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Abstract

In this presentation we give an answer to the following questions:

In which conditions can a neural network interpolate a data set?

How many solutions do we have for our interpolation problem?

Can we give a description for the Hessian eigenspectrum of the loss
function evaluated at a global minima point?
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The machine learning problem

A mathematical formulation for the machine learning problem is the
following. Suppose we have a data set (xi , yi )i=1,N sampled
independently after a distribution µ, where xi are the input data and
yi are the associated labels. In this context, the problem is to
determine a function f : Rp → R such that we have yi = f (xi ).

Finding such a function is done in a familiy of functions parametrized
after a parameter θ ∈ Rk . Finding a good fθ means that we have to
define a loss function L(fθ(x), y) which measures how far is fθ(x) of y .

In principle we want to minimise the expected value Eµ[L(fθ(x), y)].
Unfortunately, the distribution µ is not known, but instead we can
aproximate our expected value with the empirical version

L(θ) =
1

N

N∑
i=1

L(fθ(xi ), yi )
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Feedforward neural networks
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Feedforward neural networks

A neural network, with activation function σ, can be described in
matrix form as

fw ,b(x) = Wlσ(Wl−1σ(. . . σ(W1x − b1) . . .)− bl−1)− bl ,

where Wi ∈Mni−1×ni (R), bi ∈ Rni and n0 = p, nl = 1.

Moreover, we use the convention that σ applied on a vector is simply
the component-wise evaluation:

σ(v1, v2, . . . , vk) = (σ(v1), σ(v2), . . . , σ(vk)).
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Feedforward neural networks

Let σ ∈ C (R). We define the set M(σ) to be

M(σ) := span{σ(w · x − b) : w ∈ Rn, b ∈ R}.

We are interested for which σ, M(σ) is dense in C (Rn), in the topology of
uniform convergence on compacts.

Theorem 1([Pin99],Theorem 3.1)

Let σ ∈ C (R). Then M(σ) is dense in C (Rn), in the topology of uniform
convergence on compacts, if and only if σ is not a polynomial function.
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The Interpolation Problem

A consequence of Theorem 1 is that neural networks, with a continuous
activation function and not a polynomial function, can interpolate any
data set. One of our original results is a generelisation of this consequence
for activation functions which are locally integrable and not polynomials.

Theorem 2

Let (xi , yi )i=1,d be a data set with xi ∈ Rp, yi ∈ R, and the xi are distinct.
Assume that the activation function σ is locally integrable and not a
polynomial function of degree less than d − 2 almost everywhere. Then, in
the familiy a feedforward neural nets of l hidden layers, with last hidden
layer h ≥ d , and remaining hidden layers of any width, we can find one
that interpolates our data set, i.e. fw ,b(xi ) = yi for all i .
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The Interpolation Problem

Sketch of proof

� W.L.O.G., we can assume that our neural net has only one hidden
layer and the activation function σ is C∞. The interpolation problem
is reduced in finding (ai , bi ,mi )i=1,d such that

d∑
j=1

mjσ(aj ti − bj) = yi ,

for any i .

� The above system of equations has solutions if and only if σ(ati − b)
(with respect to a and b) are linearly independent.
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The Interpolation Problem

Sketch of proof

� Suppose that our d functions are linearly dependent. This means that
we can find nontrivial coefficients (ci )i=1,d such that

d∑
i=1

ciσ(ati − b) = 0. (1)

� If we differentiate k times relation (1) with respect to a, we get

d∑
i=1

ci t
k
i σ

(k)(ati − b) = 0.
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The Interpolation Problem

Sketch of proof

� Since σ is not a polynomial of degree less or equal than d − 2, for any
k = 0, d − 1 we can find bk ∈ R such that σ(k)(−bk) 6= 0. Taking
a = 0 and b = bk for each equation, we get a system of d equations

d∑
i=1

ci t
k
i = 0, (2)

for each k = 0, d − 1. Since the matrix system of (2) is a
Vandermonde matrix, and the ti are distinct, we get that all ci must
be equal to 0.
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The Interpolation Problem

If σ is a polynomial, the interpolation problem depends very much on the
xi and the degree of σ. More precisely, we have the following result

Proposition 1

Let (xi , yi )i=1,d be a data set with xi ∈ Rp, yi ∈ R, and the xi are distinct.

If σ is a polynomial of degree m, and if d >
∑m

k=1

(p+k
k

)
, then the

interpolation problem is not possible
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The locus of global minima

In this section we take L to be the mean squared loss function, i.e.

L(θ) =
1

d

d∑
i=1

(fθ(xi )− yi )
2

Let M = L−1(0) the locus of global minima. By Theorem 2, M is not the
empty set. Moreover, if fθ is of class C∞, then we have the following
result.

Proposition 2 ([Coo18],Theorem 2.1)

The set M = L−1(0) is generically (that is, possibly after an arbitrarily
small change to the data set) a smooth n − d dimensional submanifold
(possibly empty) of Rn.
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The locus of global minima

By Theorem 2 and Proposition 2 we have the following result

Theorem 3

Let (xi , yi )i=1,d be a data set with xi ∈ Rp, yi ∈ R, and the xi are distinct.
Assume that the activation function σ is C∞ and not a polynomial of
degree less than d − 2. Let L be the mean squared loss function of a
feedforward neural network with l hidden layers, and with the last one of
width h ≥ d . Then, the set M = L−1(0) is generically (that is, possibly
after an arbitrarily small change to the data set) a smooth n − d
dimensional submanifold nonempty of Rn.
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The Hessian for the global minima

In this section, we give a description of the eigenvalues of the Hessian of
the loss function L evaluated at a point m ∈ M = L−1(0). Let
fi (θ) := fθ(xi )− yi . We have the following result

Proposition 3([Coo18],Proposition 2.3)

Let M = L−1(0) =
⋂

Mi , where Mi = f −1
i (0), be the locus of global

minima of L. If each Mi is a smooth codimension 1 submanifold of Rn, M
is nonempty, and the Mi intersect transversally at every point of M, then
at every point m ∈ M, the Hessian evaluated at m has d positive
eigenvalues and n − d eigenvalues equal to 0.
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The Hessian for the global minima

Consider now a feedforward neural net as in Theorem 3. We also assume
that the activation function σ is strictly monotone, which is equivalent to
the nonvanishing of σ′. Then we have the following Corrolary of
Proposition 3 :

Corrolary 1

Let L be the mean square loss function of a neural net as described above.
Then, M is nonempty, and the Hessian of L, evaluated at any point
m ∈ M = L−1(0) has d positive eigenvalues and n − d eigenvalues equal
to 0.
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The Hessian for the global minima

Sketch of proof

The nonemptyness of M follows from Theorem 2. Each Mi is smooth
of codimension 1, again by Theorem 2 for d = 1.

We assume that the intersection at m is not transversal. This means
that that the tangent space TmM1 = TmMi for all i . From our
notations, we have that

fi (w , b) = Wlσ(Wl−1σ(. . . σ(W1xi − b1) . . .)− bl−1)− bl − yi ,
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The Hessian for the global minima

Sketch of proof

The equality of the tangent spaces at m is equivalent to the
collinearity of the normal vectors, i.e. ∇fi (w , b) = αi∇f1(w , b) for
some αi ∈ R. If we compute the partial derivatives with respect to
W1, b1, and bl , we get

∂fi
∂W1

(w , b) =− ∂fi
∂b1

(w , b)⊗ xi

∂fi
∂bl

(w , b) =− 1
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The Hessian for the global minima

Sketch of proof

From the partial derivative with respect to bl , we get that αi = 1 for
all i . Thus,

∂fi
∂b1

(w , b) =
∂fj
∂b1

(w , b)

∂fi
∂b1

(w , b)⊗ xi =
∂fj
∂b1

(w , b)⊗ xj

Since σ′ is nonvanishing, this implies that any partial derivative of fi
with respect to all parameters of b1 are different from 0. So from the
last two relations, we get that xi = xj for all i , j , which is a
contradiction with our assumption of our data set.
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Future research directions

If we consider a neural network with the last hidden layer of width at
most d − 1, then do we still have the interpolation property?

In which conditions the algorithms gradient descent and stochastic
gradient descent converge to the locus of global minima?
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THANK YOU!
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