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Abstract

Computer vision and natural language processing are two fields of high interest in artificial

intelligence. The focus of this work is generalized distillation which is studied and applied

on tasks related to computer vision and natural language processing. The tasks we consider

are object segmentation, object detection and text-video retrieval. We proved that distilla-

tion can be used in various settings, such as supervised or unsupervised learning. For the

unsupervised learning, we address the task of learning to detect and segment foreground ob-

jects in single images. We achieve our goal by training a student pathway, consisting of a

deep neural network that learns to predict, from a single input image, the output of a teacher

pathway that performs unsupervised object discovery in video. Further we proved that the

performance can be boosted over several generations of students and teachers. For the su-

pervised learning we considered the task of text-video retrieval. For this, we are the first to

investigate the design of algorithms that learn from multiple pre-trained text emebeddings

and propose a novel generalized distillation method, called TEACHTEXT, which leverages

complementary cues from multiple text encoders to provide an enhanced supervisory signal

to the retrieval model. Moreover, we extend our method to video side modalities and show

that we can effectively reduce the number of used modalities at test time without compro-

mising performance. Our approach advances the state of the art on several video retrieval

benchmarks by a significant margin and adds no computational overhead at test time.
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Chapter 1

Introduction

Computer vision is a track of Artificial Intelligence (AI) which process images, videos and

other visual inputs in order to derive meaningful information. Information can mean anything

from edge detection to object detection, object segmentation, tracking of an object and so on.

Usually, the developed methods in Computer Vision (CV) aim to replicate the capability of

human vision. There are a lot of areas of research and a lot of applications, such as: medical

imaging [49], motion capture, automotive safety [18] etc.

Natural Language Processing (NLP) is, on the other hand, a field in artificial intelligence

which focuses on deriving meaningful information from texts. While the purpose of com-

puter vision is to enable computers to understand the visual input similar to the capability of

human vision, the purpose of NLP is to enable computers to understand the spoken words the

same way human beings can. Some of the areas of research in NLP are: machine translation

[56], text summarization [32] and so on.

Needles to say, there is a lot of interest also in tasks where computer vision intersects with

natural language processing, such as: text-video retrieval [11], video captioning [3], image

captioning [58] and so on.

Nowadays, deep learning [17] is at the core of most of the state of the art computer vi-

sion methods, as well, as natural language processing methods. Since 2014, deep learning

boosted the performance on various benchmarks on both fields. In order for a deep network

to have competitive results, huge amounts of data is required. To achieve good results, the

data should be labelled. But labeled data is hard to collect since it involves that several

4



persons should annotate the image, text or video. So, there is also a huge interest in the

unsupervised, semi-supervised and self-supervised area of both computer vision and natural

language processing. There are huge amounts of videos, text and images on the web, which

made this area popular.

Moreover, in order to boost the performance of a deep network without requiring any addi-

tional labeled data, the idea of learning from other methods arises. Generalized distillation

[33] is a framework that unifies knowledge distillation [20] and priviledge information [55],

two methods that enable machines to learn from other machines. Generalized distillation

involves a machine, which is usually called student, that is able to learn from another trained

machine, usually called teacher. So, using generalized distillation recent works [10, 11]

proved that the performance of a deep network student can be boosted by using the infor-

mation provided from the teacher. Naturally, the combination of two or multiple different

methods that are trained to solve the same task and are combined together into an ensemble

proved to achieve higher scores than a single model [2].

1.1 Contributions

In this work we plan to study the behaviour of learning through generalized distillation from

an ensemble of teachers, both in the unsupervised scenario and supervised scenario. The

tasks we used for generalized distillation in the unsupervised scenario is object segmentation

and object detection, while the task in the supervised case is text-video retrieval. In this way,

we prove the effectiveness of learning from an ensemble of teachers in several scenarios: in

the unsupervised case and in the supervised case as well as in a computer vision application

and in an application that is at the intersection of computer vision and natural language

processing, namely text-video retrieval.

Object segmentation. Object detection is the task were you need to localize and classify

each object in an image or video. Object segmentation is the task were each pixel in an image

should be labeled with the corresponding class.

For object segmentation we focused on unsupervised learning from visual data since it has an

immense practical value, as huge quantities of unlabeled videos can be collected at low cost.

We achieve our goal by training a student pathway, consisting of a deep neural network that
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learns to predict, from a single input image, the output of a teacher pathway that performs

unsupervised object discovery in video. This has a dual benefit: firstly, it allows, in prin-

ciple, unlimited generalization possibilities during training, while remaining fast at testing.

Secondly, the student not only becomes able to detect in single images significantly better

than its unsupervised video discovery teacher, but it also achieves state of the art results on

two current benchmarks, YouTube Objects and Object Discovery datasets. At test time, our

system is two orders of magnitude faster than other previous methods.

Furthermore, we improved the proposed system by designing it to learn over several gen-

erations of teachers and students. At every generation the teacher performs unsupervised

object discovery in videos or collections of images and an automatic selection module picks

up good frame segmentations and passes them to the student pathway for training. At every

generation multiple students are trained, with different deep network architectures to ensure

a better diversity. The students at one iteration help in training a better selection module,

forming together a more powerful teacher pathway at the next iteration.

Text-video retrieval. In order to prove the effectiveness of generalized distillation we also

considered a supervised scenario for a very popular task which is at the intersection of com-

puter vision and natural language processing, naming text-video retrieval. Given a natural

language sentence and a collection of videos, the goal is to design a system that is able to re-

trieve the video that is best described by the query. In recent years, considerable progress on

the task of text-video retrieval has been achieved by leveraging large-scale pretraining on vi-

sual and audio datasets to construct powerful video encoders. By contrast, despite the natural

symmetry, the design of effective algorithms for exploiting large-scale language pretraining

remains under-explored. In this work, we are the first to investigate the design of such algo-

rithms and propose a novel generalized distillation method, TEACHTEXT, which leverages

complementary cues from multiple text encoders to provide an enhanced supervisory signal

to the retrieval model.
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Chapter 2

Unsupervised learning from video to

detect foreground objects in single images

Unsupervised learning from visual data is one of the most difficult challenges in computer

vision. It is essential for understanding how visual recognition works. Learning from unsu-

pervised input has an immense practical value, as huge quantities of unlabeled videos can

be collected at low cost. Here we address the task of unsupervised learning to detect and

segment foreground objects in single images. We achieve our goal by training a student

pathway, consisting of a deep neural network that learns to predict, from a single input im-

age, the output of a teacher pathway that performs unsupervised object discovery in video.

Our approach is different from the published methods that perform unsupervised discovery

in videos or in collections of images at test time. We move the unsupervised discovery phase

during the training stage, while at test time we apply the standard feedforward processing

along the student pathway. This has a dual benefit: firstly, it allows, in principle, unlimited

generalization possibilities during training, while remaining fast at testing. Secondly, the

student not only becomes able to detect in single images significantly better than its unsu-

pervised video discovery teacher, but it also achieves state of the art results on two current

benchmarks, YouTube Objects and Object Discovery datasets. At test time, our system is

two orders of magnitude faster than other previous methods.

This chapter is based on the paper ”Unsupervised learn-ing from video to detect foreground

objects in single images.” Croitoru, Ioana, Simion-Vlad Bogolin, and Marius Leordeanu.

International Conference on Computer Vision. 2017.
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2.1 Introduction

Unsupervised learning is one of the most difficult and intriguing problems in computer vi-

sion and machine learning today. Researchers believe that unsupervised learning from video

could help decode hard questions regarding the nature of intelligence and learning. As un-

labeled videos are easy to collect at low cost, solving this task would bring a great practical

value in vision and robotics.

Our system is presented in Figure 1. We have an unsupervised training stage, in which a

student deep neural network learns frame by frame from an unsupervised teacher, which

performs object segmentation in videos, to produce similar object masks in single images.

The teacher method takes advantage of the consistency in appearance, shape and motion

manifested by objects in video. In this way, it discovers objects in the video and produces

a foreground segmentation for each individual frame. Then, the student network tries to

imitate for each frame the output of the teacher, while having as input only a single image

- the current frame. The teacher pathway is much simpler in structure, but it has access to

information over time. In contrast, the student is much deeper in structure, but has access

only to one image. Thus, the information discovered by the teacher in time is captured

by the student in depth, over neural layers of abstraction. In experiments, we show a very

encouraging fact: the student easily learns to outperform its teacher and discovers by itself

general knowledge about the shape and appearance properties of objects, well beyond the

abilities of the teacher. Since there are available methods for video discovery with good

performance, the training task becomes immediately feasible. In this work we chose the

VideoPCA algorithm introduced as part of the system in [52] because it is very fast (50-

100 fps), uses very simple features (pixel colors) and it is unsupervised - with no usage of

supervised pre-trained features.

2.2 Scientific context

Recent unsupervised methods follow two directions. One is to learn powerful features in an

unsupervised way and then use them in a classic supervised learning scheme in combination

with different classifiers, such as SVMs or CNNs [41]. In very recent work [39], developed
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independently from ours, a deep network learns, from an unsupervised system using motion

cues in video, image features that are applied to several transfer learning tasks. The second

approach to unsupervised learning is to discover, at test time, common patterns in unlabeled

data using clustering or data mining formulations [21]. Unsupervised learning in video is

also related to co-segmentation [22] and weakly supervised localization [12]. Earlier meth-

ods are based on local feature matching and detection of their co-occurrence patterns [52],

while more recent ones [24] discover object tubes by linking candidate bounding boxes be-

tween frames with or without refining their location. Traditionally, the task of unsupervised

learning from image sequences, has been formulated as a feature matching or data clustering

optimization problem, which is computationally very expensive.

2.3 System architecture

In our experiments, the student indeed outperforms its teacher. Moreover, it achieves state

of the art results on two different benchmarks. The success of this unsupervised learning

paradigm is due to the fact that the student is forced to capture from appearance only visual

features that are good predictors for the presence of objects. The overview of our system is

presented in Figure 1.

Teacher path: unsupervised discovery in video. We used the VideoPCA algorithm, which

is a part of the whole system introduced in [52]. It runs at 50−100 fps and at this speed we

can produce one million unsupervised soft segmentations in a reasonable time.

Student path: single-image segmentation. It consists of a deep convolutional network,

with ten layers (seven convolutional, two pooling and one fully connected layer). We treat

foreground object segmentation as a regression problem, where the soft mask given by the

unsupervised video segmentation system acts as the desired output.

Unsupervised soft masks selection. We used a simple measure of masks quality based

on the following observation: when masks are close to the ground truth, the mean of their

nonzero values is usually high. Thus, when the discoverer is confident is more likely to be

right. The mean value of non-zero pixels in the soft mask is then used as a score indicator

for each segmented frame.
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Figure 1: The dual student-teacher system proposed for unsupervised learning to detect
foreground objects in images. It has two pathways: the teacher, on the right, discovers in
an unsupervised fashion foreground objects in video. It outputs soft masks for each frame.
The resulting masks, are then filtered based on a simple and effective unsupervised quality
metric. The set of selected segmentations is then augmented in a relatively simple manner,
automatically. The resulting final set of pairs - input image (a video frame) and soft mask
(the mask for that particular frame which acts as an unsupervised label) - are used for training
the student CNN pathway.

10



Airplane Car Horse
P J P J P J

[27] 80.20 7.90 68.85 0.04 75.12 6.43
[22] 49.25 15.36 58.70 37.15 63.84 30.16
[23] 47.48 11.72 59.20 35.15 64.22 29.53
[47] 88.04 55.81 85.38 64.42 82.81 51.65
[8] 90.25 40.33 87.65 64.86 86.16 33.39

Ours1 90.92 62.76 85.15 66.39 87.11 54.59
Ours2 91.41 61.37 86.59 70.52 87.07 55.09

Table 1: Results on the Object Discovery in Internet images [47] dataset (P, J metric).
Ours1 represents our network trained using the VID dataset (with 10% selection), while
Ours2 represents our network trained on VID and YTO datasets (with 10% selection). We
observe that Ours2 has better results with mean P of 88.36 and mean J of 62.33 compared to
Ours1 (mean P: 87.73, mean J: 61.25).

2.4 Experimental analysis

Comparisons with other methods. We compare our unsupervised system with state of the

art methods designed for the task of object discovery in collections of images, that might

contain one or a few main object categories of interest. A representative current benchmark

in this sense is the Object Discovery in Internet Images dataset. Different from other meth-

ods, we do not need a collection of images during testing, since each image is processed

independently by our system, at test time. Therefore, our performance is not affected by the

structure of the image collection or the number of classes of interest being present in the

collection.

We tested our system on the task of fine foreground object segmentation and compared to

the best performers in the literature on the Object Discovery dataset in Table 1. We evaluate

based on the same P, J evaluation metric as described by Rubinstein et al. [47] - the higher

P and J, the better. P refers to the per pixel precision, while J is the Jaccard similarity (the

intersection over union of the result and ground truth segmentations). In Figure 2 we present

some qualitative samples.
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Figure 2: Visual results on the Object Discovery dataset. A: input image, B: segmentation
obtained by [23], C: segmentation obtained by [47], D: thresholded soft mask produced by
our network, E: segmentation mask produced after refining the soft output of our network
with GrabCut [46], F: ground truth segmentation. More details and results: https://sites.
google.com/view/unsupervisedlearningfromvideo.

2.5 Conclusions

We have shown in extensive experiments that it is possible to use a relatively simple method

for unsupervised object discovery in video to train a powerful deep neural network for detec-

tion and segmentation of objects in single images. The result is interesting and encouraging

and shows how a system could learn, in an unsupervised fashion, general visual characteris-

tics that predict well the presence and shape of objects in images. The network essentially

discovers appearance object features from single images, at different levels of abstraction,

that are strongly correlated with the spatiotemporal consistency of objects in video.

The student network, during the unsupervised training phase, is thus able to learn general

”objectness” characteristics that are well beyond the capabilities of its teacher. These char-

acteristics include good form, closure, smooth contours, as well as contrast with its back-

ground. What the simpler teacher discovers over time, the deep, complex student is able to

learn across several layers of image features at different levels of abstraction. Therefore, our

unsupervised learning model, tested in extensive experiments, brings a valuable contribution

to the unsupervised learning problem in vision research.
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Chapter 3

Unsupervised learning of foreground

object segmentation

Unsupervised learning represents one of the most interesting challenges in computer vision

today. The task has an immense practical value with many applications in artificial intel-

ligence and emerging technologies, as large quantities of unlabeled images and videos can

be collected at low cost. In this paper, we address the unsupervised learning problem in the

context of segmenting the main foreground objects in single images. We propose an unsu-

pervised learning system, which has two pathways, the teacher and the student, respectively.

The system is designed to learn over several generations of teachers and students. At every

generation the teacher performs unsupervised object discovery in videos or collections of

images and an automatic selection module picks up good frame segmentations and passes

them to the student pathway for training. At every generation multiple students are trained,

with different deep network architectures to ensure a better diversity. The students at one it-

eration help in training a better selection module, forming together a more powerful teacher

pathway at the next iteration. Our method achieves top results on three current datasets for

object discovery in video, unsupervised image segmentation and saliency detection.

This chapter is based on the paper ”Unsupervised learn-ing of foreground object segmenta-

tion.” Croitoru, Ioana, Simion-Vlad Bogolin, and Marius Leordeanu. International Journal

of Computer Vision 127.9 (2019): 1279-1302.
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3.1 Introduction

In this thesis, we propose a novel approach to unsupervised learning that successfully tackles

many of the challenges associated with this task. We present a system that is composed

of two main pathways, one that performs unsupervised object discovery in videos or large

image collections - the teacher branch, and the other - the student branch, which learns

from the teacher to segment foreground objects in single images. The unsupervised learning

process could continue over several generations of students and teachers. The key aspects of

our approach, which ensure improvement in performance from one generation to the next,

are: 1) the existence of an unsupervised selection module that is able to pick up good quality

masks generated by the teacher and pass them for training to the next generation students; 2)

training of multiple students with different architectures, able through their diversity to help

train a better selection module for the next iteration and form together with the selection a

more powerful teacher pathway at the next iteration and 3) access to larger quantities of, and

potentially more complex, unlabeled data, which becomes more useful as the generations

become stronger.

In Figure 3 we present a graphic overview of our full system. In the unsupervised training

stage the student network (module A) learns, frame by frame, from an unsupervised teacher

pathway (modules B and C) to produce similar object masks in single images. Module B

discovers objects in images or videos, while module C selects which masks produced by

module B are sufficiently good to be passed to module A for training. Thus, the student

branch tries to imitate the output of module B for the frames selected by module C, having

as input only a single image - the current frame, while the teacher can have access to an

entire video sequence.

3.2 Scientific context

The literature on unsupervised learning follows two directions. 1) One is to learn powerful

features in an unsupervised way and then use them for transfer learning, within a supervised

scheme and in combination with different classifiers, such as SVMs or CNNs ([41]). 2)

The second direction is to discover, at test time, common patterns in unlabeled data, using
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clustering, feature matching or data mining formulations ([21]).

Belonging to the first category and closely related to our work, the approach in [39] proposes

a system in which a deep neural network learns to produce soft object masks from an unsu-

pervised module that uses optical flow cues in video. Recently, researchers have started to

use the natural, spatial and temporal structure in images and videos as supervisory signals

in unsupervised learning approaches that are considered to follow a self-supervised learning

paradigm ([44]). Methods that fall into this category include those that learn to estimate the

relative patch positions in images ([13]) and predict color channels ([29]).

The second approach to unsupervised learning includes methods for image co-segmentation

([22]) and weakly supervised localization ([12]). Earlier methods are based on local features

matching and detection of their co-occurrence patterns ([52]), while more recent ones ([24])

discover object tubes by linking candidate bounding boxes between frames with or without

refining their location. Traditionally, the task of unsupervised learning from image sequences

has been formulated as a feature matching or data clustering optimization problem, which is

computationally very expensive due to its combinatorial nature. There are also other papers

([30]) that tackle unsupervised learning tasks but are not fully unsupervised, using powerful

features that are pre-trained in supervised fashion on large datasets, such as ImageNet ([48])

or VOC2012 ([15]).

With respect to the end goal, our work is more related to the second research direction,

on unsupervised discovery in video. Unlike that research, we do not discover objects at test

time, but during the unsupervised training process, when the student pathway learns to detect

foreground objects.

3.3 System architecture

We propose a genuine unsupervised learning algorithm for foreground object segmentation

that offers the possibility to improve over several iterations. Our method combines in com-

plementary ways multiple modules that are well suited for this task.

Student path (Module A): single-image segmentation. The student pathway (module A in

Figure 3) consists of a deep convolutional network. We test different network architectures,

some of which are commonly used in the recent literature on semantic image segmentation.
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Figure 3: The dual student-teacher system proposed for unsupervised learning to seg-
ment foreground objects in images. It has two pathways: along the teacher branch, an
object discoverer in videos or large image collections (module B) detects foreground ob-
jects. The resulting soft masks are then filtered based on an unsupervised data selection
procedure (module C). The resulting final set of pairs - input image (or video frame) and soft
mask for that particular frame (which acts as an unsupervised label) - are used to train the
student pathway (module A). The whole process can be repeated over several generations.
At each generation several student CNNs are trained, then they collectively contribute to
train a more powerful selection module C (modeled by a deep neural network) and form an
overall more powerful teacher pathway at the next iteration of the overall algorithm.
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We create a small pool of relatively diverse architectures. In total we use 5 different archi-

tectures: LowRes-Net (which produces low resolution segmentation output), FConv (a fully

convolutional network and three variations of U-Nets [45].

Combining several student nets. The student networks with different architectures produce

varied results that differ qualitatively. While the bounding boxes computed from their soft-

masks have similar accuracy, the actual soft-segmentation output looks different. They have

different strengths, while making different kinds of mistakes. Their diversity will be the basis

for creating the teacher pathway at the next generation.

We experimented with the idea of using several student networks, by combining them to

form an ensemble or by letting them produce separate independent segmentations for each

image. In our final system we preferred the latter approach, which is more practical, easier to

implement and gives the freedom of having the students run independently, in parallel with

no need to synchronize their outputs.

When forming an actual ensemble, which we term Multi-Net, the final output is the one

obtained by multiplying pixel-wise the soft-masks produced by each individual student net.

Thus, only positive pixels, on which all nets agree, survive to the final segmentation. The

students at the second iteration are all trained directly on outputs from individual students at

the first iteration, filtered with EvalSeg-Net (the selection module for the second iteration).

Multi-Net is used only to train the unsupervised selection network, EvalSeg-Net.

Teacher (Module B): unsupervised object discovery. For module B in Figure 3 at first

iteration, we use the VideoPCA algorithm, which is a part of the whole system introduced in

[52]. For the second iteration we considered all the outputs from all five students to form the

training labels.

Unsupervised soft masks selection (Module C) The average value of non-zero pixels in the

soft mask is used as a score indicator for each segmented frame at the first iteration.

At the next iterations, we propose an unsupervised way for learning the EvalSeg-Net to es-

timate segmentation quality. Multi-Net provides masks of higher quality as it cancels errors

from individual student nets. Thus, we use the cosine similarity between a given individual

segmentation and the ensemble Multi-Net mask, as a cost for ”goodness” of segmentation.

Having this unsupervised segmentation cost we train the EvalSeg-Net deep neural net.
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Figure 4: Visual comparison between models at each iteration (generation). The Multi-
Net, shown for comparison, represents the pixel-wise multiplication between the five models.
Note the superior masks at the second generation students, with better shapes, fewer holes
and sharper edges. Also note the relatively poorer recall of the ensemble Multi-Net, which
produces smaller, eroded masks.

In Figure 4 we present a visual comparison between students and iterations. We can observe

that at the second iteration the quality of the segmentation improves.

3.4 Experimental analysis

Comparison with state of the art methods

We first performed comparisons with methods specifically designed for object discovery in

video. For that, we choose the YouTube Objects dataset and compare it to the best methods

on this dataset in the literature (Table 2). Evaluations are conducted on both versions of

YouTube Objects dataset, YTOv1 ([40]) and YTOv2.2 ([26]).

3.5 Conclusions

In this thesis, we present a novel and effective approach to learning from large collections

of images and videos, in an unsupervised fashion, to segment foreground objects in single
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Method Aero Bird Boat Car Cat Cow Dog Horse Mbike Train Avg Time Version
[40] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5 N/A
[37] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1 4s

v1

[25] 64.3 63.2 73.3 68.9 44.4 62.5 71.4 52.3 78.6 23.1 60.2 N/A
[19] 76.3 71.4 65.0 58.9 68.0 55.9 70.6 33.3 69.7 42.4 61.1 0.35s
LowRes-Netiter1 77.0 67.5 77.2 68.4 54.5 68.3 72.0 56.7 44.1 34.9 62.1 0.02s
LowRes-Netiter2 83.3 71.4 74.3 69.6 57.4 80.0 77.3 56.7 50.0 37.2 65.7 0.02s
DilateU-Netiter2 83.3 66.2 77.2 70.9 63.4 75.0 80.0 53.3 50.0 44.2 66.4 0.02s
Multi-Netiter2(ensemble) 87.4 72.7 77.2 64.6 62.4 75.0 82.7 56.7 52.9 39.5 67.1 0.15s

[19] 76.3 68.5 54.5 50.4 59.8 42.4 53.5 30.0 53.5 60.7 54.9 0.35s

v2.2

LowRes-Netiter1 75.7 56.0 52.7 57.3 46.9 57.0 48.9 44.0 27.2 56.2 52.2 0.02s
LowRes-Netiter2 79.0 48.2 51.0 62.1 46.9 65.7 55.3 50.6 36.1 52.4 54.7 0.02s
DilateU-Netiter2 84.3 49.9 52.7 61.4 50.3 68.8 56.4 47.1 36.1 56.7 56.4 0.02s
Multi-Netiter2(ensemble) 83.1 53.2 54.3 63.7 50.6 69.2 61.0 51.1 37.2 48.7 57.2 0.15s

Table 2: Results on Youtube Objects dataset, versions v1 ([40]) and v2.2 ([26]). We
achieve state of the art results on both versions. Please note that the baseline LowRes-Net
already achieves top results on v1, while being close to the best on v2.2. We present results
of the top individual models and the ensemble and also keep the baseline LowRes-Net at
both iterations, for reference. For each column we highlight with bold the best model and in
blue italic the cases where the ensemble is better or equal.

images. We present a relatively general algorithm for this task, which offers the possibility

of learning several generations of students and teachers. We demonstrate in practice that the

system improves its performance over the course of two generations. Our system is one of

the first in the literature that learns to detect and segment foreground objects in images in an

unsupervised fashion, with no pre-trained features given or manual labeling, while requiring

only a single image at test time.

The convolutional networks trained along the student pathway are able to learn general ”ob-

jectness” characteristics, which include good form, closure, smooth contours, as well as

contrast with the background. What the simpler initial VideoPCA teacher discovers over

time, the deep, complex student is able to learn across several layers of image features at

different levels of abstraction.
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Chapter 4

TEACHTEXT: CrossModal Generalized

Distillation for Text-Video Retrieval

In recent years, considerable progress on the task of text-video retrieval has been achieved

by leveraging largescale pretraining on visual and audio datasets to construct powerful video

encoders. By contrast, despite the natural symmetry, the design of effective algorithms for

exploiting large-scale language pretraining remains under-explored. In this work, we are the

first to investigate the design of such algorithms and propose a novel generalized distillation

method, TEACHTEXT, which leverages complementary cues from multiple text encoders

to provide an enhanced supervisory signal to the retrieval model. Moreover, we extend our

method to video side modalities and show that we can effectively reduce the number of

used modalities at test time without compromising performance. Our approach advances the

state of the art on several video retrieval benchmarks by a significant margin and adds no

computational overhead at test time. Last but not least, we show an effective application

of our method for eliminating noise from retrieval datasets. Code and data can be found at

https://www.robots.ox.ac.uk/˜vgg/ research/teachtext/.

This chapter is based on ”TEACHTEXT: CrossModal Generalized Distil-lation for Text-

Video Retrieval.” Croitoru, Ioana, Simion-Vlad Bogolin, Marius Leordeanu, Hailin Jin, An-

drew Zisserman, Samuel Albanie and Yang Liu. International Conference on Computer Vi-

sion. 2021.
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Figure 5: Distilling the knowledge from multiple text encoders for stronger text-video
retrieval. Prior works [34, 31, 16] have shown the considerable benefit of transitioning from
video encoders that ingest a single modality (left) to multi-modal video encoders (centre).
In this work, we show that retrieval performance can be further significantly enhanced by
learning from multiple text encoders through the TEACHTEXT algorithm which imposes no
additional cost during inference. Text-to-video retrieval performance gain (geometric mean
of R1-R5-R10) is reported for a [31] model as well as for our method on the MSR-VTT [57]
dataset.

4.1 Introduction

The focus of this work is text-video retrieval—the task of identifying which video among a

pool of candidates best matches a natural language query describing its content. Video search

has a broad range of applications across domains such as wildlife monitoring, security, in-

dustrial process monitoring and entertainment. Moreover, as humanity continues to produce

video at ever-increasing scale, the ability to perform such searches effectively and efficiently

takes on critical commercial significance to video hosting platforms such as YouTube.

A central theme of recently proposed retrieval methods has been the investigation of how to

best use multiple video modalities to improve performance. In particular, architectures based

on mixtures-of-experts [34, 31] and multi-modal transformers [16] have shown the benefit

of making use of diverse sets of pre-trained models for related tasks (such as image classi-

fication, action recognition and ambient sound classification) as a basis for video encoding

during training and testing.

In this work, we explore whether commensurate gains could be achieved by leveraging mul-
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tiple text embeddings learned on large-scale written corpora. Different from video embed-

dings using multiple modalities and pretraining tasks, it is less obvious that there is sufficient

diversity among collections of text embeddings to achieve a meaningful boost in perfor-

mance. In fact, our inspiration stems from a careful investigation of the performance of

different text embeddings across a range of retrieval benchmarks. Strikingly, we observe not

only that there is considerable variance in performance across text embeddings, but also that

their ranking is not consistent, strongly supporting the idea of using multiple text embed-

dings.

Motivated by this finding, we propose a simple algorithm, TEACHTEXT, to effectively ex-

ploit the knowledge captured by collections of text embeddings. Our approach requires a

“student” model to learn from a single or multiple “teacher” retrieval models with access to

different text embeddings by distilling their text-video similarity matrices into an enhanced

supervisory signal. As shown in Fig. 5, TEACHTEXT is capable of delivering a signifi-

cant performance gain. Moreover, this gain is complementary to that of adding more video

modalities to the video encoder but importantly, unlike the addition of video modalities, does

not incur additional computational cost during inference.

In Fig. 5 we highlight that the gain for a model that uses multiple text embeddings (last

bar) is comparable with the gain of a model that uses multiple video modalities (middle

bar). The first bar represents the CE [31] model trained with one video embedding, namely

Obj(IG). The second bar represents a CE model using 7 video modalities both for inference

and training. In the third and final bar of the chart we present the performance of using

three different text embeddings with TEACHTEXT at training, while using only one text

embedding at inference time.

Our main contributions are: (1) We propose the TEACHTEXT algorithm, which leverages

the additional information given by the use of multiple text encoders; (2) We show that

directly learning the retrieval similarity matrix between the joint query video embeddings is

an effective generalized distillation technique for this task (and we compare our approach to

alternatives among prior work such as uni-modal relationship distillation [38]); (3) We show

an application of our approach in eliminating noise from modern training datasets for the

text-video retrieval task; (4) We demonstrate the effectiveness of our approach empirically,

achieving state of the art performance on six text-video retrieval benchmarks.
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4.2 Related Work

Video retrieval methods. The task of indexing video content to enable retrieval has a rich

history in computer vision—sophisticated systems have been developed to find specific ob-

jects [50], actions [28] and near-duplicates [9]. In this work, we focus on the task of re-

trieving content that matches a given natural language description. For this particular task,

there has been considerable interest in developing cross-modal methods that employ a joint-

embedding space for text queries and video content [1]. These joint video-text embeddings,

which aim to map videos and text descriptions into a common space such that matching

video and text pairs are close together, form an attractive computational model for tackling

this problem, since they allow for efficient indexing (although hierarchical embeddings have

also been investigated [7]). Recently, two key themes have emerged towards improving the

quality of these embeddings. First, large-scale weakly supervised pretraining methods [35]

have sought to expand their training data by exploiting the speech contained in the videos

themselves as a supervisory signal. Second, the integration of multiple modalities (which

has long been considered important for semantic indexing [51]) has been shown to yield sig-

nificant gains in performance [34, 31]. We focus on candidates from this latter theme as a

basis for investigating our approach.

Knowledge Distillation/Privileged Information. The purpose of knowledge distillation

is to transfer knowledge from one model (teacher) to another model (student). This idea

was originally introduced in the context of decision tree simplification [4] and model com-

pression [5], and later extended by [20] who formalised this knowledge transfer as the

temperature-parameterised process of knowledge distillation. The concept was further gener-

alised in the unifying framework of generalized distillation [33] for learning with privileged

information [54] (via similarity control and knowledge transfer [53]), together with knowl-

edge distillation [20]. Our approach distills knowledge of the similarities between video and

text samples into the student and therefore represents a form of generalized distillation.
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Figure 6: TEACHTEXT teacher-student framework overview. Given a batch of input
videos and queries in natural language during training, the student model, M (left) and
teacher models T1, . . . ,TN (right) each produce similarity matrices (visualised as square
grids). The similarity matrix produced by M is encouraged to match the aggregated ma-
trices of the teachers through the distillation loss Ld in addition to the retrieval loss Lr.
Note that both the student and teachers ingest the same video embeddings (VE), but employ
different text embeddings (TES for the student, TE1, . . . ,TEN for the teachers). At test time,
the teacher models are discarded.

4.3 Method

TEACHTEXT algorithm. We propose the TEACHTEXT algorithm which seeks to exploit

cues from multiple text embeddings. An overview of our approach is provided in Fig. 6. In

the initial phase of the algorithm, we train a collection of teacher models {Tk : k ∈{1, . . . ,N}}

for the text-video retrieval task. The teachers share the same architecture but each model Tk

uses a different text embedding as input (extracted using a pre-trained text encoder TEk). In

the second phase the parameters of the teachers are frozen. We then proceed by sampling

a batch of B pairs of videos and captions and computing a corresponding similarity matrix

Sk ∈ RB×B for each teacher Tk (Fig. 6 right). These N similarity matrices are then combined

with an aggregation function, Φ : RN×B×B → RB×B, to form a single supervisory similarity

matrix (Fig. 6, centre-right). Concurrently, the batch of videos and captions are likewise

processed by the student model, M, which produces a further similarity matrix, Ss ∈ RB×B.

Finally, in addition to the standard retrieval loss, a distillation loss, Ld , encourages the Ss to

lie close to the aggregate Φ(S1, . . . ,SN). During inference, the teacher models are discarded

and the student model M requires only a single text embedding.

Student model. A key advantage of our approach is that it is agnostic to the architectural

form of the student and teachers, and thus the student (and teachers) can employ any method

from the current literature.
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Model R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Dual[14] 7.7 22.0 31.8 32.0
HGR[7] 9.2 26.2 36.5 24.0

MoEE[34] 11.1±0.1 30.7±0.1 42.9±0.1 15.0±0.0
CE[31] 11.0±0.0 30.8±0.1 43.3±0.3 15.0±0.0
TT-CE 11.8±0.1 32.7±0.1 45.3±0.1 13.0±0.0

TT-CE+ 15.0±0.1 38.5±0.1 51.7±0.1 10.0±0.0

Table 3: MSR-VTT full split: Comparison to state of the art.

Teacher models The teacher models use the same architecture as the student model. Con-

cretely, we create a pool of multiple teachers, each using a different pre-trained text embed-

ding as input. The candidate text embeddings we consider in this work are: mt grovle [6],

openai-gpt [42], gpt2-large [43], gpt2-xl [43], w2v [36]. In this way, we obtain a set of up to

five models that form the teachers Tk, k = 1..5 used by TEACHTEXT.

4.4 Experimental setup

Comparison to prior work. As it can be seen in Tab.3 our approach is effective and achieves

state of the art results. All methods are trained for the retrieval task using only the samples

from the target datasets. Moreover, in order to be as fair as possible, in each comparison we

included the results of our TEACHTEXT (abbreviated TT in the table) applied also to the best

existing method for that dataset.

4.5 Conclusion

In this work, we present a novel algorithm TEACHTEXT for the text-video retrieval task. We

use a teacher-student paradigm where a student learns to leverage the additional information

given by one or multiple teachers, sharing the architecture, but each using a different pre-

trained text embedding. In this way, we achieve state of the art results on six benchmarks.
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Chapter 5

Conclusions

In this thesis we have shown how generalized distillation can be applied on different task

such as object segmentation, object detection and text-video retrieval. For the unsupervised

scenario we considered the tasks of object segmentation and object detection and shown that

the distillation technique can successfully be applied to learn from an unsupervised teacher

which automatically generates labels. Moreover, we proved that with a simple selection

module the noisy labels can be filtered which improved the results. Furthermore, we shown

that we can form ensembles of multiple students to improve the results. These ensembles can

form a new teacher in the second iteration to boost the performance of new trained students.

We demonstrate in practice that the system improves its performance over the course of two

generations. The presented system is one of the first in the literature that learns to segment

foreground objects in images in an unsupervised way where no manually annotated labels

where used.

For the supervised scenario we considered the task of text video retrieval and shown that

using generalized distillation you can learn from teachers trained with different pre-trained

text embedding and improve the performance. Using different pre-trained text embeddings,

the performance varies drastically, suggesting the presence of complementary information.

We took advantage of this complementary information through generalized distillation and

trained students that learn from one or multiple teachers trained with various pre-trained text

embeddings.
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