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1. MOTIVATION AND CONTEXT

• M a connected Riemannian manifold (therefore separable). Just for simplicity and brevity
we shall assume M compact, but the results hold true for arbitrary manifolds.

• The problem: can we integrate a real smooth 1-form α ∈ Ω(M) along a continuous
curve c : [0, 1] → M?

• If c is piece-smooth we have the usual line integral
∫
c α.

• What happens if c is continuous but not piecewise-smooth? Several solutions:
� the Young integral (’30s),
� rough paths (’90s),
� stochastic integration (Itô in the ’40s and Stratonovich in the ’60s).

1



1. Motivation and context

1.1 Stochastic integration in Rn

• Let c : [0, t] → Rn. For every k ∈ N consider the system of 2k points
ˆ

c

ˆ

t

2k

˙

, c

ˆ

2t

2k

˙

, c

ˆ

3t

2k

˙

, . . . , c

ˆ

2kt

2k

˙˙

∈ (Rn)2
k
.

• If c has bounded variation, the Riemann-lie sums
2k−1∑
j=0

α

ˆ

c

ˆ

jt

2k

˙˙ „

c

ˆ

(j + 1)t

2k

˙

− c

ˆ

jt

2k

˙ȷ

associated to these systems of points converge to the Stieltjes integral
∫ t

0 (α ◦ c) dc.
• What happens if c does not have bounded variation? The limit exists in measure and is

called the Itô integral of α.
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1. Motivation and context

• Consider now the ”symmetrized” sums
2k−1∑
j=0

1

2

„

α

ˆ

c

ˆ

jt

2k

˙˙

+ α

ˆ

c

ˆ

(j + 1)t

2k

˙˙ȷ „

c

ˆ

(j + 1)t

2k

˙

− c

ˆ

jt

2k

˙ȷ

.

• Their limit exists in measure, too, and is called the Stratonovich integral of α.
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1. Motivation and context

• If x, y ∈ Rn, let γx,y : [0, 1] → Rn the line sgment γx,y(τ ) = τy + (1 − τ )x. Let P be a
Borel regular probability on [0, 1]. Consider the Riemann-like sums

AP,t,k(α)(c) =

2k−1∑
j=0

∫
[0,1]

αγ
c

ˆ

jt

2k

˙

,c

ˆ

(j+1)t

2k

˙(τ)

ˆ

9γ
c
´

jt

2k

¯

,c
´

(j+1)t

2k

¯(τ )

˙

dP (τ ) .

If P = δ0, we recover the sums that converge to the Itô integral; if P = 1
2(δ0 + δ1), we recover

the sums that converge to the Stratonovich integral.
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1. Motivation and context

1.2 The statement of the problem
• Not every points x and y of a Riemannian manifold may be joined by a unique minimizing

geodesic γx,y : [0, 1] → M with γx,y(0) = x and γx,y(1) = y, and therefore we may not define∫
[0,1]

αγx,y(τ) p 9γx,y(τ )q dP (τ )

for all x and y. We fix this by defining IP (α) : M ×M → R by:
� IP (α)(x, y) =

∫
[0,1] αγx,y(τ)( 9γx,y(τ )) dP (τ ), if there exists a unique minimizing geodesic

γx,y as above from x to y;
� IP (α)(x, y) = 0, otherwise.

• We want to show that the Riemann-like sums

AP,t,k(α)(c) =

2k−1∑
j=0

IP (α)

ˆ

c

ˆ

jt

2k

˙

, c

ˆ

(j + 1)t

2k

˙˙

converge in measure to some limit denoted IntP (α). When P = δ0 the limit will turn out to be
the Itô integral, and when P = 1

2(δ0+ δ1) the limit will turn out to be the Stratonovich integral.
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2. A COMPLEX MEASURE DENSITY WITH RESPECT TO THE
WIENER MEASURE

2.1 The space of continuous curves
• Fix a point x0 ∈ M once and for all and define the space

Ct = {c : [0, t] → M | continuous, with c(0) = x0}.

Endow Ct with the distance D(c1, c2) = maxs∈[0,t] d(c1(s), c2(s)), where d is the natural dis-
tance on M . This makes Ct separable!

• Define the (continuous) projections πk : Ct → M 2k by

πk(c) =

ˆ

c

ˆ

t

2k

˙

, . . . , c

ˆ

2kt

2k

˙˙

.
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2. A complex measure density with respect to the Wiener measure

We say that f : Ct → C is cylindrical if and only if there exists fk : M 2k → C such that
f = fk ◦ πk.

Endow Ct with the Wiener measure wt, characterized by the property that∫
Ct
fk ◦ πk dwt =

∫
M

dx1 h

ˆ

t

2k
, x0, x1

˙

. . .

∫
M

dx2k h

ˆ

t

2k
, x2k−1, x2k

˙

fk(x1, . . . , x2k) .

Let Cylt be the space of continuous (and therefore bounded, since M is compact) cylindrical
functions.
Theorem. Cylt is dense in L1(Ct).
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2. A complex measure density with respect to the Wiener measure

2.2 The heat kernel associated to α

• Consider the differential operator ∇ = d + iα.
• The operator ∇∗∇ defined on C∞

0 (M) ⊂ L2(M) is positive-definite and symmetric, there-
fore it admits the self-adjoint Friedrichs extension Hα, which in turn generates the semigroup
(e−sHα)s≥0 în L2(M).

• This semigroup admits a unique smooth integral kernel hα, that we shall call the heat
kernel associated to α: for all f ∈ L2(M)

[e−sHαf ](x) =

∫
M

hα(s, x, y) f (y) dy .

• If α = 0, the associated heat kernel is called the heat kernel on M , denoted h.
• In general, |hα|≤ h (the diamagnetic inequality).
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2. A complex measure density with respect to the Wiener measure

2.3 A complex measure density
• Define the linear functional Wα,t on Cylt ⊂ L1(Ct) by

Wα,t(fk ◦ πk) =
∫
M

dx1 hα

ˆ

t

2k
, x0, x1

˙

. . .

∫
M

dx2k hα

ˆ

t

2k
, x2k−1, x2k

˙

fk(x1, . . . , x2k) .

• From the diamagnetic inequality |hα|≤ h we get that

|Wα,t(fk ◦ πk)| ≤
∫
M

dx1 h

ˆ

t

2k
, x0, x1

˙

. . .

∫
M

dx2k h

ˆ

t

2k
, x2k−1, x2k

˙

|fk|(x1, . . . , x2k) =

=

∫
Ct
|fk ◦ πk| dwt = ‖fk ◦ πk‖L1(Ct) ,

so Wα,t is continuous in the norm ‖·‖L1(Ct).
• Since Cylt is dense in L1(Ct), we may extend Wα,t to a continuous linear functional on

L1(Ct), so there exists a unique ρα,t ∈ L∞(Ct) = L1(Ct)∗ such that

Wα,t(f ) =

∫
Ct
f ρα,t dwt .
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2. A complex measure density with respect to the Wiener measure

2.4 The explicit formula of ρα,t

• We have a problem: ρα,t is too abstract, therfore difficult to use!
• Consider the sequence of measurable functions on Ct define by

SP,t,k(α)(c) = AP,t,k(α)(c) +

2k−1∑
j=0

t

2k
(d∗α)

ˆ

c

ˆ

jt

2k

˙˙ ∫
[0,1]

(2τ − 1) dP (τ ) .

Theorem. eiSP,t,k(α) → ρα,t în L2(Ct), uniformly with respect to t from bounded subsets of
(0,∞).

• The core of the proof is the evaluation when k → ∞ of the scalar product〈
ρα,t, e

iSP,t,k(α)
〉
L2(Ct)

=

∫
Ct
e−iSP,t,k(α) ρα,t dwt = Wα,t(e

−iSP,t,k(α)) =

=

∫
M

dx1 hα

ˆ

t

2k
, x0, x1

˙

e
−i IP (α)(x0,x1)− t

2k
(d∗α)(x0)

∫
[0,1](2τ−1) dP (τ)

. . .

. . .

∫
M

dx2k hα

ˆ

t

2k
, x2k−1, x2k

˙

e
−i IP (α)(x2k−1

,x
2k
)− t

2k
(d∗α)(x

2k−1
)
∫
[0,1](2τ−1) dP (τ)

=

=

„

´

T t
2k

¯2k

1

ȷ

(x0) =

∫
M

h(t, x0, x) 1 dx = wt(Ct) ,
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2. A complex measure density with respect to the Wiener measure

where

(Tsf )(x) =

∫
M

hα(s, x, y) e
−i IP (α)(x,y)−s (d∗α)(x)

∫
[0,1](2τ−1) dP (τ) f (y) dy .

• Using in C(M) Chernoff’s theorem about the approximation of contraction semigroups in
Banach spaces, we get that

lim
k→∞

´

T t
2k

¯2k

1 = e−tL 1 ,

where L is the generator of the heat semigroup acting in C(M).
• The term containing d∗α stems naturally from the need to satisfy one of the hypotheses of

this theorem. The uniformity with respect to t comes from Chernoff’s theorem, too.
• It is interesting to notice that P is nowhere to be found in the limit! This will soon turn

out to have major consequences.
• Under these conditions we shall show that ρα,t is the exponential of a measurable function.
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2. A complex measure density with respect to the Wiener measure

Theorem. There exists a unique real function Stratt(α) ∈ L0(Ct) such that ρα,t = ei Stratt(α).

Proof. Define Us : L
2(Ct) → L2(Ct) by Usf = ρsα,tf .

We shall show that R 3 s 7→ Us ∈ B(L2(Ct)) satisfies the hypotheses in Stone’s theorem.

� Since eiSP,t,k(α) → ρα,t in L2(Ct), it is clear that Us is unitary.
� To show that s 7→ Us is a group,

Us+s′f = ρ(s+s′)α,tf = lim
k
eiSP,t,k((s+s′)α) = lim

k
eiSP,t,k(sα)eiSP,t,k(sα) = ρsα,tρs′α,tf =

= UsUs′f .

� To show the strong continuity, we use that Ct is separable, so L2(Ct) is separable. It
follows that strong continuity with respect to s is equivalent to weak measurability, and

〈Usf, g〉L2(Ct) = 〈ρsα,tf, g〉L2(Ct) = lim
k→∞

〈eiSP,t,k(sα)f, g〉L2(Ct) ,

which is measurable being the pointwise limit of a sequence of measurable functions.
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2. A complex measure density with respect to the Wiener measure

From Stone’s theorem, there exists a unique self-adjoint generator Stratt(α) such that

ρsα,tf = Usf = ei Stratt(α)f .

One shows that Stratt(α) commutes with all the functions in L∞(Ct), so it is itself the multipli-
cation by some function from L0(Ct), which we shall denote by Stratt(α), too. It is real-valued,
because Stratt(α) is self-adjoint.

• Notice that Stratt(α) does not depend on P , even though its construction does depend on
it!
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2. A complex measure density with respect to the Wiener measure

• We have seen that eiSP,t,k(α) → ei Stratt(α) in L2(Ct). What can one say about the convergence
of the exponents?
Theorem. SP,t,k → Stratt(α) in L0(Ct) (i.e. in measure), uniformly with respect to t from
bounded subsets of (0,∞).

Proof. Using the resolvents of SP,t,k and Stratt(α) we have that∥∥∥∥ 1

i + SP,t,k(α)
− 1

i + Stratt(α)

∥∥∥∥
L2(Ct)

= ‖R−i(SP,t,k(α))−R−i(Stratt(α))‖L2(Ct)=

= ‖R−i(SP,t,k(α)) 1−R−i(Stratt(α)) 1‖L2(Ct)≤

≤
∫ ∞

0

e−s ‖eiSP,t,k(sα) − ρsα,t‖L2(Ct) ds → 0

and now we finish with the dominated convergence theorem.
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3. A GENERAL CONCEPT OF STOCHASTIC INTEGRAL

• If c is a twice continuously differentiable curve then AP,t,k →
∫
c α. If we want the stochastic

integrals to be probabilistic analogues of the line integral, then...
Definition. We shall say that IntP,t : Ω

1(M) × L0(Ct) → R is a stochastic integral if
and only if AP,t,k(α) → IntP,t(α) în L0(Ct).

• In the above definition we have given up the uniformity with respect to t because it is not
clear whether this is an essential property or a merely accidental one.

• Important: the stochastic integral IntP,t is not a function, but an element from L0(Ct),
so it is not defined pointwise!
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3. A general concept of stochastic integral

• Is there any relationship between IntP,t and Stratt? Yes, there is!
If we pass to the limit in

SP,t,k(α)(c) = AP,t,k(α)(c) +

2k−1∑
j=0

t

2k
(d∗α)

ˆ

c

ˆ

jt

2k

˙˙ ∫
[0,1]

(2τ − 1) dP (τ ) ,

obținem că

Stratt(α) = IntP,t(α) +

∫
[0,1]

(2τ − 1) dP (τ )

∫ t

0

(d∗α)(c(s)) ds .
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3. A general concept of stochastic integral

3.1 Consequeces
This has several important consequences:
• The only thing that the operator IntP,t retains from P is its first order moment: M1(P ) =∫

[0,1] τ dP (τ ).
• Any two stochastic integrals IntP,t and IntQ,t are connected by the simple formula

IntP,t(α)(c) = IntQ,t(α)(c)− 2

∫
[0,1]

τ d(P −Q)(τ )

∫ t

0

(d∗α)(c(s)) ds ,

so there exists essentially a single stochastic integral (any one of them), all the others being mere
translations of this one by a simple term.

• If P is the Lebesgue measure Leb[0,1], or δ1
2
, or 1

2(δ0 + δ1), then M1(P ) = 1
2, hence

Stratt = IntP,t. Comparing this with the probabilistic literature, we discover that Stratt is
the Stratonovich integral!

• If P = δ0, then comparing this with the probabilistic literature we discover that Intδ0,t is
the Itô integral (that we shall denote Itot)!
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3. A general concept of stochastic integral

3.2 Properties of the stochastic integrals
Theorem. The Stratonovich and the Itô integral of α are equal if and only if d∗α = 0.
Proof.

Stratt(α)(c) = Itot(α)(c)−
∫ t

0

(d∗α)(c(s)) ds .

The proof of this fact is surprisingly complicated in the probabilistic approach, while it is
elementary in the one presented here!
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3. A general concept of stochastic integral

Theorem. Stratt(df )(c) = f (c(1))− f (x0) for every real-valued continuously differentiable
function f and for almost all c ∈ Ct.
Proof. (Just the intuition, without the technical details.)

Choosing P = Leb[0,1] we get

Stratt(df )(c) = lim
k
ALeb[0,1],t,k(df )(c) = lim

k

2k−1∑
j=0

ILeb[0,1](df )

ˆ

c

ˆ

jt

2k

˙

, c

ˆ

(j + 1)t

2k

˙˙

” = ”

” = ” lim
k

2k−1∑
j=0

∫ 1

0

(df )γ
c

ˆ

jt

2k

˙

,c

ˆ

(j+1)t

2k

˙(τ)

ˆ

9γ
c
´

jt

2k

¯

,c
´

(j+1)t

2k

¯(τ )

˙

dτ =

= lim
k

2k−1∑
j=0

„

f

ˆ

c

ˆ

(j + 1)t

2k

˙˙

− f

ˆ

c

ˆ

jt

2k

˙˙ȷ

= f (c(1))− f (c(0)) .
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3. A general concept of stochastic integral

As an immediate consequence we have ”Itô’s lemma”.
Theorem. If f : M → R is twice continuously differentiable, and if ∆ is the Laplace-
Beltrami on M , then

f (c(1)) = f (x0) + Itot(df )(c) +

∫ t

0

(∆f )(c(s)) ds

for almost all c ∈ Ct.
Proof. Using the previous theorem, the proof is short and elementary:

f (c(1)) = f (x0) + Stratt(df )(c) = f (x0) + Itot(df )(c)−
∫ t

0

d∗(df )(c(s)) ds =

= f (x0) + Itot(df )(c) +

∫ t

0

(∆f )(c(s)) ds ,

where we have used the basic Hodge-theoretic formula ∆ = −d∗d.
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3. A general concept of stochastic integral

The Stratonovich integral is special among the stochastic integrals, it being the one that has
emerged naturally as the generator of a one-parameter unitary group. In the following we shall
see one more argument in favour of its special nature.

In the following theorem Ct,x is the space of the continuous curves that begin at x; wt,x is the
Wiener measure on it, and Stratt,x is the Stratonovich integral on it.
Theorem (The Feynman-Kac-Itô formula). Let V : M → R be continuous, with inf V >
−∞. If f ∈ L2(M), then

(e−tHd+iα,V f )(x) =

∫
Ct,x

ei Stratt,x(α)−
∫ t
0 V (c(s)) ds f (c(t)) dwt,x(c)

for all t > 0 and almost all x ∈ M .
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4. FINAL COMMENTS

Many of the properties of the stochastic integrals have easy proofs in the theoretical framework
constructed above because the technical difficulties are taken care of by classical functional
analysis theorems:

• the existence of the Friedrichs extension of (d+ iα)∗(d+ iα), which generates a contraction
seimgroup in L2(M);

• the fact that this semigroup admits an integral kernel hα;
• the fact that hα is smooth (which follows from the hypoellipticity of ∂t +Hα);
• the diamagnetic inequality;
• Chernoff’s theorem about the approximation of contraction semigroups in Banach spaces;
• Stone’s theorem.
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4. Final comments

4.1 Improving the results
• If α has compact support then IntP,t(α) ∈ L2(Ct).
• Moreover, if M is a Riemannian symmetric space, then Aδ0,t,k(α) → Itot(α) in L2(Ct).
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4. Final comments

4.2 The case of arbitrary manifolds

• The convergence eiSP,t,k(α) → ρα,t in L2(Ct) has been proved using Chernoff’s theorem in
an essential way. Its use forces us to work with compact manifolds (possibly with boundary) for
two technical reasons:

� First, it is necessary to come up with an essential domain for the generator of the heat
semigroup on Cb(M), made of compactly-supported smooth functions; such a domain is
not known so far on arbitrary manifolds.

� Second, it is necessary to show that certain integrals are finite, the integrands of which
are very general, their only regularity property being their continuity.

• In order to treat the case of arbitrary manifolds, the solution is to obtain the desired
conclusions on relatively-compact connected domains with smooth boundary, followed by the
exhaustion of the manifold with such domains.

24


	Motivation and context
	Stochastic integration in R^n
	The statement of the problem

	A complex measure density with respect to the Wiener measure
	The space of continuous curves
	The heat kernel associated to 
	A complex measure density
	The explicit formula of _, t

	A general concept of stochastic integral
	Consequeces
	Properties of the stochastic integrals

	Final comments
	Improving the results
	Cazul varietăților arbitrare


