Instantaneous shrinking of supports and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion

Razvan Gabriel Iagar

Instituto de Ciencias Matemáticas (ICMAT) Campus de Cantoblanco, Madrid, Spain and

IMAR, Bucharest, Romania

Vineri 4 septembrie, ora 11:00 IMAR, sala 306

Abstract: For a large class of non-negative initial data, the solutions to the quasilinear viscous Hamilton-Jacobi equation $\partial_t u - \Delta_p u + |\nabla u|^q = 0$ in $(0, \infty) \times \mathbb{R}^N$ are known to vanish identically after a finite time when $2N/(N+1) and <math>q \in (0, p-1)$. Further properties of this extinction phenomenon are established in this talk: *instantaneous shrinking* of the support is shown to take place if the initial condition u_0 decays sufficiently rapidly as $|x| \to \infty$, that is, for each t > 0, the positivity set of u(t) is a bounded subset of \mathbb{R}^N even if $u_0 > 0$ in \mathbb{R}^N . This decay condition on u_0 is also shown to be optimal by proving that the positivity set of any solution emanating from a positive initial condition decaying at a slower rate as $|x| \to \infty$ is \mathbb{R}^N for all times prior to the extinction time. The time evolution of the positivity set is also studied: on the one hand, it is included in a fixed ball for all times if it is initially bounded (*localization*). On the other hand, it converges to a single point at the extinction time for a class of radially symmetric initial data, a phenomenon referred to as *single point extinction*. This behavior is in sharp contrast with what happens when q ranges in [p - 1, p/2) and $p \in (2N/(N + 1), 2]$ for which we show *complete extinction*. We stress that instantaneous shrinking and single point extinction take place in particular for the semilinear viscous Hamilton-Jacobi equation when p = 2 and $q \in (0, 1)$ and these results are new even in this case.

Work in collaboration with Philippe Laurençot (Inst. de Mathématiques de Toulouse, France) and Christian Stinner (Felix-Klein-Zentrum, TU Kaiserslautern, Germany).