m

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉+

r

m

m
∑

i=1

[ϕ(un + un
i ) − ϕ(un + wn+1

i )]+

r
m

[ϕ(un) − ϕ(u)] + ϕ(un+1) − ϕ(un)
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As in [3], using (2.5) and (2.3), we get

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉 ≤

βM

(

m
∑

i=1

||wn+1
i ||

)q−1 m
∑

i=1

||un
i − wn+1

i || ≤

βMm
(p−1)(q−1)

p

(

m
∑

i=1

||wn+1
i ||p

)
q−1

p m
∑

i=1

(||un
i || + ||wn+1

i ||) ≤

βMm
(p−1)(q−1)

p

(

m
∑

i=1

||wn+1
i ||p

)
q−1

p
(

C0||u − un|| +
m
∑

i=1

||wn+1
i ||

)

≤

βMm
(p−1)(q−1)

p

(

m
∑

i=1

||wn+1
i ||p

)
q−1

p

·

(

C0||u − ūn+1|| + (1 + C0)
m
∑

i=1

||wn+1
i ||

)

≤

βMC0m
(p−1)(q−1)

p

(

m
∑

i=1

||wn+1
i ||p

)
q−1

p

||u − ūn+1||+

βM (1 + C0)m
(p−1)q

p

(

m
∑

i=1

||wn+1
i ||p

)
q

p

But, for any ε > 0 r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx + 1

ε
1

r−1
y

r
r−1 .

Consequently, we get

(3.21)

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉 ≤

βM (1 + C0)m
(p−1)q

p

(

m
∑

i=1

||wn+1
i ||p

)
q

p

+

βMC0
m

(p−1)(q−1)
p

ε
1

p−1

(

m
∑

i=1

||wn+1
i ||p

)
q−1
p−1

+

βMC0εm
(p−1)(q−1)

p ||u − ūn+1||p

for any ε > 0.

8



Also, using (3.12) and (3.2), we get

r

m

m
∑

i=1

[ϕ(un + un
i ) − ϕ(un + wn+1

i )]+

r

m
[ϕ(un) − ϕ(u)] + ϕ(un+1) − ϕ(un) ≤

r

m

[

m
∑

i=1

ϕ(un + un
i ) − (m − 1)ϕ(un) − ϕ(u)

]

≤ 0

Consequently, from (3.20) and (3.21), we have

(3.22)

F (un+1) − F (u) + ϕ(un+1) − ϕ(u)+
r

m

[

αM

p
− βMC0εm

(p−1)(q−1)
p

]

||u − un+1||p ≤

(1 −
r

m
)[F (un) − F (u) + ϕ(un) − ϕ(u)]+

r

m
βM



(1 + C0)m
(p−1)q

p

(

m
∑

i=1

||wn+1
i ||p

)
q

p

+

C0
m

(p−1)(q−1)
p

ε
1

p−1

(

m
∑

i=1

||wn+1
i ||p

)
q−1
p−1





for any ε > 0.
Now, in view of (3.12) and (3.15), we get

F (un+1) ≤ (1 − r)F (un) +
r

m

m
∑

i=1

F (un + wn+1
i ) ≤

F (un) −
r

m

αM

p

m
∑

i=1

||wn+1
i ||p +

r

m

m
∑

i=1

[ϕ(un) − ϕ(un + wn+1
i )]

Consequently, we have

(3.23)

r

m

αM

p

m
∑

i=1

||wn+1
i ||p ≤ F (un) − F (un+1) + ϕ(un) − ϕ(un+1)+

r

m

m
∑

i=1

[ϕ(un) − ϕ(un + wn+1
i )] − ϕ(un) + ϕ(un+1)

But, in view of (3.12), we have

r

m

m
∑

i=1

[ϕ(un) − ϕ(un + wn+1
i )] − ϕ(un) + ϕ(un+1) ≤ 0,
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and consequently,

(3.24)

m
∑

i=1

||wn+1
i ||p ≤

m

r

p

αM

[

F (un) − F (un+1) + ϕ(un) − ϕ(un+1)
]

Finally, from (3.22) and (3.24), we get

F (un+1) − F (u) + ϕ(un+1) − ϕ(u)+
r

m

[

αM

p
− βMC0εm

(p−1)(q−1)
p

]

||u − un+1||p ≤

(1 −
r

m
)[F (un) − F (u) + ϕ(un) − ϕ(u)]+

r

m
βM





(m

r

)
q

p (1 + C0)m
(p−1)q

p

(αM

p
)

q

p

(

F (un) − F (un+1) + ϕ(un) − ϕ(un+1)
)

q

p +

(m

r

)
q−1
p−1 C0m

(p−1)(q−1)
p

(αM

p
)

q−1
p−1 ε

1
p−1

(

F (un) − F (un+1) + ϕ(un) − ϕ(un+1)
)

q−1
p−1





With

ε =
αM

p

1

βMC0m
(p−1)(q−1)

p

,

the above equation becomes,

(3.25)

F (un+1) − F (u) + ϕ(un+1) − ϕ(u) ≤
m − r

r
[F (un) − F (un+1) + ϕ(un) − ϕ(un+1)]+

βM





(m

r

)
q

p (1 + C0)m
(p−1)q

p

(αM

p
)

q

p

·

(

F (un) − F (un+1) + ϕ(un) − ϕ(un+1)
)

q

p +

(m

r

)
q−1
p−1 β

1
p−1

M C
p

p−1

0 mq−1

(αM

p
)

q

p−1

·

(

F (un) − F (un+1) + ϕ(un) − ϕ(un+1)
)

q−1
p−1

]

Using (3.5), we see that error estimations in (3.9) and (3.11) can be
obtained from (3.8) and (3.10), respectively.

Now, if p = q = 2, from the above equation, we easily get equation
(3.8), where

(3.26) C1 =
m

r

[

1 −
r

m
+ (1 + C0)m

βM
αM

2

+ C2
0m

(

βM
αM

2

)2
]
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Finally, if q < p, from (3.13) and (3.25), we get

(3.27)
F (un+1) + ϕ(un+1) − F (u) − ϕ(u) ≤

C3

[

F (un) + ϕ(un) − F (un+1) − ϕ(un+1)
]

q−1
p−1 .

where

(3.28)

C3 =
m − r

r
[F (u0) − F (u) + ϕ(u0) − ϕ(u)]

p−q

p−1 +

(m

r

)
q

p βM (1 + C0)m
(p−1)q

p

(αM

p
)

q

p

·

(

F (u0) − F (u) + ϕ(u0) − ϕ(u)
)

p−q

p(p−1) +

(m

r

)
q−1
p−1 β

p

p−1

M C
p

p−1

0 mq−1

(αM

p
)

q

p−1

Now, from (3.27), we get

F (un+1) + ϕ(un+1) − F (u) − ϕ(u) + 1

C

p−1
q−1
3

[F (un+1) + ϕ(un+1)−

F (u) − ϕ(u)]
p−1
q−1 ≤ F (un) + ϕ(un) − F (u) − ϕ(u),

and, like in [1] or [3], we have

(3.29)

F (un+1) + ϕ(un+1) − F (u) − ϕ(u) ≤
[

(n + 1)C2 +
(

F (u0) + ϕ(u0) − F (u) − ϕ(u)
)

q−p

q−1

]
q−1
q−p

,

where

(3.30)

C2 =
p − q

(p − 1) (F (u0) + ϕ(u0) − F (u) − ϕ(u))
p−q

q−1 + (q − 1)C
p−1
q−1

3

.

Equation (3.29) is another form of the first estimate in (3.10).

4 Subspace correction algorithms for quasi-variational

inequalities

Let ϕ : V × V → R be a functional such that, for any u ∈ K, ϕ(u, ·) :
K → R is convex and lower semicontinuous. We assume that F + ϕ is
coercive in the sense that

(4.1)
F (v) + ϕ(u, v)

‖v‖
→ ∞, as ‖v‖ → ∞, v ∈ K, for any u ∈ K

11



if K is not bounded.
In this section we assume that p = q = 2 in (2.4) and (2.5). Also,

we assume that for any M > 0 there exists cM > 0 such that

(4.2)
|ϕ(v1, w2) + ϕ(v2, w1) − ϕ(v1, w1) − ϕ(v2, w2)| ≤

cM‖v1 − v2‖‖w1 − w2‖

for any v1, v2, w1 w2 ∈ K, ‖v1‖, ‖v2‖, ‖w1‖ ‖w2‖ ≤ M . In addition to
the hypotheses of Assumption 2.1, we suppose that

(4.3)

m
∑

i=1

ϕ(u, w + vi) ≤ (m − 1)ϕ(u, w) + ϕ(u, v)

for any u ∈ K and for any v, w ∈ K and vi ∈ Vi, i = 1, . . . , m, which
satisfy Assumption 2.1.

Now, we consider the quasi-variational inequality

(4.4) u ∈ K : 〈F ′(u), v − u〉 + ϕ(u, v) − ϕ(u, u) ≥ 0, for any v ∈ K.

Since ϕ is convex in the second variable and F is differentiable and
satisfies (2.4), problem (4.4) is equivalent with the minimization problem

(4.5) u ∈ K : F (u) + ϕ(u, u) ≤ F (v) + ϕ(u, v), for any v ∈ K.

With a similar proof to that of Theorem 2.1 in [15], we can show that
problem (4.4) has a unique solution if there exists a constant κ < 1 such
that cM

αM
≤ κ, for any M > 0. In view of (2.7) we see that, for a given

M > 0 such that the solution u of (4.4) satisfies ‖u‖ ≤ M , we have

(4.6)
αM

2 ‖v − u‖2 ≤ F (v) − F (u) + ϕ(u, v) − ϕ(u, u),

for any v ∈ K, ‖v‖ ≤ M.

A first algorithm corresponding to the subspaces V1, · · · , Vm and the
convex set K is written as follows

Algorithm 4.1. We start the algorithm with an arbitrary u0 ∈ K. At
iteration n + 1, having un ∈ K, n ≥ 0, we simultaneously solve the
inequalities

(4.7)

wn+1
i ∈ Vi, un + wn+1

i ∈ K :

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 + ϕ(un + wn+1
i , un + vi)−

ϕ(un + wn+1
i , un + wn+1

i ) ≥ 0, for any vi ∈ Vi, un + vi ∈ K,

for i = 1, · · · , m, and then we update un+1 = un +
r

m

m
∑

i=1

wn+1
i , where

0 < r ≤ 1 is a fixed constant.

12



Evidently, problem (4.7) is equivalent with the finding of wn+1
i ∈ Vi,

un + wn+1
i ∈ K, which satisfies

(4.8)

wn+1
i ∈ Vi, un + wn+1

i ∈ K : F (un + wn+1
i )+

ϕ(un + wn+1
i , un + wn+1

i ) ≤ F (un + vi)+

ϕ(un + wn+1
i , un + vi), for any vi ∈ Vi, un + vi ∈ K.

for any vi ∈ Vi, un + vi ∈ K.
A simplified variant of Algorithm 4.1 can be written as

Algorithm 4.2. We start the algorithm with an arbitrary u0 ∈ K. At
iteration n + 1, having un ∈ K, n ≥ 0, we solve the inequalities

(4.9)

wn+1
i ∈ Vi, un + wn+1

i ∈ K :

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 + ϕ(un, un + vi)−

ϕ(un, un + wn+1
i ) ≥ 0, for any vi ∈ Vi, un + vi ∈ K,

for i = 1, · · · , m, and then we update un+1 = un +
r

m

m
∑

i=1

wn+1
i , where

0 < r ≤ 1 is a fixed constant.

We can apply Theorem 8.5 in [14], page 251, to prove that problem
(4.9) has an unique solution. Also, like for problem (4.4), with a similar
proof to that of Theorem 2.1 in [15], we can prove that problem (4.7)
has a unique solution if there exists a constant κ < 1 such that cM

αM
≤ κ,

for any M > 0.
The following theorem proves that if cM is small enough, then Algo-

rithms 4.1 and 4.2 are convergent.

Theorem 4.1. Let V be a reflexive Banach, V1, · · · , Vm some closed
subspaces of V , and K a non empty closed convex subset of V which
satisfies Assumption 2.1. Also, we assume that F is Gâteaux differen-
tiable and satisfies (2.4) and (2.5) with p = q = 2, and the functional ϕ
is convex, lower semicontinuous in the second variable, satisfies (4.2),
(4.3) and coerciveness condition (4.1), if K is not bounded. Then, if
u is the solution of problem (4.4), un, n ≥ 0, are its approximations
obtained from one of Algorithms 4.1 or 4.2, and

(4.10) cM

αM
≤ χM

for any M > 0, where χM is the smallest positive solution of equa-
tion (4.27), then there exists an M > 0 such that max(‖u‖, max

n≥0
‖un‖,

max
n≥0,1≤i≤m

‖un+wn+1
i ‖) ≤ M and we have the following error estimations

(4.11)
F (un) + ϕ(u, un) − F (u) − ϕ(u, u) ≤
(

C1
C1+1

)n
[

F (u0) + ϕ(u, u0) − F (u) − ϕ(u, u)
]

,
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(4.12) ‖un − u‖2 ≤ 2
αM

(

C1
C1+1

)n
[

F (u0) + ϕ(u0) − F (u) − ϕ(u)
]

.

The constant C1 is given in (4.24) in which ε1, ε2 and ε3 are given in
(4.26).

Proof. As in the proof of Theorem 3.1, we will omit here the details
which are similar with those in [3], [4] or [6]. Also, u and v in equations
(2.4), (2.5), and vi, wi, i = 1, 2 in (4.2), will be replaced only by the so-
lution of problem (4.4) or its approximations obtained from Algorithms
4.1 or 4.2. Consequently, we are interested in the boundedness of the
sequences un and un + wn+1

i , n ≥ 0, i = 1, . . . , m. To this end, we take

(4.13) M = max(‖u‖, max
0≤n≤k

‖un‖, max
0≤n≤k,1≤i≤m

‖un + wn+1
i ‖),

for a given k ≥ 0 and prove (4.11) for n = 1, . . . , k. As we shall see in
the following, estimation (4.11) also holds if we replace un by un +wn+1

i ,
i = 1, · · · , m. Consequently, in view of the coerciveness condition (4.1),

M ≤ max(‖u‖, sup{‖v‖ : F (v) + ϕ(u, v) ≤ F (u0) + ϕ(u, u0)}) < ∞,

where u is the solution of problem (4.4). Therefore, we may conclude
that there exists a real constant M > 0 such that

(4.14)
‖u‖ ≤ M, ‖un‖ ≤ M, ‖un + wn+1

i ‖ ≤ M

for any n ≥ 0, i = 1, · · · , m.

In the following, for a fixed n, we take M given in (4.13). Since the
proof of the theorem is almost the same for both algorithms, we prove
the theorem only for Algorithm 4.1.

In view of (4.6), we notice that (4.12) can be obtained from (4.11).
Now, we prove (4.11). From (4.7) and (2.7), we get that, for any

n ≥ 0 and i = 1, · · · , m,

(4.15)
F (un) − F (un + wn+1

i ) + ϕ(un + wn+1
i , un)−

ϕ(un + wn+1
i , un + wn+1

i ) ≥ αM

2 ||wn+1
i ||2,

Also, in view of (4.6), we get

(4.16) F (un+ i
m ) − F (u) + ϕ(u, un+ i

m ) − ϕ(u, u) ≥ αM

2 ‖un+ i
m − u‖2

for n ≥ 0 and i = 1, · · · , m. Applying Assumption 2.1 for w = un and
v = u, we get a decomposition un

1 , · · · , un
m of u−un. With ūn+1 defined
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in (3.18), from (2.1), we can replace vi by un
i in (4.7), and in view of

(2.7) and the convexity of F , we obtain

F (un+1) − F (u) + ϕ(u, un+1) − ϕ(u, u) + r
m

αM

2 ||u − un+1||2 ≤

(1 − r
m

) [F (un) − F (u)] + r
m

[

F (un+1) − F (u) + αM

2 ||u − un+1||2
]

+

ϕ(u, un+1) − ϕ(u, u) ≤

(1 − r
m

)[F (un) − F (u)] + r
m
〈F ′(un+1), un+1 − u〉 + ϕ(u, un+1) − ϕ(u, u) ≤

(1 −
r

m
)[F (un) − F (u)] +

r

m

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉+

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

ϕ(u, un+1) − ϕ(u, u)

Consequently, we have

(4.17)

F (un+1) − F (u) + ϕ(u, un+1) − ϕ(u, u)+
r

m

αM

2
||u − un+1||2 ≤

(1 −
r

m
)[F (un) − F (u) + ϕ(u, un) − ϕ(u, u)]+

r

m

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉+

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

r
m

[ϕ(u, un) − ϕ(u, u)] + ϕ(u, un+1) − ϕ(u, un)

Using (2.5) and (2.3) for p = q = 2, and the Hölder inequality, similarly
with (3.21), we get

(4.18)

m
∑

i=1

〈F ′(un + wn+1
i ) − F ′(un+1), un

i − wn+1
i 〉 ≤

βMm

[

1 + C0(1 +
1

2ε1
)

] m
∑

i=1

||wn+1
i ||2+

βMC0
ε1
2 ||u − ūn+1||2

for any ε1 > 0. Similarly with (3.12), from the convexity of ϕ in the
second variable, we get

ϕ(u, un+1) ≤ (1 − r)ϕ(u, un) +
r

m

m
∑

i=1

ϕ(u, un + wn+1
i )
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Using this equation, in view of (4.3), (4.2) and (2.3), we have

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

r

m
[ϕ(u, un) − ϕ(u, u)] + ϕ(u, un+1) − ϕ(u, un) ≤

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

+
r

m

m
∑

i=1

ϕ(u, un + wn+1
i ) −

r

m
[(m − 1)ϕ(u, un) + ϕ(u, u)] ≤

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

+
r

m

m
∑

i=1

[ϕ(u, un + wn+1
i ) − ϕ(u, un + un

i )] ≤

r

m
cM

m
∑

i=1

‖un + wn+1
i − u‖‖wn+1

i − un
i ‖ ≤

r

m
cM

[

‖ūn+1 − u‖ +
m
∑

i=1

‖wn+1
i ‖

]

m
∑

i=1

(

‖wn+1
i ‖ + ‖un

i ‖
)

≤

r

m
cM

[

‖ūn+1 − u‖ +

m
∑

i=1

‖wn+1
i ‖

]

·

[

C0‖ū
n+1 − u‖ + (1 + C0)

m
∑

i=1

‖wn+1
i ‖

]

or

(4.19)

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un + un

i ) − ϕ(un + wn+1
i , un + wn+1

i )]+

r

m
[ϕ(u, un) − ϕ(u, u)] + ϕ(u, un+1) − ϕ(u, un) ≤

r

m
cM [C0 + (1 + 2C0)

ε2

2
]‖ūn+1 − u‖2+

rcM [1 + C0 +
1 + 2C0

2ε2
]

m
∑

i=1

‖wn+1
i ‖2
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for any ε2 > 0. Consequently, from (4.17)–(4.19), we have

(4.20)

F (un+1) − F (u) + ϕ(u, un+1) − ϕ(u, u)+
{αM

2
− βMC0

ε1

2
− cM [C0 + (1 + 2C0)

ε2

2
]
}

||u − un+1||2 ≤
m − r

r
[F (un) − F (un+1) + ϕ(u, un) − ϕ(u, un+1)]+

{

βMm

[

1 + C0(1 +
1

2ε1
)

]

+ cMm

[

1 + C0 +
1 + 2C0

2ε2

]}

·

m
∑

i=1

||wn+1
i ||2

for any ε1, ε2 > 0.
In view of (3.12) and (4.15), we have

F (un+1) ≤ (1 − r)F (un) +
r

m

m
∑

i=1

F (un + wn+1
i ) ≤ F (un)−

r

m

αM

2

m
∑

i=1

||wn+1
i ||2 +

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un) − ϕ(un + wn+1

i , un + wn+1
i )

Consequently, we have

(4.21)

r

m

αM

2

m
∑

i=1

||wn+1
i ||2 ≤ F (un) − F (un+1)+

ϕ(u, un) − ϕ(u, un+1) +
r

m

m
∑

i=1

[ϕ(un + wn+1
i , un)−

ϕ(un + wn+1
i , un + wn+1

i )] − ϕ(u, un) + ϕ(u, un+1)

Similarly with (4.19), we have

(4.22)

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un) − ϕ(un + wn+1

i , un + wn+1
i )]−

ϕ(u, un) + ϕ(u, un+1) ≤

r

m

m
∑

i=1

[ϕ(un + wn+1
i , un) − ϕ(un + wn+1

i , un + wn+1
i )]+

r

m

m
∑

i=1

[ϕ(u, un + wn+1
i ) − ϕ(u, un)] ≤

r

m
cM

m
∑

i=1

||un + wn+1
i − u||||wn+1

i || ≤

r

m
cM

(

m
∑

i=1

||wn+1
i || + ||ūn+1 − u||

)

m
∑

i=1

||wn+1
i || ≤

r

m
cM (1 +

1

2ε3
)m

m
∑

i=1

||wn+1
i ||2 +

r

m
cM

ε3

2
||un+1 − u||2
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for any ε3 > 0. In view of (4.21) and (4.22), we get

(4.23)

[

αM

2
− cM (1 +

1

2ε3
)m

] m
∑

i=1

||wn+1
i ||2 ≤

m

r

[

F (un) − F (un+1) + ϕ(u, un) − ϕ(u, un+1)
]

+

cM
ε3

2
||un+1 − u||2

for any ε3 > 0. If we write

(4.24)

C1 = m−r
r

+ C4
m
r

C2 = αM

2 − cM (1 + 1
2ε3

)m

C3 = αM

2 − βMC0
ε1
2 − cM

(

C0 + 1+2C0
2 ε2

)

− cM
ε3
2 C4

C4 =
m

C2

[

βM

(

1 + C0(1 +
1

2ε1
)

)

+

cM

(

1 + C0 + 1+2C0
2ε2

)]

then, from (4.20) and (4.23), on the condition C2 > 0, we get

(4.25)
F (un+1) − F (u) + ϕ(u, un+1) − ϕ(u, u) + C3||u − un+1||2 ≤

C1

[

F (un) − F (un+1) + ϕ(u, un) − ϕ(u, un+1)
]

Now, if C3 ≥ 0, then (4.11) can be obtained from (4.25).
We can easily see that C3, as a function of ε1, ε2, and ε3, reaches its

maximum value for

(4.26) ε1 = ε2 = ε3 =
cMm

αM

2 − cMm
,

and this is

C3max = αM

2 − cMC0 − [βMC0 + cM (1 + 2C0)]
cMm

αM
2

−cMm

−(1 + C0)(βM + cM )
c2
Mm2

(αM

2 − cMm)2
.

Condition C3max ≥ 0 is satisfied if

(
1

2
− C0

cM

αM
)
αM

βM
≥ (1 + 3C0)

cM

αM
m

1
2 − cM

αM
m

+ 2(1 + C0)
( cM

αM
)2m2

(1
2 − cM

αM
m)2

We see that equation

(4.27) (
1

2
−C0χM )

αM

βM
= (1 + 3C0)

χMm
1
2 − χMm

+ 2(1 + C0)
(χM )2m2

(1
2 − χMm)2
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has a solution χM ∈ (0, 1
2C0

), and if it is the smallest one and we take
cM

αM
≤ χM , then C3max ≥ 0.

The value of C2 for ε3 in (4.26) is

C2 max =
1

2

(αM

2
− cMm

)

.

Since we can always take C0 ≥ m, the above solution χM of equation
(4.27) satisfies χM < 1

2m
, and therefore, we get C2 max > 0 for any

cM

αM
≤ χM .

5 Convergence rates for the one- and two-level

methods

Algorithms 3.1, 4.1 and 4.2 can be viewed as additive Schwarz methods
in a subspace correction variant if we use the Sobolev spaces. The con-
vergence rates given in Theorems 3.1 and 4.1 depend on the functionals
F and ϕ, the number m of the subspaces and the constant C0 intro-
duced in Assumption 2.1. The number of subspaces can be associated
with the number of colors needed to mark the subdomains such that the
subdomains with the same color do not intersect with each other. Since
this number of colors depends on the dimension of the Euclidean space
where the domain lies, we can conclude that our convergence rates es-
sentially depend on the constant C0. We shall see in this section that, if
we utilize the finite element spaces, Assumption 2.1 as well as conditions
(3.2) and (4.3) hold for closed convex sets K satisfying a general enough
property. Also, we are able to explicitly write the dependence of C0 on
the domain decomposition and mesh parameters. Therefore, from The-
orems 3.1 and 4.1, we can conclude that the one- and two-level methods
globally converge for variational and quasi-variational inequalities of the
second kind if conditions (2.4) and (2.5) on F , and condition (4.2) on
ϕ, in the case of quasi-variational inequalities, hold. Moreover, from the
dependence of C0 on the mesh and domain decomposition parameters,
the convergence rate is optimal, ie. is similar with that in the case of
linear equations, for instance. The convergence rate of the two-level
method depends very weakly on the mesh and domain decomposition
parameters, and, for some particular choices, it is even independent of
them.

The convergence of these two methods for the minimization of non-
quadratic functionals has been studied in [3]. It is proved there that
Assumption 2.1 holds for the spaces and the convex sets we use in this
paper. Consequently, we will focus especially on the conditions (3.2)
and (4.3) in the proofs .
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5.1 One-level methods

We consider a simplicial regular mesh partition Th of mesh size h (see
[7], p. 124, for instance) over the domain Ω ⊂ Rd. We assume that the
domain Ω is decomposed as

(5.1) Ω =

m
⋃

i=1

Ωi

and that Th supplies a mesh partition for each subdomain Ωi, i =
1, . . . , m. In addition, we suppose that the overlapping parameter of
this decomposition is δ.

We associate to the decomposition (5.1), a unity partition {θi}1≤i≤m,
with θi ∈ C0(Ω̄), θi|τ ∈ P1(τ) for any τ ∈ Th, i = 1, · · · , m,

(5.2) 0 ≤ θi ≤ 1 on Ω, supp θi ⊂ Ωi and
m
∑

i=1

θi = 1

which satisfies

(5.3) |∂xk
θi| ≤ C/δ, a.e. in Ω, for any k = 1, . . . , d

As in (5.3), we denote in the following by C a generic constant which
does not depend on either the mesh or the domain decomposition.

We consider the piecewise linear finite element space

(5.4) Vh = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω},

and also, for i = 1, . . . , m, let

(5.5) V i
h = {v ∈ Vh : v = 0 in Ω\Ωi}

be the subspaces of Vh corresponding to the domain decomposition
Ω1, . . . ,Ωm. The spaces Vh and V i

h , i = 1, . . . , m, are considered as
subspaces of W 1,s, for some fixed 1 ≤ s ≤ ∞. We denote by ‖ · ‖0,s the
norm in Ls, and by ‖ · ‖1,s and | · |1,s the norm and seminorm in W 1,s,
respectively.

The convex set Kh is defined as a subset of Vh satisfying the following
property.

Property 5.1. If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any
τ ∈ Th, and 0 ≤ θ ≤ 1, then Lh(θv + (1 − θ)w) ∈ Kh.

Above, we have denoted by Lh the P1-Lagrangian interpolation op-
erator which uses the function values at the nodes of the mesh Th.

20



In the case of the variational inequalities of the second kind, we
assume that the functional ϕ is of the form

(5.6) ϕ(v) =
∑

κ∈Nh

sκ(h)φ(v(xκ)) =
∑

k∈Nh

sκ(h)φκ(v)

where φ : R → R is a continuous and convex function, Nh is the set
of nodes of the mesh partition Th, and sκ(h) ≥ 0, κ ∈ Nh, are some
non-negative real numbers which may depend on the mesh size h. For
the ease of notation, we have written φκ(v) = φ(v(xκ)). We see that φκ,
κ ∈ Nh, can be viewed as some functionals φκ : Vh → R which satisfy

(5.7) φκ(Lh(θv + (1 − θ)w)) ≤ θ(xκ)φκ(v) + (1 − θ(xκ))φκ(w)

for any v, w ∈ Kh, and any function θ : Ω̄ → R which satisfy θ ∈ C0(Ω̄),
θ|τ ∈ C1(τ) for any τ ∈ Th, and 0 ≤ θ ≤ 1.

For the quasi-variational inequalities, we assume that the functional
ϕ is of the form

(5.8) ϕ(u, v) =
∑

κ∈Nh

sκ(h)φ(u, v(xκ)) =
∑

k∈Nh

sκ(h)φκ(u, v)

where φ : Vh ×R → R is continuous, and, as above, sκ(h) ≥ 0, κ ∈ Nh,
are some non-negative real numbers which may depend on the mesh size
h. Also, we assume that ϕ(u, ·) : R → R is convex for any u ∈ Vh, and,
for the ease of notation, we have written φκ(u, v) = φ(u, v(xκ)). We see
that φκ, κ ∈ Nh, can be viewed as some functionals φκ : Vh × Vh → R

which satisfy

(5.9) φκ(u, Lh(θv + (1 − θ)w)) ≤ θ(xκ)φκ(u, v) + (1 − θ(xκ))φκ(u, w)

for any u ∈ Vh, v, w ∈ Kh, and any function θ : Ω̄ → R with the
properties θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and 0 ≤ θ ≤ 1. The
functionals ϕ(u) and ϕ(u, v) defined in (5.6) and (5.8), respectively, can
be viewed as numerical approximations of some functionals defined on
Vh.

We can conclude from the following proposition that the error es-
timations in Theorems 3.1 and 4.1 hold for the one-level multiplica-
tive Schwarz method applied to the solution of variational and quasi-
variational inequalities of the second kind.

Proposition 5.1. Assumption 2.1 holds for the piecewise linear finite
element spaces, V = Vh and Vi = V i

h, i = 1, . . . , m, for any convex set
K = Kh ⊂ Vh having Property 5.1. Also, conditions (3.2) and (4.3) for
functionals ϕ of the form (5.6) and (5.8), respectively, are satisfied. The
constant in (2.3) can be written as

(5.10) C0 = Cm

(

1 +
1

δ

)

,
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where C is independent of the mesh and domain decomposition parame-
ters.

Proof. If the convex set Kh has Property 5.1, we can prove that As-
sumption 2.1 holds with

(5.11) vi = Lh

(

θi(v − w)
)

, i = 1, . . . , m,

and the constant C0 in (5.10).
To prove that condition (3.2) holds for a functional ϕ of the form

(5.6), it is sufficient to show that

(5.12)

m
∑

i=1

φκ(w + vi) ≤ (m − 1)φκ(w) + φκ(v)

for the vi ∈ V i
h , i = 1, . . . , m, we have defined in (5.11). In view of (5.7),

we have

φκ(w + vi) = φκ(w + Lh(θi(v − w)) = φκ(Lh(θiv + (1 − θi)w) ≤

θi(xκ)φκ(v) + (1 − θi(xκ))φκ(w)

and therefore, (5.12) holds.
To prove that condition (4.3) holds for a functional ϕ of the form

(5.8), it sufficient to prove that

(5.13)

m
∑

i=1

ϕκ(u, w + vi) ≤ (m − 1)ϕκ(u, w) + ϕκ(u, v)

for any u ∈ Vh and the vi ∈ V i
h , i = 1, . . . , m, we have defined in (5.11).

Since φκ(u, v) satisfies (5.9) which is similar with (5.7), the proof of
(5.13) is similar with that of (5.12).

5.2 Two-level methods

We consider two simplicial mesh partitions Th and TH of the domain
Ω ⊂ Rd of mesh sizes h and H, respectively. The mesh Th is a refinement
of TH , and we assume that both the families, of fine and coarse meshes,
are regular. Mesh sizes h and H are supposed to approach zero and we
shall consider a family of mesh pairs (h, H).

As in the previous section, we consider an overlapping decomposition
(5.1), the mesh partition Th of Ω supplying a mesh partition for each Ωi,
1 ≤ i ≤ m. Also, we assume that the overlapping size is δ. In addition,
we suppose that there exists a constant C, independent of both meshes,
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such that the diameter of the connected components of each Ωi are less
than CH. We point out that the domain Ω may be different from

(5.14) Ω0 =
⋃

τ∈TH

τ,

but we assume that if a node of TH lies on ∂Ω0 then it also lies on ∂Ω,
and there exists a constant C, independent of both meshes, such that

(5.15) dist(x,Ω0) ≤ CH

for any node x of Th.
Now, besides the spaces Vh and V i

h , i = 1, . . . , m defined in (5.4) and
(5.5), we introduce the continuous, piecewise linear finite element space
corresponding to the H-level,

(5.16) V 0
H =

{

v ∈ C0(Ω̄0) : v|τ ∈ P1(τ), τ ∈ TH , v = 0 on ∂Ω0

}

,

where the functions v are extended with zero in Ω\Ω0. The convex set
Kh ⊂ Vh is defined as a subset of Vh having Property 5.1.

The two-level Schwarz methods are also obtained from Algorithms
3.1, 4.1 and 4.2 in which we take V = Vh, K = Kh, and the subspaces
V0 = V 0

H , V1 = V 1
h , V2 = V 2

h , . . . , Vm = V m
h . As in the previous section,

the spaces Vh, V 0
H , V 1

h , V 2
h , . . . , V m

h , are considered as subspaces of W 1,s

for 1 ≤ s ≤ ∞. We note that, this time, the decomposition of the domain
Ω contains m overlapping subdomains, but we utilize m+1 subspaces of
V , V0, V1, . . . , Vm, in Algorithms 3.1, 4.1 and 4.2. Naturally, if we prove
that Assumption 2.1, written for m + 1 subspaces, is satisfied for the
previous choice of the convex set K and the subspaces V0, V1, . . . , Vm

of V , we can conclude that these algorithms converge if we prove in
addition that the functionals ϕ of the form (5.6) or (5.8), satisfy (3.2) or
(4.3), respectively. To this end, we consider the operator IH : Vh → V 0

H ,
which has been introduced in [2] and has the following properties (see
Lemma 4.3 in [2]) for any v ∈ Vh:

(5.17) ‖IHv − v‖0,s ≤ CHCd,s(H, h)|v|1,s

and

(5.18) ‖IHv‖0,s ≤ C‖v‖0,s and |IHv|1,s ≤ CCd,s(H, h)|v|1,s,

where

(5.19) Cd,s(H, h) =



























1 if d = s = 1 or

1 ≤ d < s ≤ ∞
(

ln H
h

+ 1
)

d−1
d if 1 < d = s < ∞

(

H
h

)

d−s
s if 1 ≤ s < d < ∞,
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Moreover, for any x ∈ Ω, we have

0 ≤ IHv(x) ≤ v(x) if v(x) > 0,

0 ≥ IHv(x) ≥ v(x) if v(x) < 0,

and IHv = 0 on τ ∈ TH if there exists a x ∈ τ such that v(x) = 0

for any v ∈ Vh. Consequently, writing

θv(x) =

{

IHv(x)
v(x) if v(x) 6= 0

0 if v(x) = 0,

then θv ∈ C0(Ω̄), θv|τ ∈ C1(τ) for any τ ∈ Th, 0 ≤ θv ≤ 1, and

(5.20) IHv = θvv

for any v ∈ Vh.
Now, we can prove the following proposition which, in particular,

shows that the constant C0 in Assumption 2.1 is independent of the
mesh and domain decomposition parameters if H/δ and H/h are kept
constant when h → 0.

Proposition 5.2. Assumption 2.1 is satisfied for the piecewise linear
finite element spaces V = Vh and V0 = V 0

H , Vi = V i
h, and i = 1, . . . , m,

defined in (5.4), (5.5), and (5.16), respectively, any convex set K = Kh

with Property 5.1. Also, conditions (3.2) and (4.3) for functionals ϕ
of the form (5.6) and (5.8), respectively, are satisfied. The constant in
(2.3) of Assumption 2.1 can be taken of the form

(5.21) C0 = C(m + 1)

(

1 +
H

δ

)

Cd,s(H, h),

where C is independent of the mesh and domain decomposition parame-
ters, and Cd,s(H, h) is given in (5.19).

Proof. By means of IH and the functions θi, i = 1, . . . , m, with proper-
ties (5.2) and (5.3), we define

(5.22) v0 = IH(v − w).

and

(5.23) vi = Lh(θi(v − w − v0)),

for i = 1, . . . , m. Using properties (5.17) and (5.18) of the operator IH ,
we can prove that v0, v1, . . . , vm, defined in (5.22) and (5.23), satisfy
Assumption 2.1 with the constant C0 given in (5.21).
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To prove that condition (3.2) holds for a functional ϕ of the form
(5.6), it is sufficient to prove that

(5.24)

m
∑

i=0

φκ(w + vi) ≤ mφκ(w) + φκ(v)

for the vi ∈ Vi, i = 0, . . . , m, we have defined in (5.22) and (5.23). Using
(5.20) and Property 5.1, we get that v − v0 ∈ Kh. Like in the proof of
Proposition 5.1, where this time we consider v− v0 in the place of v, we
get

φκ(w + v0) +
m
∑

i=1

φκ(w + vi) ≤ φκ(w + v0) + (m − 1)φκ(w) + φκ(v − v0),

and, in view of (5.20) and (5.7), we have

φκ(w + v0) + φκ(v − v0) = φκ(w + θv−w(v − w)) + φκ(v − θv−w(v − w)) ≤

(1 − θv−w(xκ))φκ(w) + θv−w(xκ)φκ(v)+

(1 − θv−w(xκ))φκ(v) + θv−w(xκ)φκ(w) = φκ(w) + φκ(v)

Equation (5.24) follows from the last two equations.
To prove that condition (4.3) holds for a functional ϕ of the form

(5.8), it is sufficient to prove that

(5.25)

m
∑

i=0

φκ(u, w + vi) ≤ mφκ(u, w) + φκ(u, v)

for vi ∈ Vi, i = 0, . . . , m, we have defined in (5.22) and (5.23). Like in
Proposition 5.1, since φκ(u, v) satisfies (5.9) which is similar with (5.7),
the proof of (5.25) is similar with that of (5.24).

Remark 5.1. In this Section 5, we have assumed that the functional ϕ
is of the form (5.6) or (5.8) in the case of variational or quasi-variational
inequalities, respectively. We notice that the proofs of Propositions 5.1
and 5.2 also hold if we replace the functional ϕ(u, v) of form (5.8) with

(5.26) ϕ(u, v) =
∑

κ∈Nh

sκ(h)φ(u(xκ), v(xκ)) =
∑

k∈Nh

sκ(h)φκ(u, v)

where sκ(h) ≥ 0, and φ : R × R → R is continuous and convex in the
second variable. We have denoted above φκ(u, v) = φ(u(xκ), v(xκ)), κ ∈
Nh. In general, (5.6), (5.8) or (5.26) represent numerical approximations
of some integrals. Concerning to condition (4.2) imposed on ϕ of the
form (5.8) or (5.26), in the case of quasi-variational inequalities, we have
to check it for each particular problem we solve.
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The results of this section have referred to problems in W 1,s with
Dirichlet boundary conditions. We point out that similar results can
be obtained for problems in (W 1,s)d or problems with mixed boundary
conditions.
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