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Abstract. This course will present the basics of Hodge theory aiming to familiarize
students with an important technique in complex and algebraic geometry. We start
by reviewing complex manifolds, Kahler manifolds and the de Rham theorems. We
then introduce Laplacians and establish the connection between harmonic forms and
cohomology. The main theorems are then detailed: the Hodge decomposition and the
Lefschetz decomposition. The Hodge index theorem, Hodge structures and polariza-
tions are discussed. The non-compact case is also considered. Finally, time permitted,
rudiments of the theory of variations of Hodge structures are given.
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1. Introduction

The goal of these lectures is to explain the existence of special structures on the coho-
mology of Kahler manifolds, namely, the Hodge decomposition and the Lefschetz decom-
position, and to discuss their basic properties and consequences.

A Kahler manifold is a complex manifold equipped with a Hermitian metric whose
imaginary part, which is a 2-form of type (1,1) relative to the complex structure, is
closed. This 2-form is called the Kahler form of the Kahler metric.

Smooth projective complex manifolds are special cases of compact Kahler manifolds.
As complex projective space (equipped, for example, with the Fubini-Study metric) is a
Kahler manifold, the complex submanifolds of projective space equipped with the induced
metric are also Kahler. We can indicate precisely which members of the set of Kahler
manifolds are complex projective, thanks to Kodaira’s theorem:

Theorem 1.1. A compact complex manifold admits a holomorphic embedding into com-
plex projective space if and only if it admits a Kahler metric whose Kahler form is of
integral class.

We are essentially interested in the class of Kahler manifolds, without particularly
emphasising projective manifolds. The reason is that our goal here is to establish the
existence of the Hodge decomposition and the Lefschetz decomposition on the cohomology
of such a manifold, and for this, there is no need to assume that the Kahler class is integral.
However, the Lefschetz decomposition will be defined on the rational cohomology only in
the projective case, and this is already an important reason to restrict ourselves, later,
to the case of projective manifolds.

If X is a complex manifold, the tangent space to X at each point x is equipped with a
complex structure Jx. The data consisting of this complex structure at each point is what
is known as the underlying almost complex structure. The Jx provide a decomposition

(1.1) TxX ⊗ C = TxX
1,0 ⊕ TxX

0,1,

where TxX
1,0 is the vector space of complexified tangent vectors u such that Jxu = iu

and TxX
0,1 is the complex conjugate of TxX

1,0. From the point of view of the complex
structure, i.e. of the local data of holomorphic coordinates, the vector fields of type (0, 1)
are those which kill the holomorphic functions.

The decomposition (1.1) induces a similar decomposition on the bundles of complex
differential forms

(1.2) ΛkT ∗X ⊗ C =
⊕

p+q=k

Λp,qT ∗X,

where

Λp,qT ∗X = ΛpT ∗X1,0 ⊗ ΛqT ∗X0,1

and

T ∗X ⊗ C = T ∗X1,0 ⊕ T ∗X0,1,

is the dual decomposition of (1.1).
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The decomposition (1.2) has the property of Hodge symmetry

Λp,qT ∗X = Λq,pT ∗X,

where complex conjugation acts naturally on ΛkT ∗X ⊗ C.
If we let Ek(X)C denote the space of complex differential forms of degree on X, i.e. the

C∞-sections of the vector bundle ΛkT ∗X ⊗ C, then we also have the exterior differential

d : Ek(X)C → Ek+1(X)C,

which satisfies d ◦ d = 0. We then define the kth de Rham cohomology group of X by

Hk(X,C) =
Ker(d : Ek(X)C → Ek+1(X)C)

Im(d : Ek−1(X)C → Ek(X)C)
.

The main theorem proved in these notes is the following.

Theorem 1.2. Let Hp,q(X) ⊂ Hk(X,C) be the set of classes which are representable by
a closed form α which is of type (p, q) at every point x in the decomposition (1.2). Then
we have a decomposition

(1.3) Hk(X,C) =
⊕

p+q=k

Hp,q(X).

Note that by definition, we have the Hodge symmetry

Hp,q(X) = Hq,p(X)

where complex conjugation acts naturally on Hk(X,C) = Hk(X,R)⊗C. Here Hk(X,R)
is defined by replacing the complex differential forms by real differential forms in the
above definition.

This theorem immediately gives constraints on the cohomology of a Kahler manifold,
which reveal the existence of compact complex manifolds which are not Kahler. For
example, the decomposition (1.3) and the Hodge symmetry imply that the dimensions
bk(X) := dimCH

k(X,C), called the Betti numbers, are even for odd k, property not
satisfied by Hopf surfaces.

Example 1.3. The Hopf surfaces are the quotients of C
2 \ {0} by the fixed-point-free

action of a group isomorphic to Z, where a generator g acts via g(z1, z2) = (λ1z1, λ2z2)
where the λi, are non-zero complex numbers of modulus strictly less than 1. These
surfaces are compact, equipped with the quotient complex structures, and their π1 is
isomorphic to Z since C

2 \ {0} is simply connected. Thus, their first Betti number is
equal to 1, which implies that they are not Kahler.

The Lefschetz decomposition is another decomposition of the cohomology of a compact
Kahler manifold X, this time of topological nature. It depends only on the cohomology
class of the Kahler form [ω] ∈ H2(X,R). The exterior product on differential forms
satisfies Leibniz’ rule d(α∧β) = dα∧β+ (−1)deg αα∧ dβ, so the exterior product with ω
sends closed forms (i.e. forms killed by d) to closed forms and exact forms (i.e. forms in
the image of d) to exact forms. Thus it induces an operator, called the Lefschetz operator,

L : Hk(X,R) → Hk+2(X,R).
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The following theorem is sometimes called the hard Lefschetz theorem.

Theorem 1.4. For every k ≤ n = dimX, the map

(1.4) Ln−k : Hk(X,R) → H2n−k(X,R)

is an isomorphism.

Remark 1.5. Note that the spaces on the right and on the left are of the same dimension
by Poincare duality, which is valid for all compact oriented manifolds.

A very simple consequence of the above isomorphism is the following result, which is
an additional topological constraint satisfied by Kahler manifolds.

Corollary 1.6. The morphism

L : Hk(X,R) → Hk+2(X,R)

is injective for k ≤ n = dimX. Thus, the odd Betti numbers b2k−1(X) increase with k
for 2k − 1 ≤ n, and similarly, the even Betti numbers b2k(X) increase for 2k ≤ n.

An algebraic consequence of Lefschetz’ theorem is the Lefschetz decomposition, which
as we noted earlier is particularly important in the case of projective manifolds. Let us
define the primitive cohomology of a compact Kahler manifold X by

Hk(X,R)prim := Ker(Ln−k+1 : Hk(X,R) → H2n−k+2(X,R))

for k ≤ n. One can extend this definition to the cohomology of degree > n by using the
isomorphism (1.4).

Theorem 1.7. The natural map

i :
⊕

k−2r≥0

Hk−2r(X,R)prim → Hk(X,R)

(αr) →
∑

Lrαr

is an isomorphism for k ≤ n.

Once again, we can extend this decomposition to the cohomology of degree > n by
using the isomorphism (1.4).

Let us now express the main principle of Hodge theory, which has immense applications.
The study of the cohomology of Kahler manifolds and the proof of the Theorems (eq:ihdec)
and (1.4), which are the main content of these lectures, are among the most important
applications, but the principle applies in various other situations. We restrict ourselves
here to giving an explanation of the main idea, which is the notion of a harmonic form,
and the application of the theory of elliptic operators which makes it possible to represent
the cohomology classes by harmonic forms, but we will omit the proof of the fundamental
theorem on elliptic operators, which uses estimations and notions from analysis (Sobolev
spaces), which are in different directions from the aims of this book. The delicate point
consists in passing from spaces of L2 differential forms, in which the Hodge decomposition
is algebraically obvious, to spaces of C∞ differential forms. One of the problems we
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encounter is the fact that the operators considered here are differential operators, and
thus do not define continuous operators on the spaces of L2 forms.

The idea that we want to explain here is the following: using the metric on X, we can
define the L2 metric on the spaces of differential forms

(α, β)L2 =

∫

X

〈α, β〉x Vol,

where α, β are differential forms of degree k and the scalar product 〈α, β〉x at a point
x ∈ X is induced by the evaluation of the forms at the point x and by the metric at the
point x.

The operator d : Ek(X) → Ek+1(X) is a differential operator, and we can construct its
formal adjoint d∗ : Ek(X) → Ek−1(X), which is also a differential operator, and satisfies
the identity

(α, dβ)L2 = (d∗α, β)L2 ,

for α ∈ Ek(X), β ∈ Ek−1(X). This adjunction relation only makes d∗ into a formal adjoint,
since these operators are not defined on the Hilbert space of L2 differential forms, which
is the completion of E∗(X) for the L2 metric.

The idea of Hodge theory consists in using the adjoint d∗ to write the decompositions

Ek(X) = Im d⊕ Im d⊥ = Im d⊕ Ker d∗, Ek(X) = Ker d⊕ Ker d⊥ = Ker d∗ ⊕ Im d,

and finally, using the inclusion Im d ⊂ Ker d,

Ek(X) = Im d⊕ Im d∗ ⊕ Ker d ∩ Ker d∗.

Of course, these identities, which would be valid on finite-dimensional spaces or Hilbert
spaces since the operator d has closed image there, require the analysis mentioned above
in order to justify them here. Apart from this issue, if we accept these identities, we see
that the space

Hk := Ker d ∩ Ker d∗ ⊂ Ek(X)

of harmonic forms projects bijectively onto Hk(X,R) (or Hk(X,C) if we study the co-
homology with complex coefficients), since it is a supplementary space of Im d inside
Ker d.

Another characterisation of harmonic forms uses the Laplacian

∆d = dd∗ + d∗d.

Indeed, it is very easy to see that we have

Hk = Ker ∆d.

The operator ∆d is an elliptic operator. This property of a differential operator can be
read directly from its symbol, which is essentially its homogeneous term of largest order
(which is 2 for the Laplacian). The decompositions written above are special cases of the
decomposition associated to an elliptic operator.

The Hodge decomposition (1.3) is obtained by combining the Hodge theory sketched
above and the study of the properties of the Laplacian of a Kahler manifold. We have
already mentioned various operators acting on the spaces of differential forms of a Kahler
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manifold, namely d, L and their formal adjoints d∗,Λ for the L2 metric. Moreover, the
complex structure makes it possible to decompose d as

d = ∂ + ∂̄,

where the Dolbeault operator ∂̄ sends α ∈ Ep,q(X) to the component of bidegree (p, q+ 1)
of dα. Here α ∈ Ep,q(X) is the space of differential forms of bidegree (p, q) at every
point of X; it is also the space of sections of the bundle Λp,qT ∗X, which appears in the
decomposition (1.2) given by the complex structure. The differential operators ∂ and ∂̄
are differential operators of order 1, and have formal adjoint operators ∂∗ and ∂̄∗.

The Kahler identities establish commutation relations between these operators. For
example, we have the identity

[Λ, ∂] = i∂̄∗,

and the other identities follow from this one via passage to the complex conjugate or to
the adjoint. From these identities, and from the fact that L commutes with d while ∂
and ∂̄ anticommute, we deduce the following result.

Theorem 1.8. The Laplacians ∆d,∆∂ and ∆∂̄ associated to the operators d, ∂ and ∂̄
respectively satisfy the equalities

(1.5) ∆d = 2∆∂ = 2∆∂̄ .

We deduce that the harmonic forms for d are also harmonic for ∂ and ∂̄, and in
particular are also ∂ and ∂̄-closed. Finally, as the operators ∂ and ∂̄ are bihomogeneous
(of bidegree (1, 0) and (0, 1) respectively) for the bigraduation of the spaces of differential
forms given by the decomposition (1.2), it follows easily that each of the Laplacians ∆∂

and ∆∂̄ is bihomogeneous of bidegree (0, 0), i.e. preserves the forms of type (p, q) for
every bidegree (p, q). The same then holds for ∆d by the equality (1.5). The Hodge
decomposition is then obtained simply by the decomposition of the harmonic forms as
sums of forms of type (p, q):

Corollary 1.9. Let X be a compact Kahler manifold. If α is a harmonic form (for the
Laplacian associated to the operator d and to the metric), its components of type (p, q)
are harmonic. Thus, we have a decomposition

(1.6) Hk(X) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) is the space of harmonic forms of type (p, q) at every point of X.

The Hodge decomposition (1.3) is obtained by combining the theorem of representation
of cohomology classes by harmonic forms with the decomposition (1.6). The Lefschetz
decomposition is also an easy consequence of the decomposition (1.6). Indeed, we first
show that Theorem 1.4 holds for the operator L acting on differential forms. Furthermore,
the Kahler identities show that L commutes with the Laplacian, so that the operators
Lr send harmonic forms to harmonic forms, and once the theorem is proved on the level
of forms, it remains valid on the level of harmonic forms, and thus also on cohomology
classes.
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The Hodge decomposition (1.3) gives an extremely interesting structure when it is
combined with the integral structure on the cohomology Hk(X,C) = Hk(X,Z) ⊗Z C.
For this equality, which follows from the change of coefficients theorem, one must adopt
a different definition of cohomology, which does not make use of differential forms. For
one possible definition, we can introduce the singular cohomology Hk

sing(X,Z). We start

from the complex (C∗(X), ∂ : Ck(X) → Ck−1(X)) of singular chains, where Ck(X) is the
free abelian group generated by the continuous maps from the simplex ∆k of dimension
k to X. The map ∂ is given by the restriction to the boundary

∂φ =
∑

i

(−1)iφ|∆k,i

where ∆k,i is the ith face of ∆k. The complex (C∗
sing(X), d) of singular cochains is then

defined as the dual complex of (C∗(X), ∂). Its cohomology is the singular cohomology
H∗

sing(X,Z). We have the following theorem, due to de Rham.

Theorem 1.10. For K = R or C, we have Hk(X,K) = Hk
sing(X,Z) ⊗Z K.

If we consider the complex of differentiable chains, we can prove this theorem by using
the natural map from Ek(X) to C∗

sing(X) given by integration:

α→

(

φ→

∫

∆k

φ∗α

)

.

A much more conceptual proof of de Rham’s theorem can be given by using the lan-
guage of sheaf theory. Sheaf cohomology will be used, for example, in the Hodge decom-
position, to describe the spaces Hp,q as the Dolbeault cohomology groups Hq(X,Ωp

X),

which are defined for every complex manifold X as the qth cohomology group of X with
values in the sheaf Ωp

X of holomorphic differential forms of degree p. We note, however,
that this identification is valid only in the Kahler case. In general, without the Kahler
hypothesis, we cannot identify Hq(X,Ωp

X) with the space of cohomology classes of degree
p+ q which are representable by a closed form of type (p, q) at every point.

Let Γ be the functor of global sections Γ of the category of sheaves of abelian groups
on X to the category of abelian groups. We show using Poincare’s theorem that the
sheaves of differential forms form a Γ-acyclic resolution of the constant sheaf CX (often
written C) of stalk C, so that the space Hk(X,C) defined above must be understood as
the kth cohomology group of X with values in CX . Similarly, we can interpret the singular
cohomology as the cohomology of the complex of global sections of a Γ-acyclic resolution
of the constant sheaf of stalk Z. Thus, we have H∗

sing(X,Z) = Hk(X,Z) canonically.
De Rham’s theorem thus reduces to proving a change of coefficients theorem for the
cohomology of the sheaves Hk(X,C) = Hk(X,Z) ⊗Z C, which is not difficult.

These different interpretations of the cohomology, corresponding to different resolu-
tions, are all equally important, since they carry different types of information. For
example, the Hodge decomposition of the cohomology of a Kahler manifold requires the
de Rham version of the cohomology, while that of the integral structure requires another
version, singular or Cech for example.
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2. Holomorphic Functions of Many Variables

In this section, we recall the main properties of holomorphic functions of several com-
plex variables. The C-valued holomorphic functions of the complex variables z1, . . . , zn
those whose differential is C-linear, or equivalently, those which are annihilated by the
operators ∂

∂z̄l
. It follows immediately from this definition that the set of holomorphic

functions forms a ring, and that the composition of two holomorphic functions is holo-
morphic. The following theorem, however, requires a certain amount of work.

Theorem 2.1. The holomorphic functions of the complex variables z1, . . . , zn are complex
analytic, i.e. they locally admit expansions as power series in the variables zl.

This result is an easy consequence of Cauchy’s formula in several variables, which is a
generalisation of the formula

f(z) =
1

2πi

∫

|ζ|=1

f(ζ)

ζ − z
dζ,

where f is a holomorphic function defined in a disk of radius > 1, and |z| < 1.
Cauchy’s formula can also be used to prove Riemann’s theorem of analytic continuation:

Theorem 2.2. Let f be a bounded holomorphic function on the pointed disk. Then f
extends to a holomorphic function on the whole disk.

And also Hartogs’ theorem:

Theorem 2.3. Let f be a holomorphic function defined on the complement of an analytic
subset of codimension 2 in a ball B of C

n, n ≥ 2. Then f extends to a holomorphic
function on B.

Hartogs’ theorem enables us to show that a holomorphic section of a complex vector
bundle over a complex manifold is defined everywhere if it is defined on the complement
of an analytic subset of codimension 2.

2.4. Holomorphic functions of one variable. Let U ⊂ C = R
2 be an open set, and

f : U → C a C1 map. Let x, y be the linear coordinates on R
2 such that z = x+ iy is the

canonical linear complex coordinate on C. Consider the complex-valued differential form

dz = dx+ idy ∈ HomR(TU,C) = ΩU,R ⊗ C.

Clearly dz and its complex conjugate dz̄ form a basis of ΩU,R ⊗ C over C at every point
of U, since

2dx = dz + dz̄, 2idy = dz − dz̄.

The complex differential form df ∈ HomR(TU,C) can thus be uniquely written

duf =
∂f

∂z
(u)dz +

∂f

∂z̄
(u)dz̄,

where the complex-valued functions ∂f
∂z

(·), ∂f
∂z̄

(·) are continuous. We obviously have

∂f

∂z
=

1

2

(

∂f

∂x
− i

∂f

∂y

)

,
∂f

∂z̄
=

1

2

(

∂f

∂x
+ i

∂f

∂y

)

.
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We can also consider the above decomposition of df as the decomposition of df ∈
Hom(C,C) into C-linear and C-antilinear parts:

Lemma 2.5. We have ∂f
∂z̄

(u) = 0 if and only if the R-linear map duf : TuU = C → C

is C-linear, i.e. is equal to multiplication by a complex number, which is then equal to
∂f
∂z

(u).

Definition 2.6. The function f is said to be holomorphic if it satisfies one of the equiv-
alent conditions of lemma 2.5 at every point of U .

Lemma 2.7. If f is holomorphic and does not vanish on U , then 1/f is holomorphic.
Similarly, if f, g are holomorphic, fg and f + g and g ◦f (when g is defined on the image
of f) are all holomorphic.

In particular, we will use the following corollary.

Corollary 2.8. If f is holomorphic on U , the map g defined by

g(z) =
f(z)

z − a

is holomorphic on U \ {a}.

2.9. Stokes’formula. Let α be a differential k-form on an n-dimensional manifold U . If
x1, . . . , xn are local coordinates on U , we can write

α =
∑

I

αIdxI ,

where the indices I parametrise the totally ordered subsets i1 < · · · < ik of {1, ..., n},
with dxI = dxi1 ∧ · · · ∧ dxik . We can then define the continuous (k + 1)-form

(2.1) dα =
∑

I,i

∂αI
∂xi

dxi ∧ dxI ;

we check that it is independent of the choice of coordinates. This follows from the more
general fact that if V is an m-dimensional manifold and φ : V → U is a differential map
given in local coordinates by φ∗xi := xi ◦ φ = φ(y1, . . . , ym), then for every differential
form α =

∑

I αIdxi1 ∧ · · · ∧ dxik , we can define its inverse image

φ∗α =
∑

I

αI ◦ φ dφi1 ∧ · · · ∧ dφik .

Moreover, this image inverse satisfies

d(φ∗α) = φ∗(dα),

where the coordinates yi (and the formulae (2.1)) are used on the left, while the coordi-
nates xi, are used on the right.

A differential k-form a can be integrated over the compact oriented k-dimensional
submanifolds of U with boundary, or over the image of such manifolds under differentiable
maps.
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To begin with, let us recall that a k-dimensional manifold with boundary is a topological
space covered by open sets Ui which are homeomorphic, via certain maps hi to open
subsets of R

k or to (0, 1] × V , where V is an open set of R
k−1. We require the transition

functions hi ◦ h
−1
j to be differentiable on hj(Ui ∩ Uj). When hj(Ui ∩ Uj) contains points

on the boundary of Uj , i.e. is locally isomorphic to (0, 1] × V , where V is an open set

of R
k−1, hj(Ui ∩ Uj) must also be locally isomorphic to (0, 1] ×W , where W is an open

set of R
k−1, and the differentiable map hi ◦ h

−1
j must locally extend to a diffeomorphism

of a neighbourhood in R
k of (0, 1] × V to a neighbourhood of (0, 1] × W , inducing a

diffeomorphism from 1×V to 1×W . In particular, the boundary of M , which we denote
by ∂M and which is defined, with the preceding notation, as the union of the h−1

i (1×V ),
is a closed set of M which possesses an induced differentiable manifold structure.

The manifold with boundary M is said to be oriented if the diffeomorphisms hi ◦
h−1
j have positive Jacobian. The boundary of M is then also naturally oriented by the

charts 1 × V , where V is an open set of R
k−1 as above, since the induced transition

diffeomorphisms hi ◦ h
−1
j |1×V : V →W also have positive Jacobian.

If M is k-dimensional manifold with boundary and φ : M → U is a differentiable map
(along the boundary of M , which is locally isomorphic to (0, 1] × V , we require φ to
extend locally to a differentiable map on a neighbourhood (0, 1 + ǫ) × V of {1} × V ),
then for every differentiable k-form α, we have the inverse image β = φ∗α defined above,
which is a differentiable k-form on M . If moreover M is oriented and compact, such a
form can be integrated over M as follows. Let ρi be a partition of unity subordinate to
a covering of M by open sets Ui as above, which we may assume to be diffeomorphic to
(0, 1] × (0, 1)k−1 or to (0, 1)k . Then β =

∑

i ρiβ on extends to a differentiable form on

[0, 1]k. Setting ρiβ = gi(x1, . . . , xk)dx1 ∧ · · · ∧ dxk, we then define
∫

M

β =
∑

i

∫

Ui

ρiβ,

∫

Ui

ρiβ =

∫ 1

0
. . .

∫ 1

0
gi(x1, . . . , xk)dx1 . . . dxk.

The change of variables formula for multiple integrals and the fact that the authorised
variable changes have positive Jacobians ensure that

∫

M
β is well-defined independently

of the choice of oriented charts, i.e. of local orientation-preserving coordinates.

Remark 2.10. If we change the orientation of M , i.e. if we compose all the charts with
local diffeomorphisms of R

k with negative Jacobians, the integrals
∫

M
φ∗α change sign.

This follows from the change of variables formula for multiple integrals, which uses only
the absolute value of the Jacobian, whereas the change of variables formula for differential
forms of maximal degree uses the Jacobian itself.

Suppose now that α is a (k− 1)-form on U . Then, as φ |∂M is differentiable and ∂M is
a compact oriented manifold of dimension k − 1, we can compute the integral

∫

∂M
φ∗α.

Moreover, we can integrate the differential dφ∗α = φ∗dα over M . We then have

Theorem 2.11. (Stokes’ formula) The following equality holds:
∫

M

φ∗dα =

∫

∂M

φ∗α.



INTRODUCTION TO HODGE THEORY 11

In particular, if dα = 0, we have
∫

∂M
φ∗α = 0.

We will use Stokes’ formula very frequently throughout this text. In particular, it will
enable us to pair the de Rham cohomology with the singular homology. The following
consequence will be particularly useful.

Corollary 2.12. If α is a differential form of degree n− 1 on a compact n- dimensional
manifold without boundary, then

∫

M
dα = 0.

2.13. Cauchy’s formula. We propose to apply Stokes’ formula, using the following
lemma.

Lemma 2.14. Let f : U → C be a holomorphic map. Then the complex differential form
fdz is closed.

We thus also have the following.

Corollary 2.15. If f is holomorphic on U , the differential form f
z−z0

dz is closed on

U \ {z0}.

Suppose now that U contains a closed disk D. For every z0 ∈ D, let Dǫ be the open
disk of radius ǫ centred at 0 which is contained in D for sufficiently small ǫ. Then D\Dǫ is
a manifold with boundary, whose boundary is the union of the circle ∂D and the circle of
centre z0 and radius ǫ, the first with its natural orientation, the second with the opposite
orientation. For holomorphic f , Stokes’ formula and previous corollary then give the
equality

1

2πi

∫

∂D

f(z)

z − z0
dz =

1

2πi

∫

|z−z0|=ǫ

f(z)

z − z0
dz.

Furthermore, we have the following.

Lemma 2.16. If f is a function which is continuous at z0, then

lim
ǫ→0

1

2πi

∫

|z−z0|=ǫ

f(z)

z − z0
dz = f(z0).

Combining thus lemma and the above equality, we now have

Theorem 2.17. (Cauchy’s formula) Let f be a holomorphic function on U and D a
closed disk contained in U . Then for every point z0 in the interior of D, we have the
equality

f(z0) =
1

2πi

∫

∂D

f(z)

z − z0
dz.

2.18. Holomorphic functions of several variables.

2.18.1. Cauchy’s formula and analyticity. Let U be an open set of C
n, and let f :

U → C be a differentiable map. For u ∈ U , we have a canonical identification TuU = C
n.

We can thus generalise the notion of a holomorphic function to higher dimensions.

Definition 2.19. The function f is said to be holomorphic if for every u ∈ U , the
differential duf : Hom(TuU,C) = Hom(Cn,C) is C-linear.
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It is easy to prove that lemma 2.7 remains true in higher dimensions. Furthermore, we
have the three following characterisations of holomorphic functions.

Theorem 2.20. The following three properties are equivalent for a differentiable function

(i) f is holomorphic.
(ii) In the neighbourhood of each point z0 ∈ U , f admits an expansion as a power

series of the form f(z0 + z) =
∑

I aIz
I , where I runs through the set of the n-

tuples of integers (i1, . . . , in) with ik ≥ 0, and zI := zi11 . . . zinn . The coefficients of
the series satisfy the following property: there exist R1 > 0, . . . , Rn > 0 such that
the power series

∑

I aIr
I converges for every r1 < R1, . . . , rn < Rn.

(iii) If D = {(ζ1, . . . , ζn)||ζi − ai| ≤ ǫi} is a poly disk contained in U , then for every
z = (z1, . . . , zn) ∈ D◦, we have the equality

f(z) =

(

1

2πi

)n ∫

|ζi−ai|=ǫi

f(ζ)
dζ1

ζ1 − z1
∧ · · · ∧

dζn
ζn − zn

.

In the preceding formula, the integral is taken over a product of circles, equipped
with the orientation which is the product of the natural orientations.

Because of property (ii), holomorphic functions are also known as complex analytic
functions. Property (iii) is Cauchy’s formula in several variables. One can prove it by
induction on the dimension, using Cauchy’s formula in a single variable. One can also
directly apply Stokes’ formula, using the following analogue of lemma 2.14.

Lemma 2.21. If f is holomorphic, then the differential form f(z)dz1∧· · ·∧dzn is closed.

Let us give some applications of theorem 2.20. To begin with, we have

Theorem 2.22. (The maximum principle) Let f be a holomorphic function on an open
subset U of C

n. If |f | admits a local maximum at a point u ∈ U , then f is constant in
the neighbourhood of this point.

Another essential application is the principle of analytic continuation.

Theorem 2.23. Let U be a connected open set of C
n, and f a holomorphic function on

U . If f vanishes on an open set of U , then f is identically zero.

Let us now give some subtler applications of Cauchy’s formula or its generalisations.
These theorems show that the possible singularities of a holomorphic function cannot exist
unless the function is not bounded (Riemann), and is not defined on the complement of
an analytic subset of codimension 2 (Hartogs).

Theorem 2.24. (Riemann) Let f be a holomorphic function on U \ {z|z1 = 0}, where
U is an open set of C

n. Then if f is locally bounded on U , f extends to a holomorphic
map on U .

To conclude this section, we will mention the following version of Hartogs’ extension
theorem which implies the more general theorem mentioned above.

Theorem 2.25. Let U be an open set of C
n and f a holomorphic function defined on

U \ {z|z1 = z2 = 0}. Then f extends to a holomorphic function on U .
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2.26. The equation
∂g
∂z̄

= f . The following theorem will play an essential role in the

proof of the local exactness of the operator ∂̄.

Theorem 2.27. Let f be a differentiable function on an open set of C. Then, locally
on this open set, there exists a differentiable function g (defined up to the addition of a
holomorphic function), such that

∂g

∂z̄
= f.

Proof. As the statement is local, we may assume that f has compact support, and thus
is defined on C. Now set

g(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ ∧ dζ̄.

This is a singular integral. By definition, it is equal to the limit, as ǫ→ 0, of the integrals

g(z) =
1

2πi

∫

C\Dǫ

f(ζ)

ζ − z
dζ ∧ dζ̄,

where Dǫ is a disk of radius ǫ centred at z. It is easy to see that this limit exists (the

function f(ζ)
ζ−z is L1). Making the change of variable ζ ′ = ζ − z, we also have

g(z) = lim
ǫ→0

gǫ(z), gǫ(z) =
1

2πi

∫

C\D′

ǫ

f(ζ ′ + z)

ζ ′
dζ ′ ∧ dζ̄ ′,

The convergence of the gǫ(z) when ǫ→ 0 is uniform in z. Moreover, we can differentiate
under the integral sign the (non-singular) integral defining gǫ

∂gǫ
∂z̄

=
1

2πi

∫

C\D′

ǫ

∂f(ζ ′ + z)

∂z̄

dζ ′ ∧ dζ̄ ′

ζ ′
,

As ∂f(ζ′+z)
∂z̄

is differentiable, the functions ∂gǫ

∂z̄
converge uniformly, and we conclude that

g is differentiable and satisfies

∂g

∂z̄
=

1

2πi

∫

C

∂f(ζ ′ + z)

∂z̄

dζ ′ ∧ dζ̄ ′

ζ ′
,

Thus, it remains to show the equality ∂g
∂z̄

= f . Changing back to ζ = ζ ′ + z, we have

(2.2)
∂g

∂z̄
= lim

ǫ→0

1

2πi

∫

C\Dǫ

∂f(ζ)

∂ζ̄

dζ ∧ dζ̄

ζ − z
,

Now, on C \Dǫ we have the equality ∂f(ζ)
∂ζ̄

dζ∧dζ̄
ζ−z = −d

(

fdζ
ζ−z

)

. Stokes’ formula thus gives

(2.3)
1

2πi

∫

C\Dǫ

∂f(ζ)

∂ζ̄

dζ ∧ dζ̄

ζ − z
=

1

2πi

∫

∂Dǫ

f(ζ)
dζ

ζ − z
.

Using lemma 2.16 and the equalities (2.2), (2.3) we have thus proved the desired equality.
�
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3. Complex Manifolds

We introduce and study the notion of a complex structure on a differentiable or com-
plex manifold. A complex manifold X of (complex) dimension n is a differentiable man-
ifold locally equipped with complex-valued coordinates (called holomorphic coordinates)
z1, . . . , zn, such that the diffeomorphisms from an open set of C

n to an open set of C
n given

by coordinate changes are holomorphic. By the definition of a holomorphic transforma-
tion, we then see that the structure of a complex vector space on the tangent space TxX
given by the identification TxX = C

n induced by the holomorphic coordinates z1, . . . , zn
does not depend on the choice of holomorphic coordinates. The tangent bundle TX of
a complex manifold X is thus equipped with the structure of a complex vector bundle.
Such a structure is called an almost complex structure. The Newlander-Nirenberg theo-
rem characterises the almost complex structures induced as above by a complex structure.
We also introduce holomorphic vector bundles over a complex manifold. These vector
bundles are those whose ”transition matrices” are holomorphic. It turns out that we can
define a differential operator (the Dolbeault operator) ∂̄ on the space of sections of such
a vector bundle E, and more generally, on the space of differential forms with values in
such a bundle. The holomorphic sections σ of E are then characterised by the equation
∂̄σ = 0. One can show that the Dolbeault operator satisfies the condition ∂̄ ◦ ∂̄ = 0, and
that the complex defined in this way is locally exact. This will be used later to represent
the cohomology of X with values in the sheaf of holomorphic sections of E using ∂̄-closed
differential forms with coefficients in E.

3.1. Manifolds and vector bundles.

3.1.1. Definitions. A topological manifold is a topological space X equipped with a
covering by open sets Ui, which are homeomorphic, via maps hi called ”local charts”, to
open sets of R

n. One can show that such an n is necessarily independent of i when X is
connected; n is then called the dimension of X.

Definition 3.2. A C∞ differentiable manifold X is a topological manifold equipped with
a system of local charts hi : Ui → R

n such that the open sets Ui cover X, and the change
of chart morphisms hj ◦ h

−1
i : hi(Ui ∩ Uj) → hj(Ui ∩ Uj) are C∞ maps.

A C∞ differentiable function on such a manifold (or on an open set) is a function f such
that for each Ui, the function f ◦ h−1

i is C∞ differentiable. A map f : X → Y between

differentiable manifolds is C∞ differentiable map if gj ◦ f ◦ h−1
i are C∞ differentiable.

A real (resp. complex) topological vector bundle of rank m over a topological space X
is a topological space E equipped with a map π : E → X such that for an open cover
{Ui} of X, we have ”local trivialisation” homeomorphisms

φi : π−1(Ui) → Ui × R
m(resp. Ui × C

m),

such that:

(i) pr1 ◦ φi = π
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(ii) The transition functions φj◦φ
−1
i : φ(π−1(Ui∩Uj)) → φ(π−1(Ui∩Uj)) are R-linear

(resp. C-linear) on each fibre x× R
m (resp. x× C

m).

Such a transformation Ui ∩ Uj × R
m → Ui ∩ Uj × R

m must respect the first projection,
by condition (i) above, and is thus described by a real m×m matrix, whose coefficients,
by continuity, are continuous functions of x ∈ Ui ∩ Uj . (In the complex case, we must
consider complex matrices.) These matrices are called transition matrices.

Definition 3.3. If X is a differentiable manifold, a vector bundle E over X is equipped
with a differentiable structure if we are given local trivialisations whose transition matrices
are C∞.

Remark 3.4. The bundle E is then equipped with the structure of a C∞ manifold for
which π is C∞ as well as the local trivialisations.

A section of a vector bundle π : E → X is a map σ : X → E such that π◦σ = IdX . This
section is said to be continuous, resp. differentiable, if a is continuous, resp. differentiable.
If π : E → X is a vector bundle and x ∈ X, we write Ex := π−1(x). It is canonically a
vector space, with structure given by any of the trivialisations of E in the neighbourhood
of x; Ex is called the fibre of E at the point x.

A vector bundle π : E → X is said to be trivial if it admits a global trivialisation
φ : E = X × R

n. Equivalently, E must admit n global sections which provide a basis
of the fibre Ex at each point. These sections are given by at σi = φ−1 ◦ ẽi, where
ẽi : X → X × R

n is given by ei(x) = (x, ei), where the ei form the standard basis of R
n.

Let πE : E → X and πF : F → X be vector bundles over X. A morphism ψ : E → F
of vector bundles is a continuous map such that πF ◦ ψ = πE, and ψ is linear on each
fibre. This means that in local trivialisations, ψ becomes linear (C-linear in the case of
complex bundles) on the fibres x ∈ R

n; his definition is independent of the choice of the
open set containing x, since the transition functions are also linear on the fibres. We have
an analogous definition for differentiable bundles.

Given a vector bundle E, we can define its dual E∗ and its exterior powers ΛkE,
which are differentiable if E is. The points of E∗ are the linear forms on the fibres of
πE : E → X; E∗ admits a natural trivialisation when E is trivialised, and the transition
matrices of E∗ are the inverses of the transposes of the transition matrices of E. Similarly,
the points of ΛkE can be identified with the alternating K-linear forms on the fibres of
π∗E : E∗ → X.

3.4.1. The tangent bundle. If X is a differentiable manifold, the tangent bundle TX
of X is a differentiable bundle of rank n = dimX which we can define as follows. If X
is covered by open sets Ui equipped with diffeomorphisms hi to open sets of Rn, then
TX is covered by open sets Ui × R

n, where the identifications (or transition morphisms)
between Ui ∩ Uj × R

n ⊂ Ui × R
n and Ui ∩ Uj × R

n ⊂ Uj × R
n are given by

(x, v) → (x, φij∗(x)v).

Here hij = hi ◦ h
−1
j is the transition diffeomorphism between the open sets hi(Ui ∩Uj)

and hj(Ui ∩Uj) of Rn, and hij∗(x) is its Jacobian matrix at the point x. A section of the
tangent bundle of a differentiable manifold is called a vector field.
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There exist two intrinsic ways of describing the elements of the tangent bundle. The
points of the tangent bundle can be identified with equivalence classes of differentiable
maps γ : [−ǫ, ǫ] → X (for an ǫ ∈ R, ǫ > 0 varying with γ) for the equivalence relation

γ ≡ γ′ if and only if γ(0) = γ′(0),
dγ

dt
(0) =

dγ′

dt
(0).

The second equality in this definition makes sense in any local chart for X in the
neighbourhood of γ(0). We call these equivalence classes ”jets of order 1”. To check
that the set defined in this way has the structure of a vector bundle introduced earlier, it
suffices to note that the jets of order 1 of an open set U of R

n can be identified, via the
map γ → (γ(0), γ̇(0)), with U × R

n, and that a diffeomorphism ψ : U → V between two
open sets of R

n induces the isomorphism (ψ,ψ∗) between the spaces of jets of order 1 of
U and V .

Another definition of the tangent vectors, i.e. of the elements of the tangent bundle,
consists in identifying them with the derivations of the algebra of the real differentiable
functions on X with values in R supported at a point x ∈ X. This means that we consider
the linear maps δ : C∞(X) → R satisfying Leibniz’ rule

δ(fg) = f(x)δ(g) + g(x)δ(f)

for a point x ∈ X. The equivalence between the two definitions is realised by the map

which to a jet γ associates the derivation δγ(f) = d(γ◦f)
dt

(0).

Definition 3.5. A differential form of degree k is a section of ΛkT ∗X. We write degα
for the degree of such a form α.

In general, we write ΩX,R the bundle of real differential 1-forms, and ΩX,C for its
complexification Hom(ΩX,R,C). Similarly, the bundle of real (resp. complex) k-forms

is written Ωk
X,R (resp. Ωk

X,C). We see immediately that if f is a real differentiable
function on X, then df is a C∞ section of ΩX,R. We also see that if x1, . . . , xn are
local coordinates defined on an open set U ⊂ X, then the dxI = dxil ∧ · · · ∧ dxik ,
1 ≤ i1 < · · · < ik ≤ n provide a basis of the fibre of Ωk

X,R at each point of the open set
U . Indeed, by the definition of TX, the coordinates xi provide a local trivialisation of
TX, where the corresponding local basis is given at each point x ∈ U by the derivations
∂
∂xi

(x). The dxi simply form the dual basis of ΩX,R at each point of U .

3.5.1. Complex manifolds. Let X be a differentiable manifold of dimension 2n.

Definition 3.6. We say that X is equipped with a complex structure if X is covered by
open sets Ui which are diffeomorphic, via maps called hi, to open sets of Cn, in such a way
that the transition diffeomorphisms hj ◦h

−1
i : hi(Ui∩Uj) → hj(Ui∩Uj) are holomorphic.

The (complex) dimension of X is by definition equal to n. On a complex manifold, a
map f : U → C defined on an open set U is said to be holomorphic if f◦h−1

i is holomorphic
on hi(U ∩ Ui). Once again, this definition does not depend on the choice of chart, since
the change of chart morphisms is holomorphic and compositions of holomorphic functions
are also holomorphic.

We can also define the notion of a holomorphic vector bundle.
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Definition 3.7. A differentiable complex vector bundle π : E → X over a complex
manifold X is said to be equipped with a holomorphic structure if we have trivialisations

φi : π−1(Ui) → Ui × C
m,

such that the transition matrices φij = φj ◦ φ
−1
i have holomorphic coefficients.

The above trivialisations will be called ”holomorphic trivialisations”. If E is a holo-
morphic vector bundle, E is in particular a complex manifold such that π is holomorphic.
Indeed, we can assume, in the definition above, that the Ui are charts, i.e. identified
via hi with open sets of C

n; then the (hi × IdCn) ◦ φi give charts for E whose transition
functions are clearly holomorphic.

A holomorphic section of a holomorphic vector bundle π : E → X over an open set U of
X is a section σ : X → E of π which is a holomorphic map. For example, a holomorphic
local trivialisation φi of E as above is given by the choice of a family of holomorphic
sections of , whose values at each point x of Ui form a basis of the fibre Ex over C.

Example 3.8. The holomorphic tangent bundle. This bundle is defined exactly like
the real tangent bundle of a differentiable manifold. Given a system of charts hi : Ui →
Vi ⊂ C

n, we define TX as the union of the Ui × C
n, glued by identifying Ui ∩Uj × C

n ⊂
Ui × C

n and Ui ∩ Uj × C
n ⊂ Uj × C

n via

(x, v) → (x, hij∗(x)v).

Here, the holomorphic Jacobian matrix hij∗ is the matrix with holomorphic coefficients
∂hk

ij

∂zl
, where hij = hi ◦ h

−1
j . We can also, as for the real tangent bundle, define the

holomorphic tangent bundle as the set of complex-valued derivations of the C-algebra of
holomorphic functions, or as the set of jets of order 1 of holomorphic maps from the
complex disk to X.

3.9. Integrability of almost complex structures.

3.9.1. Tangent bundle of a complex manifold. Let X be a complex manifold, and let
hk : Ui → C

n be holomorphic local charts. Then the real tangent bundle TUkR can
be identified, via the differential hk∗ , with Uk × C

n. Moreover, the change of chart
morphisms hk ◦ h

−1
j are holomorphic by hypothesis, i.e. have C-linear differentials, for

the natural identifications: TxC
n = C

n, x ∈ C
n. It follows that the R-linear operators

Jk : TUkR → TUkR identified with 1 × i acting on Uk × C
n, glue together on Uk ∩ Uj

and define a global endomorphism, written J , of the bundle TXR. Obviously J satisfies
the identity J2 = −1; thus J defines the structure of a C-vector space of rank n on
each fibre TxXR. The differentiability of J even shows that TXR is thus equipped with
the structure of a differentiable complex vector bundle. This leads us to introduce the
following definition.

Definition 3.10. An almost complex structure on a differentiable manifold X is an en-
domorphism J of the real tangent bundle TXR such that J2 = −1; equivalently, it is the
structure of a complex vector bundle on TXR.

We saw that a complex structure on X naturally induces an almost complex structure.
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Definition 3.11. An almost complex structure J on a manifold X is said to be integrable
if there exists a complex structure on X which induces J .

In the case of a complex manifold, the relation between TXR seen as a complex vector
bundle and the holomorphic tangent bundle TX of X is as follows: the bundle TX is
generated, in a chart U , by the elements

∂

∂zj
=

1

2

(

∂

∂xj
− i

∂

∂yj

)

,

which are naturally elements of TUR ⊗C. Thus, in fact, we have an inclusion of complex
vector bundles

TX ⊂ TXR ⊗ C.

Moreover, for an almost complex manifold (X,J), the complexified tangent bundle
TXR ⊗ C contains a complex vector subbundle, denoted by T 1,0X and defined as the
bundle of eigenvectors of J for the eigenvalue i. As a real vector bundle, T 1,0X is naturally
isomorphic to TXR via the application Re (real part) which to a complex field v + iw
associates its real part v. Moreover, this identifies the operators i on T 1,0X and J on
TXR. Clearly T 1,0X is generated by the v − iJv, v ∈ TXR.

Furthermore, in the case where X = C
n, consider the isomorphism TC

n
R

= C
n × R2n

given by the sections ∂
∂xj

, ∂
∂yj

of the tangent bundle of C
n, where zk = xk+ iyk and zk are

complex linear coordinates on C
n. The induced complex structure operator J on TC

n
R

sends ∂
∂xj

to ∂
∂yj

. Thus, the tangent vectors of type (1, 0) are generated over C at each

point by the
(

∂

∂xj
− iJ

∂

∂yj

)

= 2
∂

∂zj
.

In conclusion, we have shown the following.

Proposition 3.12. If X is a complex manifold, then X admits an almost complex struc-
ture, and the subbundle T 1,0X ⊂ TXR ⊗ C defined by J is equal, as a complex vector
subbundle of TXR ⊗ C, to the holomorphic tangent bundle TX.

Complex conjugation acts naturally on the complexified tangent bundle TXC = TXR⊗
C of a differentiable manifold X. If J is an almost complex structure on X, we have the
subbundle T 0,1X of TXC, defined as the complex conjugate of T 1,0X. We can also define
it as the set of the complexified tangent vectors which are the eigenvectors of J associated
to the eigenvalue −i. Thus, it is clear that we have a direct sum decomposition

TXC = T 1,0X ⊕ T 0,1X.

Remark 3.13. When X is an almost complex manifold, the vector bundle T 1,0X does
not a priori have the structure of a holomorphic bundle. In what follows, if X is a complex
manifold, a section of TX will be taken to mean a holomorphic section of TX, while a
section of T 1,0X will be a differentiable section.
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If ψ : X → Y is a holomorphic map between two complex manifolds, we define a
morphism of holomorphic vector bundles ψ∗ : TX → TY in the obvious way. In holo-
morphic local charts which trivialise TX and TY , the matrix of ψ∗ is given by the
holomorphic Jacobian matrix ∂ψk

∂zj
of ψ. This morphism can in fact be identified with the

morphism of real vector bundles ψ∗,R : TXR → TYR via the identifications of real bundles
TX = TXR, TY = TYR given by the real part Re. As a morphism of complex bundles,
ψ∗ can be deduced from ψ∗,R by noting that ψ∗,R is compatible with the almost complex
structures of X and Y , since ψ is holomorphic, and thus induces a C-linear morphism
ψ1,0
∗ : T 1,0X → T 1,0Y .

3.13.1. The Newlander-Nirenberg theorem. Note first that the bracket of vector
fields over a differentiable manifold X extends by C-linearity to the complexified vector
fields, i.e. to the differentiable sections of TXC. Now, let (X,J) be an almost complex
manifold. As mentioned above, the almost complex structure operator J splits the bundle
TXC into elements of type (1, 0), eigenvectors associated to the eigenvalue i of J , and
elements of type (0, 1), eigenvectors associated to the eigenvalue −i of J . The bundle
T 1,0X is the complex conjugate of the bundle T 0,1X. The following theorem gives an
exact description of the integrable almost complex structures.

Theorem 3.14. (Newlander-Nirenberg) The almost complex structure J is integrable if
and only if we have

[T 0,1X,T 0,1X] ⊂ T 0,1X.

Remark 3.15. By passing to the conjugate, this is equivalent to the condition that the
bracket of two vector fields of type (1, 0) is of type (1, 0).

This theorem is a difficult theorem in analysis, for it implies, in particular, that the
manifold X which was assumed to be only differentiable actually admits the structure of
a real analytic manifold.

3.16. The operators ∂ and ∂̄.

3.16.1. Definition. Let (X,J) be an almost complex manifold; the decomposition at the
tangent bundle level TXC = T 1,0X ⊕ T 0,1X induces a dual decomposition

(3.1) ΩX,C = Ω1,0
X ⊕ Ω0,1

X .

When X is a complex manifold, the bundle Ω1,0
X of complex differential forms of type

(1, 0), i.e. C-linear forms, is generated in holomorphic local coordinates z1, . . . , zn by the
dzi, i.e. a form a of type (1, 0) can be written locally as α =

∑

i αidzi, where the ai, are
C∞ functions if α is C∞. Since d(dzi) = 0, it follows that dα =

∑

dαi∧dzi. Furthermore,
the decomposition 3.1 also induces the decomposition of the complex k-forms into forms
of type (p, q), for p+ q = k:

(3.2) ΛkΩX,C =
⊕

p+q=k

Ωp,q
X ,
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where the bundle Ωp,q
X is equal to ΛpΩ1,0

X ⊕ ΛqΩ0,1
X . With this definition, formula (3.2)

shows that if the almost complex structure is integrable and α is a differential form of
type (1, 0), then dα is a section of Ω2,0

X ⊕ Ω1,1
X . In fact, using the formula

χ(α(η)) − η(α(χ)) = dα(χ, η) + α([χ, η]),

where α is a 1-form and χ, η are vector fields, we easily see that this property is equivalent
to the integrability condition of theorem 3.14, and thus to the integrability of the almost
complex structure.

More generally, the bundle Ωp,q
X admits as generators in holomorphic local coordinates

z1, . . . , zn, in the differential forms

dzI ∧ dz̄J = dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

where I, J are sets of ordered indices 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jq ≤ n.
Note that these forms are closed, i.e. annihilated by the exterior differential operator d.
A form α of type (p, q) can thus be written locally as α =

∑

I,J αI,JdzI ∧ dz̄J . It follows
that

dα =
∑

I,J

dαI,J ∧ dzI ∧ dz̄J

is the sum of a form of type (p, q + 1) and a form of type (p+ 1, q).

Definition 3.17. For a C∞ differential form a of type (p, q) on a complex manifold X,
we define ∂α to be the component of type (p, q + 1) of dα. Similarly, we define ∂̄α to be
the component of type (p + 1, q) of dα.

For (p, q) = (0, 0), a form of type (p, q) is a function f ; ∂̄f is then the C-antilinear part
of df , and thus it vanishes if and only if f is holomorphic. By definition, we have

df =
∑

i

∂f

∂zi
dzi +

∑

i

∂f

∂z̄i
dz̄i,

and thus

∂̄f =
∑

i

∂f

∂z̄i
dz̄i.

As mentioned above, a differential k-form α decomposes uniquely into components αp,q

of type (p, q), p + q = k. We then set

∂̄α =
∑

p,q

∂̄αp,q, ∂α =
∑

p,q

∂αp,q.

The following lemmas describe the essential properties of the operators ∂ and ∂̄.

Lemma 3.18. The operator ∂̄ satisfies Leibniz’ rule

∂̄(α ∧ β) = ∂̄α ∧ β + (−1)deg αα ∧ ∂̄β.

Similarly, the operator ∂ satisfies Leibniz’ rule

∂(α ∧ β) = ∂α ∧ β + (−1)deg αα ∧ ∂β.
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Proof. The second assertion follows from the first, since by definition of the operators ∂
and ∂̄, we have the relation ∂̄α = ∂̄ᾱ. As for the first relation, it suffices to prove it for α
of type (p, q) and β of type (p′, q′). We then obtain it immediately in this case, by taking
the component of type (p + p′, q + q′ + 1) of d(α ∧ β). �

Lemma 3.19. We have the following relations between the operators ∂ and ∂̄.

∂̄2 = 0, ∂2 = 0, ∂∂̄ + ∂̄∂ = 0.

Proof. This follows from the formulas d ◦ d = 0, d = ∂ + ∂̄. Indeed, these relations imply
that ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2 = d2 = 0. Now, if α is a form of type (p, q) then ∂2α is of type
(p+ 2, q), (∂∂̄+ ∂̄∂)α is of type (p+ 1, q+ 1) and ∂̄2α is of type (p, q+ 2). Thus, d2α = 0
implies that ∂2α = (∂∂̄ + ∂̄∂)α = ∂̄2α = 0. �

3.19.1. Local exactness. The Poincare lemma shows the local exactness of the oper-
ator d (see Bott and Tu [1]):

Lemma 3.20. Let α be a closed differential form of strictly positive degree on a differ-
entiable manifold. Then, locally, there exists a differential form β such that α = dβ. We
say that α is locally exact.

Now consider a complex manifold X. Let α = dβ be a form of type (p, q) which is
∂̄-exact. Then we have ∂̄α = 0 by lemma 3.19. The following proposition is a partial
converse which is the analogue of the Poincare lemma for the operator ∂̄.

Proposition 3.21. Let α be a differential form of type (p, q) with q > 0. If ∂̄α = 0, then
there locally exists on X a differential form β of type (p, q − 1) such that α = ∂̄β.

Proof. We first reduce to the case where p = 0 by the following argument. Locally, we
can write in holomorphic coordinates z1, . . . , zn

α =
∑

I,J

αI,JdzI ∧ dz̄J ,

where the sets of indices I are of cardinal p and the sets of indices J are of cardinal q.
Then

∂̄α =
∑

I,J

∂̄αI,J ∧ dzI ∧ dz̄J

by lemma 3.18. It follows that if ∂̄α = 0, for every I of cardinal p the form αI of type
(0, q) defined by

αI =
∑

J

dz̄J

is ∂̄-closed. If the proposition is proved for forms of type (0, q), then locally we have
αI = ∂̄βI , and

α = (−1)p∂̄

(

∑

I

dzI ∧ βI

)

.

It remains to show the proposition for forms of type (0, q). Such a form can be written
α =

∑

J αJdz̄J . We do the proof by induction on the largest integer k such that there



22 DANIEL MATEI SNSB 2008

exists J with k ∈ J and αJ 6= 0. Necessarily k ≥ q. If k = q, we have a = fdz̄1∧· · ·∧dz̄q.
The condition ∂̄α = 0 is then equivalent to the fact that the function f is holomorphic in
the variables zl, l > q. We then apply Cauchy’s theorem : note that its proof also gives
the following. �

Proposition 3.22. Let f(z1, . . . , zn) be a differential function which is holomorphic in
the variables zl, l > q. Then there locally exists a differential function g, holomorphic in
the variables zl, l > q, such that ∂g

∂z̄q
= f .

3.22.1. Dolbeault complex of a holomorphic bundle. Let E be a holomorphic vector
bundle of rank over a complex manifold X. Let E0,q(E) denote the space of C∞ sections

of the bundle Ω0,q
X ⊗C E. In a holomorphic trivialisation of E, φU : E|U = U × C

n, such
a section can be written (α1, . . . , αk), where the αi, are C∞ forms of type (0, q) on U .

We then set ∂̄Uα = (∂̄α1, . . . , ∂̄αk); it is a section of Ω0,q+1
U ⊗C E. We will show that this

local definition in fact gives a form ∂̄α ∈ E0,q+1(E).

Lemma 3.23. Let V be an open subset of X and φV : E|V = V × C
k a holomorphic

trivialisation of E over V . Then for α ∈ E0,q(E), we have

∂̄Uα |U∩V = ∂̄V α |U∩V .

Proof. Let MUV be the transition matrix, with holomorphic coefficients, which enables us
to pass from the trivialisation φU to the trivialisation φV . Then, by definition, if αU is a
section of E over U , αU = (α1,U , . . . , αk,U ) in the trivialisation φU , and αV is a section of
E over V , αV = (α1,V , . . . , αk,V )in the trivialisation φV , the sections αU and αV coincide
on U ∩ V if and only if

(α1,V , . . . , αk,V )T = MUV (α1,U , . . . , αk,U )T .

We can of course replace the functions αi by differential forms. The form α can be written
(α1,U , . . . , αk,U ) in the trivialisation φU and (α1,V , . . . , αk,V ) in the trivialisation φV , and
we have, as above,

(α1,V , . . . , αk,V )T = MUV (α1,U , . . . , αk,U )T .

To see

∂̄Uα |U∩V = ∂̄V α |U∩V .

by the above and the definition of ∂̄U , ∂̄V , it suffices to show that

(∂̄α1,V , . . . , ∂̄αk,V )T = MUV (∂̄α1,U , . . . , ∂̄αk,U)T .

But this follows immediately from the Leibniz formula lemma 3.18 and the fact that the
matrix MUV has holomorphic coefficients. �

Lemma 3.23 enables us to define an operator

∂̄E : E0,q(E) → E0,q+1(E)

by the condition ∂̄Eα |U= ∂̄Uα |U . Note that the meaning of this operator on the space
E0,0(E) of C∞ sections of E is the following.
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Lemma 3.24. The kernel

Ker
(

∂̄E : E0,0(E) → E0,1(E)
)

contains exactly the holomorphic sections of E.

Proof. This is clear, since the holomorphic sections are those which are given by n-tuples
of holomorphic functions in local holomorphic trivialisations. But by definition, ∂̄E acts
like the operator ∂̄ on these n-tuples, and we know that the functions annihilated by ∂̄
are exactly the holomorphic functions. �

Naturally, this operator satisfies the same local properties as the operator ∂̄ on the
forms.

Lemma 3.25. The operator ∂̄E satisfies Leibniz’ rule

∂̄E(α ∧ β) = ∂̄Eα ∧ β + (−1)qα ∧ ∂̄Eβ.

Here, α is a differential form of type (0, q), and β is a differential form of type (0, q′)
with coefficients in E, so that α∧ βis naturally a differential form of type (0, q + q′) with
coefficients in E.

Clearly, the operator ∂̄E also satisfies the property ∂̄2
E = 0. Finally, the local exactness

of ∂̄E follows from that of the operator ∂̄.

Proposition 3.26. Let α be a form of type (0, q) with coefficients in E, and q > 0. If
∂̄Eα = 0, then locally on X there exists a form β of type (0, q − 1) with coefficients in E
such that α = ∂̄Eβ.

Recall that a complex (of vector spaces for example) is a family of vector spaces Vi
together with morphisms di : Vi → Vi+1 satisfying di+1 ◦ di = 0. The standard example
is the de Rham complex of a differentiable manifold X, where Vi = E i(X) is the space of
differential forms of degree i, and di = d.

Definition 3.27. The complex

(

E0,∗(E), ∂̄E
)

=

(

· · · → E0,q−1(E)
∂̄E→ E0,q(E)

∂̄E→ E0,q+1(E) → . . .

)

is called the Dolbeault complex of E.

3.28. Examples of complex manifolds.

3.28.1. Riemann surfaces. Let us consider 2-dimensional differentiable manifolds. If
we restrict ourselves to the compact oriented case, these manifolds are classified by their
genus g: such a surface is diffeomorphic to the g-holed torus. Furthermore, we can always
put complex structures on such surfaces X. Indeed, we first note that the Newlander-
Nirenberg integrability condition is automatically satisfied by an almost complex structure
on X, by the fact that the rank of the complex vector bundle T 0,1X is equal to 1, and the
bracket of vector fields is alternating. Thus, every almost complex structure is induced by
a complex structure. Moreover, the existence of almost complex structures follows from
the existence of Riemannian metrics on X: An almost complex structure on an oriented
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surface X is equivalent to a conformal structure on X, i.e. to a Riemannian metric on
X defined up to multiplication by a positive function. Compact Riemann surfaces are
called curves in algebraic geometry. Indeed, they are 1-dimensional complex manifolds
(varieties).

3.28.2. Complex projective space. The complex projective space CP
n is the set of

complex lines of C
n+1, or equivalently, the quotient of C

n+1\0 by the equivalence relation
identifying collinear vectors on C. The topology is the quotient topology. The complex
structure is obtained as follows. For each i, consider the open subset Ũi of C

n+1 \ 0

consisting of the points z such that zi 6= 0. Let Ui be the image of Ũi in CP
n. Each point

z ∈ Ui admits a unique lifting z to Ũi which satisfies the condition zi = 1. Thus, Ui is
naturally homeomorphic to C

n, which provides the holomorphic charts for CP
n, which

is covered by the Ui. It remains simply to check that the change of chart morphisms
are holomorphic. But Ui ∩ Uj can obviously be identified with the classes of non-zero

vectors z ∈ C
n+l such that zi 6= 0 and zj 6= 0. Given such a vector, the image of the

representative of its class in the chart Ui = C
n is given by

(

z1
zi
, . . . , 1, . . . , zn+1

zi

)

, where

the 1 is in the ith place, while the image of the representative of its class in the chart

Uj = C
n is given by

(

z1
zj
, . . . , 1, . . . , zn+1

zj

)

, where the 1 is in the jth place. The transition

morphism is thus given, up to the order of the coordinates, by

(3.3) (ζ1, . . . , ζn) →

(

1

ζj
,
ζ1
ζj
, . . . ,

ζn
zj

)

on C
n \ {ζj = 0}. As (3.3) is clearly holomorphic, we have equipped CP

n with a complex
structure.

3.28.3. Complex tori. Let Γ be a lattice in C
n, i.e. a free additive subgroup generated

by a basis of C
n over R. The group Γ acts by translation on C

n, and the action is
proper and fixed-point-free. The quotient T = C

n/Γ is compact. In fact, there exists a
R-linear automorphism of C

n = R
2n sending Γ to Z

2n so that this quotient is naturally
homeomorphic to (R/Z)n = (S1)n. Clearly, T admits a natural differentiable structure
for which the quotient map is a local diffeomorphism. We then put an almost complex
structure onto T by taking the holomorphic charts to be the local inverses of the quotient
map. As these local inverses are defined up to translation by an element of Γ, the change
of chart morphisms are given by these translations, which are obviously holomorphic.
Thus, T is equipped with a holomorphic structure.
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