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ABSTRACT

In this presentation we give an answer to the following questions:

@ In which conditions can a neural network interpolate a data set?
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ABSTRACT

In this presentation we give an answer to the following questions:
@ In which conditions can a neural network interpolate a data set?
@ How many solutions do we have for our interpolation problem?

o Can we give a description for the Hessian eigenspectrum of the loss
function evaluated at a global minima point?
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THE MACHINE LEARNING PROBLEM

@ A mathematical formulation for the machine learning problem is the
following. Suppose we have a data set (x,-,y,-)i:m sampled
independently after a distribution p, where x; are the input data and
y; are the associated labels. In this context, the problem is to
determine a function f : R? — R such that we have y; = f(x;).
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THE MACHINE LEARNING PROBLEM

@ A mathematical formulation for the machine learning problem is the
following. Suppose we have a data set (x,-,y,-)i:m sampled
independently after a distribution p, where x; are the input data and
y; are the associated labels. In this context, the problem is to
determine a function f : R? — R such that we have y; = f(x;).

e Finding such a function is done in a familiy of functions parametrized
after a parameter # € R¥. Finding a good fy means that we have to
define a loss function L(fy(x), y) which measures how far is fy(x) of y.

@ In principle we want to minimise the expected value E,[L(fy(x), y)].
Unfortunately, the distribution g is not known, but instead we can
aproximate our expected value with the empirical version
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FEEDFORWARD NEURAL NETWORKS
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FEEDFORWARD NEURAL NETWORKS

@ A neural network, with activation function o, can be described in
matrix form as

fw7b(X) = W/O( Wlfla(. . .0(W1X — bl) .. ) — blfl) — b/7

where W; € M, xn,(R), bj € R" and ng = p,n; = 1.
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FEEDFORWARD NEURAL NETWORKS

@ A neural network, with activation function o, can be described in
matrix form as

fw7b(X) = W/O( Wlfla(. . .0(W1X — bl) .. ) — blfl) — b/7

where W; € M, xn,(R), bj € R" and ng = p,n; = 1.
@ Moreover, we use the convention that o applied on a vector is simply
the component-wise evaluation:

o(vi,vo,...,v) = (o(v1),0(w),...,0(w)).
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FEEDFORWARD NEURAL NETWORKS

Let o € C(R). We define the set M(c) to be
M(o) :=span{o(w-x—b): weR", beR}.

We are interested for which o, M(0) is dense in C(R"), in the topology of
uniform convergence on compacts.

THEOREM 1([PIN99], THEOREM 3.1)

Let 0 € C(R). Then M(o) is dense in C(R"), in the topology of uniform
convergence on compacts, if and only if o is not a polynomial function.
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THE INTERPOLATION PROBLEM

A consequence of Theorem 1 is that neural networks, with a continuous
activation function and not a polynomial function, can interpolate any
data set. One of our original results is a generelisation of this consequence
for activation functions which are locally integrable and not polynomials.

THEOREM 2

Let (x;,y;)i:m be a data set with x; € RP, y; € R, and the x; are distinct.
Assume that the activation function o is locally integrable and not a
polynomial function of degree less than d — 2 almost everywhere. Then, in
the familiy a feedforward neural nets of / hidden layers, with last hidden
layer h > d, and remaining hidden layers of any width, we can find one
that interpolates our data set, i.e. f,, p(Xx;) = y; for all /.
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THE INTERPOLATION PROBLEM

SKETCH OF PROOF
e W.L.O.G., we can assume that our neural net has only one hidden
layer and the activation function o is C°°. The interpolation problem
is reduced in finding (a;, bi, m;);_14 such that

d
Z ij'(ajt,' — bj) =VYi,
Jj=1

for any i.

e The above system of equations has solutions if and only if o(at; — b)
(with respect to a and b) are linearly independent.
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THE INTERPOLATION PROBLEM

SKETCH OF PROOF

e Suppose that our d functions are linearly dependent. This means that
we can find nontrivial coefficients (c;),_7 such that

d
> cio(at; — b) =0. (1)
i=1

e If we differentiate k times relation (1) with respect to a, we get

d
Z c,-t,ka(k)(at,- = b) =0.
i=1
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THE INTERPOLATION PROBLEM

SKETCH OF PROOF

e Since o is not a polynomial of degree less or equal than d — 2, for any
k =0,d — 1 we can find by € R such that o(¥)(—by) # 0. Taking
a =0 and b = by for each equation, we get a system of d equations

Z Gtk =0, (2)

for each k = 0,d — 1. Since the matrix system of (2) is a
Vandermonde matrix, and the t; are distinct, we get that all ¢; must
be equal to 0.
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THE INTERPOLATION PROBLEM

If o is a polynomial, the interpolation problem depends very much on the
x; and the degree of 0. More precisely, we have the following result
PROPOSITION 1

Let (xj, yi);,_1g be a data set with x; € RP,y; € R, and the x; are distinct.

If o is a polynomial of degree m, and if d > > ;7 ; (p”;k), then the
interpolation problem is not possible
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THE LOCUS OF GLOBAL MINIMA

In this section we take £ to be the mean squared loss function, i.e.

£(o) =2

Q|

d
> () - )°

Let M = £71(0) the locus of global minima. By Theorem 2, M is not the
empty set. Moreover, if fy is of class C°°, then we have the following
result.

PROPOSITION 2 ([C0018], THEOREM 2.1)

The set M = £71(0) is generically (that is, possibly after an arbitrarily
small change to the data set) a smooth n — d dimensional submanifold
(possibly empty) of R”.
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THE LOCUS OF GLOBAL MINIMA

By Theorem 2 and Proposition 2 we have the following result

THEOREM 3

Let (x;,yi);,_14 be a data set with x; € RP,y; € R, and the x; are distinct.
Assume that the activation function o is C> and not a polynomial of
degree less than d — 2. Let £ be the mean squared loss function of a
feedforward neural network with / hidden layers, and with the last one of
width h > d. Then, the set M = £71(0) is generically (that is, possibly
after an arbitrarily small change to the data set) a smooth n — d
dimensional submanifold nonempty of R".
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THE HESSIAN FOR THE GLOBAL MINIMA

In this section, we give a description of the eigenvalues of the Hessian of
the loss function £ evaluated at a point m € M = £71(0). Let
fi(0) := fy(xi) — yi. We have the following result

PROPOSITION 3([C0018],PROPOSITION 2.3)

Let M = £~1(0) = (| M;, where M; = f*(0), be the locus of global
minima of L. If each M; is a smooth codimension 1 submanifold of R”, M
is nonempty, and the M; intersect transversally at every point of M, then
at every point m € M, the Hessian evaluated at m has d positive
eigenvalues and n — d eigenvalues equal to 0.
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THE HESSIAN FOR THE GLOBAL MINIMA

Consider now a feedforward neural net as in Theorem 3. We also assume
that the activation function o is strictly monotone, which is equivalent to
the nonvanishing of ¢’. Then we have the following Corrolary of
Proposition 3 :

CORROLARY 1

Let £ be the mean square loss function of a neural net as described above.
Then, M is nonempty, and the Hessian of £, evaluated at any point

m € M = £71(0) has d positive eigenvalues and n — d eigenvalues equal
to 0.
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THE HESSIAN FOR THE GLOBAL MINIMA

SKETCH OF PROOF

@ The nonemptyness of M follows from Theorem 2. Each M; is smooth
of codimension 1, again by Theorem 2 for d = 1.
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THE HESSIAN FOR THE GLOBAL MINIMA

SKETCH OF PROOF
@ The nonemptyness of M follows from Theorem 2. Each M; is smooth
of codimension 1, again by Theorem 2 for d = 1.

@ We assume that the intersection at m is not transversal. This means
that that the tangent space T,,M; = T,,M; for all i. From our
notations, we have that

fi(w, b) = Wio(Wi_10(...0(Wix; — b1)...) — bi_1) — b — yi,
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THE HESSIAN FOR THE GLOBAL MINIMA

SKETCH OF PROOF
@ The equality of the tangent spaces at m is equivalent to the
collinearity of the normal vectors, i.e. Vfi(w, b) = a;Vfi(w,b) for
some «; € R. If we compute the partial derivatives with respect to
Wh, b1, and by, we get

o of;

8W1(W’ ):—abl(w,b)@)x,-
of; .
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THE HESSIAN FOR THE GLOBAL MINIMA

SKETCH OF PROOF
@ From the partial derivative with respect to by, we get that a; = 1 for

all i. Thus,
of; 87‘
aT)l(W’ b) ==~ (W b)
of; 81‘
a—bl(w, b) ® x; = =3, L (w, b) @ X

@ Since ¢’ is nonvanishing, this implies that any partial derivative of f;
with respect to all parameters of by are different from 0. So from the
last two relations, we get that x; = x; for all 7, j, which is a
contradiction with our assumption of our data set.
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FUTURE RESEARCH DIRECTIONS

o If we consider a neural network with the last hidden layer of width at
most d — 1, then do we still have the interpolation property?
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FUTURE RESEARCH DIRECTIONS

o If we consider a neural network with the last hidden layer of width at
most d — 1, then do we still have the interpolation property?

@ In which conditions the algorithms gradient descent and stochastic
gradient descent converge to the locus of global minima?
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THANK YOU!
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