JOINT SIMILARITY AND DILATIONS FOR NONCONTRACTIVE
SEQUENCES OF OPERATORS

AURELIAN GHEONDEA AND GELU POPESCU

ABSTRACT. A characteristic function ©7 is defined, in terms of multi-analytic operators
on Fock spaces, for any noncontractive sequence 7 := (T1,...,T4) (d € N or d = o0) of
operators on a Hilbert (resp. Krein) space H. It is shown that if ©7 is bounded, then it is
unitarily equivalent to a compression of an orthogonal projection (on Krein spaces). This
leads to a generalization of a theorem of Ch. Davis and C. Foias, to multivariable setting.
More precisely, it is proved that if 7 has bounded characteristic function, then it is jointly
similar to a contractive sequence of operators, i.e., there exists a similarity S € B(#) such
that the operator defined by the row matrix [ST1S™"' ST>S™" ... ST4S™'] is a contraction.

Motivated by the similarity problem, a multivariable dilation theory on Fock spaces with
indefinite metric is developed for noncontractive d-tuples of operators. Wold type decompo-
sitions for sequences of bounded isometries on Krein spaces and Fourier representations for
d-orthogonal shifts are obtained and used to study the geometry of the canonical minimal
isometric dilation associated with a sequence 7 of operators on a Hilbert space.

1. INTRODUCTION

The starting point of this paper is an old result of Ch. Davis and C. Foiag [6] establishing
that any operator with bounded characteristic function is similar to a contraction. In this
paper, we obtain a multivariable version of their result. To reach this goal, we develop a mul-
tivariable dilation theory on Fock spaces with indefinite metric for noncontractive sequences
T :=(T1,...,Ty) (d € Nor d=o0) of operators on a Hilbert (resp. Krein) space H.

To put our work in perspective, we recall [19] that the noncommutative disk algebra A, is
the norm closed algebra generated by the left creation operators Si,... ,S; on the full Fock
space F2, and the identity (see Section 3). Generalizing [15], the second author [22] proved
that a d-tuple T := (T1,... ,Ty) of operators on a Hilbert space H generates a completely
bounded representation

mr: Aqg — B(H),
by setting w7 (p(S1,-.-,854)) = p(T1,...,Ty), if and only if T is jointly similar to a con-

d
tractive sequence of operators (Ai,...,Ay), i.e., Y A;AF < I3 and there exists a similarity
i=1
S € B(#H) such that T; = S1A;S forany i = 1,... ,d.
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Following the classical case [23], [6], as well as the multivariable setting of contractive
sequences of operators [18], we associate a characteristic function ©7 with any (noncontrac-
tive) d-tuple T of operators. We prove that if ©7 is a bounded analytic operator on Fock
spaces, then T is jointly similar to a contractive sequence of operators, and therefore 7 is
a completely bounded representation of A,;. The result extends to completely bounded rep-
resentations of the noncommutative analytic Toeplitz algebra F/°, the weakly closed algebra
generated by Ay, for a large class of operators.

This problem is also interesting in view of a tentative noncommutative multivariable sys-
tems theory, since the boundedness of the characteristic function is a natural condition that
appears in stability. In addition, the characteristic function is observable, in terms of the outer
description of the system, while the “main operator” T := (T1,...,Ty) is non-observable,
in terms of the inner (state-space) description of the system. In this perspective, the joint
similarity of the main operator with a row contraction can be viewed as a state-space trans-
formation.

Motivated by the similarity problem, we are also interested in answering the question
concerning the extent to which the noncommutative dilation theory for contractive sequences
of operators (see [2], [8], [16], [17], [18]), and the dilation theory for noncontractions (see [5],
[6], [11], [12], [13], [14], [3], [4]), can be generalized to noncontractive sequences of operators
on Hilbert (resp. Krein) spaces.

In Section 2, we present some preliminaries on Krein spaces (see also [1]). The next
two sections are devoted to isometries with orthogonal ranges on Krein spaces. We obtain
Wold type decompositions for sequences of bounded isometries (see Theorem 3.5 ) on Krein
spaces and Fourier representations for d-orthogonal shifts (see Theorem 4.2 and Theorem
4.6), extending the corresponding results from [11], [12], [13], [14], and [17], [18].

These results are used in Section 6, to study the geometry of the canonical minimal iso-
metric dilation (see Section 5) associated with a sequence 7 of operators on a Hilbert space
(see [5], [6], [12] for the case d = 1, and [17] for the multivariable contractive case).

In Section 7, we associate with any d-tuple T a characteristic function ©¢ in terms of
multi-analytic operators on Fock spaces. The main theorem of this paper is the similarity
result in Theorem 7.4, the generalization of Davis-Foiag theorem [6]. A few comments on the
two proofs that we provide for Theorem 7.4 are necessary. As expected, both of them use
heavily the Fourier representation associated with the two wandering subspaces £ and L,.
Thus, in Theorem 7.2 we have to prove that, if ©7 is bounded, then it is unitarily equivalent
to a compression of an orthogonal projection (on Krein spaces), that is, the generalization
of the celebrated theorem of Sz.-Nagy and Foiag to the multivariable contractive setting as
in [17]. To do this, we follow a combination of the approach of the original proof of Davis-
Foiag theorem [6] with the more geometric approach of McEnnis [12]: we generalize to this
multivariable setting the characterization of the residual space R in terms of the Fourier
coefficients of M (L), cf. Theorem 6.2. Based on this, we can prove Theorem 7.2 using a
shortcut (cf. the proof in [10]) with respect to the orignal proof of McEnnis, more precisely,
a simple duality argument that allows us to obtain the boundedness of the Fourier transform
M,. From this point the two proofs of Theorem 7.4 split: the first one follows the approach
of McEnnis to show that, by renorming suitably the space M, (L.), we get the desired
similarity, while the latter shows that the criterion of similarity obtained in [16] is met.

We remark that all the results of this paper remain true if d = oo, in a slightly adapted
version.
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The results of this paper lead to a multivariable commutant lifting theorem for noncon-
tractive sequences of operators and non-analytic interpolation in several variables, as well as
to a model theory for d-tuples of operators with bounded characteristic function. These two
topics will be considered in future papers.

2. PRELIMINARIES ON KREIN SPACES

2.1. Operators on Krein Spaces. A Krein space is a complex linear space K
equipped with a Hermitian sesquilinear form [-,-]x, which admits a decomposition of the
form
K=KtTeokKk,

where Kt and K~ are linear manifolds in K such that (K*,£[-,-]x) are Hilbert spaces and
[K*,K~]x = {0}. This kind of decomposition is called fundamental decomposition of the
Krein space K and, if J* : K — K are the orthogonal projections from K onto K*, then
J := Jt — J~ is the corresponding fundamental symmetry. The form (z,y) := [Jz,y]k,
z,y € K, defines a positive definite inner product on X, which turns K into a Hilbert space.
The norm associated with (-,-) is called unitary norm and it depends on the fundamental
symmetry. However, all the unitary norms are equivalent and therefore, define the same
topology on K, called the strong topology.

The dimensions of the subspaces KT are the same for each fundamental decomposition of
the Krein space K, and the cardinal numbers x*(K) := dim K* are called the positive (resp.
negative) signature of the Krein space K. The cardinal number x(K) := min{s™(K),x™ (K)}
is called the rank of indefiniteness of the space K.

We denote by B(K1,K2) the set of all bounded linear operators from the Krein space
K1 to the Krein space Ko, with respect to the strong topology. If T' € B(Ki,K3), then
Tt € B(K3,K1) stands for the adjoint of T with respect to the indefinite innner products
[-, ']’Ci on K:Z', i.e.,

[Tﬁmay]lﬁ = [maTy]lCza TE IC27 /S K.
If .J; is any fundamental symmetry on K;, then 7% = J;T*.J,, where T* stands for the adjoint
of T with respect to the Hilbert spaces (K, (-,-)s,). We note that a fundamental symmetry
J on a Krein space K belongs to B(K) and J = J~! = J¥ = J*,

Throughout this paper, selfadjoint operators are considered with respect to the involution
§. An operator U € B(K1,Kz) is called unitary if it is boundedly invertible and U* = UL,
An operator T' € B(K1,Kq) is called contraction if [Tz, Tz, < [z,z]x, for all z € Ky,
equivalently, J; — T*JoT > 0, where J; is a fundamental symmetry on ;.

If T: Dom (T")(C K1) — Kq is a densely defined operator, then one can uniquely define its
adjoint 7%: Dom (T%) — K; by
[Tm,y]Kz = [xaTﬂy]/CU z € Dom (T)a y € Dom (Tﬂ)

Equivalently, T = J,T*J,, in the sense that JoDom (T%) = Dom (T*) and Ty = J,T*Joy
for any y € Dom (T*). In this way, most of the theory of unbounded operators on Hilbert
spaces is extended to unbounded operators on Krein spaces.

We will use the notion of isometric operator in a very general sense, namely: an operator
T with domain in K; and values in Ky is isometric if [Tz, Ty|x, = [z,y]k, for all z,y €
Dom (T'). We recall that, in general, an isometric operator is not injective unless its domain
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is nondegenerate. Moreover, a densely defined and isometric operator is not necessarily
continuous.

2.2. Subspaces of a Krein Space. Let £ be a subspace of a Krein space K, that is,
L is a closed linear manifold of K. Then the orthogonal subspace associated with L is
Lt :={y € K| [z,ylx =0, forany x € L}. The subspace £° := £ N L' is called the
isotropic subspace of £ and has the property that the inner product [-,-]x vanishes on it.
The subspace L is called nondegenerate if £L° = {0}. For two subspaces A and B of a Krein
space, the notation A @ B is used whenever the algebraic sum A + B is closed, A L B, and
AnNB={0}.

A subspace L is called nonpositive (resp. negative) if [z,z]x < 0 for all x € L (resp.
[z,z]x < 0 for all z € £\ {0}). The subspace L is called uniformly negative if there exists
d > 0 such that [z,z]x < 6(z,z); for all z € L. Similarly one defines nonnegative, positive,
and uniformly positive subpaces.

A special role in the geometry of Krein spaces is played by those subspaces £ of a given
Krein space K which become Krein spaces under the induced inner product and strong
topology. It is clear that such subspaces must be nondegenerate but, it turns out that, for
the case of genuine Krein spaces, nondegeneracy is not sufficient.

Let £ be a subspace of the Krein space K. It is well-known that the following statements
are equivalent:

() K=La Lt
(ii) There exists a (uniquely determined) selfadjoint projection P € B(K) such that PX = L.
(iii) L= Ly @®L_, where L is a uniformly positive subspace and £_ is a uniformly negative

subspace.
(iv) There exists a fundamental symmetry J on K such that J£ C £ (equivalently, JL£ = L).
(v) There exists a unitary norm || - || on K such that
o] = sup |[z,9]x|, = €L
llyll<t, yec

A subspace L of a Krein space K which satisfies one (hence all) of the conditions (i)—(iv)
is called regular. Regular subspaces are also called Krein subspaces. If {L£;}? | is a finite
family of mutually orthogonal regular subspaces of X, then the subspace L1 ® Lo @ --- DL, is
regular. Attention should be paid to sums of infinite families of mutually orthogonal regular
subspaces when the regularity is not automatic.

Two subspaces £ and M of (possibly different) Krein spaces K1 and Ko, are called isomet-
rically isomorphic if there exists a bounded linear operator V: £ — M which is boundedly
invertible and [Vz, Vylx, = [z, y]k,, z,y € L. If a subspace L is isometrically isomorphic to
a regular subspace, then L is also regular. Two regular subspaces £ and M are isometrically
isomorphic if and only if k¥ (£) = k*(M).

3. ISOMETRIES WITH ORTHOGONAL RANGES ON KREIN SPACES

Let d € N and consider the free semigroup IF;" on d generators ¢gi,9s,--- ,9d, and unit go.
For any o € F}, we denote by |o| its length, ie., |o| =n if o = g;, -+~ gi,, 4 € {1,2,... ,d},
and |go| = 0.
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Let Hy be a Hilbert space of dimension d, with orthogonal basis {e1,... ,eq}. We consider
the full Fock space
(3.) Fq=Ceo @ DA,
n>1

where e is the so-called “vacuum vector”. The set {€,} .+ is an orthonormal basis of F2,
d

where e; :=¢€;, e, ®---Qe;,, if 0:=¢4,9i,...9i, € IE‘;, and ey, := eg. Whenever H is a
Hilbert space and T := (Tj)?:1 is a d-tuple of bounded operators on H we denote Ty := Iy
and T, :=T;, 15, - - T;,,, if 0 :== gi, - -~ gi,, -

For each j € {1,... ,d}, we consider the left creation operator S; defined by
(3:2) Sit=e;®E, EeFy

Notice that the isometric operators S1, ... , Sg have mutually orthogonal ranges, and £ = Ceg
is a wandering subspace, i.e., S;L L S, L for all 0,7 € IE‘}', o # 7. It is easy to see that L is
generating the Fock space .7:3, that is,

P s.L =75
O'E]F;—

If H is a Hilbert space, then {S1 ® I3, ... ,Sq4® I} is a d-orthogonal shift on .7:3 ®H, and
L = CQ®H is the generating subspace. This model orthogonal shift has played an important
role in the noncommutative dilation theory for row contractions (see [16], [17], [18]). In what
follows, we find a “model” d-orthogonal shift in the Krein space setting. However, as we
shall see subsequently, the notion of d-orthogonal shift on a Krein space is different in many
aspects from its counter-part in the Hilbert space setting, and many pathologies will show
up.

Let H1 and Hs be two Krein spaces and fix two fundamental symmetries J; and Jo on H;
and Ha, respectively. There is a natural Krein space structure on the Hilbert space direct
sum H; @ Ho (with the positive inner product (-, -)), defined by the indefinite inner product

[fan]'}'h@%z = <(J1 S J2)§an>’ fﬂ? € Hi © Ho.

Similarly, there is a natural Krein space structure on the Hilbert space tensor product
H1 ® Hao (with the positive inner product (-, -)), defined by the indefinite inner product

[éan]%l@ﬂ{z = <(J1 &® JQ)&"])’ &n € Hi ®Hs.

Both constructions do not depend on the fundamental symmetries, up to a canonical
unitary isomorphisms.

We need to make a few remarks that will apply throughout this paper when d = oo. If

T := (T1,Ts,...) is an infinite sequence of operators on a Hilbert space H, then we always
o0

assume that the row matrix 7 := [T} T, ...] is a bounded operator from € H to H, i.e., the
i=1

o0
series ) T;T; is strongly convergent. In this case, we have

1=1
o
Nom oy =31 Y TEIHI;

lal=n =l |gj=n-1
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and
o0
Y TLTE <) TTH|" Iy
lal=n i=1

This shows that, if we consider the lexicographic order on {a € FJ; |a| = n}, then the row
matrix [T4]|q/—n is a bounded operator acting from € H to H. Therefore, if @ ha C
a|=n a|l=n
@ H,then > Tyh, is convergent. ° “

laj=n laj=n

Let V = (Vj)?:l be a d-tuple of bounded isometries on a Krein space H. A subspace
L C H is called wandering for V if it is regular and V,£ 1 VL for any distinct o, 7 € IF;. In
this case, we define the subspace M (L) by setting

(3.3) ML) ="\ VoL
O'EF;_

Let us first note that if £ is a wandering subspace for V, then V;£ has the same property.
Moreover, if ¢,j € {1,2,... ,d} with i # j, then VM (L) L VM, (L) and £ L V;M(L).
We need to pay attention to the case d = oo, when we also assume that [V; V5 ...] is a
bounded operator. Since the row matrix [Va] o=, is @ bounded isometry when restricted to
the Krein space € L and with values in #H, we infer that @ V,L is a regular subspace of

lee|=n |a|=n
‘H. Now, as in [17], one can easily verify the following properties.
Lemma 3.1. Let V = (VJ);":1 be a d-tuple of bounded isometries on a Krein space H and
let L be a wandering subspace for V. Then
(a) My(L)=LOVIML(L)V---VVaMi(L));
(b) For any n > 1, the subspace M_ (L) has the decomposition

(3.4) M(L)= P VoL \/ VoM (L);

o|<n—1 o|=n

(c) M4 (L) is nondegenerate if and only if L= M4(L)N (
j

(d) M(L)’ =N V VeMi(L).

n>0 |o|=n

d 1
v VjM+(£)> :

1

Notice that, according to the equation (3.4), one can associate with each h € M, (L) a
unique family {lff}aele{ of vectors in £ such that

(3.5) h= Y Vi e \/ iMyi(£), neN

I7|[<n—1 Iri=n
The sequence {l,} oeF} is called the sequence of Fourier coefficients associated with h €
M (L).

Lemma 3.2. LetV := (Vj);’-l:1 be a d-tuple of bounded isometries on a Krein space H and
let £ be a wandering subspace of V. Then, for any h € M (L), the family of its Fourier
coefficients {lff}aele{ is given by

lo = PLV}h, o €Ty,
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where P is the selfadjoint projection onto the reqular subspace L.

Proof. If h € M4(L), we clearly have lo = Pzh. Let n > 1 and a € F}, |a| = n. According
to (3.5), there exists a family of vectors {hj} /=, in M4 (L) such that

h= Y Valg= > Vshj.

|B]<n—1 |Bl=n

Applying the operator PEVOB to both sides and taking into account that PgVCBVglg =0 for all
ﬁEF}' with |8 <n — 1, we get

PeVih=PcVE " Vghly = Phl,.

18=n
Therefore,
h= 3" Valg— > VePcVih= Y Vy(hjy— PVih) = > V(I — Pkl
|8<n—1 18=n 18=n 18=n

Since hjy € M (L), by Lemma 3.1.(a), it follows that

d
(I - Pr)h € \/ ViMy (L),

Jj=1
and hence

S VeI -Pohe \/ VaMi(L).

|B|=n |B]=n+1
Now, using the definition of the Fourier coefficients, one can easily see that I, = PgV,Bh for
any a € ]F;'. This completes the proof. U
Let us now assume that V := (V1,...,Vy) is a d-tuple of isometric operators on a Krein
space H, with mutually orthogonal ranges. Since Vo, H L VgH for any «, 8 € Fji', a # B, with
|a] = |B| > 1, and the ranges of bounded isometric operators are regular subspaces, we infer
that V,H, a € Fj, and €@ V,H are regular subspaces. The equation (3.4) can be written
as lo=n
(3.6) ML= P VoLo P VoM. (L).
lo|<n—1 lo|=n

On the other hand, since VaVCLi is a selfadjoint projection onto the range of the isometry V,,
the operators

(3.7) Pyi=T1- ) VoVi, n>1,
la=n

are also selfadjoint projections. Notice that the sequence of selfadjoint projections {P,},>0,
where Py = 0, is nondecreasing, i.e., the range of P, is included in the range of P,4;.
Furthermore, it is easy to see that

(3.8) L:=ViHD - VM),
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is a wandering subspace of V and

(3.9) My (L) =\ P.H.

n>0

Remark 3.3. As shown in [9], the regularity of a subspace is related to the graph conver-
gence. We recall the following definitions only for bounded operators: the sequence (Cy,)nen,
of bounded operators on a Hilbert space H, is said to converge in the strong (weak) graph
sense to C € B(H) if for any x € H there exists a sequence (z,) of vectors in H such that
xn — z strongly (weakly) and C,z, — Cz strongly (weakly).

Let V := {Vi,...,V4} be a family of isometric operators with mutually orthogonal ranges
and consider the wandering subspace L, as defined in (3.8). Then, the following statements
are equivalent:

(@) { X2 V, Vi }n>0 converges in the strong graph sense;
|a|=n

(b) { X2 V,Vé }n>0 converges in the weak graph sense;
|a|=n

(c) M4(L) is a regular subspace.

These equivalences can be proved using (3.7), (3.9), the observation that the sequence of
selfadjoint projections { P, },>0 is nondecreasing, and Corollary 3.3 from [9].

A d-tuple V := (Vj)‘;:1 of bounded isometries on the Krein space H is called a d-orthogonal
shift if there exists a subspace £ of #H, which is wandering for V and such that H = M (L).
In this case, the wandering space L is called generating for V. As a consequence of Proposition
3.1, it follows that the generating subspace of a d-orthogonal shift V is uniquely determined
and given by (3.8). If z € H = M (L) and {la}aelﬁj are its Fourier coefficients, then we
write z ~ > Vyl,.

aEF;'

Example 3.4. A class of d-orthogonal shifts on Krein spaces is obtained as follows. Let
‘H be a Krein space and let U € B(H) be a unitary operator of Krein space. The d-tuple
V:=(S1QU,...,S4®U) is a d-orthogonal shift on the Krein space F2 ® H, with generating
space Cey @ H.

We say that U is fundamentally reducible if JU = UJ for some fundamental symmetry
J of H, equivalently, U* = U*, where U* is considered with respect to the positive definite
inner product (-,-);. Then V is a d-orthogonal shift with respect to both the Krein space
structure and the canonical Hilbert space structure of .7:3 ® H induced by the fundamenal
symmetry I 72 ® J. In particular, this is true for U = I3. In this case, the d-orthogonal shift

S:={S1®Iy,...,54® Iy} is called the canonical d-orthogonal shift on .7-"3 QH.

In a certain sense, the canonical d-orthogonal shift, as described above, might be considered
as a “model” even in our indefinite setting. If V := (Vj)?:1 is a sequence of bounded isometric
operators on a Krein space H, then a decomposition H = HoDH, is called Wold-von Neumann
decomposition if, for each 1 = 0, 1, the following conditions are satisfied:

(i) H; is a regular subspace of H;
(ii) H; is invariant under each Vj, 7 =1,2,... ,d;



JOINT SIMILARITY AND DILATIONS 9

d
(i) (1= 3 ViVt = 0;
]:
(iv) {Vj|7-[0}?:1 is a d-orthogonal shift on #,.

There is an analogue of Wold-von Neumann theorem (see [23]) in our setting. The proof is
essentially the same as that from [17], so we shall omit it.

Theorem 3.5. Let V := {Vi}g:l be a sequence of bounded isometries on a Krein space H,

d
having orthogonal ranges, and let L be the wandering subspace defined by L := (@ Vﬂ-[)
i=1

Then V admits a Wold-von Neumann decomposition H = Ho ®H1 if and only if the subspace
My (L) == Vaele VoL is regular. In this case, Ho = M1 (L) and

Hi=) (@Voﬂ-{).

Moreover, if a Wold-von Neumann decomposition exists, then it is unique.

A delicate question in this setting is related to the possibility of recovering the vectors in
M (L) from their Fourier coefficients.

Proposition 3.6. Let V := (Vi,...,Vy) be a d-tuple of bounded isometric operators on a
Krein space H with mutually orthogonal ranges, and let L be the wandering subspace associ-
ated with V. Then, the following statements are equivalent:

(a) The sequence { Y VaVoici}nZO is uniformly bounded.

laj=n

(b) The sequence { > VaVog}nzo conwverges in the strong operator topology.

|a|=n

(c) The sequence { >’ VaVoici}nZO converges in the weak operator topology.
laj=n

(d) M4 (L) is regular and, for every vector h € M4 (L), we have
(3.10) h=>"Y" Vala,
n>0 |a|=n
where {la}ae]l"j is the sequence of Fourier coefficients of h and the series converges

strongly.
In addition, if either one of the above statements holds, then for any h,h' € M (L), we have

(3.11) [h, 1k = i > llas ]k

n=0 |a|:n

where h ~ Y Valg and b ~ Y V,ll,.
aE]F+ aeF}'

d

Proof. To prove the equivalence of (a), (b), and (c), one can use (3.7), (3.9), the observation
that the sequence of selfadjoint projections {P,},>0 is nondecreasing, and Lemma 3.4 in [9].
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(¢)=(d). Let h be a vector in M, (L) and let {Za}aelﬁ'j be its sequence of Fourier coeffi-
cients. By Lemma 3.2, we have

d d
loa=PcVih= (I =Y ViVHVih=Vih =Y V;VIVih, €T},
7j=1 7j=1

Therefore, for arbitrary n > 1, we have

d
Yo Vala= Y VaVih=3" 3" (VaV))(VaVi)'h,

|aj=n laj=n J=1|al=n
and hence, for fixed N > 1, we have
N N d
(3.12) PRSI D INAZES 3D WIAGAGIIE
n=0|a|=n n=0 |a|=n j=1|a/=n

Noticing that the sum in the right hand side of (3.12) is telescopic, we obtain
(3.13) > Vala=(I- ) VaVi)h=Pyh.

al<N \al=N+1
Since the sequence { ) VaVce}nzo converges in the strong operator topology, it follows
\al=n
that the sequence {P,},>o converges to the bounded selfadjoint projection onto M, (L).
Therefore, the subspace M (L) is regular and, in addition,

o
(3.14) h= lim Pah= Y Vala
n=0|a|=n
(d)=(c) Assume that M, (£) is regular and the expansion (3.10) holds for any h € M (L).
By (3.13), it follows that the sequence { ). VaVOEih}nZO converges strongly. Taking into

|a|=n
account that M (L) is regular and using Theorem 3.5, we infer that

k=Y VaVik, keMy(L)", n>1.
|a|l=n
Since H = M, (L) @ M (L)*, this implies that the sequence { 3 VaVog}nZO converges in

la|=n

the strong operator topology. U
Remark 3.7. If the sequence { > VaVaﬁ}nzo is uniformly bounded, then the subspaces in

laj=n

the Wold decomposition have the form

Ho={k€H: lim Y VaVik =0}
|a|=n
and
Hi={keM: > VoVik=kforanyn=0,1,...}
|a|=n

In particular, if > VoVE =0 strongly as n — oo, then (Vi,...,Vy) is a d-orthogonal shift.

|a|=n
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Recall that a regular subspace £ is uniquely determined, modulo an isometric isomorphism,
by its signature (k™ (L), s~ (L)) and hence, the signature of the generating subspace £ might
be called the multiplicity of the d-orthogonal shift V. But, contrary to the positive definite
case, when the multiplicity of the generating space determines uniquely the d-orthogonal shift,
up to unitary equivalence, the next proposition shows that this is not true in the setting of
genuine Krein spaces.

Two d-orthogonal shifts V and V', on Krein spaces K1 (resp. K2) are called unitary equiv-
alent if there exists a bounded unitary operator ¥ € B(K1,K2) such that UV; = VT for all
j=1,2,...,d.

Proposition 3.8. If the Krein space ‘H is indefinite, that is, it contains positive as well as
negative vectors, then there exist two d-orthogonal shifts on the Krein space .7:3 ® H, having
the same generating space eg @ H, and such that they are not unitarily equivalent.

Proof. Let H be a Krein space and let U € B(H) be a unitary operator of Krein space. Define
V.= (W,...,Vy), where V; := S;QU, i =1,2,... ,d, and notice that V is a d-orthogonal shift
on K = .7:3 ®H, with the generating space eg® . On the other hand, we have V,, = So@U
and sup,, g+ [|Vall = suppen [[U"]-

Now we show that, if H is indefinite, then there always exists a unitary operator U €
B(H) such that sup,cy ||[U"|| = oo. Indeed, it is easy to see that it is sufficient to prove

this statement for the particular case when H = C & C, with the indefinite inner product
[hl @ ki,ho @ kg] := hi1hg — k1ko. In this case, fix r € (0, 1) and define

(3.15) U::\/%_TZ“ ’1"]

Then U is a unitary operator on the Krein space ‘H and

1 3
U™ = ( -|—r) — 00, asm — 00.
T

1 —

Since limy,| o0 [|Sall < 00 and limjg | [|Vall = oo, the d-orthogonal shift V is not unitarily
equivalent to the canonical d-orthogonal shift S := {S1 @ H,...,Sq ® Iy}, although they
have the same generating space eg @ H. O

4. THE FOURIER REPRESENTATION OF d-ORTHOGONAL SHIFTS

Let V := (V1,...,Vy) be a d-orthogonal shift on the Krein space K = M, (L), with
generating space £. With the notation as in the previous sections, we consider the Krein
space

2
(4.1) Fi®L:={€D ea®la|(la)aert C L Y llal® < o0},
aEIE';' aE]Fj[
where || - || is a fixed unitary norm on K. For any vectors z,y € F3 ® L given by

T = @ea@)ﬂfa, Yy = @ea®yaa

aEF;' aeIFC'}'
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we have

(4.2) [way]}‘j@C = Z Z [Tas YalKc-

3=0 |a|=j

We define the linear operator ®j: Dom ($g) — .7-"3 ® L as follows:

(4.3) Dom (®g) = { Y Vala|n€N, (la)ja<n C L} C K,
laj<n
(4.4) (> Vala) = P ea®la, (la)jajcn CL, nEN.
laj<n lal<n

Lemma 4.1. The linear operator @ is densely defined, closable, isometric, with dense range,
and

(4.5) ®oVj = (S; ® I)Po,
forallj=1,....d.

Proof. Clearly, the linear manifold Dom (®o) is dense in K and ®;Dom (@) is dense in F7 QL.
On the other hand, taking into account that V is a d-orthogonal shift with generating space
L and the definition of the inner product [-, -]],-3®£ (see (4.2)), it is easy to see that ®¢ is
isometric, that is,

(46) [Qoxa ‘I’Oy]}'j@z: = [‘Z‘a y]Ka T,y € Dom ((I)O)

Note that if © ~ > V,l, is an arbitrary vector in K and j € {1,...,d}, then Vjz ~
aEI[";

Y. Vgala- Thus, z € Dom (®g) if and only if V;z € Dom (@) and hence Dom (®V;) =

aEFI

Dom ((S; ® I)®g). Moreover, for any z = ) V,l, in Dom (®g), we have

lo|<n
(S; ® Ir)®oz = EP €40 ® la = BV,
a|<n
and hence (4.5) holds.

It remains to prove that @, is closable. To see this, let ($n)n20 be a sequence of vectors
in Dom (®() such that z, — 0 € K and &gz, — y € .7:3 ® L, as n — oo. By definition,
Tn= ), Valan for some m, € Nand {lo,n}|a/<m, in £. Then @z, = P eq®lan for

|| <mn, la|<mn

all n € N. For any o € IF';F, let Qg .7-"3 ® L — L be the operator defined by
(4'7) QO’( @ €a ® la) =lg-
ozE]F;—

Clearly, @, is a bounded linear operator and Q,®oz, — Q,y as n — oo. Setting y :=
D eq ®ly, where {la}aem‘j C Land Y |[la]|? < oo, we have Iy, — Iy as n — 0.

aEIF;' aEF;
On the other hand, as a consequence of the regularity of the generating space £ and the
decompositin (3.4), there exists a unitary norm || - || on X = M4 (L) such that, for any

a € ]Fj, o # a, we have V,L 1 V,L with respect to the corresponding positive definite inner
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product on K. In addition, the operator U, = V;|L: L — VL is a bounded unitary operator
and, as a consequence, it has a bounded inverse. Hence, for all n € N,

1
lznll® =11 > Valanll® > IVolonll® > —llonll,
|a|§mn ”UO' ||
where we let [, = 0 if |o| > m,,. Since z, — 0 strongly, we have [, , — 0 strongly. Thus

y = 0, and this proves that the operator @ is closable. ]

As a consequence of Lemma 4.1, we can define the Fourier representation associated with
the d-orthogonal shift V as the (poss~ibly unb(lunded) operator @, the closure of the operator
®y. In addition, another extension ®: Dom (®) — F7 ® L of ®; can be defined as follows:

(4.8) Dom (3) := {zek| D [IPViz|* < oo},
aEF;'
(4.9) d(z) = @ es ® PcViz, z € Dom (®).
O'E]F;_

Theorem 4.2. The Fourier representation ® associated with the d-orthogonal shift V is a
densely defined closed isometry with dense range, such that

(4.10) O(z) = P ea ® PcV}z, z€Dom (),
aEI[";

and, for any j € {1,...,d},
(4.11) CI'Vj = (Sj ® IL)‘I).

Proof. By the definition of ® and the properties of ®, it follows that ® is a densely defined
closed isometry with dense range. Since @ is the smallest closed extension of @y, and ® is an
extension of ®, in order to prove (4.10) it is sufficient to show that  is closed as well. To see
this, let (z,)nen be a sequence in Dom (5) such that ®z,, — = and dz, — y,asn — 0o. A
similar argument as in the proof of Lemma 4.1 shows that, for any o € FIJ{, PgV,}i:cn — Qsvy,
as n — oo, where @, is defined by (4.7). Since PEV}iwn — P[;V(f:c, we conclude that, for any
oceFl, PVEiz = Quy. Since y € F2 ® L, we have z € Dom (®) and ®(z) = y. Thus, ® is
closed and (4.10) holds.

In order to prove (4.11), fix 7 in {1,... ,d}. It is clear that (4.5) implies ®V; D (S; ® I;)®.
To prove the converse inclusion, let x € K be such that V;z € Dom (@), that is, there exist
(zn)nen with z, — Vjz and ®oz, — ®Vjz, as n — oo. Then VJﬁVan — V]ﬁV]w = T,
asn — oo. Let [, = PLVCQ:E and lo, = P,gVogxn be the Fourier coefficients of z and z,,
respectively. Taking into account that

i _ Vﬂa a = gjﬁa
ViVa = { 0, otherwise,

we have

Vien= 3 ViValan= 3 Vilgsn
|a|§m7b ‘/3|Smn_1
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Then
[@0zn — ®Vz|®> = || @D ea®lan— D e ® sl
la|<mn ,BGIF;'
= Z ||lgj,3,n - l,é’”2 + Z ”la,n |2,
BEFy agg;Fy

where we set [, = 0 if |a| > m,,. Since ||®oz, — ®Vjz|| — 0 as n — oo, we infer that
Z lg;8m — l,3||2 —0, n—oo.
BEF

Hence, the vector h = P e, @1, isin .7-"5 ® L. Taking into account that
UEF}_

1®0Vizn = Bl* = D Illg;5n — LslI%,
BEFy

it follows that <I>0Vjﬂacn — h. Since Vjﬂxn — z, as n — 00, we infer that z € Dom (®) and
h = ®z. This proves that Dom (®V;) C Dom (®) and hence (4.11) is completely proved. [

We are now interested in characterizations of the boundedness of the Fourier representation
associated to a d-orthogonal shift. We first make two observations.

Remark 4.3. We can introduce a partial order on F("i'. Ifa,B € Fjl', then we say that a < 8
whenever there exists o € Fj such that 8 = ao. Notice that, if a,3 € F;r, then

V,@V/jl‘ja a< :87
(4.12) VoVEVVE =S vVi B<a,
0, all other cases.

Now it is easy to see that the selfadjoint projections VaVOEi are mutually commutative.

In what follows, we use the notation AA B = AB and AV B = A+ B — AB, whenever
A, B are two commuting selfadjoint projections in B(K). Observe that the operators A A B,
AV B and I — A are selfadjoint projections.

Remark 4.4. Taking into account Remark 4.3, it makes sense to consider the Boolean alge-
bra 9B generated by the mutually commutative selfadjoint projections {VaVog} €T} that is,

the smallest family of selfadjoint projections in B(K) invariant under the operations V, A, and
complementation (recall that, since AV B = (I — A) A (I — B), only A and complementation
are sufficient).

For arbitrary a € Fj, consider the sefadjoint projection @, from K onto the regular
subspace V, L, more precisely,

(4.13) Quor = VanVogw, Tz € K.
To see that {Qa}aelﬁj C B, we use (4.12) and observe that

d
(4.14) Qo= |I—=\ Vag;Vdy, | AVaVi.
7j=1
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Moreover, @, are atoms for the Boolean algebra %8, in the sense that, for any o € Fj and
B € B such that B < @, it follows that B = 0. In addition, for any A € 8 there exists a

finite subset G C ]F}', such that A = ) Q,, that is, the Boolean algebra B is atomic.
aeG

We will use the following lemma which is a particular case of Lemma XV.6.2 from [7].

Lemma 4.5. Let B be a Boolean algebra of selfadjoint projections on the Krein space K.
Then B is uniformly bounded if and only if there exists a fundamental symmetry J on K such
that JB = BJ for all B € B, equivalently, B = B* for all B € B, where * denotes the
involution with respect to the positive inner product (-,-).

Theorem 4.6. Given a d-orthogonal shift V = (Vi,...,Vy) on the Krein space K, with
generating subspace L, the following statements are equivalent:

(1) Any vector in K has square summable Fourier coefficients;

(2) The Fourier representation ® is bounded (and hence, ®: K — .7-"3 ® L is a unitary
operator of Krein spaces);

(3) The family {Va}aem‘j and the Boolean algebra B generated by the selfadjoint projections

~{VQV£}&€IE-(41r are uniformly bounded in B(K).

Proof. (1)=(2) If all the vectors in K have square-summable Fourier coefficients then the
operator ® given by (4.8) and (4.9) is defined on K. Since ® is closed, by the Closed Graph

Theorem, it follows that ® is bounded. Thus, © is bounded and equals ®. From Theorem
4.2, it follows that ® is a bounded unitary operator of Krein spaces.

(2)=(3) If ® is bounded, then, by Theorem 4.2, it is a bounded unitary operator of Krein
spaces and, for all o € ]Fjl', we have V,, = ®4(S, ® Iz)®. Hence, VOLVOE1 = O4(S, ® I)(Sa ®
I;)®. The latter implies that the Boolean algebras 8 and & are unitarily equivalent. Since
(So ® I)* = (S ® Ir)*, both {(S, ® I)} acF} and the Boolean algebra & are uniformly

bounded by 1. Therefore, the family {V,}
bounded by ||®||2.

ekt and the Boolean algebra B are uniformly

(3)=(1) Assume that both the family {V,} ek} and the Boolean algebra B generated by

the selfadjoint projections {VaVce} acE} Are uniformly bounded in B(K). By Lemma 4.5, we

can choose a fundamental symmetry J of the Krein space K such that all the projections in
B are selfadjoint with respect to the positive definite inner product (-,-) s, hence of norm 1.
In particular, by Proposition 3.6, it follows that

o
T = Z Z VgPLng, z €K,
J=08=j

where the series converges strongly. For any a € F}', let @, denote the selfadjoint projection
onto the regular subspace V, £, as defined in (4.13). According to Remark 4.4, {Qa},, ert C B

is a family of disjoint projections, orthogonal with respect to the inner product (-,-)s. Thus,
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there is a constant K > 0 such that

o PcVial® = Y IVEVaPeVisl? < K Y VaPeViell”
aEF;" aEF:’l' aEF;"
= K Y Q=K ) Qazl’
aeF;' aEF;"
= K|| Y VaPViz|* = K|z’
aEFj
Hence, = has square summable Fourier coefficients and the proof is complete. O

5. ISOMETRIC DILATIONS

Let T := (Tj);-i:1 be a family of bounded operators on a Krein space H. A pair (V,K),

where V := (Vj)j-l:1 is a d-tuple of bounded isometric operators on a Krein space K D H, is

called a minimal isometric dilation of T if

() VIV; =0foralli#£j,i,j=1,...,d;

(ii) VIH =T forall j=1,... ,d;

(i) K= V Vol

aEFj

We remark that if d = oo, then both row matrices [I7 T ...] and [V V, ...] should
be bounded operators. Let J be a fundamental symmetry on # and let (%% (-,-) ;) be the
direct sum of d copies of the Hilbert space (%, (-,-)s). The space H? is regarded as a direct

sum of Krein spaces, where the fundamental symmetry J is the direct sum of d-copies of J.
Let T:=[T1 Ty ... Ty) € B(H% M) and consider the operators

(5.1) Jr:=sgn(J —T*JT), Drp:=|J—T*JT|"/>.
Then Jr is a selfadjoint partial isometry on ¢ which commutes with D7. The defect space
(5.2) Dr := DrHE = JpHe

is invariant under both Jp and D, and Jr is a symmetry on Dp. We define a new inner
product on D by setting

(5.3) €, nlpy == (Jr&,m),  &neH
Consider now the Krein space

(5.4) K:=He& (F: ®Dr),

with the indefinite inner product defined by the symmetry

(5.5) Je:=J& (I}-g ® Jr).

We consider H embedded into K onto the first component. For each j =1,... ,d, define the
bounded isometry V;: K — K by

(5.6) Vi(h® (€ ®k)) :==Tjh @ (eg ® Dr(0,... ,0,h,0,...) + (S; ® Ip,) (£ ®K)).
j—1 times

where h € H, £ € F3, k € Dr, and (Sj);-l:1 is the canonical d-orthogonal shift on 2.
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We say that two minimal isometric dilations (V, K) and (V',K'), of the same d-tuple T of
operators in H, are unitarily equivalent if there exists ¥ € B(K,K'), a unitary operator of
Krein spaces, such that U|H = I, and ¥V; = V)V forall j =1,... ,d.

Theorem 5.1. Let T := (T])?Z1 be a d-tuple of bounded operators on a Krein space H.
The pair (V,K) defined by the relations (5.4)and (5.6) is a minimal isometric dilation of T .
Moreover, T admits a unique minimal isometric dilation, up to unitary equivalence, if and
only if the operator T := [Ty Ty ... Ty is either contractive or expansive.

Proof. The proof of the fact that (5.4) and (5.6) define a minimal isometric dilation of 7
is essentially the same as the proof of the noncommutative dilation theorem from [16] and
therefore, we shall omit the details. We only need to add that if d = oo, then V := [V} V5 ...]
is a bounded operator. Indeed, this follows from (5.6) if one takes into account that 7" :=
[T1 T ...]is a bounded operator.

Let us now assume that the operator T' := [T1 T» ... Ty] is contractive, that is, J—T*JT >
0. Consequently, the operator Jr is the identity on Dr, and the Krein space Dy is positive
definite. Let (V',K') be another minimal isometric dilation of 7, where V' = (V{,... ,V]).
Since, for arbitrary N > 0 and {ha }|o/<n; {ka}jaj<y C H we have

[ Vaha, Y. Vakalc =1 Viha, S Vikalx,

al<N <N al<N <N

taking into account of the minimality of the isometric dilation, it follows that the mapping

(5.7) U( > Vaha)= D> Viha, N >0, {ha}ia<n CH,
lo| <N la|<N
is well-defined, and the linear operator V is isometric, densely defined and with dense range.

Let H = H* @ #H ™ be a fundamental decomposition of the Krein space . Note that, since
Dy is positive definite, it follows that the Krein space .7-"3 ® Dy is positive definite and hence,
K=MHto .7-"3 ® Dr) ® H™ is a fundamental decomposition of K. Thus, H~ is contained in
the domain of ¥ and we can apply Theorem VI.3.5 from [1], to conclude that ¥ is bounded,
and hence a unitary operator. It is now clear that ¥ is the required unitary equivalence of
the minimal isometric dilations (V,K) and (V',K'). A similar argument holds in the case
when T is expansive, that is, J —T*JT < 0.

Let us assume now that 7' is neither contractive, nor expansive. Then Dr is an indefinite
Krein space, that is, it contains positive as well as negative vectors. As in the proof of
Proposition 3.8, there is a unitary operator U € B(Dr) such that the d-orthogonal shift
{5; ®U}?:1, defined on the Krein space .7:3 ®Dr, is not unitary equivalent to the d-orthogonal

shift {S; ® IDT};-l:l. Let K be defined as in (5.4) and let V' := (V{,...,V}) be defined by
(5.8)  V/(h@(E®K):=T;h® (o ® Dr(0,...,0,h,0,...) + (S; ®U)(£ @ F)).

j—1 times
where h € H, £ € .7-"3 and k € Dp. Then (V',K) is a minimal isometric dilation of 7, that
is not unitarily equivalent to (V, K). Indeed, suppose that there exists ¥ € B(K), a unitary
operator of Krein space, such that V|H = Iy and ¥V; = V;¥ for all j = 1,... ,d. Since
UH = H, it follows that ¥(F7 ® Dr) = F7 @ Dr. When restricted to F7 ® Dr, both V and V'

become d-orthogonal shifts that are unitarily equivalent by the unitary operator ¥| (.7-"5 ®Dr).
According to Proposition 3.8, this is a contradiction. The proof is complete. O
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The isometric dilation (V, K), defined by (5.4) and (5.6), is called the canonical minimal
isometric dilation of T.

6. THE GEOMETRY OF THE CANONICAL MINIMAL ISOMETRIC DILATION

Throughout this section, H is a Hilbert space and T := (T1,...,Ty) is a sequence of
operators on H. Consider the operator T' € B(H¢,H) defined by the row matrix [T} ... Ty,
where H? is the direct sum of d copies of H. The operators Dy, Jr are defined as in (5.1),

where J = Ip; and J = Ipa.

We recall that the canonical minimal isometric dilation (V, K) is defined by the relations
(5.4) and (5.6). In addition, with respect to the Hilbert spaces H and H¢, we introduce the
operators

d d
(6.1) Jps = sgn (I — ZTJTJ*)’ Dy = |I — ZTJ'T;P/Q-
; ~

It is easy to see that Jp« is a selfadjoint partial isometry which commutes with the positive
operator Dp«. In particular, the subspace

(6.2) Dpe == Do = Jp-H,

is invariant under both Jr- and Dp«, and Jp-|Dp+ is a symmetry on Dp«. Define the new
inner product [, ]p,. on the Hilbert space Dr- by setting

(63) [fan]DT* = <JT*6577>’ fﬂ? € Dr~.

Then (Dr~,[-,-]p,.) is a Krein space called the adjoint defect space of T. Recall that the
following intertwining relation holds

(6.4) TDr = DpT

Define the subspaces

d d
(6.5) L:=\/(V;—T)H and CL.:=Iy-)» V;T})H
j=1 j=1
Lemma 6.1. (a) The subspaces L and L, are wandering for V, unitarily isomorphic to the
Krein spaces Dy and D+, respectively. In addition, LN L, = {0}.
(b) The subspaces M (L) and M, (Ly), defined as in (3.3), are invariant under each
Vi,ooo Vi, VI, VL
(c) The subspace M (L) is regular, K = H & M (L), and the Fourier representation of
the d-orthogonal shift VIM (L) := (Vi|My(L),...,V4M4i(L)) is bounded.

Proof. Let us observe that

d

d
(6.6) > (Vi =Tj)h; =0 (eo @ Dr(hy)), hjeM, j=1,...,d
j=1 j=1
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This shows that £ is invariant under the fundamental symmetry Jx defined by (5.5), hence
regular. In addition, relation (6.6) shows that the mapping
d d

(6.7) $(Q_(Vi = Tj)hj) = Dr(@hy), hjeH, j=1,....d,

j=1 j=1
is a unitary (hence bounded) operator ¢ € B(L, Dr) of Krein spaces. Actually, since ¢Jx |L =
Jr¢, the operator ¢ is a unitary operator with respect to the underlying Hilbert spaces
('C’ <" '>J}c) and (DT, <'a )H)

As in [17], it can be verified that £ is wandering for V. Using (6.6) and (5.6), we can show
that M (L) is invariant under the fundamental symmetry Ji, by checking on finite linear
combinations. Thus, M (L) is a regular subspace of K. Since V|M (L) is implemented
by the canonical d-orthogonal shift with generating space Dr, it follows that its Fourier
representation is bounded, cf. Theorem 4.6.

To see that the subspace L, is regular, we observe that

d
(6.8) L.=(1-Y V;VHK.
j=1
Indeed, taking into account that the isometries Vi, ... ,V; have mutual orthogonal ranges,

for any a € F} with |a| > 1, we have

d
(I = > ViVI\WVah = Vah = Voh =0, heH.
j=1

Hence, (6.8) holds, if we take into account the minimality of X = \/ V,#H. The fact that
aEFj
L. is a wandering subspace for V was mentioned in connection with (3.8).

Observe now that
d

(6.9) $((I =Y _V;TH)h = Jp-Dr-h, heH,
j=1

d
is a well-defined linear isometry from (I — >° V;T7)H to Dr-. To see this, assume that
=1
d
Jr«Dr«h = 0 for some h € H. Then (I — ) TJT]*)h = Dp«Jp«Dp«h = 0 and, using (6.4),
i=1

we also have DrT*h = T*Dp«h = 0. Hence, and taking into account (5.6), it follows that
d
(I =% ViT*)h =0. Let h,h’ € H be arbitrary. Then
j=1
d d d
(1= ViTHh (L= 3 ViT)W e = [h W] = 3 IT7h, T7 Wi
j=1 j=1 j=1

d
= (=TT

= [Dp+h, Dp-h'lp,.,
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which shows that ¢, is isometric. Notice that ¢, is densely defined in £, and has dense
range in Dr«. Taking into account that L, is regular, we infer that ¢, is injective. Therefore,
k¥ (L,) = kT (Dr+) and the regular subspace L, is isometrically isomorphic to the Krein space

Dr+«. The invariance of the subspaces M (L) and M, (L,) under Vi,... ,Vd,Vlﬂ, e ,Vdlj
follows essentially as in [17].

It remains to prove that £ N L, = {0}. For this, we first show that
d
(6.10) L.o(@PVviH)=HeoL.
j=1
Indeed, we will actually prove a stronger equality between linear manifolds, namely
d d d

(6.11) I="ViITHH+> ViH=H+> (V; - T)H.

j=1 j=1 j=1
To this end, let h € H,h1,... ,hq € H be arbitrary. We have

d d d d
h=Y ViTjh+> Vihy = > Tjhj+ (I Y T;T})h
j=1 j=1 j=1 j=1

d

+> (Vi = Tj)(hj — Th),

which proves one inclusion in (6.11). For the converse, we use the fact that

d d d
h=>_(Vi=Th; = (=3 ViTj)(h =3 Tihj)
j=1 J=1 J=1
d d
+) Vi(Tih+ by = Y T Tihy).
j=1 i=1
Thus, (6.11) holds. Using the definitions of £ and L., we obtain (6.10) by an approximation
d
argument. Furthermore, according to (5.6), it follows that # vV € V;H = H & L. By taking
j=1
orthogonals and using (6.10), we deduce that £N L, = {0}. O

The subspace
(6.12) R = My (L),

is called the residual space of the minimal isometric dilation V. The following characterization
of the residual space R will play an important réle in our investigation. We should remark
that the case d = 1 was considered by B. McEnnis in [12].

Theorem 6.2. A vector k € K belongs to the residual space R if and only if there exists a
family {hy} oeF} of vectors in H such that:

(i) ho = Pyk;
d
(ii) J; Tiheg; = ho for all o0 € F} ;
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d
(iii) {J;l(‘/} —Tj)hoy; }ae]Fj is the sequence of Fourier coefficients of the vector Py, gk in
M (L).

Moreover, {hU}UEF;' and k uniquely determine each other, with the above properties.

Proof. Let k € K and assume that {hq}, er} satisfies the conditions (i) through (iii). Since

K=H&M(L), the vector k has a unique respresentatlon k = ho + s where hg = Pyk € H
and s = Py, )k € M4 (£). Since {hff}o—elk‘j is the sequence of Fourier coefficients of s in

M (L), we have

(6.13) s— Y Vg€ \/ VeMi(L), N=0,1,....
lo|<N Bl=N+1

d
For any I, = (I — > V;T/)h and B = gi, -+ giyy € F; with [8| = N >0, let us prove that
7j=1

(6.14) [k, Val]x = 0.
Taking into account (6.13) and that V,L, L VM (L), we have
[k, Vil = [ho+ s, Valik
= [ho, Vsl + Y. Wolo, Vil + 3 [Vala, Vallx.
o|<N-1 la|=N

Since Vjﬂ|’H = T}, we deduce that

d d
[ho, Velle = Tho, V(I = DY _ ViT})hlk = (ho, Ts(I = Y TyT )
j—l j—=1

= (Tjho, (I ZTT*

On the other hand, since VzﬂV] = 0 for 7 # j, and using (ii) and (iii), we obtain

D Voo Vale = [Valg, Vallx = [Ig, L]k
la|=N
d
= D (V; = Tj)hg,,, (I ZVT*
7j=1

d d
= D Vihgg,, (I - Z ViT})hlic — [Z Tihgg,, (I =Y ViT})hlx
j=1 j=1 j=1 j=1

d
Since L, L V;K for j =1,... ,d, and hg = }_ Tjhg,,, we get
j=1

D Vala: Vel = —(hs, (I ZTT*

la|=N
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Now, fix o € Fj, |o| < N —1, and calculate [Vyl,, Vali]x. If 0 £ B (see the definition in
Remark 4.3), then [V,i,, Vgli]x = 0. When o < f3, that is § = oy for some v € IF;’ with
|o| = N — |vy|, we have

Voo, Valilc = [Y (Vj = Tj)hog;, V- ZVT*

-

1

J
d

[Vihog,, Vy(I — ZVT* ZTh,,g], ZTT*
; ;
= (hog,: T. ZTT* — (o, Ty (I ZTT*

d
(Tihog, — Toho, (I = TiT])h)x
Jj=1

I
.M&

1

where v = g,a for some p € {1,...,d}, and |a| = N — |o| — 1. Using this result when
k=1,...,N,0=giyGi, " Gir_1» 9p = Gir, and @ = i, ., *** GinGiny, (here, gic = gin ., = 9o,
the neutral element in Fj), and summing up, we obtain

_ * * *
| |Z Volo, VsliJx = <I€2:1(Tgik+l___giwhgio...gik — Ty gy gy ) ZTT Y
ag SN*I =

= (hgigrgiy = Ty ougiry, h0s (1= D TR
j=1

= (hg — Thho, (I ZTT*

(notice the telescopic sum on the right hand side of the first equality). So far, we have proved
d
that (6.14) holds for all 8 € F. Since the linear manifold (I — ViT;)H is dense in Ly, we
i=1
infer that £ 1 M (L), and hence k € R.

Conversely, suppose that k£ € R. We will construct {h, } oeF} inductively. Let hg = Pr k,
N >0 and assume that {hs}|;<n has been defined so that:

d

(1)’ Zl Tjhgg; = he for all o € F} with |o| < N —1;
J:
d

(iii)" >° (Vj = Tj)heg; =15 for |o| < N — 1, where {lg}o,erlr are the Fourier coefficients of the
j=1
vector Py, o)k in M (L).
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d
Letnow 8 € F}, |8 = Nandl, = (I-Y V;T})h be fixed. Since k € R, we have [k, Vjl.] = 0.
7j=1

According to our previous calculations, we have

0 = [ho,Valdc + Y [Vala, Vslilx
|a|<N—1

= (Tjho, (I ZTT Yo + (hg — Tjho, (I ZTT* Y+ [1g, Lk

d
= <hﬁ7 (I - ZTJ’T;‘)h)'H + [l,Ba l*]lCa

=1
and hence

d
(6.15) 15, Ll = —(hg, (I = Y TjT )by

i=1

On the other hand, since £ 1L H and lg € £, we have

g, L = [lg, (I ZVT*

d

= —[Ig, Y _(V;Tj — TyT})hx
7j=1
d

= g Y _(V; =TT} k.

j=1
Hence, and using (6.15), we deduce that

d
(6.16) (hs, (I ZTT* Y =llg, Y _ (Vi — T))T} hlk.
7j=1

Define Q € B(H%, L) by
d d
QUEDR) =D (Vi = Tjhj, hjeH.
7j=1 7j=1

It is easy to see that (6.16) implies

d
(6.17) (=Y "TyTHhs =[T1 ... TJQ .
j=1

For each j =1,... ,d, define
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where P; denotes the orthogonal projection of H? onto its j-th coordinate. Using (6.17) and
(6.18), we get

d d
(6.19) > Tihgg, =Y TTihg +[T1 ... T4)Q's = hg.

Thus, the condition (ii)’ is satisfied for all |o| < N. According to (6.18), we have
d d

d
g, Y (Vi = Tphilc = [ls, QUED 1)k = (Q%ls, P hj)n
j=1

d
= ) (PQ%ls, hj)n
j=1
d
(6.20) = D {hgg; — T hg, hj).
7j=1

On the other hand, making use of (6.19) and that V-n|7{ = Tl-j, we get

d d
D (Vi = Ti)hgg,, > (V = Z[Vhﬁg,Vh K — ZTh/gg,ZTh
j=1 j=1 1,j=1
d
= Y (hpg;:h hﬁ,ZT h;)
7j=1
d
= D (hgg; =T hg, hy)a.
j=1
Comparing this with (6.20), we get
d
(6.21) lg =Y (Vi = Tj)hgq,,
7j=1

which shows that condition (iii) holds for any 8 € F , || = N. This completes the induction
argument.

We now prove that k& and {h,} oeF} uniquely determine each other, under the conditions

(i) through (iii). To this end, let us first remark that this correspondence is linear. Then, if
he =0 for all o € F/, it follows that hy = 0 and k € M4.(£). Since {lv}o—elﬁ‘j are the Fourier

coefficients of k in M (L), relation (iii) implies that I, = 0 for all ¢ € F}. Since M (L) is
regular, hence nondegenerate, Proposition 3.1 shows that £ = 0. Thus, {ha}aem’j{ uniquely

determines k.

To prove the converse statement, let us first recall that {/,} cer? is uniquely determined
by k. From (6.21) we get

d d
lg= Zthﬂgj - ZTjhﬂgj'
7j=1 7j=1
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On the other hand, using the property (i), we obtain
d
> _Vihgg; = lghs.
j=1

Taking into account that VZﬂVJ = 0 whenever i # j, we get
(6.22) hon, = Vilg +hg)s §=1,2... .4,
which shows that {l,} oeF} is uniquely determined by k. O

We now consider some important consequences of this theorem.
Corollary 6.3. The residual space R 1is nonnegative, that is, [k,k]x >0 for all k € R.

Proof. Let k € R and let {h,} oert C ‘H be the family of vectors associated with k, as in

Theorem 6.2. According to Lemma 6.1, M (L) is regular and the Fourier representation
associated with the d-orghonal shift V| M (L) is bounded. Let {l,} a€F} be the sequence of

Fourier coefficients of Py, (r)k. Using Proposition 3.6, we infer that

[k,k];c = HhOH2 + Z Z [laala]IC

n=0|a|=n
[e's) d d
= [l + Z Z [Z(V} - Tj)hang(Vj ~ Tj)hog]
n=0|g|=n j=1 j=1
d d
= lhol®+ Jim > {D oy P = D (L) Tihog,, hog, b}
lo|<N—-1 j=1 ij=1
d d
= llholl®+ Jim 37 D oy, 7 = D (T b b, )}
lo|<N-1 j=1 j=1

d
= hol®+ Jim > {> gl = lIho]*}

o X
lo|]<N—-1 j=1

d
= [hol®+ Jim (> D llhogl® = Y llhol®}

lo|]<N-1j=1 lo|<N-1
= i 2.
Jim S (i
|B|=N
This proves that [k, k] > 0. O

We say that a d-tuple 7 := (T1,... ,T4) of operators is power bounded if there exists C > 0
such that

(6.23) I Y TTi|<C,  foranyn=0,1,2,....
|a|=n

Corollary 6.4. If T := (Th,... ,T,) is power bounded, then the residual space R is positive,
that is, [k, k] > 0 for all k € R\ {0}, and M4 (L) is nondegenerate.
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Proof. Since R is nonnegative, according to the Schwarz inequality, in order to prove that R
is positive, it is enough to prove that the only neutral element in R is the zero vector. Let
k € R be such that [k, k]x = 0. With the notation from the proof of Corollary 6.3, we have

li 2-0.
Aim Z sl =0
|B/=N

d
On the other hand, since for all o € JF(}L we have ) Tjhsg; = ho, it follows that
j=1
(6.24) Y Tuhey=he, c€F), n=0,1,2,....
|ul=n
Fix o € F} with |o| < N. Using (6.24) and (6.23), we get
2
hol> =1 D> Tukoul|” < C D llhoul?

lu|=N—lo| w=N—lo|

C Y lhal

la|=N

IA

Taking the limit as N — oo, we obtain ||h,|| = 0. Since o was arbitrary in F}, Theorem
6.2 shows that k = 0. Therefore, the subspace R is positive. Notice that M (L,) = R' is
nondegenerate since R has the same property. The proof is complete. O

Corollary 6.5. If
: *7 (12
(6.25) lim > ITEhP =0, heH,

lal=n

then M4 (L) =K.

Proof. Let k € R and {hﬂ}aelﬁ‘j C H be as in Theorem 6.2. For arbitrary h € H and o € F
with |o| < N, we have

|<haah>7{| = ‘( Z Tuhauah>9{| = ‘( Z hauaT;h>H|
ul=N-|o]| lul=N—|q]
X 1/2 . 1/2
< el TR < (O MRS ITinl?)Y
lu|=N—|o] lul=N—|o]| w=N-|o]|
1/2 . 1/2
< (X0 ImslP)' (32 1T,
|8l=N lu|=N—|o]
Since lim Y7 |lhgl/? exists and lim Y [ T;h||*> = 0, we have (h,,h) = 0. Thus,
N=ooig=N N=00 |y /=N —o|
he, = 0 for all o € ]F;' and, by Theorem 6.2, we conclude that £ = 0. This shows that
R = {0} and hence M (L,) = K. O

Remark 6.6. The converse of Corollary 6.5 is not true, in general. However, as will be
shown in the next section, this becomes true if we impose a boundedness condition on the
“characteristic function” of 7, cf. Corollary 7.6.

Corollary 6.7. If h € H satisfies ILm > IT:h||?> =0, then h € My (Ly).
n—,oo

al=n
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Proof. Let k € K. As in Corollary 6.5, one can show that [k,h] = (hg,h) = 0, where
ho = Py, (£.)k- Therefore h L R and hence h € M (L,). O

7. THE CHARACTERISTIC FUNCTION

We need to recall from [19], [20], and [21] a few facts concerning multi-analytic operators
on Fock spaces.

The noncommutative analytic Toeplitz algebra F° was introduced in [19] as the algebra
of left multipliers of the full Fock space .7-"3. This algebra can be identified with the weakly
closed algebra generated by the left creation operators Si,..., S, on the full Fock space .7:3 ,
and the identity.

Let K, K’ be Hilbert spaces. As in [18], we say that a bounded linear operator M € B(F3 ®
K,F2® K') is multi-analytic if M(S; ® Ic) = (S; ® Ixr)M for any i = 1,...,d. Notice that
M is uniquely determined by the operator 6 : £ — ]-'3 QK', 0k := M(ep @ k), k € K, which
is called the symbol of M, and we denote M = My. Moreover, My is uniquely determined by
the “coefficients” of 8, i.e., the operators 6, € B(K,K') given by

(7.1) Ok, k') = (Ok,eq @ k') = (My(eg ® k),eq ®K'), keK, K €K, a €F}.

Notice that > 63560, < ||Myl|/Ix. We can associate with My a unique formal Fourier expan-
aEF;_
sion
(7.2) My~ > U*SaU ® b,
aEFj

where U is the (flipping) unitary operator on ]—"g mapping e;, @e;, ®---®e;, intoe;, -+ ®
ei, ® e;,. Since My acts like its Fourier representation on “polynomials”, we will identify
them for simplicity. As in [20], using the noncommutative von Neumann inequality [19], one
can show that if 0 < r < 1, then

_ BT la| 77
M,y = SOT }% Z rllU*S,U @ 6,,
aE]F';'

where the series converges in the uniform norm and the limit is taken in the strong-operator
topology (SOT). According to [21], when K = K’ the algebra of all multi-analytic operators
acting on F2 ® K can be identified with F3°®B(K), the weakly closed algebra generated by
the spatial tensor product of the two algebras. A similar result holds in our more general
setting. The set of multi-analytic operators in B(]—"g ® IC,]-"(% ® K') can be identified with
F3°®B(K,K'), which is equal to the weakly closed operator space generated by S, ® Z, « €
Ff, Z € B(K,K').

A strong connection between the algebra F3° and the function theory on the open unit
ball B; of C? was established through the noncommutative von Neumann inequality [19] (see
also [20]). Consequently, if My is a multi-analytic operator with Fourier expansion given by
(7.2), then

FOL A = Y Aaba
aelﬁj

is a B(K, K')-valued bounded analytic function in the unit ball B,.
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Throughout this section we assume that H is a Hilbert space and that the sequence T :=
d

(T1,...,Tq) consists of operators in B(#). When d = oo, we assume that the series ) T;T*
i=1

is strongly convergent. We keep the notation of the previous section. For each a € Fjl', let

0o € B(Dr,Dr+) be given by

d
— S TP, if o —
(7.3) 0, = z; L5 T Ia=go

Jr« D« TfP;DrJr, if a = g;o,

d
where P; stands for the orthogonal projection of H¢ = @ H onto its j-component, and
n=1
S :=(81,...,8,) is the canonical d-orthogonal shift. We introduce the characteristic function
of T to be the family of multi-analytic operators (M. ), : F2®Dr — F2 ® Dr- defined by

(7.4) (My, )y = f: > el s, U @ 6,

n=0 ‘a|:n

d
for those r € (0,1) for which the series is uniform convergent (e.g., if r < || . T;T7||~1/?).

i=1
We say that T has bounded characteristic function if

(7.5) sup ||(Mp, )|l < oo.
0<r<1

In this case, the bounded characteristic function associated with 7 is the multi-analytic
operator My, : .7-"3 Q Dr — .7-"3 ® Dr» defined by

My, := SOT — }%(MQT)T.

The existence of this limit can be proved as in [20]. Moreover, the characteristic function has
the Fourier expansion

d oo d
My, ~ I @ () TiPJr)+ YD Y Sgo ® Jr Dp-T; BiDpJy.

In what follows, to simplify our notation, we set @1 := My, . We recall from [16] the
definition of the spectral radius of a sequence of operators, i.e.,
— 1 x||1/m
o(T) = lim | 37 Tz
|a|=m
Notice that, if s7 = (sT1,...,5Tq), (s > 0), then p(sT) = sp(T). The following result
shows that the class of d-tuples of operators with bounded characteristic function is pretty
large.

Proposition 7.1. Let T := {T1,... ,T4} be a d-tuple of operators on a Hilbert space. If
p(T) < 1, then T has bounded characteristic function.
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Proof. Let s > 1 such that p(s7) < 1 and denote A := {A;1,...,Aq}, where A; = sT;,i =
oo
,d. According to [16], p(A) < 1 if and only if ) >  A,A} is strongly convergent.

n=1 |a|:n

Now, we prove that if 0 < r < 1, then the series

co d
(7.6) DD S50 @ AP

n=1 =1 ‘a|:n

is convergent in the uniform norm. Indeed, we have

Zr"“nz 3 Spa® AP < Zr"“nz S PAALP|

i=1 |aj=n i=1 |aj=n
= Zr""HH > ZPA AL P2
jal=n i=1
< Zr”“ll > AaAM?

al=n

< (ZT”H) IS Andy |2

a6F+

In particular, (7.6) converges in the uniform norm if r = 1. Therefore, the series

oo d oo d
YD Spa®TaP; and Y D> Sy ® Jr-Dp+To P DrlJr

n=1i=1 |a|=n n=11i=1 |a|=n

are also convergent in the uniform norm. This shows that the characteristic function ©7 is
a bounded multi-analytic operator. O

Let (V, K) be the canonical minimal isometric dilation of 7 as defined in (5.4) and (5.6), and
let £ and L, be the wandering subspaces defined by (6.5). Define the operator M : M (L) —
F;® Dr by
(7.7) M= (I ®§) o O,
where ¢: £ — Dy is the unitary operator defined by (6.7) and ®.: M (L) — F2 ® L is the
Fourier representation associated with V and the wandering space £. Recall that, by Lemma
6.1, the Fourier representation @ is a bounded unitary operator. Therefore, M has the same
property. Note that the operator M can be described explicitly by
(7.8) M(Voly) ==€a ® pla, lo €L, a €T,
and can be extended by linearity and continuity to the whole space.

Les us recall from the proof of Lemma 6.1 that the linear operator ¢, (see (6.9)), is
isometric, densely defined in the regular subspace L., and has dense range in the Krein space
Dr-. Now, consider the operator M, defined in M(L,) and valued in F; ® Dr- by

d
(7.9) M ()" VoI =D ViTy)ha) = Y (ea ® ¢u(l ZVT

la|<N j=1 la|<N
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where N € N, h, € H. Taking into account the properties of ¢,, we note that M, is densely
defined, isometric, and has dense range. In particular, it is injective and its inverse M_ ! is
also densely defined, isometric, and has dense range.

Theorem 7.2. If T := (11,... ,Ty) has bounded characteristic function, then M, (L) is a
reqular subspace of K, the operator defined by (7.9) extends uniquely to a bounded operator
M,: My (L) = F3 ® Dr+, and

(7.10) OF = My (Pryy2.) M+ (L) M,

where Py, (c,) denotes the selfadjoint projection of the Krein space K onto the regular sub-
space M4 (L,).

Proof. We will first prove that, for all vectors

d
(7.11) wi= Y Vg(I =Y ViTphs, v:= Y Vala,
j=1

[BI<N la|<N
where N > 0, (la)jo/<n C £ and (hg)g<ny C H, we have
(7.12) [©7Mv, Myu]r26p,. = [v,ulk.
Since ©7 is a multi-analytic operator, we have
O7(S; ®Ip,) = (S; ® Ip,. )O7, j=1,...,d
From the definition of the operator M, we also have
MV;M (L) =(S; ® Ip,)M, j=1,...,d.
On the other hand, using the same reasoning as in Lemma 4.1, we infer that
M, VjDom (M,) = (S; ® Ip..)M,, j=1,...,d.
Now, one can easily see that
[O7 MVal, MVl 725, = [(Sa ® Ing. )07 1, (S5 ® Ipy.) (0 ® dul)] 2om

d
where I, := (I — ) V;T;)h and h € H. This shows that, if @ £ 3, then
i=1

[©7MVol, M Vsl] r2gp,. =0 = [Val, Vali]k.
Thus, in order to prove (7.12), it is sufficient to show that
(7.13) (S} ® Ip. )07 ¢l €0 ® buli] 2, = Vi Lk,

d
for all y € Fj, lel,and I, := (I = ) V;Tj)h, h € H. Furthermore, (7.13) is equivalent to
j=1

(7.14) [Pp,. (S5 ® Ipy )07l ¢ulilpy. = [Pr. VL Lk

Performing essentially the same calculation as in the proof of Theorem 3.1 from [18], one
can obtain
d d
(7.15) Pe VEViL = (Ic = Y ViT)TiPiJrD (D by),

J=1 J=1
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and
d d
(7.16) Pel=—(Ix = Y ViT))(Q_ Tihy).
7j=1 7j=1
On the other hand, using the definition of the characteristic function, we have
d
(7.17) Pp,.07¢l = - _T;P;Jrél,
7=1
and
(718) PDT* (S;S: ® IDT* )07‘¢l = Jr« DT*T;BDTJT(M.

Now, from (7.16), (7.17), and (6.4), we obtain relation (7.14) when v = go. Then, using
(7.15) and (7.18), we obtain (7.14) for all v € F, |y| > 1. Thus, (7.12) is proved.

Since M and ©7 are bounded, it follows that (7.12) holds for all v € M4 (L) and u as in
(7.11), that is,

(7.19) [GTMUaZ]f§®DT* =[v,M 2]k, v€ My(L), z € Ran(M,),

that is, the densely defined operator M ' has a bounded adjoint. Therefore, M has a
bounded extension and hence, it extends uniquely to a bounded operator X : .7-"5 QD+ — K.
The operator X is isometric and it necessarily has the range M (L,). Hence, M, (L,) is a
regular subspace of K. In addition, X*| M (£,) D M, and hence M, has a unique extension
to a bounded operator M,: M (L) — F37 ® Dr+. Now, relation (7.19) shows that (7.10)
holds true. The proof is complete. ]

Corollary 7.3. If T has bounded characteristic function, then the Fourier representation
b, of V, with respect to the wandering space L, is a bounded unitary operator from M, (L)
to .7:3 ® L, and the operator ¢, defined by (6.9), is continuous and extends uniquely to a
unitary operator of Krein spaces from Ly to Dpx.

Proof. Indeed, relation (7.9) implies

d d
M (I =3 ViTph=eo® ¢u(I =) ViTph, heH.
By Theorem 7.2, M, is continuous, hence ¢, has the same property. Since ¢, is isometric,
densely defined in the regular space £, and with values in the Krein space Dr~, it extends
uniquely to a unitary operator ¢, € B(Ly, Dr-). Therefore, relation (7.9) implies

(7.20) MY Valo)= > (ea®¢ula), NEN, Ig€ L.

la|<N la|l<N
Hence, we obtain M, = &, o (I}—g ® ¢+) and therefore, ., = M, o (Ifg ® ¢71) is a bounded
operator. U

We can now prove one of the main results of this paper.

Theorem 7.4. Let ‘H be a Hilbert space and let T := (Th,... ,Ty) be a d-tuple of bounded
operators on H. If T has bounded characteristic function, then it is jointly similar to a
row contraction, that is, there exists a boundedly invertible operator S € B(H) such that the
operator defined by the row matriz [ST1S™ ... STyS™1] is a contraction.
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We have two proofs for this theorem.

First Proof. We actually prove that there exists a unitary norm on K with respect to which
= [Ty ... T,] is a contraction.

By Theorem 7.2, the subspace M, (L,) is regular, therefore R = M, (L,)" has the same
property. In particular, the Wold-von Neumann decomposition holds (see Theorem 3.5).
Since R is a nonnegative subspace (see Corollary 6.3), we infer that it is uniformly positive,
that is, [r,7]x > C|r||? for some C' > 0 and all r € R. In addition, by Corollary 7.3, the
Fourier representation ®¢,: M (L,) = F2 ® L, is a bounded unitary operator of Krein
spaces. Therefore, the norm defined by

(7.21) |+ 7| == \/||§>£*u||.27_.3®£* +[r 7k, weMi(L), reR,

is a unitary norm on X. Note that, with respect to this new norm, ®,  becomes unitary also
with respect to the Hilbert space underlying the scalar products of M (L,) and F? ® L,,
respectively.

We claim that, with respect to the unitary norm || - || defined by (7.21), we have

d
(7.22) D IVEEIP < [IkI?, ke K.
j=1
Indeed, any k € K has a decomposition k = u+r with u € M (L) and r € R. Then, taking
d
into account that I — ) V]V]Ii is the selfadjoint projection onto £, and that R L L., we have
j=1
(7.23) Z IVir|? = Z[Vﬂr Virlc ZVV 7l = [r,rlc = ||r]%
j=1

On the other hand, since @, is bounded, relation (4.11) becomes

(7.24) B, oV =(S;®I)o®c, j=1,...,d

*

In addition, for any z € F2 ® L., we have
d .7-' QL
Z (S ® Ic )zl = (I - P25 @ Ip)a|® < |||

Hence, taking into account (7.24), we have

d
S IViul?* =
j=1

1B,V ull?

S* [ IL:* @g*uH

IA

||‘1>,c*u||2 = [lull®.
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Now, using the definition of the unitary norm in (7.21), and that Vjﬂ leaves invariant both R
and M (L), we obtain

d d d d
D IVERIP = DDV u+ Virl = 3 IVEul + 3 Vil
i=1 J=1 j=1 j=1

Hence, using (7.23), we get (7.22). Since V is an isometric dilation of 7, this yields

d
(7.25) D_ITFRIE < Il he#,
i=1
that is, the operator [T7 ... Ty] is a contraction with respect to the unitary norm || - ||
restricted to H. O

Second Proof. By Theorem 7.2, the operator M, is bounded and the subspace M (L) is
regular in K. Therefore, we can define the bounded operator
(7.26) F:= M.Py (c.): K= F§ ® Dr-,

where Py, (c,) is the selfadjoint projection of the Krein space K onto its regular subspace

M+(£*) Then
(7.27) Fk= ) ea®¢.PrVik, keK.

aeIFji'
Indeed, if &k € M (L), then relation (7.27) coincides with (7.20). For arbitray k € K, we
decompose k = r + Py, (£,)k, 7 € R, and take into account that the residual space R is
invariant under Vjﬂ, j=1,...,d. Since Vir e R for all a € Ff, and R L My (L,), we have
R L L, and Pz, Vir =0 for all « € F}. Thus (7.27) is proved.

We claim now that

(7.28) Fh= Y e,®Dr-T3h, heH.

aEFj

d
To see this, recall that Py, =1 — > VJV]Ii and hence, for any « € IE‘}' and h € H, we have
i=1

d d
PV (1= VAV (1= 3 V) Tin
Thus, by (6.9) we have
¢ P, Vih = Dp-T}h,
and (7.28) follows.
Now, using (7.27), (7.28), and taking into account that the operator F' is bounded, we
deduce that there exists C' > 0 such that
(7.29) > IDeTE? < ClIR|?,  heH.
aEFj

Using Corollary 2.8 and Proposition 2.6 from [16], we conclude that 7 is jointly similar to a
row contraction. O
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Let us recall, from [22], that if 7 is jointly similar to a row contraction then p(7) < 1. On
the other hand, Proposition 7.1 and Theorem 7.4 imply the following Rota type similarity
result obtained in [16]: if p(7) < 1, then T is jointly similar to a row contraction. We also
remark that if lim Y 7,75 =0, then, using [20], we can extend the completely bounded

n—00
la|l=n

representation w7 (see the introduction) from A, to the noncommutative analytic Toeplitz
algebra F3°.

In case the characteristic function of 7 is bounded, more results on the geometry of the
canonical minimal isometric dilation can be obtained.

Theorem 7.5. If T has bounded characteristic function, then, for any h € H, we have

(7.30) Prh = lim > VuTih,
|a|=n
and
1 * 2 I I *
(7.31) [Prh, hlx = nlggo|z ITh|?, PyPgrh = nli}ngﬂz T, Th.
oa|=n oal=n

Proof. Indeed, 3, VaVog is the selfadjoint projection onto the subspace @ VoM (L,) and
|e|=n |a|=n
hence,

0=Pr(h— > VuVin)=Pr(h— > VuTih), heH.

la=n la|=n

Since the sequence ( ) VaVoIzi)nZO converges strongly, we obtain (7.30) by passing to the
al=n
limit as n — oo. The relations from (7.31) follow from here. O

Corollary 7.6. If the characteristic function of T is bounded, then
(a) A vector h € H is in M4 (L) if and only if li_>m > TWTrh = 0;
(b) M4(Ly) = K if and only if nll)nolo > T,TE =0.

al=n

Proof. (a) This is a direct consequence of the second relation in (7.31).
(b) If M4 (L) = K, then Pg = 0. Again by (7.31), we get 0 = Py Prh = lim Y T,T:h

n—oo |a‘:n

for all h € H. The converse was proved in Corollary 6.5. O
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