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INTRODUCTION

This thesis is the result of a Ph. D. Program started in 2017 under the affiliation

of the Simion Stoilow Institute of Mathematics of the Romanian Academy (IMAR) in

Bucharest, Romania. It is concerned with measure-valued branching processes and the

nonlinear equations that describe their underlying dynamics. Thus, a defining char-

acteristic of the exposition is the two-folded approach, both from the probability field

perspective of proving such branching processes exist and studying their properties,

and from the PDE point of view, to obtain probabilistic representations for the solu-

tions of the above mentioned nonlinear equations.

In the first part, we investigate discrete branching processes arising from the time

evolution of systems of particles, in the case when the descendants do not need to start

from the place where the parent died, a so-called non-local branching process. The

main motivation is to generalise existing results to the case when the killing measure

has no density w.r.t. the Lebesgue measure. This generalisation translates itself into

considering an abstract continuous additive functional of the base process associated

to the perturbing measure by the Revuz correspondence. We first study the proper-

ties of a convenient class of such continuous additive functional, rich enough to accept

applications of interest. Further, our approach consists in obtaining the mild solutions

of the associated nonlinear PDE, which involve the aforementioned continuous addi-

tive functional. Our exposition afterwards concentrates in proving the existence of a

sufficiently regular branching process having the obtained semigroup as its transition

function. The strategy of the proof involves first building an auxiliary process based

on a linearised version of the above mentioned nonlinear PDE. The completion of the

proof requires several probabilistic and analytical potential theory methods such as

the enlargement of the base space and tightness of capacities. Lastly, having obtained

the branching process, we return to the PDE aspect of the problem, another main

objective, and we obtain a probabilistic representation of the solutions of the nonlinear

equation we started with.
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In the second part, we study branching processes driven by continuous flows. We

show that if the branching mechanism of a superprocess is independent of the spatial

variable, then the superprocess is obtained by introducing the branching in the time

evolution of the right continuous flow on measures, canonically induced by a right

continuous flow as spatial motion. A corresponding result holds for non-local branching

processes on the set of all finite configurations of the state space of the spatial motion,

provided that the branching procedure is compatible with the right continuous flow. As

in the previous part, we give probabilistic representations to the associated nonlinear

equations. We also deduce aspects regarding the extended weak generators for these

processes.

The thesis presents applications to both parts and highlights their relevance to the

current research in this field.

The original results from this thesis are included in

• L. Beznea, O. Lupaşcu-Stamate, and C. I. Vrabie, Stochastic solutions to evolu-

tion equations of non-local branching processes, Nonlinear Analysis 200 (2020), 112021.

https://doi.org/10.1016/j.na.2020.112021;

• L. Beznea and C. I. Vrabie, Continuous flows driving branching processes and

their nonlinear evolution equations, Adv. in Nonlinear Anal. 11 (2022), 921–936,

https://doi.org/10.1515/anona-2021-0229.
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1. PRELIMINARIES

The purpose of this chapter is to introduce the preliminary notions that appear

in the sequel. We deal with the fundamental notions regarding transition functions

and resolvents of kernels, that are omnipresent throughout the thesis, and we define

our framework of study for stochastic processes, the right processes, mentioning the

regularity properties we are interested in.

2. EVOLUTION EQUATIONS RELATED TO

NON-LOCAL BRANCHING PROCESSES

Non-local branching processes arise in modeling the time evolution of a system of

particles, which we can describe as follows. A particle starts at a point of a set E and

moves according to a Markov process with state space E (called the base movement)

until a random terminal time when it is destroyed. The particle is then replaced by a

finite number of new particles which move further independently, according to the same

base movement, until their own terminal times when they are destroyed and replaced

by second generation particles, and the process continues in this manner; cf., e.g., [20]

and [12].

Consider a right (Markov) process X = (Ω,F ,Ft, Xt, θt,Px) on E with infinite

lifetime, transition function (Tt)t>0, Ttf(x) = Ex(f(Xt)), f ∈ B+(E), x ∈ E, t > 0,

and infinitesimal generator L, which we call the base movement or the spatial motion;

it characterizes the movement of particles between the branching moments.

We fix m to be a U -excessive measure, where U is the resolvent of kernels associated

to X.

The killing rate is given through a perturbing positive smooth measure µ on E. By

the Revuz correspondence (see, e.g., [4], [17]), the killed process is obtained from X by

killing with the multiplicative functional (e−At)t>0, where A = (At)t>0 is a continuous

additive functional of X having the Revuz measure µ (w.r.t the measure m). We define
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2. Evolution equations related to non-local branching processes

the semigroup of sub-Markovian kernels (T µt )t>0 by the Feynman-Kac formula

T µt f(x) := Ex(e−Atf(Xt)) for all f ∈ B+(E).

It turns out that (T µt )t>0 also induces a C0-semigroup on Lp(E,m) and its Lp-generator

may be identified with L− µ, using the Revuz correspondence, in an Lp-weak sense as

in [9].

Finally, the birth of new particles is given by a sequence of Markovian kernels Bk

from E(k) (the symmetric k-th power of E) to E, for each k > 1, Bk : bB+(E(k)) −→
bB+(E), and (bk)k>1, a sequence of positive Borelian functions on E such that

∑
k>1 bk 6

1. The interpretation is the following: for every k > 1, bk(x) represents the probability

that a particle dies at x ∈ E and has precisely k descendants; Bk,x (the probability on

E(k) induced by the Markovian kernel Bk at x) is the distribution of the k descendants

in E(k), conditioned that the parent died at x ∈ E.

We can therefore formulate our goal as to study the branching process on Ê, having

the underlying (nonlinear) generator on E of the form

Lu = Lu− µu+ µ(
∑
k>1

bkBkû).

We emphasize that another main objective is to study the parabolic PDE associated

to this nonlinear operator and obtain a probabilistic representation for its solutions.

The case when

Lu = Lu− µu+ µ(
∑
k>1

bku
k)

was considered by E.B. Dynkin in [14] and corresponds to the particular situation

when Bk,x = δx for every x ∈ E and k > 1, where x := (x, . . . , x) ∈ E(k), hence,

the descendants start from the point where the parent died. The resulting branching

process is called a local branching process. By contrast, in our situation, we do not

have this restriction, i.e. the descendants do not need to start from the point where the

parent died. Therefore, the branching process is called a non-local branching process.

In the particular case when A has a density w.r.t. the Lebesgue measure, i.e.

At =
∫ t

0
c(Xs)ds, t > 0, then the generator becomes

Lu = Lu− cu+ c
∑
k>1

bkBkû
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2. Evolution equations related to non-local branching processes

and the associated branching process was constructed in [6].

2.1. Measure-valued branching processes

In the first section, for the convenience of the reader, we introduce the preliminary

notions regarding measure-valued branching processes.

Let E be a Lusin topological space. We denote by M(E) the set of all positive finite

measures on E. We endow M(E) with the weak topology and we denote byM(E) the

corresponding Borel σ-algebra on M(E).

A second measure space we consider is the set Ê ⊆M(E) of all finite sums of Dirac

measures on E,

Ê :=

{∑
i6i0

δxi : i0 ∈ N, i0 > 1, xi ∈ E for all 1 6 i 6 i0

}
∪ {0},

where 0 denotes the zero measure. The set Ê is identified with the union of all sym-

metric k-th powers E(k) of E,

Ê =
⋃
k>0

E(k),

where E(0) := {0} (see, e.g., [18]). The set Ê is called the space of finite configurations

of E and it is endowed with the weak topology on the finite measures on E and the

corresponding Borel σ-algebra B(Ê).

Further (M,M) denotes either (M(E),M(E)) or (Ê,B(Ê)).

A right Markov process with state space M is called branching process provided

that for any two independent copies X and X ′ of the given process on M , starting

respectively from two measures µ and µ′, X +X ′ and the process starting from µ+ µ′

are equal in distribution.

A bounded kernel Q on (M,M) is called branching kernel provided that

Qµ+ν = Qµ ∗Qν for all µ, ν ∈M,

where recall that Qµ denotes the measure on M such that
∫
M
hdQµ = Qh(µ) for all

h ∈M+.

It turns out that: a right Markov process with state space M is a branching process

if and only if its transition function is formed by branching kernels.
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2. Evolution equations related to non-local branching processes

For a function f ∈ bB+(E) we consider the mappings lf : M −→ R+ (the linear

functional) and ef : M −→ [0, 1] (the exponential functional) defined as

lf (µ) := 〈µ, f〉 :=

∫
E

fdµ, µ ∈M, ef := e−lf .

For every real-valued, positive, B(E)-measurable function ϕ define the multiplicative

function ϕ̂ : Ê −→ R+ as

ϕ̂(x) =


∏
k

ϕ(xk), if x = (xk)k>1 ∈ Ê,x 6= 0,

1, if x = 0,

cf. [20]; see also [8].

2.2. Admissible continuous additive functionals

According to [19], page 33, our working assumption is that the CAF A = (At)t>0

is admissible, that is,

lim
t↘0

sup
x∈E

Ex(At) = 0.

We consider the following property of the continuous additive functional A =

(At)t>0:

e−αtExe−At + β Ex
∫ t

0

e−(Au+αu)dAu 6 1 for all t, x, (2.1)

with α > 0 and β > 0.

Lemma 2.1. ([7]) Assume that there exists a sequence An = (Ant )t>0, n > 1, of

continuous additive functionals such that each An satisfies (2.1) with constants αn and

βn. Suppose that Ant converges a.s. to At for each t > 0, limn→∞ αn = α ∈ R and

limn→∞ βn = β ∈ R+, β 6= 0. Then A satisfies (2.1) with these constants α and β.

Lemma 2.2. ([7]) The following assertions hold.

(i) For an arbitrary CAF, A = (At)t>0, (2.1) holds with any β 6 1 and α > 0.

(ii) If the CAF A is admissible then for each β > 0 there exists α > 0 such that

(2.1) holds.

(iii) If the CAF A has a density c ∈ bB+(E) w.r.t. the Lebesgue measure, i.e., for

all t > 0 we have At =
∫ t

0
c(Xs)ds, then it is admissible. In addition, (At)t>0 satisfies

(2.1) for any α and β such that α > ‖c‖∞(β − 1).
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2. Evolution equations related to non-local branching processes

2.3. The integral evolution equation

In the third section, we construct a nonlinear integral evolution equation involving

the base process X and the continuous additive functional A. A particular case of it

leads us to the mild solutions of the parabolic PDE written as

d

dt
Htϕ = LHtϕ, t > 0, (2.2)

with the initial condition H0ϕ = ϕ, 0 6 ϕ 6 1, where recall that L is the nonlinear

operator on E, Lu = Lu− µu+ µ(
∑

k>1 bkBkû).

The pair of sequences ((Bk)k>1, (bk)k>1) induces a sub-Markovian kernel B from Ê

to E,

Bg :=
∑
k>1

bkBk(g|E(k)) for all g ∈ B+(Ê).

For simplicity we write Bkg instead of Bk(g|E(k)) and with this convention we have

B =
∑
k>1

bkBk.

Consider m1 := ‖
∑

k>1 kbk‖∞ and assume that m1 < ∞. Denote by Bu the set of

all ϕ ∈ B+(E) such that ϕ 6 1.

A map H : Bu −→ Bu is called absolutely monotonic provided that there exists a

sub-Markovian kernel H : bB+(Ê) −→ bB+(E) such that Hϕ = Hϕ̂ for all ϕ ∈ Bu.

Theorem 2.3. ([7]) Let α > 0 and β > 0 be such that (2.1) holds. Then for any

ϕ ∈ Bu the evolution equation

ht(x) = e−αtEx(e−Atϕ(Xt)) + βEx
∫ t

0

e−Au−αuBĥt−u(Xu)dAu, (2.3)

has a unique locally bounded solution [0,∞)×E 3 (t, x) 7−→ Htϕ(x) such that Htϕ ∈ Bu
and the following assertions hold.

(i) The map ϕ 7−→ Htϕ is an absolutely monotonic operator and there exists a

positive increasing function t 7−→ C(t) such that

sup
06s6t

‖Hs(ϕ)−Hs(ψ)‖∞ 6 C(t)‖ϕ− ψ‖∞ for all ϕ, ψ ∈ Bu.

In particular, for any t > 0 the map ϕ 7−→ Htϕ is Lipschitz.
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2. Evolution equations related to non-local branching processes

(ii) The family (Ht)t>0 is a nonlinear sub-Markovian semigroup of operators on Bu.

Moreover, if
∑

k>1 bk = 1 and α, β satisfy (2.1) with equality, then Ht1 = 1 for all

t > 0.

(iii) If the function t 7−→ Ex(e−Atϕ(Xt)) is right continuous for all x ∈ E, then

t 7−→ Htϕ(x) is also right continuous on [0,∞).

(iv) If Ttϕ converges to ϕ (i.e. E•ϕ(Xt) −→ ϕ ) uniformly as t↘ 0, then Htϕ also

converges uniformly to ϕ as t↘ 0.

In addition, it is required the following lemma, adapted from the monograph [19],

Proposition 2.12, which leads to a main instrument in the proof of Theorem 2.3, as a

substitute for Gronwall’s Lemma and for proving the semigroup property from assertion

(ii).

Lemma 2.4. ([7]) Let r > 0 and ϕ ∈ Bu. Then the function (t, x) 7−→ ht(x) is a

solution of (2.3) for all t > 0 if and only if it satisfies the equation (2.3) for 0 6 t 6 r

and (t, x) 7−→ ht+r(x) solves the equation

ht+r(x) = e−αtEx(e−Athr(Xt)) + βEx
∫ t

0

e−Au−αuBĥt+r−u(Xu)dAu, t > 0. (2.4)

From now on we denote by (Ht)t>0 the nonlinear semigroup given by equation (2.3)

when α = 0 and β = 1

Corollary 2.5. ([7]) For t > 0 consider the branching kernel Ĥt on Ê such that

Htϕ = Ĥtϕ̂|E for all ϕ ∈ Bu. Then the following assertions hold.

(i) (Ĥt)t>0 is a sub-Markovian semigroup of branching kernels on (Ê,B(Ê)).

(ii) For all t > 0 and f ∈ bB+(E) define Vtf ∈ bB+(E) by Vtf := − lnHt(e
−f ).

Then (Vt)t>0 is a nonlinear semigroup on bB+(E) (called the cumulant semigroup) and

Ĥtϕ̂ = ê−Vtf ,

where ϕ := e−f .

2.4. Construction of the auxiliary process

In the fourth and last section of this chapter, we construct an auxiliary right Markov

process on E, based on a linearised version of the integral evolution equation from the

previous section.
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Theorem 2.6. ([7]) Let α > 0 and β > 0 be such that (2.1) holds and K be a sub-

Markovian kernel on E. Then for any f ∈ bB+(E) the linear evolution equation

rt(x) = e−αtT µt f(x) + βEx
∫ t

0

e−Au−αuKrt−u(Xu)dAu, t > 0, (2.5)

has a unique solution Qtf ∈ bB+(E), the function [0,∞) × E 3 (t, x) 7−→ Qtf(x) is

measurable, and the following assertions hold.

(i) The family (Qt)t>0 is a semigroup of sub-Markovian kernels on (E,B(E)) and

it is the transition function of a Borel right process with state space E.

(ii) The function t 7−→ Qtf(x) is right continuous on [0,∞) for all x ∈ E if and

only if the transition function t 7−→ T µt f(x) has the same property.

(iii) The resolvent of kernels Uo = (U o
q )q>0 on (E,B(E)) induced by (Qt)t>0 satisfies

U o
q = Uµ

α+q + JqKU
o
q = Uµ

α+q +GqU
µ
α+q,

where Uµ = (Uµ
q )q>0 is the resolvent of kernels induced by (T µt )t>0, and Jq, Gq are the

bounded kernels on E defined as

Jqf(x) := βEx
∫ ∞

0

e−Au−αue−quf(Xu)dAu and Gq :=
∞∑
k=0

(JqK)k.

In addition we have E(Uoq ) ⊂ E(Uµα+q), Gq(E(Uµα+q)) ⊂ E(Uoq ), and [bE(Uoq )] = [bE(Uµq )].

Proposition 2.7. ([7]) There exists a sub-Markovian kernel K on (E,B(E)) and a

semigroup (Qt)t>0 which solves the evolution equation (2.5) and such that

e−αtĤt(lf ) = lQtf for all f ∈ bB+(E) and t > 0,

where α > 0 is such that (2.1) is satisfied for β = m1.

3. CONSTRUCTION OF NON-LOCAL

BRANCHING PROCESSES

3.1. The main existence result

In the first section, we focus on an existence result for a sufficiently regular branching

process having (Ĥt)t>0 as transition function. Recall that by Kolmogorov’s theorem, a

10



3. Construction of non-local branching processes

transition function together with an initial distribution uniquely determine a Markov

process. However, for various applications, the simple existence of a Markov process

is not enough and we are interested in additional path regularity properties of the

resulting process.

The proof follows the approach from Section 4 in [6], a method developed in [10]

(see also [5], Appendix A, for a concise presentation) for proving the existence of right

Markov process in infinite dimensional situations, if we start with a given resolvent of

kernels or a transition function, namely (Ĥt)t>0 on Ê in our case.

Let A = [bE(Uµq )], where the closure is in the supremum norm. We need the

following additional hypothesis, which is a similar condition to that used in [6]:

(∗) There exists a countable subset Fo of bE(Uoq ) which is additive, 0 ∈ Fo, and

separates the finite measures on E and a separable vector lattice C ⊆ A such that

{e−u : u ∈ Fo} ⊆ C and Vt(Fo) ⊆ C, where Vt is the nonlinear cumulant semigroup

introduced in Corollary 2.5.

Theorem 3.1. ([7]) If the base process X is standard and condition (∗) holds then there

exists a branching càdlàg process with state space Ê which has (Ĥt)t>0 from Corollary

2.5 as its transition function. If in addition B1 = 1, then the process is standard.

3.2. Probabilistic representation of the solution of the PDE

Corollary 3.2. ([7]) Let X̂ be the branching process with state space Ê and transition

function (Ĥt)t>0, given by Theorem 3.1. Then the following assertions hold.

(i) If ϕ ∈ B+(E), ϕ 6 1, then the solution (Htϕ)t>0 of equation (2.2) has the

representation

Htϕ(x) = Êδxϕ̂(X̂t), x ∈ E, t > 0. (3.1)

(ii) Let X ′ = (X ′t)t>0 be the right process with state space E and transition function

(Qt)t>0, given by Theorem 2.6 and Proposition 2.7, λ be a σ-finite measure and h a

Borel, positive, bounded function on E. Then for all t > 0

e−αtÊλ〈h, X̂t〉 = Eλh(X ′t), (3.2)

where recall that Eλ :=
∫
E
Exλ(dx) and on the left hand side λ is considered as a

measure on Ê ⊃ E; if µ ∈ Ê then 〈h, µ〉 :=
∫
hdµ.
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3.3. Application. The reflecting Brownian motion as spatial

motion

In the last section, we apply the results obtained by taking as base movement the

reflecting Brownian motion on the closure of a smooth bounded Euclidean domain, and

the killing rate to be given by the local time on the boundary.

Corollary 3.3. ([7]) Consider the Neumann problem on a bounded smooth Euclidean

domain D and let σ be the surface measure on the boundary ∂D of D. Then the solution

of the nonlinear evolution equation on D,
d
dt
Htϕ = ∆Htϕ− σHtϕ+ σ(

∑
k>1 bkBkĤtϕ), t > 0,

H0ϕ = ϕ,

has the probabilistic representation (3.1),

Htϕ(x) = Êδxϕ̂(X̂t), x ∈ E, t > 0,

where X̂ is the branching process on the set of all finite configurations of the closure of

D, having the reflecting Brownian motion X on D as base movement and perturbing

measure σ. In addition, the formula (3.2) holds.

In this way, the statement of Theorem 4.4 from [1] holds for any branching pro-

cedure given by a sequence of Markovian kernels (Bk)k>1 (recall that Bk prescribes

the distribution of k descendants), hence we may admit a non-local branching, i.e.,

the descendant are not forced to start from the point where the parent died. Re-

call that Theorem 4.4 is a main result used in [1] to represent the vorticity of the 2d

Navier-Stokes equation in a bounded planar domain through a stochastic model.

4. CONTINUOUS FLOWS DRIVING

BRANCHING PROCESSES

In this chapter we emphasize a class of branching processes which are driven by

a right continuous flow Φ on E, in the sense that such a measure-valued process X̂

admits a representation by means of a second branching process X̂0 and of the flow on

measures induced by Φ,

X̂t = Φt(X̂0
t ) for all t > 0.

12



4. Continuous flows driving branching processes

It turns out that the branching process X̂0 has the same branching mechanism as X̂,

however X̂0 has no a spatial motion and therefore we call it a pure branching process.

This representation holds in the case of a superprocess for which the branching mech-

anism is independent of the spatial variable.

Recall that a superprocess X̂ provides a stochastic solution for the nonlinear evo-

lution equation written formally as

d

dt
vt = Dvt + Ψ(vt), t > 0,

with the initial condition v0 = f , where D is the generator of the spatial motion and

Ψ is the branching mechanism. The nonlinear evolution equation associated with the

pure branching process X̂0 is the particular case of the above equation with no spatial

motion term on the right hand side, that is, with D ≡ 0. Actually, we consider the

integral version of the equation, or equivalently, we work with the mild solutions of it.

As a consequence of the representation above of X̂ in terms of the pure branching

process X̂0 (in particular, D should be the generator of a right continuous flow Φ on E)

we obtain a solution vt, t > 0, to the nonlinear evolution equation having the following

two probabilistic representations:

vt(x) = − ln Ê0
δx
ef◦Φt(X̂

0
t ) = − ln Ê0

δΦt(x)

ef (X̂0
t ), x ∈ E, t > 0.

With the terminology of [13], page 133, vt is written as the ”log-potential of X̂0
t and

Φt”.

If L and L0 are the extended weak generators of the superprocesses X̂ and respec-

tively X̂0 on M(E), then we have

L = D̂ + L0,

where D̂ is the generator of the continuous flow on M(E) induced by Φ. In this

way, the representation we prove may be interpreted as a consequence of regarding L
as a modification of L0 with the first order operator D̂, which is a substitute for a

”drift type” operator acting in the considered infinite dimensional frame. This is an

exemplification of a general strategy developed in [3].

It turns out analogous results hold for non-local branching processes also, provided

that the flow and the distributions of the branching are compatible.
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4. Continuous flows driving branching processes

This chapter is based on the results obtained in [11].

4.1. Preliminaries on measure-valued branching processes

In the first section, we recall the general construction of branching processes in both

the superprocess and non-local branching case.

Superprocesses. Let X = (Ω,F ,Ft, Xt, θt,Px) be a fixed right Markov process

with state space E and infinite lifetime. Let (Tt)t>0 be its transition function, U its

resolvent, and D its generator. We also fix a branching mechanism, that is, a function

Ψ : E × [0,∞) −→ R of the form

Ψ(x, λ) = −b(x)λ− c(x)λ2 +

∫ ∞
0

(1− e−λs − λs)N(x, ds),

where c > 0 and b are bounded B(E)-measurable functions, and N : B+((0,∞)) −→
B+(E) is a kernel such that N(u ∧ u2) ∈ bB+(E). The (X,Ψ)-superprocess is con-

structed as follows, cf. [16], [19], and [2].

Equation
d

dt
vt = Dvt + Ψ(vt), t > 0, v0 = f (4.1)

has a unique mild solution, more precisely, for each f ∈ bB+(E) the integral evolution

equation

vt(x) = Ttf(x) +

∫ t

0

Ts(x,Ψ(·, vt−s))ds, t > 0, x ∈ E, (4.2)

has a unique jointly measurable solution (t, x) 7−→ Vtf(x) such that sup06s6t ||Vsf ||∞ <

∞ for all t > 0 and [0,∞) 3 t 7−→ Vtf(x) is right continuous for all x ∈ E, provided that

t 7−→ Ttf(x) has this property. The mappings f 7−→ Vtf form a nonlinear semigroup

of operators on bB+(E).

For each t > 0 there exists a unique Markovian kernel T̂t on (M(E),M(E)) such

that

T̂t(ef ) = eVtf , f ∈ bB+(E). (4.3)

Since the family (Vt)t>0 is a (nonlinear) semigroup on bB+(E), it follows that T̂ =

(T̂t)t>0 is a transition function (M(E),M(E)). By Theorem 4.9 from [2], under a

Feller-type regularity condition, there exists a Borel right process X̂, with state space

M(E), having the transition function T̂, called (X,Ψ)-superprocess.
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4. Continuous flows driving branching processes

Non-local branching processes. We work in the framework of [6]. Let X =

(Ω,F ,Ft, Xt, θt,Px) be a fixed right Markov process with state space E and transition

function (Tt)t>0. As in the superprocess case, we assume that X has infinite lifetime.

Let (bk)k>1 be a sequence of functions from bB+(E) such that
∑

k>1 bk 6 1, let m1 :=

‖
∑

k>1 kbk‖∞ and assume that 1 < m1 <∞.

We fix also a constant c such that 0 < c 6 m1

m1−1
. For each k > 1, let Bk be a

Markovian kernel from E(k) to E.

If ϕ ∈ B+(E), 0 6 ϕ 6 1, then by Proposition 4.1 from [6] (see also Theorem 2.3

from Chapter 2), the integral evolution equation

ht = e−ctTtϕ+ c

∫ t

0

e−c(t−s)Tt−s
∑
k>1

bkBk(h
(k)
s )ds, t > 0, (4.4)

has a unique solution t 7−→ Htϕ, jointly measurable in (t, x) ∈ R+ × E, such that

0 6 Htϕ 6 1. Here, for a function h ∈ bB+(E) we have denoted by h(k), k > 1, the

function on E(k) defined as h(k)(x) := h(x1) · · ·h(xk) for all x = (x1, . . . , xk) ∈ E(k).

The integral evolution equation (4.4) associated with a non-local branching process

on Ê is formally equivalent to the equation

d

dt
ht = (L− c)ht + c

∑
k>1

bkBk(h
(k)
t ), t > 0, (4.5)

with the initial condition h0 = ϕ, where L is the generator of the spatial motion X;

see e.g. Remark 4.2 (ii) from [6].

It turns out that the nonlinear semigroup (Ht)t>0 induces a branching semigroup of

kernels (Ĥt)t>0 on Ê such that Ĥtϕ̂ = Ĥtϕ for all ϕ ∈ bB+(E), 0 6 ϕ 6 1. According

to Theorem 4.10 from [6], under some additional assumptions, there exists a branching

right Markov process X̂ with state space Ê (depending on the spatial motionX, (bk)k>1,

the sequence of kernels (Bk)k>1, and c) having the transition function (Ĥt)t>0.

4.2. A result on solving nonlinear evolution equations

In the second section, we present a unifying argument, which is applicable on both

spaces of measures (M(E) and Ê).

Lemma 4.1. ([11]) Let J : E −→ E be a B(E)/B(E)-measurable map and denote by

K(J) the set of all operators (W,D(W )) on bB+(E), W : D(W ) −→ bB+(E), such

that for all f ∈ bD+(W ) we have f ◦ J ∈ D(W ) and W (f ◦ J) = Wf ◦ J . Convention:
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4. Continuous flows driving branching processes

If the domain D(W ) of W is not indicated, then this means that D(W ) = bB+(E).

Then the following assertions hold.

(i) The set K(J) has the following properties.

(p1) If (W,D(W )) is an operator on bB+(E) such that there exists a sequence

(Wn)n in K(J) with D(Wn) = D(W ) for all n, which is converging pointwise to W (i.e.

limnWnf(x) = Wf(x) for all f ∈ D(W ) and x ∈ E), then W belongs to K(J);

(p2) If (W,D(W )) and (V,D(V )) are two operators on bB+(E) such that

W (D(W )) ⊂ D(V ) and V,W ∈ K(J), then V ◦W ∈ K(J);

(p3) Let (K,D(K)) be an operator on bB+(E) such that K ∈ K(J). If Wf =∫ t
0

K(Wsf)ν(ds), where ν is a finite measure on [0, t] and Ws ∈ K(J), D(Ws) = D(K),

and Ws(D(Ws)) ⊂ D(K) for all s, then W also belongs to K(J).

(ii) Assume that (K,D(K)) is Lipschitz with respect to the supremum norm and

K(0) = 0. Let a > 0, to > 0 and consider the integral equation

wt = e−atf +

∫ t

0

e−a(t−s)K(ws)ds, 0 6 t 6 to, (4.6)

where f ∈ D(K).

(ii.1) The equation (4.6) has a unique solution [0, to] 3 t 7−→ Wtf ∈ D(K)

such that the function (t, x) 7−→ Wtf(x) is jointly measurable, provided that one of the

following two conditions is verified:

(I) D(K) = bB+(E);

(II) D(K) = {f ∈ bB+(E) : f 6 1} and Kf 6 a for all f ∈ D(K).

(ii.2) Assume that K preserves the pointwise convergence, that is, if (fn)n ⊂
D(K) is pointwise converging to f ∈ D(K), then K(fn) −→ K(f) pointwise on E.

Then the function [0, to) 3 t 7−→ Wtf(x) is differentiable for each x ∈ E and ut := Wtf

is the unique solution of the nonlinear evolution equation

dut
dt

= −aut + K(ut), 0 6 t < to, (4.7)

with the initial condition uo = f .

(iii) Suppose in addition that K ∈ K(J), then Wt ∈ K(J) for all t ∈ [0, to].

4.3. Pure branching processes

In the third section, we study the pure branching processes and their nonlinear

evolution equations, in the context of both superprocesses and non-local branching
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4. Continuous flows driving branching processes

processes.

Pure branching superprocesses. Pure branching processes arise by considering,

in the construction from Section 4.1, branching processes with no spatial motion. Let

X0 = (X0
t )t>0 be the trivial Markov process on E, where each point is a trap, i.e.,

Px(X0
t = x) = 1 for all t > 0 and x ∈ E. The (X0,Ψ)-superprocess is named pure

branching.

Corollary 4.2. ([11]) Let Ψ be a branching mechanism. Then the following assertions

hold.

(i) Consider the pure branching (X0,Ψ)-superprocess, the right Markov process

X̂0 = (X̂0
t , P̂0

µ
) with state space M(E), and let u ∈ bB+(E). Let

V 0
t u(x) := − ln Ê0

δx
eu(X̂0

t ), t > 0, x ∈ E,

then wt := V 0
t u, t > 0, solves the following nonlinear evolution equation:

d

dt
wt = Ψ(·, wt), t > 0, (4.8)

with the initial condition w0 = u.

(ii) Let (L0,D(L0)) be the extended weak generator of the pure branching (X0,Ψ)-

superprocess on M(E). Let u ∈ bB0
+, then F := eu belongs to D(L0), L0F = −F ·lΨ(·,u),

and for µ ∈M(E) we have

L0F (µ) =

∫
E

c(x)F ′′(µ, x)µ(dx)−
∫
E

b(x)F ′(µ, x)µ(dx)+ (4.9)

∫
E

∫ ∞
0

[F (µ+sδx)−F (µ)−sF ′(µ, x)]N(x, ds)µ(dx).

Non-local pure branching processes. Similarly to the superprocess case, we

consider now the non-local pure branching process X̂0 on Ê for which the base process

is the trivial Markov process X0. In this case, equation (4.4) becomes

ht = e−ctϕ+ c

∫ t

0

e−c(t−s)
∑
k>1

bkBk(h
(k)
s )ds, t > 0. (4.10)

Let (H0
t ϕ)t>0 be the solution to equation (4.10), then the transition function of X̂0 is

(Ĥ0
t )t>0.

Proposition 4.3. Consider the solution of equation (4.10) as a family of operators
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4. Continuous flows driving branching processes

(H0
t )t>0, H0

t : Bu −→ Bu. Then (H0
t )t>0 is (nonlinear) C0-semigroup on Bu, viewed as

a closed subset of the Banach space bB(E) endowed with the supremum norm.

Proposition 4.4. ([11]) Let M ∈ B(E) and suppose that

bk(x)Bk,x(M̂ ∩ E(k)) = 0 for every k > 1 and x ∈ E \M, (4.11)

that is, the sub-probability measure on E(k) induced by the sub-Markovian kernel bkBk

at x is carried by E(k) \ M̂ . Then Ê \ M̂ is a finely closed absorbing subset of Ê with

respect to the pure branching process X̂0. The restriction of the pure branching process

X̂0 to M̂ is still a pure branching process, it is induced by the trivial process on M and

the restrictions of Bk, k > 1, to M .

4.4. Continuous flows driving superprocesses

In the fourth section, we deal with superprocesses that are driven by a right con-

tinuous flow. The first main result is Theorem 4.6. It is preceded by the description

of the extended weak generator of a superprocess (Proposition 4.5), which completes

results from [15], [19], [16], and [2]. Results related to the nonlinear evolution equation

and the log potential formula are gathered in assertion (iii) of Theorem 4.6.

Let (L,D(L)) be the extended weak generator of the spatial motion X on E and

(L,D(L)) the extended weak generator of the (X,Ψ)-superprocess on M(E).

Let (D̂,D(D̂)) be the extended weak generator of the right continuous flow Φ̂ on

M(E) induced by the right Markov process X, Φ̂t(µ) := Xt(Pµ), µ ∈M(E), that is, the

extended weak generator of the transition function Q0 = (Q0
t )t>0, Q0

tF (µ) := F (µ ◦Tt)
for all F ∈ bM+(E), µ ∈M(E), and t > 0.

Proposition 4.5. ([11]) (i) If u ∈ bDco(L) is such that Lu is a bounded function then

lu belongs to the domain D(L) of the extended weak generator (L,D(L)) of X̂ and

L(lu) = lLu−bu.

(ii) Let n > 1, u1, . . . , un ∈ bD(L) such that all Lui are bounded functions, ψ ∈
C1
b (Rn), and consider the function F on M(E), defined as F (µ) := ψ(〈µ, u1〉, . . . , 〈µ, un〉),

µ ∈M(E). Then F belongs to D(D̂), F ′(µ, ·) ∈ D(L) and we have

D̂F (µ) :=

∫
E

LF ′(µ, x)µ(dx) for all µ ∈M(E), (4.12)
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4. Continuous flows driving branching processes

where recall that the variational derivative of a function F : M(E) −→ R is F ′(µ, x) :=

lim
ε↘0

1

ε
(F (µ+ εδx)− F (µ)), µ ∈M(E), x ∈ E.

Theorem 4.6. ([11]) Consider a branching mechanism Ψ which is independent of the

spatial variable, that is, with b and c constant functions and N(x, ds) = N(ds) for

all x ∈ E. Assume that the spatial motion X = (Xt)t>0 is the deterministic process

associated with a right continuous flow Φ = (Φt)t>0 on E and suppose that the mapping

[0,∞)× E 3 (t, x) 7−→ Φt(x) is continuous.

Let X̂ = (X̂t)t>0 be the (X,Ψ)-superprocess induced by the spatial motion X and

the branching mechanism Ψ and let X̂0 = (X̂0
t )t>0 be the pure branching (X0,Ψ)-

superprocess. Then the following assertions hold.

(i) The (X,Ψ)-superprocess X̂ = (X̂t, P̂µ) has the following representation, as the

pure branching process X̂0 = (X̂0
t , P̂0

µ
) driven by the continuous flow Φ on M(E),

X̂t = Φt(X̂0
t ) for all t > 0, (4.13)

where the equality is in the distribution sense and we also have

P̂µ(X̂t ∈ Γ) = P̂0
Φt(µ)

(X̂0
t ∈ Γ) for all µ ∈M(E) and Γ ∈M(E). (4.14)

(ii) Let (D,D(D)) (resp. (D̂,D(D̂)), (L,D(L)), and (L0,D(L0))) be the extended

weak generator of the spatial motion X (resp. of the flow Φ on M(E), X̂, and X̂0).

Let further Do := UαVβ(bC(M(E))), α, β > 0, where (Uα)α>0 (resp. (Vα)α>0) is the

resolvent of X̂0 (resp. the resolvent of the flow Φ on M(E)). Then Do ⊂ Dco(L) ∩
Do(D̂) ∩ D(L0) and

L = D̂ + L0 on Do.

(iii) Equation (4.1),

d

dt
vt = Dvt + Ψ(vt), t > 0, v0 = f,

has a mild solution vt, t > 0, which is given by the log-potential type formula

vt(x) = − ln Ê0
δx
ef◦Φt(X̂

0
t ) = − ln Ê0

δΦt(x)

ef (X̂0
t ), x ∈ E, t > 0. (4.15)

More precisely, vt is the solution of the nonlinear integral evolution equation (4.2).
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4. Continuous flows driving branching processes

4.5. Continuous flows driving non-local branching processes

The non-local branching processes on configuration spaces, driven by right con-

tinuous flows, are investigated in the fifth section. Theorem 4.7 is the second main

statement of this chapter. Results similar to the log potential formula, but valid on Ê,

are collected in this section.

In the context of non-local branching processes described in Section 4.1, we addi-

tionally assume that the functions bk ∈ bB+(E), k > 1, are constants. Let c be a

constant such that 0 < c 6 m1

m1−1
and let Bk be a Markovian kernel from E(k) to E,

k > 1.

For each k > 1, let (Bk,D(Bk)) be the operator on bB+(E) defined as Bkϕ :=

Bk(ϕ
(k)), with D(Bk) := {ϕ ∈ B+(E) : ϕ 6 1}.

Theorem 4.7. ([11]) Let X̂ = (X̂t)t>0 be the non-local branching process on Ê, depend-

ing on a spatial motion given by a right continuous flow Φ = (Φt)t>0 on E, (bk)k>1, the

sequence of kernels (Bk)k>1, and c. Assume that the mapping [0,∞) × E 3 (t, x) 7−→
Φt(x) is continuous and suppose that

Bk ∈ K(Φt) for all t > 0 and k > 1. (4.16)

Then the following assertions hold.

(i) The branching process X̂ = (X̂t, P̂µ) has the representation (4.13) on Ê as the

pure branching process X̂0 = (X̂0
t , P̂0

µ
) driven by the continuous flow Φ and (4.14)

holds for all µ ∈ Ê and Γ ∈ B(Ê).

(ii) Equation (4.5), with L as the generator of the right continuous flow Φ, has a

mild solution, namely, the unique solution ht, t > 0, to equation (4.4) given by

ht(x) = Ê0
δx
N(t)∏
k=1

ϕ(Φt(x
k
t )) = Ê0

δΦt(x)

N(t)∏
k=1

ϕ(xkt ), x ∈ E, (4.17)

with the notation X̂0
t = (x1

t , . . . , x
N(t)
t ) ∈ E(N(t)), where N(t) is the number of the

particles at time t.

4.6. Application. A nonlinear evolution equation on measures

The last section is an application of the results obtained in this chapter and consists

of solving a nonlinear parabolic equation on measures. Let E be a Lusin topological
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4. Continuous flows driving branching processes

space and (bk)k>1 be a sequence of positive numbers such that
∑

k>1 bk 6 1 and 1 <∑
k>1 kbk < ∞. Let (L,D(L)) be the extended weak generator of a spatial motion X

on E and let T = (Tt)t>0 be its transition function.

We consider the following nonlinear evolution equation on measures

d

dt
Ft = LF ′t − cFt + c

∑
k>1

bkF
k
t on M(E), t > 0, (4.18)

with the initial condition F0 = F , where c > 0 for a function F : M(E) −→ [0, 1] we

denoted by F ′ its variational derivative and LF ′(µ) :=
∫
E
LF ′(µ, x)µ(dx).

Let Φ̂ = (Φ̂t)t>0 be the right continuous flow on M(E) induced by the right Markov

process X.

Further, we need to consider the following condition:

the mapping [0,∞)×M(E) 3 (t, µ) 7−→ µ ◦ Tt ∈M(E) is continuous. (4.19)

It turns out that if E is locally compact with countable base and X is Feller then

(4.19) holds.

Corollary 4.8. ([11]) If we take E = Rd, then equation

d

dt
Ft = ∆F ′t − cFt + c

∑
k>1

bkF
k
t on M(Rd), t > 0, (4.20)

has a mild solution Ft, t > 0, with F0 = F ∈M+(Rd), F 6 1, uniquely determined by

the pure branching process Ŷ 0 on M̂(Rd), the d-dimensional Brownian motion (Bt)t>0,

and the constant c,

Ft(µ) = Ê0
δµ

N(t)∏
k=1

F (Bt(Py
k
t )) = Ê0

δBt(Pµ)

N(t)∏
k=1

F (ykt ), µ ∈M(Rd), (4.21)

where Ŷ 0
t = (y1

t , . . . , y
N(t)
t ) and N(t) is the number of the particles in M(Rd) at time t.

More generally, if we return to the general case of the base space E and assume that

condition (4.19) holds then equation (4.18) has a mild solution uniquely determined by

the pure branching process Ŷ 0 on M̂(E), the spatial motion X, and the constant c,

namely, for every F ∈M+(E), F 6 1, the nonlinear evolution equation

Ft = e−ctF ◦ Φ̂t + c

∫ t

0

e−c(t−s)
∑
k>1

bkF
k
s ds on M(E), t > 0,
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has a unique solution t 7−→ Ft, jointly measurable in (t, µ) ∈ R+ ×M(E), such that

0 6 Ft 6 1 and (4.21) holds with Xt instead of Bt and M(E) instead of M(Rd).

APPENDIX

We present additional topics required for the understanding of this thesis; we de-

scribe the different variants of infinitesimal generators of Markov processes; we intro-

duce multiplicative and additive functionals, as well as the Revuz correspondence, an

essential ingredient for Chapters 2 and 3; we present the preliminary notions regarding

the right continuous flows, used in Chapter 4.
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