HODGE THEORY HOMEWORK 1

The algebra of quaternions \mathbb{H} can be identified with \mathbb{R}^4 by writing $q \in \mathbb{H}$ in the form $q = x_1 + ix_2 + jx_3 + kx_4$, where the x_i are real numbers. The addition in \mathbb{H} is component-wise, while the multiplication uses that $i^2 = j^2 = k^2 = -1$ and ij = k, jk = i, ki = j. Moreover \mathbb{H} can also be identified with \mathbb{C}^2 by writing $q = z_1 + jz_2$, where $z_1 = x_1 + ix_2$ and $z_2 = x_3 + ix_4$. Define the conjugate of q by $\bar{q} = x_1 - ix_2 - jx_3 - kx_4$ and the norm $|q|^2 = q\bar{q} = x_1^2 + x_2^2 + x_3^2 + x_4^2$. Furthermore \mathbb{H} can be identified with a complex matrix group by

$$q = x_1 + ix_2 + jx_3 + kx_4 \rightarrow \begin{pmatrix} z_1 & z_2 \\ -z_2 & \overline{z}_1 \end{pmatrix}$$

1) Let $\mathbb{S}^n = \{x = (x_1, \dots, x_{n+1}) \mid x_1^2 + \dots + x_{n+1}^2 = 1\}$ be the *n*-dimensional unit sphere in \mathbb{R}^{n+1} .

(a) Let N = (0, ..., 0, 1) and S = (0, ..., 0, -1) be the north and resp. south pole on \mathbb{S}^n and set $U_N = \mathbb{S}^n \setminus \{N\}$ and $U_S = \mathbb{S}^n \setminus \{S\}$. Show that the atlas of coordinates $\{(U_N, \pi_N), (U_S, \pi_S)\}$, where $\pi_N : U_N \to \mathbb{R}^n, \pi_S : U_S \to \mathbb{R}^n$ are the stereographic projections from N, resp. S, onto the hyperplane $\mathbb{R}^n = \{x_{n+1} = 0\}$ gives \mathbb{S}^n a structure of differentiable manifold.

(b) Let $U_i^+ = \{x_i > 0\} \cap \mathbb{S}^n$ and $U_i^- = \{x_i < 0\} \cap \mathbb{S}^n$. Define local coordinates $h_i^{\pm} : U_i^{\pm} \to \mathbb{R}^n$ by $(x_1, \ldots, x_{n+1}) \to (x_1, \ldots, \hat{x}_i, \ldots, x_{n+1})$. Show that the atlas of coordinates $\{(U_i^{\pm}, h_i^{\pm})\}_{1 \le i \le n+1}$ gives \mathbb{S}^n a structure of differentiable manifold.

(c) Show that the differential structures on \mathbb{S}^n from (a) and (b) are equivalent. Two atlases are equivalent if the union of their sets of charts forms an atlas. This differentiable manifold structure on \mathbb{S}^n is called standard.

(d) Let A, B be antipodal points on \mathbb{S}^4 , and $U = \mathbb{S}^4 \setminus \{A\}$ and $V = \mathbb{S}^4 \setminus \{B\}$. Glue trivial sphere bundles $U \times \mathbb{S}^3$ and $V \times \mathbb{S}^3$ together to get a 3-sphere bundle Σ^7 over \mathbb{S}^4 as follows.

Under stereographic projection U and V are homemorphic to \mathbb{R}^4 , and $U \cap V$ is homemorphic to $\mathbb{R}^4 \setminus \{0\}$. Identify \mathbb{R}^4 with the quaternions \mathbb{H} , and $\mathbb{R}^4 \setminus \{0\}$ with nonzero quaternions \mathbb{H}^* , and \mathbb{S}^3 with the unitary quaternions. Choose an odd number k such that $k^2 \not\equiv 1 \mod 7$. Define $\tau : \mathbb{H}^* \times \mathbb{S}^3 \to \mathbb{H}^* \times \mathbb{S}^3$ by $\tau(q, x) = \left(\frac{q}{|q|^2}, \frac{q^m x q^n}{|q|}\right)$, where m = (1+k)/2 and n = (1-k)/2 and multiplication and norm $|\cdot|$ are taken in \mathbb{H} . Show that τ is a smooth map, and Σ^7 is homeomorphic to \mathbb{S}^7 . The manifold Σ^7 is Milnor's exotic 7-sphere. One can show that the smooth structure on Σ^7 is different from the standard one.

1

(e) Show that the tangent space $T_x \mathbb{S}^n$ at $x \in \mathbb{S}^n$ can be identified with the subspace x^{\perp} of \mathbb{R}^{n+1} of all vectors orthogonal to x. Give a concrete description of $T\mathbb{S}^n$ as a submanifold of $\mathbb{S}^n \times \mathbb{R}^{n+1}$.

Show that the tangent bundles $T\mathbb{S}^n$ are trivial for n = 1 and n = 3, by giving n linearly independent sections (i.e. vector fields) of $T\mathbb{S}^n$. Use the fact that, for \mathbb{S}^1 are the unitary complex numbers, respectively that \mathbb{S}^3 are the unitary quaternions. Is the fiber bundle $T\mathbb{S}^2$ trivial?

2) Denote by SO(n) the subgroup of $GL(n, \mathbb{R})$ of all orthogonal matrices of determinant 1:

$$SO(n) = \{ A \in \operatorname{GL}(n, \mathbb{R}) \mid A^T A = I, \, \det(A) = 1 \}.$$

Denote by U(n) the subgroup of $GL(n, \mathbb{C})$ of all unitary matrices:

$$U(n) = \{ A \in \mathrm{GL}(n, \mathbb{C}) \mid \bar{A}^T A = I \},\$$

and by SU(n) the subgroup of $GL(n, \mathbb{C})$ of all unitary matrices of determinant 1:

$$SU(n) = \{ A \in \operatorname{GL}(n, \mathbb{C}) \mid \overline{A}^T A = I, \, \det(A) = 1 \},\$$

(a) Show that \mathbb{S}^1 , \mathbb{RP}^1 , SO(2) and U(1) are diffeomorphic.

- (b) Show that \mathbb{S}^2 and \mathbb{CP}^1 are diffeomorphic.
- (c) Show that \mathbb{S}^3 and SU(2) are diffeomorphic (use the quaternions \mathbb{H}).
- (d) Show that \mathbb{RP}^3 and SO(3) are diffeomorphic (use the quaternions \mathbb{H}).

3) (a) Show that the following maps are (principal) fiber bundles with fiber \mathbb{S}^1 . Write local trivialisations and transition functions:

(i) the Hopf map $h: \mathbb{S}^3 \to \mathbb{S}^2$ given by $(z_0, z_1) \to (2z_0\bar{z}_1, |z_0|^2 - |z_1|^2)$.

(ii) the map $g: \mathbb{RP}^3 \to \mathbb{CP}^1$ given by $[x_0, x_1, x_2, x_3] \to [x_0 + ix_1, x_2 + ix_3]$.

(b) Show that the natural projection $\mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is a holomorphic fiber bundle with fiber \mathbb{C}^* . The restriction to the sphere $\mathbb{S}^{2n+1} = \{z = (z_0, \ldots, z_n) \mid |z_0|^2 + \cdots + |z_n|^2 = 1\} \subset \mathbb{C}^{n+1}$ gives the Hopf bundle $\mathbb{S}^{2n+1} \to \mathbb{CP}^n$ with fiber the circle \mathbb{S}^1 . Write local trivialisations and transition functions for both fibrations.

4) The algebra of octonions \mathbb{O} is the product algebra $\mathbb{H} \times \mathbb{H}$. The conjugate of an element u = (p,q) in \mathbb{O} is $\bar{u} = (\bar{p}, -q)$. The real numbers \mathbb{R} can be identified with the subset $\{u \in \mathbb{O} \mid \bar{u} = u\}$ of \mathbb{O} . The pure imaginary numbers in \mathbb{O} are defined as $\mathbb{I} = \{u \in \mathbb{O} \mid \bar{u} = -u\}$. Denote by $|\cdot|$ the norm on \mathbb{O} associated to the inner-product $\langle u, v \rangle = \frac{1}{2}(\bar{u}v + \bar{v}u)$. Let \mathbb{S} be the unit sphere in \mathbb{I} defined by $\mathbb{S} = \{u \in \mathbb{I} \mid |u| = 1\}$. It easy to see that \mathbb{I} can be identified with \mathbb{R}^7 and \mathbb{S} with the 6-dimensional sphere \mathbb{S}^6 .

For each $u \in \mathbb{S}$ define map $J_u : T_u \mathbb{S} \to \mathbb{O}, v \to vu$, where $T_u \mathbb{S}$ is identified with subspace $u^{\perp} \cap \mathbb{I}$. Show that J_u maps $T_u \mathbb{S}$ to itself and defines an almost complex structure on \mathbb{S} .

5) Consider \mathbb{S}^{2p+1} as the set of all points $z = (z_0, \ldots, z_p)$ such that $\sum_{0 \le k \le p} z_k \bar{z}_k = 1$, and \mathbb{S}^{2q+1} as the set of all points $w = (w_0, \ldots, w_q)$ such that $\sum_{0 \le k \le p} w_j \bar{w}_j = 1$. Define

$$U_{kj} = \{ (z, w) \in \mathbb{S}^{2p+1} \times \mathbb{S}^{2q+1} \mid z_k w_j \neq 0 \}.$$

Let τ be a complex number such that $\operatorname{Im}(\tau) \neq 0$. Define p + q + 1 coordinate functions $u_{hk} = \frac{z_h}{z_k}$ for $h \neq k, 0 \leq h \leq p$ and $v_{lj} = \frac{w_l}{w_j}$ for $l \neq j, 0 \leq l \leq q$; and also $t_{kj} = \frac{1}{2\pi i} (\log z_k + \tau \log w_j)$, where equality is taken modulo 1 and τ . Thus t_{jk} defines a point on the torus $\mathbb{T} = \mathbb{C}/(\mathbb{Z} \oplus \tau\mathbb{Z})$, the quotient of \mathbb{C} by the translations by 1 and by τ . Let $\phi_{kj} : U_{kj} \to \mathbb{C}^{p+q} \times \mathbb{T}$ be the map defined by the functions u_{hk}, v_{lj}, t_{kj} . Prove that it is a homeomorphism.

Show that the system of coordinates $\{(U_{kj}, \phi_{kj})\}$ gives a structure of complex manifold on the product of spheres $\mathbb{S}^{2p+1} \times \mathbb{S}^{2q+1}$, where p, q > 0.