HEAT KERNEL ASYMPTOTICS FOR REAL POWERS OF LAPLACIANS

Cipriana Anghel

Institute of Mathematics of the Romanian Academy

Doctoral Research Days Workshop 11-12.10.2022

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

11 OCTOBER 2022 1/29

CONTEXT

- Let (*M*, *g*) be a compact, oriented, Riemannian manifold of dimension *n*.
- Consider $\Delta = d^*d : \mathcal{C}^{\infty}(M, \mathbb{C}) \longrightarrow \mathcal{C}^{\infty}(M, \mathbb{C}).$
- We are interested in p_t , the heat kernel of Δ .

THEOREM

Since M is compact and Δ is self-adjoint, the spectrum of Δ is discrete and increases towards ∞ . Moreover, there exists a basis of C^{∞} functions $\{\phi_j\}_{j\in\mathbb{N}}$ such that $\Delta\phi_j = \lambda_j\phi_j$.

THE HEAT OPERATOR

• We define the *heat operator* $e^{-t\Delta}$ on the basis:

$$\boldsymbol{e}^{-t\Delta}\phi_j = \boldsymbol{e}^{-t\lambda_j}\phi_j.$$

- $e^{-t\Delta}$ is an integral operator: $(e^{-t\Delta}f)(x) = \int_M p_t(x, y)f(y)dy$.
- $\rho \in \mathcal{C}^{\infty}((0,\infty) \times M \times M, \mathbb{C}).$
- It verifies the heat equation:

$$\begin{cases} (\partial_t + \Delta_x) p_t(x, y) = 0.\\ \lim_{t \to 0} e^{-t\Delta} f = f, \text{ for any } f \in \mathcal{C}^{\infty}(M), \text{ in } \| \cdot \|_0. \end{cases}$$

THEOREM (MINAKSHISUNDARAM-PLEIJEL)

The heat kernel p_t has the following small-time asymptotic expansion near the diagonal:

$$p_t(x,y) \stackrel{t > 0}{\sim} (4\pi t)^{-n/2} e^{\frac{-d(x,y)^2}{4t}} \sum_{j=0}^{\infty} t^j \Psi_j(x,y),$$

where d(x, y) is the geodesic distance between x and y, and the Ψ_j 's are recursively defined as solutions of certain ODE's along geodesics.

THEOREM (MINAKSHISUNDARAM-PLEIJEL)

The heat kernel p_t has the following small-time asymptotic expansion along the diagonal:

$$p_t(x,x) \stackrel{t \searrow 0}{\sim} t^{-n/2} \sum_{j=0}^{\infty} t^j a_j(x,x),$$

where $a_j : M \longrightarrow \mathbb{C}$ are C^{∞} functions. Moreover, $a_0(x, x) = 1$, and the a_j 's are related by a recurrence formula.

 This means that if we truncate the sum at the N-th term, the difference is of order O (t^{N+1-n/2}):

$$\left\| p_t(x,x) - t^{-n/2} \sum_{j=0}^N t^j a_j(x,x) \right\|_0 \le C \cdot t^{N+1-n/2}.$$

• Also true when we take derivatives in t.

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

The coefficients in the asymptotic of p_t

• The a_i 's depend only on g and its derivatives \Rightarrow they are LOCAL.

•
$$a_0 = 1, a_1 = c \cdot r_M$$
.

MOTIVATION

• The Atiyah-Singer index theorem:

$$\operatorname{ind}(\mathsf{D}) = (2\pi i)^{-n/2} \int_{M} \hat{A}(M).$$

Weyl's law:

$$N(\lambda) \overset{\lambda \to \infty}{\sim} rac{\operatorname{vol}(M)}{(4\pi)^{n/2} \cdot \Gamma\left(rac{n}{2}+1
ight)} \lambda^{n/2}.$$

DEFINITION

For $\Re s > 0$, the *Gamma function* is defined as:

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt.$$

Remark: Γ extends meromorphically to $\mathbb C$ with simple poles at s = 0, -1, ...

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

PART OF THE BIGGER PICTURE

The Heat Operator eta The heat kernel Pt $P_{t}(x_{j}x) \stackrel{t}{\sim} \stackrel{r}{t} \stackrel{e}{t} \stackrel{e}{\sim} \stackrel{e}{\sum} t^{i} \cdot a_{j}(x_{j}x)$ Locally ble.

11 October 2022 8/29

The operator $e^{-t\Delta^r}$

• We study the operator $e^{-t\Delta^r}$, $r \in (0, 1)$, defined on the basis as:

$$\boldsymbol{e}^{-t\Delta^r}\phi_j = \boldsymbol{e}^{-t\lambda_j^r}\phi_j.$$

- Important: $\lambda_j \ge 0!$
- Let h_t be the Schwartz kernel of $e^{-t\Delta^r}$.

The asymptotic expansion of h_t along the diagonal

THEOREM (-,'22)

If *n* is even, the small-time asymptotic of h_t along the diagonal is the following:

$$h_t(x,x) \stackrel{t \geq 0}{\sim} \sum_{j=0}^{n/2} t^{-\frac{n-2j}{2r}} B_{-\frac{n-2j}{2r}}(x) + \sum_{\substack{j=1\\rj \notin \mathbb{N}}}^{\infty} t^j A_j(x).$$

•
$$B_{-\frac{n-2j}{2r}}(x) = \frac{1}{r} \frac{\Gamma(\frac{n-2j}{2r})}{\Gamma(\frac{n-2j}{2})} \cdot a_j(x,x) \Rightarrow \text{LOCAL!}$$

• What happens with the A_j's? Are they also local?!

C.ANGHEL (IMAR)

11 OCTOBER 2022 10/29

The asymptotic expansion of h_t along the diagonal

THEOREM

if *n* is odd, $r = \frac{\alpha}{\beta}$ is rational, and the denominator β is even. In that case,

$$h_{t|_{\text{Diag}}} \stackrel{t > 0}{\sim} \sum_{j=0}^{(n-1)/2} t^{-\frac{n-2j}{2r}} \cdot A_{-\frac{n-2j}{2r}} + \sum_{\substack{j=1\\ \alpha \nmid 2j+1}}^{\infty} t^{\frac{2j+1}{2r}} \cdot A_{\frac{2j+1}{2r}} + \sum_{\substack{j=1\\ \alpha \nmid 2j+1}}^{\infty} t^{j} \cdot A_{j} + \sum_{\substack{l=1\\ l \text{ odd}}}^{\infty} t^{l\frac{\beta}{2}} \log t \cdot B_{l}.$$
(1)

Similar expansions are proved in all the other cases.

C.ANGHEL	(IMAR)	
----------	--------	--

- Duistermaat and Guillemin studied e^{-tP} , where *P* is a scalar positive elliptic self-adjoint pseudodifferential operator of positive *integer* order.
- Grubb studied e^{-tP} in the context of fiber bundles, when the order of *P* is positive, not necessary an integer.
- C. Bär and S. Moroianu studied the Schwartz kernel of e^{-tΔ^{1/m}}, m ∈ N, where Δ is a strictly positive self-adjoint generalised Laplacian.

THE BIGGER PICTURE

HEAT KERNEL ASYMPTOTICS

THE IDEA

HEAT KERNEL ASYMPTOTICS

< ロ > < 同 > < 三 > < 三 >

AN UNEXPECTED GUEST

• Consider the Zeta-Epstein function:

$$\zeta_n(\boldsymbol{s}) := \sum_{(k_1,...,k_n) \in \mathbb{Z}^n \setminus \{0\}} \left(k_1^2 + ... + k_n^2\right)^{-\boldsymbol{s}} = \sum_{k \in \mathbb{N}^*} k^{-\boldsymbol{s}} R_n(k),$$

where $R_n(k)$ is the number of representations of k as a sum of n squares.

- Remark that $\zeta_1(s) = 2\zeta(2s)$.
- One can prove that ζ_n is absolutely convergent for ℜs > ⁿ/₂, and it extends meromorphically to ℂ with "trivial zeros" at s = −1, −2, ...
- Functional equation:

$$\pi^{-s}\zeta_n(s)\Gamma(s) = \pi^{s-n/2}\zeta_n\left(\frac{n}{2}-s\right)\Gamma\left(\frac{n}{2}-s\right).$$

AN UNEXPECTED GUEST

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

11 October 2022 16/29

THE BIGGER PICTURE

HEAT KERNEL ASYMPTOTICS

THE NON-LOCAL COEFFICIENTS

- Claim: $A_j(x,x) = \frac{(-1)^j}{j!} q_{rj}(x,x)$ for $rj \notin \mathbb{N}$ are non-local!
- Strategy: For each dimension *n* we give a manifold and a Laplacian.

THE NON-LOCAL COEFFICIENTS

EXAMPLE

Take $S^1 = \mathbb{R}/(2\pi\mathbb{Z})$, $g = d\theta^2$, and Δ . Then for $\Re s > \frac{1}{2}$ (actually for all $s \in \mathbb{C}$),

$$q^{\Delta}_{-s}(heta, heta) = \left(rac{1}{2\pi}\sum_{k\in\mathbb{Z}^*}(k^2)^{-s}
ight) = rac{1}{\pi}\zeta(2s).$$

We are interested in $s = -rj \notin -\mathbb{N}$. We modify the metric locally in an open set $U \subset S^1 \rightsquigarrow \tilde{g}, \tilde{\Delta}$ and

$$q_{-s}^{\tilde{\Delta}}(heta, heta) = rac{p^{2s-1}}{\pi}\zeta(2s).$$

Remark: $\zeta(2s) = 0 \Leftrightarrow 2s \in \{-2, -4, ...\} \Leftrightarrow s \in \{-1, -2, ...\}$, which is not our case since $s = -rj \notin -\mathbb{N}!$

In *n*-dimensions, we take $M = S^1 \times S^1 \times ... \times S^1$, ζ_n .

The asymptotic expansion of h_t away from the diagonal

THEOREM (-,'22)

The Schwartz kernel h_t of the operator $e^{-t\Delta^r}$ is C^{∞} on $[0,\infty) \times (M \times M \setminus \text{Diag})$. Furthermore, let $K \subset M \times M \setminus \text{Diag}$ be a compact set. Then the Taylor series of $h_{t|_{K}}$ as $t \searrow 0$ is the following:

$$h_{t|\kappa} \stackrel{t>0}{\sim} \sum_{j=1}^{\infty} t^j q_{rj|\kappa} \frac{(-1)^j}{j!}.$$

Moreover, if $r = \frac{\alpha}{\beta}$ is rational with α, β coprime, then the coefficient of t^j vanishes for $j \in \beta \mathbb{N}^*$.

SIMULTANEOUS FORMULA?

Question: Can we find a simultaneous formula for both cases?
For *r* = 1/2, the answer is yes!

The standard heat kernel p_t on the heat space

- Melrose used his blow-up techniques to give a conceptual interpretation for the asymptotic of the usual heat kernel p_t.
- The *heat space* M_H² is obtained by performing a *parabolic* blow-up of {t = 0} × Diag in [0, ∞) × M × M.
- *M*²_H is a manifold with corners with boundary hypersurfaces given by the boundary defining function *ρ* and ω₀.

THEOREM (MELROSE)

The heat kernel p_t belongs to $\rho^{-n} \cdot C^{\infty}(M_H^2)$, and vanishes rapidly at the boundary hypersurface $\{\omega_0 = 0\}$.

C.ANGHEL	(IMAR)
----------	--------

h_t on the standard blow-up space

- We study h_t , the Schwartz kernel of $e^{-t\Delta^{1/2}}$.
- Let M_{heat} = [[0,∞) × M × M, {t = 0} × Diag] be the standard blow-up.
- The blow down map is given locally by:

$$\begin{aligned} \beta_{\mathcal{H}} &: \mathsf{M}_{\mathsf{heat}} \longrightarrow [\mathbf{0}, \infty) \times \boldsymbol{M} \times \boldsymbol{M} \\ \beta_{\mathcal{H}}(\rho, \omega, \mathbf{x}') &= (\rho \omega_{\mathbf{0}}, \rho \omega' + \mathbf{x}', \mathbf{x}'), \end{aligned}$$

where

$$\omega \in \mathbb{S}_{H}^{n} = \{ \omega = (\omega_{0}, \omega') \in \mathbb{R}^{n+1} : \omega_{0} \geq 0, \ \omega_{0}^{2} + |\omega'|^{2} = 1 \}.$$

h_t on the standard blow-up space

THEOREM (-,'22)

If *n* is even, then the Schwartz kernel h_t of the operator $e^{-t\Delta^{1/2}}$ belongs to $\rho^{-n}\omega_0 \cdot \mathcal{C}^{\infty}(M_{heat})$. Furthermore, if *n* is odd, $h_t \in \rho^{-n}\omega_0 \cdot \mathcal{C}^{\infty}(M_{heat}) + \rho \log \rho \cdot \omega_0 \cdot \mathcal{C}^{\infty}(M_{heat})$.

THEOREM (-,'22)

For $r = \frac{1}{2}$, the heat kernel h_t of the operator $e^{-t\Delta^{1/2}}$ is a polyhomogeneous conormal section on the linear heat space M_{heat} with values in $\mathcal{E} \boxtimes \mathcal{E}^*$. The index set for the lateral boundary is:

 $F_{\mathsf{lb}} = \{(k, 0) : k \in \mathbb{N}^*\}.$

If *n* is even, the index set of the front face is:

$$F_{\rm ff} = \{(-n+k,0): k \in \mathbb{N}\},\$$

while for *n* odd the index set towards ff is given by:

$$F_{\rm ff} = \{(-n+k,0): k \in \mathbb{N}\} \cup \{(k,1): k \in \mathbb{N}^*\}.$$

WHY r = 1/2?

Legendre duplication formula:

$$\frac{\Gamma(s)}{\Gamma\left(\frac{s}{2}\right)} = \frac{1}{\sqrt{2\pi}} 2^{s-\frac{1}{2}} \Gamma\left(\frac{s+1}{2}\right).$$

• Gauss multiplication formula, $m \in \mathbb{N}^*$:

$$\Gamma(s)\Gamma\left(s+\frac{1}{m}\right)...\Gamma\left(s+\frac{m-1}{m}\right)=(2\pi)^{\frac{m-1}{2}}m^{\frac{1}{2}-ms}\Gamma(ms).$$

- Already in the case r = 1/3 our method leads to complicated computations involving Bessel modified functions.
- However, it seems reasonable to expect that the Schwartz kernel h_t of the operator $e^{-t\Delta^r}$ for $r \in (0, 1)$ can be lifted to a polyhomogeneous conormal section in a certain "transcendental" heat space M_{Heat}^r depending on r.

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

11 October 2022 27/29

REFERENCES

- C. Anghel, Heat Kernel Asymptotics for real powers of Laplacians, arXiv:2203.14142.
- C. Bär and S. Moroianu, Heat Kernel Asymptotics for Roots of Generalised Laplacians, *Int. J. Math.* **14** (2003), 397-412.
- N. Berline, E. Getzler, M. Vergne, *Heat Kernels and Dirac Operators*, Springer Verlag, (2004).
- J.J. Duistermaat, V.W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, *Invent Math* **29** (1975), 39-79.
- S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, *Ann. of Math. Studies* 57, Princeton Univ. Press, Princeton (1965).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

C.ANGHEL (IMAR)

HEAT KERNEL ASYMPTOTICS

11 October 2022 29/29

æ

(日)