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Abstract. In [5], the convergence of a subspace correction method applied to the constrained
minimization of a functional in a general reflexive Banach space has been proved, provided that the
convex set verifies a certain assumption. This assumption is weaker than that in which the convex
set is decomposed according to the space decomposition as a sum of subsets. In the Sobolev spaces,
the proposed method becomes a multiplicative Schwarz method for the solution of the variational
inequalities coming from the minimization of non-quadratic functionals. We prove in this paper
that this assumption holds for the one-, two- and multi-level multiplicative Schwarz methods in the
finite element space, and we explicitly write the constants in the error estimations depending on
the overlapping and mesh parameters. Our error estimates are similar with those obtained for the
minimization of quadratic functionals in [4], or with those obtained for the one-obstacle problem in
[37].
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1. Introduction. Domain decomposition methods provide efficient numerical
algorithms to solve very large-scale problems. The great interest in these methods
comes from the fact that they are parallelizable on multi-processor machines. Schwarz
overlapping methods represent a typical example of such parallelizable methods, they
traditionally being classified as multiplicative and additive. The main focus of this
paper is the convergence of the multiplicative Schwarz method applied to the con-
strained minimization of non-quadratic convex functionals.

Naturally, most papers dealing with these methods are dedicated to linear prob-
lems. The multiplicative and additive Schwarz methods for elliptic linear problems
have been studied by Lions [26]–[28], Chan, Hou and Lions [10], P. Le Tallec [25],
A. Quarteroni and A. Valli [33], Bramble, Pasciak, Wang and Xu [8], and Badea [1],
for the multiplicative methods, and Dryja [12], Dryja and Widlund [13], [14], and
Nepomnyaschikh [32], for the additive version.

For the application of the Schwarz method to the solution of the variational
inequalities, we can cite the papers written by Hoffman and Zou [19], Kuznetsov and
Neittaanmäki [22], Kuznetsov, Neittaanmäki and Tarvainen [23], [24], Lü, Liem and
Shih [29], Zeng and Zhou [42], Tai [35]–[37], Tai and Tseng [39], Badea and Wang [3],
Badea, Tai and Wang [4], and Badea [2], [6], [7].

Also, the multilevel and multigrid methods can be viewed as domain decompo-
sition methods and we can cite the results obtained by Kornhuber [21], Mandel [31],
and Smith, Bjørstad and Gropp [34].

However, very few papers deal with the application of these methods to nonlinear
problems. We can cite in this direction the papers written by Tai and Espedal [38],
Tai and Xu [40] for nonlinear equations, Hoffmann and Zhou [20], Lui [30], Zeng and
Zhou in [43] for inequalities having nonlinear source terms, and Badea [5] for a general
result concerning the convergence of the method for the constrained minimization of
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non-quadratic functionals. Evidently, the above lists of citations are not exhaustive
and it can be completed by many other papers.

Almost exclusively, the convergence of the domain decomposition methods for
variational inequalities coming from the minimization of a functional is studied in the
case when this functional is quadratic. Also, most papers consider the convex set
decomposed according to the space decomposition as a sum of convex subsets. The
main goal of this paper is to give error estimates for the one-, two- and multi-level
Schwarz domain decomposition methods applied to the constrained minimization of
the non-quadratic convex functionals over enough general convex sets.

The convergence of a domain decomposition algorithm solving variational inequal-
ities coming from the minimization of quadratic functionals over convex sets is proved
in [2]. In that paper, the convex set, defined by constraints on the function values
at the points of the domain, is not supposed to be decomposed as a sum of convex
subsets. In [40], a subspace correction method applied to the minimization without
constraints of a differentiable and convex functional defined in a reflexive Banach space
is introduced. Also, in [5], the convergence of an algorithm in a reflexive Banach space
for the constrained minimization of convex functionals is proved. There, in order to
prove the convergence, a weaker property than that one given in [2] is imposed on the
convex set. To the author’s knowledge, there are no other papers dealing with the
Schwarz method applied to the constrained minimization of non-quadratic function-
als. Even if sometimes the conditions on the convex functional are general enough,
the authors always consider the space H1 and implicitly, quadratic functionals. For
instance, in [4], using the subspace correction techniques in [8] and [41], and more
general conditions in [38] on the convex functional, the convergence rate for the one
and two-level algorithms of the method in [2] is given only for the minimization of
quadratic functionals. Starting from the general convergence result given in cite [5],
we generalize in this paper the results in [4] and [40] to the constrained minimization
of non-quadratic functionals. Our error estimates are similar with those obtained for
the minimization of quadratic functionals in [4] or [37].

The paper is organized as follows. In Section 2, we state the multiplicative
Schwarz method as a subspace correction method in a general reflexive Banach space
for the constrained minimization of convex functionals. We also give the convergence
theorem of this algorithm which has been proved in [5] provided that a certain as-
sumption holds. In Sections 3, 4 and 5 we prove that the introduced assumption holds
and we estimate the error for the one-, two- and multi-level Schwarz methods, respec-
tively, in the finite element spaces. In these cases, we are able to explicitly write the
convergence rate depending on the mesh and domain decomposition parameters. The
proof for the two- and multi-level methods is based on a lemma which can be viewed
as a Friedrichs - Poincaré inequality for the finite element spaces. In Subsection 5.1,
we find the convergence rate of the multigrid method from the results obtained for
the multi-level method.

Finally, for the writing simplicity, we have considered in the next sections prob-
lems in W 1,s, but all the obtained results hold reading [W 1,s]d in the place of W 1,s.

2. General convergence result. We enunciate in this section a general algo-
rithm and give an error estimate theorem for it. This general theory, the proof of the
theorem included, are given in detail in [5]. We consider that V is a reflexive Banach
space and V1, · · · , Vm, are some closed subspaces of V . Also, let K ⊂ V be a non
empty closed convex set, and we make the following
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Assumption 2.1. There exists a constant C0 such that for any w, v ∈ K and
wi ∈ Vi with w +

∑i
j=1 wj ∈ K, i = 1, · · · ,m, there exist vi ∈ Vi, i = 1, · · · ,m,

satisfying

w +
i−1∑
j=1

wj + vi ∈ K for i = 1, · · · ,m,(2.1)

v − w =
m∑

i=1

vi,(2.2)

and

m∑
i=1

||vi||p ≤ Cp
0

(
||v − w||p +

m∑
i=1

||wi||p
)

.(2.3)

This assumption looks complicated enough, but as we shall see in the following, it is
satisfied for a large kind of convex sets in Sobolev spaces. In our proofs, v is the exact
solution, w is the solution of the iterative algorithm at a certain iteration, and wi are
its corrections on the subspaces Vi, i = 1, · · · ,m. In the case of the convex sets written
as a sum of convex subsets, equations (2.1) and (2.2) are always satisfied. We point
out that in the case of the problems without constraints or that of the one-obstacle
problems, the above assumption can be taken with wi = 0 (see [37], for instance),
and, for this reason, equation (2.3) usually is known without the extra terms given
by wi.

We consider a Gâteaux differentiable functional F : K → R, which is supposed
to be coercive if K is not bounded, and we assume that for any real number M > 0
there exist two functions

αM (τ) = AMτp, βM (τ) = BMτ q−1,(2.4)

such that

< F ′(v)− F ′(u), v − u >≥ αM (||v − u||), for any u, v ∈ K, ||u||, ||v|| ≤ M,(2.5)

and

βM (||v − u||) ≥ ||F ′(v)− F ′(u)||V ′ , for any u, v ∈ K, ||u||, ||v|| ≤ M,(2.6)

where F ′ is the Gâteaux derivative of F , and AM > 0, BM > 0, p > 1 and q > 1 are
some real constants. We have marked here that the constants AM and BM depend
on M . It is evident that if (2.5) and (2.6) hold, then

αM (||v − u||) ≤< F ′(v)− F ′(u), v − u >≤ βM (||v − u||)||v − u||,
for any u, v ∈ K, ||u||, ||v|| ≤ M.

(2.7)

It follows from (2.7) that we must take p ≥ q. Following the way in [17] (Lemmas 1.1
and 1.2, pages 61–63), we can prove that

< F ′(u), v − u > +λM (||v − u||) ≤ F (v)− F (u) ≤
< F ′(u), v − u > +µM (||v − u||), for any u, v ∈ K, ||u||, ||v|| ≤ M,

(2.8)
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where

λ(τ) = AM

p τp, µ(τ) = BM

q τ q.(2.9)

It is well known (see [16]) that if V and F satisfy the above assumptions, then
the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K(2.10)

has a unique solution, and it is also the unique solution of the problem

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K.(2.11)

From (2.8), for a given M > 0 such that the solution u of (2.11) satisfies ||u|| ≤ M ,
we have

λM (||v − u||) ≤ F (v)− F (u), for any v ∈ K, ||v|| ≤ M.(2.12)

The proposed algorithm corresponding to the subspaces V1, · · · , Vm and the con-
vex set K is written as follows

Algorithm 2.1. We start the algorithm with an arbitrary u0 ∈ K. At iteration
n + 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, wn+1

i ∈ Vi

satisfying

wn+1
i = arg min

un+ i−1
m + vi ∈ K
vi ∈ Vi

G(vi), with G(vi) = F (un+ i−1
m + vi),(2.13)

and then we update

un+ i
m = un+ i−1

m + wn+1
i .

This algorithm does not assume a decomposition of the convex set K depending on
the subspaces Vi, and it has been proposed in [2] in an equivalent form. The above
form of this algorithm has been proposed in [4] for the constrained minimization of
the quadratic functions. As for problem (2.10), since the subspaces Vi are reflexive
Banach spaces, problem (2.13) has a unique solution and it also satisfies the variational
inequality

wn+1
i ∈ Vi, un+ i−1

m + wn+1
i ∈ K :

< F ′(un+ i−1
m + wn+1

i ), vi − wn+1
i >≥ 0,

for any vi ∈ Vi, un+ i−1
m + vi ∈ K.

(2.14)

The introduction of some parameters εij ≥ 0, i, j = 1, · · · ,m, is useful to obtain
some sharper error estimations, especially in the case of minimization of the quadratic
functionals. Following this way, we assume that for a given M > 0, if v ∈ K, ||v|| ≤ M ,
and vi ∈ Vi, satisfying v + vi ∈ K, ||v + vi|| ≤ M , i = 1, · · · ,m, then we have

< F ′(v + vi)− F ′(v), wj >≤ εijBM ||vi||q−1||wj ||(2.15)

for any wi ∈ Vi, i = 1, · · · ,m. Evidently, using (2.6), we may always take εij = 1,
i, j = 1, · · · ,m, in (2.15).



CONVERGENCE RATE OF A SCHWARZ MULTILEVEL METHOD 5

The following theorem extends to inequalities the result in [40] concerning the
convergence of the method for nonlinear equations.

Theorem 2.1. We consider that V is a reflexive Banach, V1, · · · , Vm are some
closed subspaces of V , K is a non empty closed convex subset of V , and F is Gâteaux
differentiable functional on K which is supposed to be coercive if K is not bounded.
We assume that the functional F satisfies (2.5) and (2.6), and we make Assumption
2.1. On these conditions, if u is the solution of problem (2.10) and un, n ≥ 0, are
its approximations obtained from Algorithm 2.1, then we have the following error
estimations:

(i) if p = q we have

F (un)− F (u) ≤
(

Ĉ
Ĉ+1

)n [
F (u0)− F (u)

]
,

||un − u||p ≤ Ĉ+1
C̄

(
Ĉ

Ĉ+1

)n [
F (u0)− F (u)

]
.

(2.16)

(ii) if p > q we have

F (un)− F (u) ≤ F (u0)−F (u)[
1+nC̃(F (u0)−F (u))

p−q
q−1

] q−1
p−q

,

||u− un||p ≤ Ĉ
C̄

(F (u0)−F (u))
q−1
p−1[

1+(n−1)C̃(F (u0)−F (u))
p−q
q−1

] (q−1)2

(p−1)(p−q)

.
(2.17)

The constants Ĉ, C̄ and C̃ are written as

Ĉ = Ĉ(m,C0, u
0) = BM ( p

AM
)

q
p |εij |

[
(1 + 2C0)

(
F (u0)− F (u)

) p−q
p(p−1) +(

BM ( p
AM

)
q
p |εij |

) 1
p−1

C
p

p−1
0 /η

1
p−1

]
/(1− η),

(2.18)

C̄ =
(2− η)AM

(1− η)p
,(2.19)

C̃ =
p− q

(p− 1) (F (u0)− F (u))
p−q
q−1 + (q − 1)Ĉ

p−1
q−1

.(2.20)

The value of η in the expressions of Ĉ and C̄ can be arbitrary in (0, 1). On the other
hand, we see that the constants in the error estimations of F (un) − F (u) in (2.16)
and (2.17) are some increasing functions of Ĉ, and there is an η0 ∈ (0, 1) such that
Ĉ(η0) ≤ Ĉ(η) for any η ∈ (0, 1). However, this value η0 can be found by solving a
nonlinear algebraic equation.

We point out that a convergence result can be found (see [5]) under weaker condi-
tions on the functions αM and βM than those given in (2.4), and an weaker assumption
than Assumption 2.1.

The above algorithm can be viewed as a multiplicative Schwarz method, in a
subspace correction variant, if we use the Sobolev spaces. In this way, we consider
for a domain Ω in Rd, d ≥ 1, with Lipschitz continuous boundary ∂Ω, an overlapping
decomposition

Ω =
m⋃

i=1

Ωi(2.21)
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in which the subdomains Ωi have Lipschitz continuous boundary, too. We associate
with the domain Ω the space V = W 1,s

0 (Ω), 1 < s < ∞, and with the subdomains Ωi

the subspaces Vi = W 1,s
0 (Ωi), i = 1, · · · ,m. For convex sets K ⊂ V satisfying

Property 2.1. If v, w ∈ K, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then θv+(1−θ)w ∈
K
it has been proved in [5] the following

Proposition 2.2. If for the domain decomposition (2.21) there exist some
continuously differentiable unity partitions {θi

j}j=i,···,m associated with ∪m
j=iΩj, i =

1, · · · ,m, (i.e., for any i = 1, · · · ,m, suppθi
j ⊂ Ωj, θi

j ∈ C1(Ωj), and 0 ≤ θi
j ≤ 1, for

j = i, · · · ,m, and
∑m

j=i θi
j = 1 on ∪m

j=iΩj), then Assumption 3.1 holds for any convex
set K having Property 2.1.

Consequently, provided that functional F satisfies (2.5) and (2.6), Algorithm 2.1
converges and we can apply Theorem 2.1 to get the convergence rate. The above
Sobolev spaces W 1,s

0 correspond to Dirichlet boundary conditions. Similar results can
be obtained if we consider appropriate subspaces of W 1,s for the mixed boundary
conditions.

The constant C0 in Assumption 2.1 depends on the domain decomposition param-
eters. Consequently, since the constants Ĉ and C̄ in the error estimations in Theorem
2.1 depend on C0, then these estimations will depend on domain decomposition pa-
rameters, too. The goal of the next sections is to prove, for the one-, two-level and
multi-level multiplicative Schwarz methods, that Assumption 2.1 also holds for any
closed convex K satisfying a similar property to that given in 2.1. In these cases we
are able to explicitly write the dependence of C0 on the domain decomposition and
mesh parameters.

3. One-level multiplicative Schwarz method. First, let us consider that
the domain Ω ⊂ Rd has an overlapping domain decomposition {Oi}1≤i≤M and a
simplicial mesh partition Th of mesh size h. We assume that Th is regular (ie. there
exists a constant C > 0, independent of h, such that each τ in Th contains a ball with
the diameter of Ch, and evidently, it is contained in a ball with the diameter of h;
see [11], pag. 124, for instance) and it supplies a mesh partition for each subdomain
Oi, i = 1, · · · ,M , too. In addition, we suppose that there exists a positive constant
δ, the overlapping parameter, such that for any i = 1, · · · ,M , we have

Oi ∩ ∂(
⋃
j 6=i

Oj) 6= ∅ and dist(∂Oi\∂Ω, Oi ∩ ∂(
⋃
j 6=i

Oj) ≥ δ.(3.1)

Now, we assume that there exist m colors such that each subdomain Oi can be marked
with one color, and the subdomains with the same color do not intersect with each
other. For suitable overlaps, one can always choose m = 2 if d = 1, m ≤ 4 if d = 2,
and m ≤ 8 if d = 3. Let Ωi be the union of the subdomains Oj having the color i. In
this way, we have obtained an overlapping decomposition (2.21) with overlaps of size
δ. Taking into account (3.1), we can assume that the unity partitions {θi

j}j=i,···,m
associated with ∪m

j=iΩj in Proposition 2.2 satisfy

|∂xk
θi

j | ≤ C/δ, for any i = 1, · · · ,m.j = i, · · · ,m, and k = 1, · · · , d,(3.2)

As in (3.2), we denote in the following by C a generic constant which does not depend
on either the mesh or the domain decomposition parameters.

In this section we prove for the finite element spaces a similar result to that given
in Proposition 2.2 for general Sobolev spaces. The proof is also similar to that given
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in [4] for the minimization of the quadratic functionals. We consider the piecewise
linear finite element space

Vh = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω},(3.3)

and also, for i = 1, · · · ,m, we take

V i
h = {v ∈ Vh : v = 0 in Ω\Ωi}(3.4)

as some subspaces of Vh corresponding to the domain decomposition Ω1, · · · ,Ωm. The
spaces Vh and V i

h , i = 1, · · · ,m, are considered as subspaces of W 1,s, for some fixed
1 ≤ s ≤ ∞. We denote by || · ||0,s the norm in Ls, and by || · ||1,s and | · |1,s the norm
and seminorm in W 1,s, respectively.

In the following, Lh will be the P1–Lagrangian interpolation operator which uses
the function values at the nodes of the mesh Th. The convex set Kh is defined as a
subset of Vh satisfying

Property 3.1. If v, w ∈ Kh, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then Lh(θv +
(1− θ)w) ∈ Kh.

In order to prove that Assumption 2.1 holds, we follow the same way as in [4] or
[5]. Taking into account the additivity of the Lagrangian interpolation Lh, (2.1) and
(2.2) in Assumption 2.1 can be recurrently proved. Indeed, first we write

v1 = Lh

(
θ1
1(v − w) + (1− θ1

1)w1

)
,(3.5)

and prove that

v1 ∈ V 1
h and w + v1 ∈ Kh,

v − v1 + w1 ∈ Kh,

v − w − v1 ∈ W 1,s
0 (

m⋃
j=2

Ωj) and

v − w − v1 = 0 in Ω− ∪m
j=2Ωj .

Next, for i = 2, · · · ,m− 1, we write

vi = Lh

θi
i(v − w −

i∑
j=1

vj) + (1− θi
i)wi

 ,(3.6)

and prove

vi ∈ V i
h and w +

i−1∑
j=1

wj + vi ∈ Kh,

v −
i∑

j=1

vj +
i∑

j=1

wj ∈ Kh,

v − w −
i∑

j=1

vj ∈ W 1,s
0 (

m⋃
j=i+1

Ωj) and

v − w −
i∑

j=1

vj = 0 in Ω− ∪m
j=i+1Ωj ,
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assuming that these equations hold for i− 1. Finally, we take

vm = v − w −
m−1∑
j=1

vj .(3.7)

To prove inequality (2.3) in Assumption 2.1, we first notice that, starting from v1

given in (3.5), by the recurrent application of (3.6), and then taking vm given in (3.7),
we get that vi, i = 1, · · · ,m, are of the form

vi = Lh

τ i
0(v − w) +

i∑
j=1

τ i
jwj

 , i = 1, · · · ,m.(3.8)

By a simple calculus we get that

τ1
0 = θ1

1, τ1
1 = 1− θ1

1,

τ i
0 = θi

i(1− θi−1
i−1) · · · (1− θ1

1), τ i
i = 1− θi

i, τ i
j = −θi

i(1− θi−1
i−1) · · · (1− θj

j ),
for i = 2, · · · ,m− 1, j = 1, · · · , i− 1,
τm
0 = (1− θm−1

m−1) · · · (1− θ1
1), τm

m = 0, τm
m−1 = −(1− θm−1

m−1),
τm
j = θm−1

m−1(1− θm−2
m−2) · · · (1− θj

j ), for j = 1, · · · ,m− 2.

Consequently, from (3.2), we have

|τ i
j | ≤ 1 and |∂xk

τ i
j | ≤ C(m− 1)/δ, i = 1, · · · ,m, j = 0, · · · , i, k = 1, · · · , d.(3.9)

For a v ∈ Vh, we can get (see Theorem 3.1.6, in [11], pag. 124, for instance) that

||τ i
jv − Lh(τ i

jv)||0,s ≤ Ch|τ i
jv|1,s, ||τ i

jv − Lh(τ i
jv)||1,s ≤ C|τ i

jv|1,s,

and therefore

||Lh(τ i
jv)||1,s ≤ C||τ i

jv||1,s, with v ∈ Vh,(3.10)

for any i = 1, · · · ,m, j = 0, · · · , i. On the other hand, from (3.9) we get

||τ i
jv||0,s ≤ ||v||0,s, |τ i

jv|1,s ≤ C(|v|1,s +
m− 1

δ
||v||0,s), for any v ∈ Vh,(3.11)

and therefore, using (3.10), we get

||Lh(τ i
jv)||1,s ≤ C(||v||1,s +

m− 1
δ

||v||0,s), for any v ∈ Vh.(3.12)

Now, by a application of (3.12) to (3.8) we get

||vi||1,s ≤ C(1 +
m− 1

δ
)

||v − w||1,s +
i∑

j=1

||wj ||1,s

 ,

for any i = 1, · · · ,m.

(3.13)

Using this equation we get (2.3) in Assumption 2.1, and we have
Proposition 3.1. Let Ω1, · · · ,Ωm be the overlapping decomposition of the do-

main Ω defined in this section. Then, Assumption 2.1 holds for the piecewise linear
finite element spaces, V = Vh and Vi = V i

h, i = 1, · · · ,m, and for any convex set
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K = Kh ⊂ Vh having Property 3.1. The constant in (2.3) of Assumption 2.1 can be
taken of the form

C0 = C(m + 1)(1 +
m− 1

δ
),(3.14)

where C is independent of the mesh parameter and the domain decomposition.
Remark 3.1. We notice that the number m of the subdomains Ωi in the decompo-

sition of Ω is in fact the number of the colors of the overlapping domain decomposition
{Oi}1≤i≤M , and it depends only on the dimension d of the space Rd. Consequently,
error estimations (2.16) and (2.17) in Theorem 2.1 depend only on the size δ of the
overlaps through the intermediary of the constant C0 given in (3.14).

4. Two-level multiplicative Schwarz method. We consider a simplicial mesh
partition Th of the domain Ω ⊂ Rd of a mesh size h, and a simplicial coarser mesh
TH with a mesh size H, Th being a refinement of TH . The mesh size h is supposed to
approach zero and we shall consider a family of mesh pairs (h, H). We assume that
both the families, of fine and coarse meshes, are regular.

As in the previous section, we consider an overlapping decomposition Ω = ∪M
i=1Oi,

the mesh partition Th of Ω supplying a mesh partition for each Oi, 1 ≤ i ≤ M . Also,
we assume that the overlapping size is δ, ie. (3.1) is satisfied. In addition, we suppose
that there exists a constant C such that

diam(Oi) ≤ CH, i = 1, · · · ,M.(4.1)

Now, we color the subdomains Oi, i = 1, · · · ,M , and obtain the subdomains Ωi,
i = 1, · · · ,m as in the previous section. We point out that the domain Ω may be
different from

Ω0 =
⋃

τ∈TH

τ,(4.2)

but we assume that if a node of TH lies on ∂Ω0 then it lies on ∂Ω, too, and

Ω\Ω0 ⊂
⋃

xi node of TH , xi∈∂Ω

Sxi ,(4.3)

where the sets Sxi are defined as it follows. We first denote by ωi the union of all
τ ∈ TH having xi as a vertex. Then, Sxi is the union of ωi with all τ ∈ Th, τ 6⊂ Ω0,
and which are contained in the smallest sphere centered at xi and containing ωi.

Now, we introduce the continuous, piecewise linear finite element space corre-
sponding to the H-level,

V 0
H =

{
v ∈ C0(Ω̄0) : v|τ ∈ P1(τ), τ ∈ TH , v = 0 on ∂Ω0

}
,(4.4)

and extending the functions of V 0
H with zero in Ω\Ω0, it becomes a subspace of Vh.

The convex set Kh ⊂ Vh is defined as a subset of Vh having Property 3.1.
The two-level Schwarz method is also obtained from Algorithm 2.1 in which we

take V = Vh, K = Kh and the subspaces V0 = V 0
H , V1 = V 1

h , V2 = V 2
h , · · ·, Vm = V m

h .
As in the previous section, the spaces Vh, V 0

H , V 1
h , V 2

h , · · ·, V m
h , are considered as

subspaces of W 1,s for 1 ≤ s ≤ ∞. We notice that this time, the decomposition of the
domain Ω contains m overlapping subdomains, but we use m + 1 subspaces of V , V0,
V1, · · ·, Vm, in Algorithm 2.1. Naturally, this algorithm will converge if Assumption
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2.1 written for m+1 subspaces, will be satisfied for the above choice of the convex set
K and the subspaces V0, V1, · · ·, Vm, of V . As in the previous section, we prove that
Assumption 2.1 holds and find the constant C0 depending on the mesh and domain
decomposition parameters. First, we have the following lemma in which inequality
(4.5) can be viewed as one of Friedrichs-Poincaré type for the finite element spaces.

Lemma 4.1. Let ω ⊂ Rd be a domain of diameter H, and ωi, i = 0, 1, · · · , N ,
be an overlapping decomposition of it, ω = ∪N

i=0ωi. We consider a simplicial regular
mesh partition Th of ω and assume that it supplies a mesh partition for each ωi,
i = 0, 1, · · · , N , too. Let x0 ∈ ω̄0 be a node of Th. We assume that the overlapping
partition of ω satisfies:

(i) for any x ∈ ω̄0, the line segment [x0, x] lies in ω̄0,
(ii) for N > 0, if ωi ∩ ωj 6= Ø, 0 ≤ i 6= j ≤ N , then for any x ∈ ω̄i, y ∈ ω̄j and

z ∈ ω̄i ∩ ω̄j, the line segments [x, z] and [y, z] lie in ω̄i and ω̄j, respectively.
On these conditions, if v is a continuous function which is linear on each τ ∈ Th, and
v(x0) = 0, then

||v||0,s,ω ≤ C(N, s)C(d, s)HCd,s(H,h)|v|1,s,ω,(4.5)

where

Cd,s(H,h) =


1 if d = s = 1 or 1 ≤ d < s ≤ ∞(
ln H

h + 1
) d−1

d if 1 < d = s < ∞(
H
h

) d−s
s if 1 ≤ s < d < ∞,

(4.6)

C(d, s) =


C if d = s = 1 or 1 = s < d < ∞

C
(
d s−1

s−d

) s−1
s

if 1 ≤ d < s ≤ ∞
Cd

d−1
d if 1 < d = s < ∞

C(d s−1
d−s )

s−1
s if 1 < s < d < ∞.

(4.7)

and

C(N, s) =

{
1 if N = 0

if (N + 1)C(N+1)/s
ω −1

C
1/s
ω −1

if N 6= 0(4.8)

with

Cω = max
ωi∩ωj 6=Ø

|ωi|
|ωi ∩ ωj |

(4.9)

In (4.9) we have denoted by | | the measure of a set, and we have marked in (4.5)
that the norm in Ls and the semi-norm in W 1,s, 1 ≤ s ≤ ∞, refer to the domain ω.
The constant C in (4.7) is independent of H, h, d, s and the decomposition of ω.

Proof. In this proof, we use the polar coordinates. The Jacobian determinant of
the transformation from the rectangular coordinates to the polar coordinates can be
written as

J(r, ϕ) = rd−1E(ϕ),

where E(ϕ) is an algebraic expression of cosines and sines of the component angles of
ϕ.
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We first consider that N = 0, ie. the decomposition of ω in the statement of the
lemma has only one element, ω0 = ω. Consequently, for any x ∈ ω̄, the line segment
[x0, x] lies in ω̄. We take the origin of the system of coordinates at the point x0, and,
using the polar coordinates, a point x = (x1, · · · , xd), will be written as x = (r, ϕ),
ϕ being the system of d − 1 angles giving the direction of the vector x. We denote
by rϕ the maximum size of the radius in the direction ϕ of the points in ω̄, and
consequently, the points on ∂ω will be written as (rϕ, ϕ). We denote by o the union
of the τ ∈ Th having a vertex at x0, let r0 be the distance from x0 to ∂o\∂ω. We
consider the open ball with the center at x0 of radius r0, Br0(x

0). For two points
x′ = (r′, ϕ) ∈ ω ∩Br0(x

0) and x = (r, ϕ) ∈ ω\B̄r0(x
0), we have

|v(x)| = |v(r, ϕ)| ≤ |v(r′, ϕ)|+ |
∫ r

r′
∂v
∂r (ρ, ϕ)dρ| =

|∂v
∂r (r′, ϕ)|r′ + |

∫ r

r′
∂v
∂r (ρ, ϕ)dρ| ≤ |ν1

∂v
∂x1

(r′, ϕ) + · · ·+ νd
∂v
∂xd

(r′, ϕ)|r′+
|
∫ rϕ

r′

(
ν1

∂v
∂x1

(ρ, ϕ) + · · ·+ νd
∂v
∂xd

(ρ, ϕ)
)

dρ| ≤
(| ∂v

∂x1
(r′, ϕ)|+ · · ·+ | ∂v

∂xd
(r′, ϕ)|)r′+∫ rϕ

r′

(
| ∂v
∂x1

(ρ, ϕ)|+ · · ·+ | ∂v
∂xd

(ρ, ϕ)|
)

dρ,

(4.10)

where (ν1, · · · , νd) is the unity vector giving the direction of x = (r, ϕ) in the rectan-
gular system of coordinates (x1, · · · , xd). In the following, we find (4.5) for the various
values of d and s starting from (4.10).
For d = s = 1 or 1 ≤ d < s ≤ ∞, we take r′ = 0 in (4.10). If d = s = 1 we get

|v(x)| = |v(r, ϕ)| ≤
∫ rϕ

0

| ∂v

∂x1
(ρ, ϕ)|dρ.

Here, we may have ϕ = 0 and ϕ = π if x0 is a inner point in ω, and only ϕ = 0 or
only ϕ = π if x0 ∈ ∂ω. Integrating again from 0 to rϕ ≤ H, we get (4.5) for N = 0
and d = s = 1. If 1 ≤ d < s = ∞, we have

|v(x)| ≤ rϕd max
1≤j≤d

sup
0≤ρ≤rϕ

| ∂v

∂xj
(ρ, ϕ)| ≤ CdH|v|1,∞,ω.

If 1 ≤ d < s < ∞ we have

|v(x)|s ≤ ds−1

[∫ rϕ

0

ρ
1−d
s−1 dρ

]s−1 ∫ rϕ

0

(
| ∂v

∂x1
(ρ, ϕ)|s + · · ·+ | ∂v

∂xd
(ρ, ϕ)|s

)
ρd−1dρ.

Multiplying the above inequality by rd−1 and integrating from 0 to rϕ ≤ H we get∫ rϕ

0
|v(r, ϕ)|srd−1dr ≤(

d s−1
s−d

)s−1

(CH)s
∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.

By multiplication of this equation with the Jacobian part depending on ϕ, E(ϕ), and
integrating over the d− 1 dimensional domain of the angles ϕ, we get (4.5) for N = 0
and 1 ≤ d < s < ∞.
Now, from (4.10) for an arbitrary 0 < r′ < r0, we get

|v(x)| = |v(r, ϕ)| ≤ (| ∂v
∂x1

(r′, ϕ)|+ · · ·+ | ∂v
∂xd

(r′, ϕ)|)r0+∫ rϕ

r0

(
| ∂v
∂x1

(ρ, ϕ)|+ · · ·+ | ∂v
∂xd

(ρ, ϕ)|
)

dρ.
(4.11)
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Also, since for a fixed ϕ, ∂v
∂r (r′, ϕ) is constant for r′ ∈ (0, r0), we have

|v(x′)|s = |v(r′, ϕ)|s ≤ (r′)s−d

d

∫ r0

0
|∂v
∂ρ (ρ, ϕ)|sρd−1dρ ≤

ds−2(r′)s−d
∫ r0

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.

Multiplying the above inequality by (r′)d−1, and integrating from 0 to r0, we get∫ r0

0
|v(ρ, ϕ)|sρd−1dρ ≤

ds−2

s rs
0

∫ r0

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.
(4.12)

Now, if 1 = s < d < ∞ we get from (4.11),

|v(x)| ≤ 1
dr1−d

0

∫ r0

0
(| ∂v

∂x1
(ρ, ϕ)|+ · · ·+ | ∂v

∂xd
(ρ, ϕ)|)ρd−1dρ+

r1−d
0

∫ rϕ

r0

(
| ∂v
∂x1

(ρ, ϕ)|+ · · ·+ | ∂v
∂xd

(ρ, ϕ)|
)

ρd−1dρ ≤

r1−d
0

∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|+ · · ·+ | ∂v
∂xd

(ρ, ϕ)|
)

ρd−1dρ.

Using the regularity of the mesh Th, we have rϕ

r ≤ C H
h , and therefore,∫ rϕ

r0
|v(ρ, ϕ)|ρd−1dρ ≤ CH

(
H
h

)d−1 ∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|+ · · ·+ | ∂v
∂xd

(ρ, ϕ)|
)

ρd−1dρ.

From this last inequality and (4.12) we get (4.5) for N = 0 and 1 = s < d < ∞ by a
multiplication with E(ϕ) and integrating over the domain of the angles ϕ.
Starting again from (4.11), for 1 < d = s < ∞ or 1 < s < d < ∞, we get

|v(x)|s ≤ (2d)s−1(| ∂v

∂x1
(r′, ϕ)|s + · · ·+ | ∂v

∂xd
(r′, ϕ)|s)rs

0+

(2d)s−1
[∫ rϕ

r0
ρ

1−d
s−1 dρ

]s−1 ∫ rϕ

r0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ =

2s−1dsrs−d
0

∫ r0

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ+

(2d)s−1
[∫ rϕ

r0
ρ

1−d
s−1 dρ

]s−1 ∫ rϕ

r0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.

Consequently,∫ rϕ

r0
|v(ρ, ϕ)|sρd−1dρ ≤

(2d)s−1rd
ϕrs−d

0

∫ r0

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ+

2s−1ds−2rd
ϕ

[∫ rϕ

r0
ρ

1−d
s−1 dρ

]s−1

·∫ rϕ

r0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.

(4.13)

Now, from (4.13), if 1 < d = s < ∞ we get∫ rϕ

r0
|v(ρ, ϕ)|dρd−1dρ ≤

2d−1rd
ϕ max

{
dd−1, dd−2

(
ln rϕ

r0

)d−1
}

∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|d + · · ·+ | ∂v
∂xd

(ρ, ϕ)|d
)

ρd−1dρ.

Using regularity of the mesh Th, we get∫ rϕ

r0
|v(ρ, ϕ)|dρd−1dρ ≤

dd−1 (CH)d (ln H
h + 1

)d−1 ∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|d + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.
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This inequality together with (4.12) prove (4.5) for N = 0 and 1 < d = s < ∞.
Finally, if 1 < s < d < ∞, we get from (4.13),

∫ rϕ

r0
|v(ρ, ϕ)|sρd−1dρ ≤ 2s−1 max

{
ds−1rd

ϕrs−d
0 , ds−2rs

ϕ( s−1
d−s )s−1

[(
rϕ

r0

) d−s
s−1 − 1

]s−1
}

∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ,

and consequently,∫ rϕ

r0
|v(ρ, ϕ)|sρd−1dρ ≤

(d s−1
d−s )s−1(CH)s

(
H
h

)d−s ∫ rϕ

0

(
| ∂v
∂x1

(ρ, ϕ)|s + · · ·+ | ∂v
∂xd

(ρ, ϕ)|s
)

ρd−1dρ.

Using again (4.12) and the last inequality, we get (4.5) for N = 0 and 1 < s < d < ∞.
Assume now that N > 0, ie. we have more than one subdomain ωi, i = 0, 1, · · · , N

in the overlapping decomposition of ω. Such a decomposition is considered when there
exist points x ∈ ω̄ for which the line segment [x0, x] do not wholly lie in ω̄. Let ωi

and ωj , i 6= j, be two fixed subdomains such that ωi ∩ ωj 6= Ø. We consider a fixed
point z ∈ ωi ∩ ωj , and denoting by zk and φk the nodes of Th in ω̄i ∩ ω̄j and the
corresponding functions in the nodal basis, respectively, for a given 1 ≤ s < ∞, we
have

||v||0,s,ωj
− |
∑

k

v(zk)φk(z)||ωj |1/s ≤ ||v −
∑

k

v(zk)φk(z)||0,s,ωj
=

||
∑

k

(
v − v(zk)

)
φk(z)||0,s,ωj

≤
∑

k

||v − v(zk)||0,s,ωj
φk(z).

Since v − v(zk) vanishes at zk, we get from the first part of the proof and the last
equation that

||v||0,s,ωj
− |
∑

k

v(zk)φk(z)||ωj |1/s ≤
∑

k

C(d, s)HCd,s(H,h)|v|1,s,ωj
φk(z) =

C(d, s)HCd,s(H,h)|v|1,s,ωj
,

and integrating over ωi ∩ ωj , we get

|ωi ∩ ωj |||v||0,s,ωj ≤ |ωj |1/s

∫
ωi∩ωj

|v|+ |ωi ∩ ωj |C(d, s)HCd,s(H,h)|v|1,s,ωj ≤

|ωj |1/s|ωi ∩ ωj |(s−1)/s||v||0,s,ωi∩ωj + |ωi ∩ ωj |C(d, s)HCd,s(H,h)|v|1,s,ωj .

Consequently, we have

||v||0,s,ωj
≤
(

|ωj |
|ωi ∩ ωj |

)1/s

||v||0,s,ωi
+ C(d, s)HCd,s(H,h)|v|1,s,ωj

.(4.14)

It is easy to see that equation (4.14) holds for s = ∞, too. Taking into account that

||v||0,s,ω0 ≤ C(d, s)HCd,s(H,h)|v|1,s,ω0 ,(4.15)

from (4.14) and (4.15), we get (4.5) for N > 0.
Remark 4.1. As we have already said at the beginning of this section, we are

interested in the error estimation for a family of pairs (H,h). In general, since the
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mesh Th is regular, the overlapping decomposition of ω in Lemma 4.1 can be taken
such that the number N and the constant Cω in (4.9) are bounded and independent of
(H,h). In this point of view, the constants C(d, s), C(N, s) and Cω, written in (4.7)–
(4.9), can be considered as independent of H and h, and assimilated to the generic
constant C. In the following we write (4.5) as

||v||0,s,ω ≤ CHCd,s(H,h)|v|1,s,ω,(4.16)

where C = C(N, s)C(d, s) and Cd,s(H,h) is given in (4.6).
The above lemma can be very useful in various error estimations. The following

result, for instance, extends to W 1,s that in Lemma 2.3 in [9].
Corollary 4.2. Let ω be a domain of diameter H and having a simplicial regular

mesh partition Th. If v is a continuous function which is linear on each τ ∈ Th, and
v = 0 on ∂ω, then for any 1 ≤ s ≤ ∞ we have

||v||0,∞,ω ≤ CH
s−d

s Cd,s(H,h)|v|1,s,ω,(4.17)

where Cd,s(H,h) is given in (4.6), and C is independent of H and h.
Proof. Let x0 ∈ ω̄ be the point where |v(x0)| = ||v||0,∞,ω, and x ∈ ω a current

point. We note that x0 is a node of Th. For 1 ≤ s < ∞, we have

|v(x0)|s ≤ 2s−1|v(x0)− v(x)|s + 2s−1|v(x)|s,

and integrating it over ω, using (4.16), we get

|ω|||v||s0,∞,ω ≤ 2s−1||v(x0)− v(x)||s0,s,ω + 2s−1||v(x)||s0,s,ω ≤
2s−1 (CHCd,s(H,h))s |v(x)|s1,s,ω + 2s−1||v(x)||s0,s,ω.

Now, since v = 0 on ∂ω, we can apply the classical Friedrichs-Poincaré inequality and
obtain (4.17). If s = ∞, the proof is similar.

Coming back to the two-level method, let us denote by xi a node of TH , by φi

the linear nodal basis function associated with xi and TH , and by ωi the support
of φi. We point out that we consider all the nodal basis functions, including those
corresponding to the nodes on ∂Ω0. Given a v ∈ Vh, let us write

I−i v = min
x∈ωi

v(x)− and I+
i v = min

x∈ωi

v(x)+,(4.18)

where v(x)− = max(0,−v(x)) and v(x)+ = max(0, v(x)). Since v is piecewise linear,
I−i v or I+

i v are attained at a node of Th if they are not zero. For a v ∈ Vh, we define

I−Hv :=
∑

xi node of TH

(I−i v)φi(x) and I+
Hv :=

∑
xi node of TH

(I+
i v)φi(x),(4.19)

and we write

IHv = I+
Hv − I−Hv.(4.20)

The following result extends that given in [37], where similar operators to I+
i have

been introduced.
Lemma 4.3. For any v ∈ Vh we have

||IHv − v||0,s,Ω0 ≤ CHCd,s(H,h)|v|1,s,Ω0(4.21)



CONVERGENCE RATE OF A SCHWARZ MULTILEVEL METHOD 15

and

||IHv||0,s,Ω0 ≤ C||v||0,s,Ω0 and |IHv|1,s,Ω0 ≤ CCd,s(H,h)|v|1,s,Ω0(4.22)

where Ω0 is the union of the simplexes in TH written in (4.2), Cd,s(H,h) is defined in
(4.6), and C is independent of H, h and δ. Equations (4.21) and (4.22) also hold if
Ω0 is replaced by Ω. Moreover, if K is a convex and closed set in Vh having Property
3.1, with 0 ∈ K, then for any v ∈ K we have IHv ∈ K ∩ V 0

H .
Proof. Let us take an ωi, the support of the linear basis function φi corresponding

to the node xi of TH , and a v ∈ Vh. If v vanishes at a point in ωi, then I+
i v = I−i v = 0

and v+ and v− vanish at some nodes of Th in ωi. Applying Lemma 4.1, we get

||v||s0,s,ωi
= ||v+ − v−||s0,s,ωi

= ||v+||s0,s,ωi
+ ||v−||s0,s,ωi

≤
[CHCd,s(H,h)]s

[
|v+|s1,s,ωi

+ |v−|s1,s,ωi

]
= [CHCd,s(H,h)]s|v|s1,s,ωi

.
(4.23)

Consequently,

||v − I+
i v + I−i v||0,s,ωi

≤ CHCd,s(H,h)|v|1,s,ωi
.(4.24)

If v 6= 0 at any point of ωi then either v+ = I+
i v = 0 or v− = I−i v = 0. Consequently,

there exits at least a node of Th in ωi at which v− I+
i v + I−i v = v+− v−− I+

i v + I−i v
vanishes. From Lemma 4.1, since I+

i v − I−i v is a constant, we get again (4.24). We
notice that, since for any x ∈ ωi the line segment [xi, x] lies in ωi, we can take a
decomposition of ωi as in Lemma 4.1 having N ≤ 1. Assuming that N = 1, let ωi0

and ωi1 = ω be this decomposition. Since ωi0 contains at least one τ ∈ TH and the
mesh TH is regular, then, according to (4.9), Cωi can be taken independent of H and
h. Consequently, C(N, s) in (4.8) is independent of H and h. Now, using (4.24), we
get

||IHv − v||s0,s,ωi
= ||

∑
xj∈ωi

[
I+
j v − I−j v − v

]
φj ||s0,s,ωi

≤

C
∑

xj∈ωi

||I+
j v − I−j v − v||s0,s,ωi∩ωj

≤ [CHCd,s(H,h)]s
∑

xj∈ωi

|v|s1,s,ωj
.

Above, xj are nodes of TH , and we used the fact that, since the mesh is regular,
the maximum number of ωj which non-emptily intersect a given ωi is bounded and
independent of H. Now, we use again this property to obtain

||IHv − v||s0,s,Ω0
≤
∑

xi∈Ω0

||IHv − v||s0,s,ωi
≤

[CHCd,s(H,h)]s
∑

xi∈Ω0

∑
xj∈ωi

|v|s1,s,ωj
≤ [CHCd,s(H,h)]s

∑
xi∈Ω0

|v|s1,s,ωi
.

Also, from the regularity of the mesh, it follows that each ωi contains a bounded
number of simplexes of TH which is independent of H. Consequently, we have

||IHv − v||s0,s,Ω0
≤ [CHCd,s(H,h)]s

∑
τ∈TH

|v|s1,s,τ ,

and in this way, we get (4.21).
In order to prove (4.22), we notice first that, from the definition of I+

i v and I−i v, we
have for any x ∈ ωi,

0 ≤ I+
i v − I−i v ≤ v(x) if v(x) ≥ 0, and

0 ≥ I+
i v − I−i v ≥ v(x) if v(x) ≤ 0,

(4.25)
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and therefore,

|I+
i v − I−i v| ≤ |v(x)| for any x ∈ ωi.(4.26)

Using this inequality, we obtain

||IHv||s0,s,ωi
= ||

∑
xj∈ωi

(I+
j v − I−j v)φj ||s0,s,ωi

≤∫
ωi

(
∑

xj∈ωi

|I+
j − I−j |φj)s =

∫
ωi

(
∑

xj∈ωi

|v(x)|φj)s =
∫

ωi

|v(x)|s = ||v||s0,s,ωi
.

Taking again into account the regularity of the mesh, we get

||IHv||s0,s,Ω0
≤
∑

xi∈Ω0

||IHv||s0,s,ωi
≤
∑

xi∈Ω0

||v||s0,s,ωi
≤ C

∑
τ∈TH

||v||s0,s,τ ,

and therefore, the first equation in (4.22) holds. To prove the second equation in
(4.22), first we write

|IHv|s1,s,ωi
= |

∑
xj∈ωi

(I+
j v − I−j v)φj |s1,s,ωi

≤

CHd−s max
xk,xl∈ωi,ωk∩ωl 6=∅

|(I+
k v − I−k v)− (I+

l v − I−l v)|s.

Since ωk ∩ ωl 6= ∅, taking into account the definition of I+
i v and I−i v in (4.18), we

get that I+
k v− I−k v and I+

l v− I−l v can not be both different from zero and they have
different signs. Therefore, if we write

|I+
p v − I−p v| − |I+

q v − I−q v| = max
xk,xl∈ωi,ωk∩ωl 6=∅

|(I+
k v − I−k v)− (I+

l v − I−l v)|,

using (4.26), we get

|IHv|s1,s,ωi
≤ CHd−s(|I+

p v − I−p v| − |I+
q v − I−q v|)s ≤ CHd−s(|v(x)| − |I+

q v − I−q v|)s

for any x ∈ ωp ∩ ωq. Since the mesh Th is regular, we have Hd ≤ C|ωp ∩ ωq|, and
integrating the above equation over ωp ∩ ωq we get

|IHv|s1,s,ωi
≤ CH−s

∫
ωp∩ωq

(|v(x)| − |I+
q v − I−q v|)s =

CH−s
∫

ωp∩ωq
|v(x)− (I+

q v − I−q v)|s ≤ CH−s
∫

ωq
|v(x)− (I+

q v − I−q v)|s.

If there exists a point in ωq at which v vanishes, then I+
q v = I−q v = 0, and, as in

(4.23), we get

|IHv|1,s,ωi ≤ CCd,s(H,h)|v|1,s,ωq .

Also, if v > 0 or v < 0 in ωq, then there exists xq ∈ ωq, node of Th, such that
v(xq) = I+

q v − I−q v, and we get again the above inequality applying Lemma 4.1.
Finally, using again the fact that the mesh TH is regular, we get the second equation
in (4.22).
To prove that (4.21) and (4.22) hold on Ω, we see that IHv = 0 on all the sets Sxi

introduced in (4.3). Therefore, (4.22) holds on all sets Sxi . Also, since v(xi) = 0,
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from Lemma 4.1, we get that (4.21) holds on Sxi . Consequently, the above reasoning
we made for Ω0 can be done for Ω, too.
From (4.25), (4.19) and (4.20), we get that for any x ∈ Ω, we have

0 ≤ IHv(x) ≤ v(x) if v(x) ≥ 0, and 0 ≥ IHv(x) ≥ v(x) if v(x) ≤ 0(4.27)

Therefore, we can find a θ(x) ∈ C1(Ω), 0 ≤ θ(x) ≤ 1, such that θ(xi) = IHv(xi)/v(xi)
if IHv(xi) 6= 0, and θ(xi) = 0 if IHv(xi) = 0, at any node xi of Th. Consequently, we
can write IHv = Lh(θv + (1 − θ)0). Finally, if 0, v ∈ K, and K has Property 3.1, we
get that IHv ∈ K.

Now, we can prove the following proposition which shows that the constant C0 in
Assumption 2.1 is independent of the mesh and domain decomposition parameters if
H/δ and H/h are constant. This result is similar to that given in [4] for the inequalities
coming from minimization of the quadratic functionals. In the first part of the proof,
the construction of vi, i = 1, · · · ,m, is similar to that given for the one-level method.
In the second part we define an appropriate v0 using the previous lemma.

Proposition 4.4. Let Ω1, · · · ,Ωm be the overlapping decomposition of the do-
main Ω defined in this section. Then Assumption 2.1 is verified for the piecewise
linear finite element spaces, V = Vh and V0 = V 0

H , Vi = V i
h, i = 1, · · · ,m, defined in

(3.3), (3.4) and (4.4), respectively, and any convex set K = Kh satisfying Property
3.1. The constant in (2.3) of Assumption 2.1 can be taken of the form

C0 = C(m + 2)1−
1
p

(
1 + (m− 1)

H

δ

)
Cd,s(H,h),(4.28)

where C is independent of the mesh and domain decomposition parameters, and Cd,s(H,h)
is given in (4.6).

Proof. Let us consider w ∈ Kh, w0 ∈ V 0
H and wi ∈ V i

h such that w+
∑i

j=0 wi ∈ Kh,
i = 0, · · · ,m, and let v be another element in Kh. In the following, we use unity
partitions (θi

j)j=i,···,m, of the domains ∪m
j=i,mΩj , i = 1, · · · ,m, having property (3.2).

Step 1. We assume that we have got a v0 ∈ V 0
H satisfying

w + v0, v + w0 − v0 ∈ Kh,(4.29)

and we recursively construct vi ∈ V i
h , i = 1, · · · ,m, which satisfy (2.1) and (2.2) in

Assumption 2.1. To this end, we define

v1 = Lh

(
θ1
1(v − w − v0) + (1− θ1

1)w1

)
,(4.30)

and, as in the previous section, we get

v1 ∈ V 1
h and w + w0 + v1 ∈ Kh,

v − v0 − v1 + w0 + w1 ∈ Kh,

v − w − v0 − v1 ∈ W 1,s
0 (

m⋃
j=2

Ωj) and

v − w − v0 − v1 = 0 in Ω− ∪m
j=2Ωj .

Also, for i = 2, · · · ,m− 1 we write

vi = Lh

θi
i(v − w −

i−1∑
j=0

vj) + (1− θi
i)wi

 ,(4.31)
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and we prove

vi ∈ V i
h and w +

i−1∑
j=0

wj + vi ∈ Kh,

v −
i∑

j=0

vj +
i∑

j=0

wj ∈ Kh,

v − w −
i∑

j=0

vj ∈ W 1,s
0 (

m⋃
j=i+1

Ωj) and

v − w −
i∑

j=0

vj = 0 in Ω− ∪m
j=i+1Ωj ,

assuming that these equations hold for i− 1. Finally, we take

vm = v − w −
m−1∑
j=0

vj(4.32)

and we get that (2.1) and (2.2) in Assumption 2.1 hold.
Step 2. We define in this step a v0 ∈ V 0

H satisfying (4.29) and prove that condition
(2.3) in Assumption 2.1 is satisfied with the constant C0 given in (4.28). It is easy to
see that (4.29) is equivalent with

v0 − w0 ∈ (Kh − (w + w0)) ∩ (v −Kh) ,(4.33)

and also, since v, w + w0 ∈ Kh, we get

v − w − w0 ∈ (Kh − (w + w0)) ∩ (v −Kh) .(4.34)

We write K = (Kh − (w + w0))∩ (v −Kh), and from the above equation and Lemma
4.3, we get that IH(v − w − w0) ∈ K. From (4.21) and (4.22) we have

||v − w − w0 − IH(v − w − w0)||0,s ≤ CHCd,s(H,h)|v − w − w0|1,s(4.35)

and

||IH(v − w − w0)||0,s ≤ CCd,s(H,h)||v − w − w0||0,s

|IH(v − w − w0)|1,s ≤ CCd,s(H,h)|v − w − w0|1,s,
(4.36)

where Cd,s(H,h) is defined in (4.6). Now, we take

v0 = w0 + IH(v − w − w0),(4.37)

and, from 4.34, the second part of Lemma 4.3, and (4.33), we get that it satisfies
condition (4.29). To prove condition (2.3) in Assumption 2.1, we first notice that,
starting from v1 given in (4.30), by the recurrent application of (4.31), as in the proof
of Proposition 3.1, we get vi, i = 1, · · · ,m, of the form

vi = Lh(τ i
0(v − w − v0) +

i∑
j=1

τ i
jwj), i = 1, · · · ,m,(4.38)
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where τ i
j , i = 1, · · · ,m, j = 0, · · · , i, satisfy (3.9). Using (3.10) and (3.11), we get

||Lh(τ i
jwj)||1,s ≤ C||τ i

jwj ||1,s ≤ C(||wj ||1,s +
m− 1

δ
||wj ||0,s).

It follows from (4.1) that the diameters of the connected component of Ωi are less
than CH, and since wi ∈ V i

h , using the classical Friedrichs-Poincaré inequality, we get

||Lh(τ i
jwj)||1,s ≤ C[1 + (m− 1)

H

δ
]|wj |1,s, i = 1, · · · ,m, j = 1, · · · , i.(4.39)

On the other hand, taking into account (3.10), (3.11), (4.37) and (4.35), we get

||Lh(τ i
0(v − w − v0))||1,s ≤ C[|v − w − v0|1,s + (1 + m−1

δ )||v − w − v0||0,s] =
C[|v − w − v0|1,s + (1 + m−1

δ )||v − w − w0 − IH(v − w − w0)||0,s] ≤
C
[
|v − w − v0|1,s + (m− 1)Cd,s(H,h)H

δ |v − w − w0|1,s

]
≤

C(|v − w|1,s + |v0|1,s) + C(m− 1)Cd,s(H,h)H
δ (|v − w|1,s + |w0|1,s).

Consequently, we have

||Lh(τ i
0(v − w − v0))||1,s ≤ C

[
1 + (m− 1)H

δ

]
Cd,s(H,h)·

(|v − w|1,s + |w0|1,s) + C|v0|1,s, i = 1, · · · ,m.
(4.40)

Also, from (4.37) and (4.36), we get

|v0|1,s = |w0 + IH(v − w − w0)|1,s ≤ |w0|1,s + |IH(v − w − w0)|1,s ≤
|w0|1,s + CCd,s(H,h)|v − w − w0|1,s,

and therefore,

|v0|1,s ≤ CCd,s(H,h)(|v − w|1,s + |w0|1,s).(4.41)

Now, from (4.40) and (4.41), we get

||Lh(τ i
0(v − w − v0))||1,s ≤

C
[
1 + (m− 1)H

δ

]
Cd,s(H,h)(|v − w|1,s + |w0|1,s), i = 1, · · · ,m.

(4.42)

Finally, from (4.38), (4.39), (4.41), and (4.42) we obtain that condition (2.3) in As-
sumption 2.1 holds with C0 given in (4.28).

Remark 4.2. As in Remark 3.1, we notice that, since the number m of the subdo-
mains Ωi is the number of colors of the overlapping domain decomposition {Oi}1≤i≤M ,
the error estimates in Theorem 2.1 depends only on C0 given in (4.28). Therefore, if
the overlapping size δ and the mesh sizes H and h are chosen such that H/h and H/δ
are constant, then the convergence rate of the two-level multiplicative Schwarz method
is independent of the mesh and domain decomposition parameters.

5. Multi-level multiplicative Schwarz method. We consider over the do-
main Ω ⊂ Rd a family of regular meshes Thj

of mesh sizes hj , j = 1, · · · , L, such that
Thj+1 is a refinement of Thj

, j = 1, · · · , L− 1. We write

Ωj =
⋃

τ∈Thj

τ(5.1)

and we assume that Ω = ΩL. As in the previous section, we assume that, if a node of
Thj

lies on ∂Ωj then it lies on ∂Ωj+1, too, that is, it lies on ∂Ω. Also, for the nodes
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xj ∈ ∂Ω of Thj
, j = 1, · · · , L−1, we consider the union of the all τ ∈ Thj

having xj as
a vertex, ωj , and we define the set Sxj as the union of ωj with all τ ∈ Thj+1 , τ 6⊂ Ωj ,
which are contained in the smallest sphere which is centered at xj and contains ωj .
We assume that

Ωj+1\Ωj ⊂
⋃

xj node of Thj
, xj∈∂Ω

Sxj for j = 1, · · · , L− 1.(5.2)

Since the mesh Thj+1 is a refinement of Thj
, we have hj+1 ≤ hj , and we assume that

there exists a constant γ, independent of the number of meshes, L, such that

1 < γ ≤ hj

hj+1
, j = 1, · · · , L− 1.(5.3)

At each level j = 1, · · · , L, we consider an overlapping decomposition {Oi
j}1≤i≤Mj

of Ωj , and we assume that the mesh partition Thj
of Ωj supplies a mesh partition

for each Oi
j , 1 ≤ i ≤ Mj . Also, we assume that the overlapping size for the domain

decomposition at the level 1 ≤ j ≤ L is δj , i.e.,

Oi
j ∩ ∂(

⋃
l 6=i

Ol
j) 6= ∅ and dist(∂Oi

j\∂Ωj , O
i
j ∩ ∂(

⋃
l 6=i

Ol
j) ≥ δj(5.4)

is satisfied. In addition, we suppose that there exists a constant C such that

diam(Oi
j+1) ≤ Chj , j = 1, · · · , L− 1, i = 1, · · · ,Mj .(5.5)

Now, at each level j = 1, · · · , L, we color the subdomains Oi
j , i = 1, · · · ,Mj , and

obtain the overlapping subdomains Ωi
j , i = 1, · · · ,mj , as in the previous section.

Finally, we assume that m1 = 1, and let us write

m = max
j=1,···,L

mj .(5.6)

At each level j = 1, · · · , L, we introduce the linear finite element spaces,

Vhj
= {v ∈ C0(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj

, v = 0 on ∂Ωj},(5.7)

and, for i = 1, · · · ,mj , we write

V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ωi

j}(5.8)

The convex set will be a subset KhL
of VhL

having Property 3.1.
In order to prove that Assumption 2.1 holds for the convex set K = KhL

and the
spaces V = VhL

, V i
j = V i

hj
, j = 1, · · · , L, i = 1, · · · ,mj , and to find the constant C0 in

(2.3) as a function of the domain decomposition and mesh parameters, we need the
following lemma. This result generalizes to more than two levels the second inequality
(4.22) in Lemma 4.3. To this end, we introduce operators Ihk

: Vhk+1 → Vhk
, k =

1, · · · , L− 1, which are similar to the operator IH : Vh → VH defined in (4.20).
Lemma 5.1. For a given 1 ≤ j < L− 1, let vk, wk ∈ Vhk

, k = j + 1, · · · , L− 1,
such that

vk = wk + Ihk
(vk+1).(5.9)
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Then,

|Ihj vj+1|1,s,Ωj ≤ C(L− j)
s−1

s {
L−1∑

k=j+1

Cd,s(hj , hk)s|wk|s1,s,Ωj
+

Cd,s(hj , hL)s|vL|s1,s,Ωj
} 1

s .

(5.10)

Moreover, (5.10) also holds if its seminorms over Ωj are replaced with seminorms
over Ωk, for any k = j + 1, · · · , L.

Proof. Let ωj be the support of the nodal basis function in Vhj
corresponding to

the node xj of Thj . Then there exists two nodes of Thj , xj
1, x

j
2 ∈ ωj , such that

|Ihj
vj+1|s1,s,ωj

≤ Chd−s
j |(Ihj

vj+1)(x
j
1)− (Ihj

vj+1)(x
j
2)|s(5.11)

Starting from (5.11), we prove that, for each k = j, · · · , L − 1, there exist two
nodes of Thk+1 , xk+1

1 ∈ ω1
k and xk+1

2 ∈ ω2
k, ω1

k and ω2
k being the supports of the nodal

basis function in Vhk
corresponding to the nodes xk

1 and xk
2 of Thk

, respectively, such
that

|Ihj vj+1|s1,s,ωj
≤

Chd−s
j

 L−1∑
k=j+1

|wk(xk
1)− wk(xk

2)|+ |vL(xL
1 )− vL(xL

2 )|

s

.
(5.12)

First, we assume that, starting with xj
1 and xj

2 in (5.11), at each level k =
j, · · · , L − 1, the values of (Ihk

vk+1)(xk
1) and (Ihk

vk+1)(xk
2) are obtained as values

of vk+1 at two nodes xk+1
1 ∈ ω1

k and xk+1
2 ∈ ω2

k, respectively, that is, we have

(Ihk
vk+1)(xk

1) = vk+1(xk+1
1 ) and (Ihk

vk+1)(xk
2) = vk+1(xk+1

2 ).(5.13)

Therefore, starting from (5.11), using (5.9), for any j + 1 ≤ N ≤ L− 1, we get

|Ihj
vj+1|s1,s,ωj

≤ Chd−s
j N∑

k=j+1

|wk(xk
1)− wk(xk

2)|+ |(IhN
vN+1)(xN

1 )− (IhN
vN+1)(xN

2 )|

s

,
(5.14)

and consequently, we have get (5.12). Now, we prove that there exist some nodes xk
1

and xk
2 of Thk

such that (5.12) holds, even if (5.13) does not hold for all k = j, · · · , L−1.
Let us assume that (5.13) holds for k = j, · · · , N , j + 1 ≤ N ≤ L − 1. Therefore we
can get (5.14). From the definition the operators I+

i and I−i in (4.18), it follows
that if, for instance, (IhN

vN+1)(xN
1 ) 6= vN+1(x) for any node x ∈ ω1

N of ThN+1 ,
then (IhN

vN+1)(xN
1 ) = 0 and vN+1 takes both positive and negative values at the

nodes of ThN+1 in ω1
N . Consequently, if both (IhN

vN+1)(xN
1 ) 6= vN+1(x) for any

node x ∈ ω1
N of ThN+1 , and (IhN

vN+1)(xN
2 ) 6= vN+1(x) for any node x ∈ ω2

N of
ThN+1 , then (IhN

vN+1)(xN
1 ) = (IhN

vN+1)(xN
2 ) = 0, and we get that (5.12) holds

for some arbitrary nodes of Thk
, xk

1 ∈ ω1
k−1, xk

2 ∈ ω2
k−1, N + 1 ≤ k ≤ L. Also, if

(IhN
vN+1)(xN

1 ) 6= vN+1(x) for any node x ∈ ω1
N of ThN+1 , but there exists xN+1

2 ∈ ω2
N ,

node of ThN+1 , such that (IhN
vN+1)(xN

2 ) = vN+1(xN+1
2 ), then

|(IhN
vN+1)(xN

1 )− (IhN
vN+1)(xN

2 )| = |vN+1(xN+1
2 )| ≤ |vN+1(xN+1

1 )− vN+1(xN+1
2 )|
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where xN+1
1 ∈ ω1

N is an arbitrary node of ThN+1 for which vN+1(xN+1
1 ) and vN+1(xN+1

2 )
have different signs. In this way we get that (5.14) holds for N+1, and we can continue
the same reasoning for N + 2 ≤ k ≤ L− 1.

If we write ω1
j−1 = ω2

j−1 = ωj , since, for k = j, · · · , L, the above nodes xk
1 and xk

2

of Thk
belong to ω1

k−1 and ω2
k−1, respectively, and diam(ω1

k−1), diam(ω2
k−1) ≤ 2hk,

then xk
1 and xk

2 , k = j, · · · , L, belong to the sphere centered at xj and having the
radius of 2hj +hj+1 +hj+2 + · · ·+hL−1. Using (5.3), we get that they belongs to the
sphere centered at xj with the radius of 2γ−1

γ−1 hj . Consequently, if we write

ω̃j =
⋃

τ∈Thj
, dist(xj,τ)≤ γ

γ−1hj

τ,(5.15)

then xk
1 , xk

2 ∈ ω̃j , k = j, · · · , L. For any x ∈ ω̃j , we get from (5.12),

|Ihj
vj+1|s1,s,ωj

≤ Chd−s
j [2(L− j)]s−1

{
L−1∑

k=j+1

[|wk(xk
1)− wk(x)|s + |wk(xk

2)− wk(x)|s]+

|vL(xL
1 )− vL(x)|s + |vL(xL

2 )− vL(x)|s},

and integrating over ω̃j we have,

( 2γ−1
γ−1 hj)d|Ihj vj+1|s1,s,ωj

≤ Chd−s
j [2(L− j)]s−1

{
L−1∑

k=j+1

[||wk(xk
1)− wk||s0,s,ω̃j

+ ||wk(xk
2)− wk||s0,s,ω̃j

]+

||vL(xL
1 )− vL||s0,s,ω̃j

+ ||vL(xL
2 )− vL||s0,s,ω̃j

}.

From this inequality and (4.16), we get

|Ihj
vj+1|s1,s,ωj

≤ C(L− j)s−1( γ−1
2γ−1 )d

{
L−1∑

k=j+1

Cd,s(2hj
2γ − 1
γ − 1

, hk)s|wk|s1,s,ω̃j
+ Cd,s(2hj

2γ − 1
γ − 1

, hL)s|vL|s1,s,ω̃j
},

and, taking into account the definition of Cd,s in (4.6), we have

|Ihj
vj+1|s1,s,ωj

≤ C(L− j)s−1{
L−1∑

k=j+1

Cd,s(hj , hk)s|wk|s1,s,ω̃j
+

Cd,s(hj , hL)s|vL|s1,s,ω̃j
}.

Finally, since the mesh Thj is regular and γ is independent of L and of the mesh
parameters, then ωj and ω̃j contain a bounded number of simplexes in Thj , which
is also independent of L and of the mesh parameters. Consequently, we get (5.10).
Since the nodes of Thj

belonging to ∂Ωj lie also on ∂Ωj+1, and vj+1 = 0 on ∂Ωj+1, it
follows that Ihj

vj+1 = 0 on ∂Ωj . Consequently, they are extended with zero to Ωk,
j + 1 ≤ k ≤ L, and (5.10) holds for these domains, too.

The following proposition shows that Assumption 2.1 holds for the multi-level
method and writes the constant C0 as a function of the domain decomposition and
mesh parameters.
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Proposition 5.2. Let, for each level j = 1, · · · , L, Ω1
j , · · · ,Ω

mj

j be the overlapping
decomposition of the domain Ωj defined in this section with ΩL = Ω and m1 = 1. Then
Assumption 2.1 is verified for the piecewise linear finite element spaces, V = VhL

and
V i

j = V i
hj

, j = 1, · · · , L, i = 1, · · · ,mj defined in (5.7) and (5.8), respectively, and any
convex set K = KhL

⊂ VhL
with Property 3.1. The constant in (2.3) of Assumption

2.1 can be taken of the form

C0 = Cm2(L + 1)2−
1
p−

1
s

L∑
j=1

[1 + (m− 1)
hj−1

δj
]Cd,s(hj−1, hL)(5.16)

in which we take h0 = h1, C is independent of the mesh and domain decomposition
parameters, and Cd,s(H,h) is given in (4.6).

Proof. Let us consider w ∈ KhL
, wi

j ∈ V i
hj

, j = 1, · · · , L, i = 1, · · · ,mj , such

that w +
∑k−1

j=1

∑mj

i=1 wi
j +

∑l
i=1 wi

k ∈ KhL
, k = 1, · · · , L, l = 1, · · · ,mk, and let v be

another element in KhL
. For j = 1, · · · , L, we write

w0
j =

mj∑
i=1

wi
j and wj =

j∑
k=1

w0
j =

j∑
k=1

mj∑
i=1

wi
j .

Since v, w + wL−2 ∈ KhL
, and also, w + wL−2 + w0

L−1 ∈ KhL
and w + wL−2 +

w0
L−1 +

∑l
i=1 wi

L ∈ KhL
, l = 1, · · · ,mL, as in the proof of Proposition 4.4, we get that

there exist v0
L−1 ∈ VhL−1 and vi

L ∈ V i
hL

, i = 1, · · · ,mL such that

w + wL−2 + v0
L−1 ∈ KhL

,(5.17)

w + wL−2 + w0
L−1 +

l−1∑
i=1

wi
L + vl

L ∈ KhL
, l = 1, · · · ,mL,(5.18)

v − w − wL−2 = v0
L−1 +

mL∑
i=1

vi
L,(5.19)

and

v0
L−1 = w0

L−1 + IhL−1(v − w − wL−2 − w0
L−1)

vi
L = LhL

(τ i
0(v − w − wL−2 − v0

L−1) +
i∑

l=1

τ i
l w

l
L), i = 1, · · · ,mL,

(5.20)

where τ i
j , i = 1, · · · ,m, j = 0, · · · , i, satisfy (3.9). In this way, using (5.17), we get

that w + wL−3 + w0
L−2 + v0

L−1, w + wL−3 ∈ KhL
, and also, w + wL−3 + w0

L−2 ∈ KhL

and w + wL−3 + w0
L−2 +

∑l
i=1 wi

L−1 ∈ KhL
, l = 1, · · · ,mL−1. Consequently, there

exist v0
L−2 ∈ VhL−2 and vi

L−1 ∈ V i
hL−1

, i = 1, · · · ,mL−1 such that

w + wL−3 + v0
L−2 ∈ KhL

,(5.21)

w + wL−3 + w0
L−2 +

l−1∑
i=1

wi
L−1 + vl

L−1 ∈ KhL
, l = 1, · · · ,mL−1,(5.22)
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w0
L−2 + v0

L−1 = v0
L−2 +

mL−1∑
i=1

vi
L−1,(5.23)

and

v0
L−2 = w0

L−2 + IhL−2(v
0
L−1)

vi
L−1 = LhL−1(τ

i
0(w

0
L−2 + v0

L−1 − v0
L−2)+

i∑
l=1

τ i
l w

l
L−1), i = 1, · · · ,mL−1.

(5.24)

Starting from (5.21) we successively get for j = 3, · · · , L − 1 that w + wL−j−1 +
w0

L−j + v0
L−j+1, w + wL−j−1 ∈ KhL

, and also, w + wL−j−1 + w0
L−j ∈ KhL

and w +
wL−j−1 + w0

L−j +
∑l

i=1 wi
L−j+1 ∈ KhL

, l = 1, · · · ,mL−j+1. Consequently, there exist
v0

L−j ∈ VhL−j
and vi

L−j+1 ∈ V i
hL−j+1

, i = 1, · · · ,mL−j+1 such that

w + wL−j−1 + v0
L−j ∈ KhL

,(5.25)

w + wL−j−1 + w0
L−j +

l−1∑
i=1

wi
L−j+1+

vl
L−j+1 ∈ KhL

, l = 1, · · · ,mL−j+1,

(5.26)

w0
L−j + v0

L−j+1 = v0
L−j +

mL−j+1∑
i=1

vi
L−j+1,(5.27)

and

v0
L−j = w0

L−j + IhL−j
(v0

L−j+1)
vi

L−j+1 = LhL−j+1(τ
i
0(w

0
L−j + v0

L−j+1 − v0
L−j)+

i∑
l=1

τ i
l w

l
L−j+1), i = 1, · · · ,mL−j+1.

(5.28)

If we write v1
1 = v0

1 , since m1 = 1, then equations (5.18), (5.22) and (5.26) prove that
equation (2.1) of Assumption 2.1 holds. Also, we get (2.2) of Assumption 2.1 from
(5.19), (5.23) and (5.27). Now, if we write

v0
L = v − w − wL−1,(5.29)

we get from (5.20), (5.24) and (5.28) that

v0
j−1 = w0

j−1 + Ihj−1(v
0
j ),

vi
j = Lhj

(τ i
0(w

0
j−1 + v0

j − v0
j−1) +

i∑
l=1

τ i
l w

l
j),

for j = 2, · · · , L, i = 1, · · · ,mj .

(5.30)

Similarly to (4.39), we get that

||Lhj (τ
i
l w

l
j)||1,s ≤ C[1 + (mj − 1)hj−1

δj
]|wl

j |1,s,

j = 2, · · · , L, i = 1, · · · ,mj , l = 1, · · · , i.
(5.31)
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Replacing v0
j−1 given in the first equation (5.30) in the second equation of (5.30), and

using (4.21) and (4.22), we get

||Lhj
(τ i

0(w
0
j−1 + v0

j − v0
j−1))||1,s = ||Lhj

(τ i
0(v

0
j − Ihj−1v

0
j ))||1,s ≤

C[|v0
j − Ihj−1v

0
j |1,s + (1 + mj−1

δj
)||v0

j − Ihj−1v
0
j ||0,s] ≤

C{[1 + Cd,s(hj−1, hj)]|v0
j |1,s + (1 + mj−1

δj
)hj−1Cd,s(hj−1, hj)]|v0

j |1,s}.

Therefore, we have

||Lhj
(τ i

0(w
0
j−1 + v0

j − v0
j−1))||1,s ≤

C[1 + (mj − 1)hj−1
δj

]Cd,s(hj−1, hj)|v0
j |1,s for j = 2, · · · , L, i = 1, · · · ,mj .

(5.32)

From the second equation in (5.30), (5.31) and (5.32), for j = 2, · · · , L and i =
1, · · · ,mj , we get

||vi
j ||1,s ≤ C[1 + (mj − 1)hj−1

δj
]Cd,s(hj−1, hj)|v0

j |1,s+

C[1 + (mj − 1)
hj−1

δj
]

i∑
l=1

|wl
j |1,s,

and using (5.6), we have

||vi
j ||1,s ≤ C[1 + (m− 1)hj−1

δj
]Cd,s(hj−1, hj)|v0

j |1,s+

C[1 + (m− 1)
hj−1

δj
]

mj∑
l=1

|wl
j |1,s for j = 2, · · · , L.

(5.33)

The first equation in (5.30) shows that the conditions of Lemma 5.1 are satisfied, and
we get from (5.10) that for j = 1, · · · , L− 1,

|v0
j |1,s ≤ C(L− j)

s−1
s [

L−1∑
k=j

Cd,s(hj , hk)s|w0
k|s1,s+

Cd,s(hj , hL)s|v0
L|s1,s]

1
s .

Since Cd,s(hj , hk) ≤ Cd,s(hj , hL), j = 1, · · ·L− 1, j ≤ k ≤ L− 1, using (5.29), we get

|v0
j |1,s ≤ C(L− 1)

s−1
s Cd,s(hj , hL)[

L−1∑
k=1

|w0
k|1,s + |v − w|1,s]

for j = 1, · · · , L− 1.

(5.34)

From (4.6), we have Cd,s(hj−1, hj)Cd,s(hj , hL) ≤ Cd,s(hj−1, hL), and using it, we get
from (5.33) and (5.34),

||vi
j ||1,s ≤ C(L− 1)

s−1
s [1 + (m− 1)hj−1

δj
]Cd,s(hj−1, hL)

[
L∑

k=1

mk∑
l=1

|wl
k|1,s + |v − w|1,s], for j = 2, · · · , L.

Since m1 = 1 and since we have written v1
1 = v0

1 which vanishes on ∂Ω, it follows from
(5.34) that the above equation also holds for j = 1 with h0 = h1. From this equation
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we get

||vi
j ||1,s ≤ Cm

p−1
p (L + 1)

p−1
p (L− 1)

s−1
s [1 + (m− 1)hj−1

δj
]Cd,s(hj−1, hL)

[
L∑

k=1

mk∑
l=1

|wl
k|

p
1,s + |v − w|p1,s]

1
p ,

(5.35)

and (5.16) follows from it.

5.1. Multigrid method. In the above multi-level method a mesh is the refine-
ment of that one on the previous level, but the domain decompositions are almost
independent from a level to another one. The multigrid method is obtained from the
multi-level method by taking the subsets Oi

j of a particular form: we associate at
each node xi

j of Thj
, j = 1, · · · , L, i = 1, · · · ,Mj , an Oi

j defined as the union of the
simplexes in Thj

having xi
j as a vertex. Consequently, the subspaces V i

hj
will be direct

sums of some one-dimensional spaces generated by the nodal basis functions associ-
ated with the nodes of Thj

. Evidently, all the previous assumptions on the domain
decompositions are satisfied and we can take δj = hj . In the multigrid methods, the
construction of a finer mesh from a coarse one, is made following the same procedure
of division of the simplexes at each level. Therefore, we can replace equation (5.3) by

1 < γ ≤ hj

hj+1
≤ Cγ, j = 1, · · · , L− 1,(5.36)

where the constant C is independent of the number of meshes. Starting from the
expression of the constant C0 in (5.16), using (5.36), we have

Cm2(L + 1)2−
1
p−

1
s

L∑
j=1

[1 + (m− 1)
hj−1

δj
]Cd,s(hj−1, hL) ≤

Cm2(L + 1)2−
1
p−

1
s L[1 + (m− 1)γ]Cd,s(h1, hL) ≤

Cm3L3− 1
p−

1
s γCd,s(h1, hL)

If we write h = h1 and denote by H the diameter of Ω, then the constant C0 can be
taken as

C0 = CL3− 1
p−

1
s γCd,s(H,h).(5.37)

We point out that an iteration of Algorithm 2.1 using the one-dimensional spaces
generated by the basis functions corresponding to the nodes of the L meshes represents
half of a V-cycle multigrid iteration. Since a full V-cycle multigrid iteration uses more
than once these one-dimensional spaces, in order to describe it, we should repeat them
in the list of the subspaces used by Algorithm 2.1. Consequently, for the multigrid
method, only L in the expression of C0 in (5.37) should be multiplicated by a constant.
Therefore, C0 given in (5.37) is valid for the multigrid method, too.
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[29] T. Lü, C. Liem, and T. Shih, Parallel algorithms for variational inequalities based on domain
decomposition, System Sci. Math. Sci., 4 (1991), pp. 341-348.

[30] S-H Lui, On monotone and Schwarz alternating methods for nonlinear elliptic Pdes, Modél.
Math. Anal. Num, ESIAM:M2AN, vol. 35, no. 1, 2001, pp. 1-15.

[31] J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementary
problems, Appl. Math. Optimization, 11 (1984), pp. 77-95.

[32] S. Nepomnyaschikh, Application of domain decomposition to elliptic problems with discontin-
uous coefficients, in R. Glowinski et al., eds., Fourth International Symposium on Domain
Decomposition Methods for Partial Differential Equations, Philadelphia, SIAM, 1991, pp.
242-251.

[33] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford Science Publications, 1999.

[34] B. F. Smith, P. E. Bjørstad, and William Gropp, Domain Decomposition: Parallel Multi-
level Methods for Elliptic Differential Equations, Cambridge University Press, 1996.

[35] X.-C. Tai, Parallel function and space decomposition methods. Part I. Function decomposition,
Beijing Math., 1 (1991), pp. 104-134.

[36] X.-C. Tai, Parallel function and space decomposition methods. Part II. Space decomposition,
Beijing Math., 1 (1991), pp. 135-152.

[37] X.-C. Tai, Rate of convergence for some constraint decomposition methods for nonlinear vari-
ational inequalities, Numer. Math., 93 (2003), pp. 755-786.

[38] X.-C. Tai and M. Espedal, Rate of convergence of some space decomposition methods foe
linear and nonlinear problems, SIAM J. Numer. Anal., vol. 35, no. 4 (1998), pp. 1558-
1570.

[39] X.-C. Tai and P. Tseng, Convergence rate analysis of an asynchronous space decomposition
method for convex minimization, Math. Comput., vol. 71, (2001), pp. 1105-1135.1998.

[40] X.-C. Tai and J. Xu, Global and uniform convergence of subspace correction methods for some
convex optimization problems, Math. of Comp., vol. 71, nr. 237, (2001) pp. 105-124.

[41] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, 34, 4
(1992), pp. 581-613.

[42] J. Zeng and S. Zhou, On monotone and geometric convergence of Schwarz methods for two-
sided obstacle problems, SIAM J. Numer. Anal., 35, 2, (1998) pp. 600-616.

[43] J. Zeng and S. Zhou, Schwarz algorithm for the solution of variational inequalities with
nonlinear source terms, Appl. Math. Comput., 97, 1998, pp. 23-35.


