INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE Seminarul de Teoria Potentialului

Evolution of states of an infinite fission-death system

Agnieszka TANAS

(Maria Curie-Skłodowska University in Lublin, Poland)

Marti 6 noiembrie 2018, ora 14:00, etajul 3, sala 306 – 307 "C. Banica"

Abstract: A microscopic fission-death model in the continuum is proposed and studied. In the model, point particles interact with each other and perform random actions: the death of the particle located at *x* which occurs independently with rate $m(x) \ge 0$ and under the influence (competition) of the other particles in a configuration, and an independent fission of the particle located at *x* into two particles (located at y_1 and y_2) with rate $b(x|y_1, y_2) \ge 0$. The evolution of states of the system $\mu_0 \rightarrow \mu_t$ is obtained by employing the correlation functions. We prove the existence and uniqueness of solutions of the evolution for the correlation functions that yields the evolution $k_0 \rightarrow k_t$ on a finite time interval. Then we prove that each k_t is the correlation function of a unique state μ_t and continue k_t to all t > 0.