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CONTEXT

Let (M,g) be a compact, oriented, Riemannian manifold of
dimension n.
Consider ∆ = d∗d : C∞(M,C) −→ C∞(M,C).
We are interested in pt , the heat kernel of ∆.

THEOREM

Since M is compact and ∆ is self-adjoint, the spectrum of ∆ is discrete
and increases towards∞. Moreover, there exists a basis of C∞
functions {φj}j∈N such that ∆φj = λjφj .
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THE HEAT OPERATOR

We define the heat operator e−t∆ on the basis:

e−t∆φj = e−tλjφj .

e−t∆ is an integral operator: (e−t∆f )(x) =
∫

M pt (x , y)f (y)dy .
p ∈ C∞((0,∞)×M ×M,C).
It verifies the heat equation:{

(∂t + ∆x ) pt (x , y) = 0.
limt→0 e−t∆f = f , for any f ∈ C∞(M), in ‖ · ‖0.
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THE SMALL-TIME ASYMPTOTIC EXPANSION OF pt

THEOREM (MINAKSHISUNDARAM-PLEIJEL)
The heat kernel pt has the following small-time asymptotic expansion
near the diagonal:

pt (x , y)
t↘0∼ (4πt)−n/2e

−d(x,y)2

4t

∞∑
j=0

t jΨj(x , y),

where d(x , y) is the geodesic distance between x and y , and the Ψj ’s
are recursively defined as solutions of certain ODE’s along geodesics.
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THEOREM (MINAKSHISUNDARAM-PLEIJEL)
The heat kernel pt has the following small-time asymptotic expansion
along the diagonal:

pt (x , x)
t↘0∼ t−n/2

∞∑
j=0

t jaj(x , x),

where aj : M −→ C are C∞ functions. Moreover, a0(x , x) = 1, and the
aj ’s are related by a recurrence formula.

This means that if we truncate the sum at the N-th term, the
difference is of order O

(
tN+1−n/2):∥∥∥∥∥∥pt (x , x)− t−n/2

N∑
j=0

t jaj(x , x)

∥∥∥∥∥∥
0

≤ C · tN+1−n/2.

Also true when we take derivatives in t .
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THE COEFFICIENTS IN THE ASYMPTOTIC OF pt

The aj ’s depend only on g and its derivatives⇒ they are LOCAL.

a0 = 1, a1 = c · rM .

C.ANGHEL (IMAR) HEAT KERNEL ASYMPTOTICS 11 OCTOBER 2022 6 / 29



MOTIVATION

The Atiyah-Singer index theorem:

ind(D) = (2πi)−n/2
∫

M
Â(M).

Weyl’s law:

N(λ)
λ→∞∼ vol(M)

(4π)n/2 · Γ
(n

2 + 1
)λn/2.

DEFINITION

For <s > 0, the Gamma function is defined as:

Γ(s) =

∫ ∞
0

ts−1e−tdt .

Remark: Γ extends meromorphically to C with simple poles at
s = 0,−1, ....
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PART OF THE BIGGER PICTURE
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THE OPERATOR e−t∆r

We study the operator e−t∆r
, r ∈ (0,1), defined on the basis as:

e−t∆r
φj = e−tλr

j φj .

Important: λj ≥ 0!

Let ht be the Schwartz kernel of e−t∆r
.
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THE ASYMPTOTIC EXPANSION OF ht ALONG THE

DIAGONAL

THEOREM (-,’22)
If n is even, the small-time asymptotic of ht along the diagonal is the
following:

ht (x , x)
t↘0∼

n/2∑
j=0

t−
n−2j

2r B− n−2j
2r

(x) +
∞∑

j=1
rj /∈N

t jAj(x).

B− n−2j
2r

(x) = 1
r

Γ
(

n−2j
2r

)
Γ
(

n−2j
2

) · aj(x , x)⇒ LOCAL!

What happens with the Aj ’s? Are they also local?!
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THE ASYMPTOTIC EXPANSION OF ht ALONG THE

DIAGONAL

THEOREM

if n is odd, r = α
β is rational, and the denominator β is even. In that

case,

ht |Diag

t↘0∼
(n−1)/2∑

j=0

t−
n−2j

2r · A− n−2j
2r

+
∞∑

j=1
α-2j+1

t
2j+1

2r · A 2j+1
2r

+
∞∑

j=1
rj /∈N

t j · Aj +
∞∑

l=1
l odd

t l β2 log t · Bl .

(1)

Similar expansions are proved in all the other cases.
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MOTIVATION

Duistermaat and Guillemin studied e−tP , where P is a scalar
positive elliptic self-adjoint pseudodifferential operator of positive
integer order.
Grubb studied e−tP in the context of fiber bundles, when the order
of P is positive, not necessary an integer.

C. Bär and S. Moroianu studied the Schwartz kernel of e−t∆1/m
,

m ∈ N, where ∆ is a strictly positive self-adjoint generalised
Laplacian.
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THE BIGGER PICTURE
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THE IDEA
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AN UNEXPECTED GUEST

Consider the Zeta-Epstein function:

ζn(s) :=
∑

(k1,...,kn)∈Zn\{0}

(
k2

1 + ...+ k2
n

)−s
=
∑

k∈N∗

k−sRn(k),

where Rn(k) is the number of representations of k as a sum of n
squares.
Remark that ζ1(s) = 2ζ(2s).
One can prove that ζn is absolutely convergent for <s > n

2 , and it
extends meromorphically to C with ”trivial zeros” at s = −1,−2, ...
Functional equation:

π−sζn(s)Γ(s) = πs−n/2ζn

(n
2
− s
)

Γ
(n

2
− s
)
.
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AN UNEXPECTED GUEST
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THE BIGGER PICTURE
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THE NON-LOCAL COEFFICIENTS

Claim: Aj(x , x) = (−1)j

j! qrj(x , x) for rj /∈ N are non-local!
Strategy: For each dimension n we give a manifold and a
Laplacian.
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THE NON-LOCAL COEFFICIENTS

EXAMPLE

Take S1 = R/(2πZ), g = dθ2, and ∆. Then for <s > 1
2 (actually for all

s ∈ C),

q∆
−s(θ, θ) =

(
1

2π

∑
k∈Z∗

(k2)−s

)
=

1
π
ζ(2s).

We are interested in s = −rj /∈ −N.
We modify the metric locally in an open set U ⊂ S1  g̃, ∆̃ and

q∆̃
−s(θ, θ) =

p2s−1

π
ζ(2s).

Remark: ζ(2s) = 0⇔ 2s ∈ {−2,−4, ...} ⇔ s ∈ {−1,−2, ...}, which is
not our case since s = −rj /∈ −N!

In n-dimensions, we take M = S1 × S1 × ...× S1, ζn.
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THE ASYMPTOTIC EXPANSION OF ht AWAY FROM THE

DIAGONAL

THEOREM (-,’22)

The Schwartz kernel ht of the operator e−t∆r
is C∞ on

[0,∞)× (M ×M \ Diag). Furthermore, let K ⊂ M ×M \ Diag be a
compact set. Then the Taylor series of ht |K as t ↘ 0 is the following:

ht |K
t↘0∼

∞∑
j=1

t jqrj |K
(−1)j

j!
.

Moreover, if r = α
β is rational with α, β coprime, then the coefficient of t j

vanishes for j ∈ βN∗.

C.ANGHEL (IMAR) HEAT KERNEL ASYMPTOTICS 11 OCTOBER 2022 20 / 29



SIMULTANEOUS FORMULA?

Question: Can we find a simultaneous formula for both cases?
For r = 1/2, the answer is yes!
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THE STANDARD HEAT KERNEL pt ON THE HEAT SPACE

Melrose used his blow-up techniques to give a conceptual
interpretation for the asymptotic of the usual heat kernel pt .
The heat space M2

H is obtained by performing a parabolic blow-up
of {t = 0} × Diag in [0,∞)×M ×M.
M2

H is a manifold with corners with boundary hypersurfaces given
by the boundary defining function ρ and ω0.
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THE STANDARD HEAT KERNEL ON THE HEAT SPACE

THEOREM (MELROSE)

The heat kernel pt belongs to ρ−n · C∞
(
M2

H

)
, and vanishes rapidly at

the boundary hypersurface {ω0 = 0}.
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ht ON THE STANDARD BLOW-UP SPACE

We study ht , the Schwartz kernel of e−t∆1/2
.

Let Mheat = [[0,∞)×M ×M, {t = 0} × Diag] be the standard
blow-up.
The blow down map is given locally by:

βH : Mheat −→ [0,∞)×M ×M
βH(ρ, ω, x ′) = (ρω0, ρω

′ + x ′, x ′),

where

ω ∈ Sn
H = {ω = (ω0, ω

′) ∈ Rn+1 : ω0 ≥ 0, ω2
0 + |ω′|2 = 1}.
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ht ON THE STANDARD BLOW-UP SPACE

THEOREM (-,’22)

If n is even, then the Schwartz kernel ht of the operator e−t∆1/2

belongs to ρ−nω0 · C∞(Mheat). Furthermore, if n is odd,
ht ∈ ρ−nω0 · C∞(Mheat) + ρ log ρ · ω0 · C∞(Mheat).

C.ANGHEL (IMAR) HEAT KERNEL ASYMPTOTICS 11 OCTOBER 2022 25 / 29



THE KERNEL ht AS A POLYHOMOGENEOUS FUNCTION

THEOREM (-,’22)

For r = 1
2 , the heat kernel ht of the operator e−t∆1/2

is a
polyhomogeneous conormal section on the linear heat space Mheat

with values in E � E∗. The index set for the lateral boundary is:

Flb = {(k ,0) : k ∈ N∗}.

If n is even, the index set of the front face is:

Fff = {(−n + k ,0) : k ∈ N},

while for n odd the index set towards ff is given by:

Fff = {(−n + k ,0) : k ∈ N} ∪ {(k ,1) : k ∈ N∗}.
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WHY r = 1/2?

Legendre duplication formula:

Γ(s)

Γ
( s

2

) =
1√
2π

2s−1
2 Γ

(
s + 1

2

)
.

Gauss multiplication formula, m ∈ N∗:

Γ(s)Γ

(
s +

1
m

)
...Γ

(
s +

m − 1
m

)
= (2π)

m−1
2 m

1
2−msΓ(ms).

Already in the case r = 1/3 our method leads to complicated
computations involving Bessel modified functions.
However, it seems reasonable to expect that the Schwartz kernel
ht of the operator e−t∆r

for r ∈ (0,1) can be lifted to a
polyhomogeneous conormal section in a certain “transcendental”
heat space M r

Heat depending on r .
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Thank you!
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	An unexpected guest

