
Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Foundations of Verification with Proof Scores
in CafeOBJ

FUTATSUGI,K. GĂINĂ,D. OGATA,K.

Research Ceneter for Software Verification &
Graduate School of Information Science

JAIST

2 April 2012

1 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

I Theoretical principles of proof scores

I Explaining by simple but instructive examples

I Definitions of models and satisfaction relation

I Formalization in the specification calculus
(a set of proof rules for proof scores)

2 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

--> no automatic importation of built-in module BOOL
set include BOOL off
--> truth values of true and false
mod! TRUTH-VALUES{ [Bool]
op true : -> Bool {constr}
op false : -> Bool {constr}

}
--> trivial set of elements
mod* TRIV* {[Elt]}

3 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

--> parametrized list
mod! LIST (X :: TRIV*) {
pr(TRUTH-VALUES)
[Nil NnList < List]
op nil : -> Nil {constr}
op _|_ : Elt List -> NnList {constr}
-- equality on the sort List
op _=_ : List List -> Bool {comm}
eq (L:List = L) = true .
cq L1:List = L2:List if (L1 = L2) .

}

4 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

List = Nil ∪ NnList

Nil = { nil }
NnList = { e | l | e ∈ Elt, l ∈ List}

List = { nil, e00|nil, e10|e11|nil, . . . ,
en0|en1| . . . enn|nil, . . .
| eij ∈ Elt, i , j ∈ {0, 1, 2, . . .} }

5 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

eq (L:List = L) = true .

(∀L : List) (L = L) = true

It is assumed that for any sort *St* the equality is declared as
follows.

op _=_ : *St* *St* -> Bool {comm}
eq (E:*St* = E) = true .
cq E1:*St* = E2:*St* if (E1 = E2) .

It guarantees the logical equivalence of CafeOBJ language level
(i.e. meta level) equality and sort level (i.e. object level) equality.

6 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

--> append _@_ operation on List
mod! APPEND(X :: TRIV*){
pr(LIST(X))
-- append operation on List
op _@_ : List List -> List
eq nil @ L2:List = L2 .
eq (E:Elt | L1:List) @ L2:List = E | (L1 @ L2) .

}

7 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

--> associativity of _@_ (append)
mod! APPEND-ASSOC(X :: TRIV*){
pr(APPEND(X))
-- "_@_" is associative
op @assoc : List List List -> Bool
eq @assoc(L1:List,L2:List,L3:List)

= ((L1 @ L2) @ L3 = L1 @ (L2 @ L3)) .
}

8 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

Verification of associativity of append operation with respect to
the specification APPEND-ASSOC is formalized as “verifying that
any model of APPEND-ASSOC satisfies the following equation”.

((∀L1, L2, L3 : List)@assoc(L1, L2, L3) = true)

This is written as the following Semantic Assertion.

APPEND-ASSOC |= ((∀L1, L2, L3 : List) @assoc(L1, L2, L3) = true)

This can also be written as follows.

APPEND-ASSOC |= @assoc(L1:List,L2:List,L3:List) (SE-AA)

9 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

mod* @ASSOC(X :: TRIV){pr(APPEND-ASSOC(X))
-- arbitrary lists l1 l2 l3
ops l1 l2 l3 : -> List }
-- check whether "@assoc(l1,l2,l3)" is deducible
-- at "@ASSOC"
--> [0] the goal
red in @ASSOC : @assoc(l1,l2,l3) .
--> returns "(((l1 @ l2) @ l3) = (l1 @ (l2 @ l3)))"

10 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

A model M of the module LIST interprets the sort Elt as a set
MElt, the sort Nil as a set MNil, the sort NnList as a set
MNnList, the sort List as a set MList, the operator nil as an
operator Mnil : -> MNil, and the operator _|_ as an operator
M| : MElt MList -> MNnList. A model M of LIST is defined
to be reachable if MList is represented as follows.

MList = {Mnil, e00M|Mnil, e10M|e11M|Mnil, . . . ,
en0M|en1M|. . . ennM|Mnil, . . .

| eij ∈ MElt, i , j ∈ {0, 1, 2, . . .} }

That is, any element of MList can be constructed with MElt,
Mnil, and _M|_.

11 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

**> decide to use structural induction w.r.t.
**> the first argument l1 of "@assoc(l1,l2,l3)"
--> Induction base
mod* @ASSOC-iBase(X :: TRIV){pr(@ASSOC(X))}
-- check whether "@assoc(nil,l2,l3)" is deducible
-- at "@ASSOC-iBase"
--> [00] sub-goal 0 for the goal [0]
red in @ASSOC-iBase : @assoc(nil,l2:List,l3:List) .
--> returns "true"

12 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

--> Induction step
mod* @ASSOC-iStep(X :: TRIV){pr(@ASSOC(X))
-- induction hypothesis,
-- i.e. @assoc(l1,L2:List,L3:List) = true
eq (l1 @ L2:List) @ L3:List = l1 @ (L2 @ L3) .

-- arbitrary element e
op e : -> Elt }

-- check whether "@assoc(e | l1,l2,l3)" is deducible
-- at "@ASSOC-iStep"
--> [01] sub-goal 1 for the goal [0]
red in @ASSOC-iStep : @assoc(e | l1,l2,l3) .
--> returns "true"
--> QED

13 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

TRUTH-VALUES, TRIV*, LIST
Equation and equality predicate
APPEND, APPEND-ASSOC
Constructing proof scores
Proof score for induction
Proof rule for induction

@ASSOC |= @assoc(nil,l2,l3)

@ASSOC |=
(@assoc(l1,L2:List,L3:List)
⇒ @assoc(e | l1,l2,l3))

@ASSOC |= @assoc(l1,l2,l3)

14 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Focuses to constructor-based order-sorted equational specifications
on which our proof score method has been mainly developed. For
defining models and satisfaction relations the following concepts
are going to be defined.

I a class Sign of signatures,

I for each signature Σ ∈ Sign a class Mod(Σ) of Σ-models,

I for each signature Σ a set Sen(Σ) of Σ-sentences, and

I for each signature Σ a satisfaction relation |=Σ between
Σ-models and Σ-sentences.

A specification SP is practically a finite collection of sentences
(equations) E for the some signature Σ, and defined by a pair of
the signature and the collection of sentences. That is,
SP = (Σ, E).

15 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

I The denotation of a specification is a class of all the models
(i.e. possible implementations) of the specification.

I A specification is basic or structured.

I The loose denotation of a specification is the class
Mod(SP) of all models of Sig(SP) which satisfy all sentences
in SP.

I The tight denotation consists only of the initial model 0SP

in Mod(SP), i.e., for each other model M ∈ Mod(SP) of SP
there exists a unique model morphism 0SP → M.

I CafeOBJ supports the distinction between loose and tight
denotations by special keywords, mod! for tight semantics,
and mod* for loose semantics.

16 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Signatures are formed by a set of sorts and operators on the set
of sorts.

I A sort is a name for entities of the same type. Semantically, a
sort denotes the set of entities of that type (sort).

I CafeOBJ supports subtyping via the subsort construct which
specifies an inclusion between two sets.

I s < s’ means that the set of sort s is subset of or equal to the
set s ′. s1 s2 < s is an abbreviation of “s1 < s and s2 < s”

I the set of sorts S is understood as the partial ordered set
(POSET) (S ,≤)

I Given a poset (S ,≤), let ≡≤ denote the equivalence relation
generated by the partial order ≤. The quotient of S under the
equivalence relation ≡≤ is denoted by Ŝ = S/≡≤, and an
element of Ŝ is called a connected component of (S ,≤).

17 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

I An operator (or function) f on a set of sorts S is denoted as
f : w → s where w ∈ S∗ is its arity and s ∈ S is its sort
(sometimes called co-arity) of the operator.

I The string ws is called the rank of the operator. Constants
are operations whose arity is empty, i.e., f : [] → s.

I Let Fws denotes the set of all operations of rank ws, then the
whole collection of operators F can be represented as the
family of sets of operators sorted by (or indexed by) ranks as
F = {Fws}w∈S∗,s∈S . Notice that f : w → s iff f ∈ Fws .

I Operators can be overloaded, that is, ∃f ∈ Fws ∪ Fw ′s′ for
different ws and w ′s ′.

I CafeOBJ has a built-in module BOOL with the sort Bool, and
an operator with co-arity of Bool is called predicate.

18 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

I An order-sorted signature is defined by a tuple (S ,≤,F).
For making construction of symbolic presentations of models
(i.e. term algebras) of a signature possible, the following
condition of sensibility is a most general sufficient condition
for avoiding ambiguity found until now.

I An order-sorted signature (S ,≤, F) is defined to be
sensible iff

(w ≡≤ w ′ ⇒ s ≡≤ s ′) for any f ∈ Fws ∩ Fw ′s′ .
Where w ≡≤ w ′ means that (1) w and w ′ are of the same
length and (2) any element of w is in the same connected
component with corresponding element of w ′. Notice that
[] ≡≤ [] for the empty arity [].

19 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Example

In CafeOBJ notation,
{ [Bool Nat]

op 0 : -> Bool

op 0 : -> Nat }
defines a non-sensible signature, and 0 can not be identified with
any entity of any sort.

While,
{ [Zero < Nat EvenInt]

op 2 : -> Nat

op 2 : -> EvenInt }
defines a sensible signature and 2 is identified with an entity which
belongs to Nat and EvenInt, but it has no minimal parse.

20 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

I A constructor-based order-sorted signature is a
order-sorted signature with constructor declarations and is
represented by a tuple (S ,≤, F , F c).

I (S ,≤,F) is an order-sorted signature, and F c ⊆ F is
distinguished subfamily of sets of operators, called
constructors.

I F c = {F c
ws}w∈S∗,s∈S and F c

ws ⊆ Fws .

I (S ,≤,F c) is an order-sorted signature and is sensible.

21 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

I A sort s ∈ S is constrained if

1. there exists a operator f ∈ F c
ws with the result sort s, or

2. there exists a constrained sort s ′ such that s ′ ≤ s.

I Sc : the set of constrained sorts
S l def

= S − Sc : the set of loose sorts

22 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Example

The module LIST determines the constructor-based order-sorted
signature Sig(LIST) = (S,≤, F, Fc) as follows.

S = {Bool, Elt, Nil, NnList, List}
< = {(Nil List), (NnList List)}
F = {Fws}w∈S∗,s∈S

where FBool = {true, false}, FNil = {nil},
FElt List NnList = { | }, FList List Bool = { = },
Fws = {} otherwise.

Fc = {Fc
ws}w∈S∗,s∈S

where Fc
Nil = {nil}, Fc

Elt List NnList = { | },
Fc

ws = {} otherwise.
Sc = {Bool, Nil, NnList, List}. Sl = {Elt}.

23 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Order-sorted algebra

A (S ,≤,F)-algebra (or an order-sorted algebra of signature
(S ,≤, F)) M interprets

I each sort s ∈ S as a set Ms ,
I each subsort relation s < s ′ as an inclusion Ms ⊆ Ms′ , and
I each operator f ∈ Fs1...sns as an operator

Mf : Ms1 × · · · × Msn → Ms

such that any two operators of the same name return the
same value if applied to the same argument,
i.e. if f : w → s and f : w ′ → s ′ and ws ≡≤ w ′s ′ and
a ∈ Mw ∩ Mw ′ then Mf :w→s(a) = Mf :w ′→s′(a).

24 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Order-sorted algebra

A (S ,≤,F)-algebra M consists of:

I Order-sorted family of carrier sets {Ms}s∈S satisfying (s ≤ s ′

⇒ Ms ⊆ Ms′), and

I Set of operators

{Mf : Ms1 × · · · ×Msn→Ms | f ∈ Fs1...sns ,F = {Fws}w∈S∗,s∈S}

such that any two operators of the same name return the
same value if applied to the same argument.

25 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

(S ,≤, F)-algebra-morphism

An (S ,≤, F)-algebra-morphism (or model-morphism) h : M → N
is an S-sorted family of functions between the carriers of M and N,
{hs : Ms → Ns}s∈S , such that

I hs(Mf (a1, . . . , an)) = Nf (hs1(a1), . . . , hsn(an)) for all
f ∈ Fs1...sns , and ai ∈ Msi for i ∈ {1, . . . , n}, and

I if s ≡≤ s ′ and a ∈ Ms ∩ Ms′ then hs(a) = hs′(a).

26 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Terms and term algebras

Let Σ = (S ,≤, F) be an order-sorted signature, and X = {Xs}s∈S

be an S-sorted set of variables. Σ(X)-term is defined recursively
as follows. Notice that sensibility makes the definition consistent.

I each constant f ∈ Fs is a Σ(X)-term of sort s,

I each variable x ∈ Xs is a Σ(X)-term of sort s,

I t is a term of sort s ′ if t is a term of sort s and s < s ′, and

I f (t1, . . . , tn) is a term of sort s for each operation f ∈ Fs1...sns

and terms ti of sort si for i ∈ {1, 2, . . . , n}.

27 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Terms and term algebras

I TΣ(X)
def
= {TΣ(X)s |s ∈ S}

I Σ({})-term is called Σ-term (or ground-term).

I TΣ
def
= TΣ({})

The S-sorted set of Σ-ground-terms.

I The TΣ(X) or TΣ can be organized as a Σ-algebra in the
obvious way by using the above inductive definition of
Σ-terms.

I CafeOBJ is a language for modeling systems in Σ-algebras.

FT TΣ has the following initiality property:
Let Σ be an (S ,≤, F)-signature. For any Σ-algebras M there
exists a unique Σ-algebra-morphism TΣ → M.

28 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

(S ,≤, F , F c)-algebras

An (S ,≤, F , F c)-algebra (or a constructor-based order-sorted
algebra of signature (S ,≤, F , F c)) M is an (S ,≤, F)-algebra with
the carrier sets for the constrained sorts consisting of
interpretations of terms formed with constructors and elements of
loose sorts. That is, the following holds for Σc = (S ,≤, F c).

I There exists an S l -sorted sets of loose variables Y (=
{Ys}s∈S l), and an S l -sorted function f : Y → M (=
{fs : Ys → Ms}s∈S l) such that for every constrained sort

s ∈ Sc the function f #
s : (TΣc (Y))s → Ms is a surjection,

where f # is the unique extension of f to an
Σc -algebra-morphism.

29 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Sentences of equational specifications are equations.

I Given a signature Σ, an equational atom is t = t ′, where
t, t ′ ∈ TΣ(X) for some sorted set of variables X .

I A conditional Σ-equation is

(∀X) t = t ′ if C

where C is a set of equational atoms and is the condition of
the equation.

I When the condition is empty it is called unconditional
equation, and is written as

(∀X) t = t ′.

30 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Valuations and term interpretation

I Valuations assign values to variables, in other words they
represent instantiations of the variables with values from a
given model. Let Σ be (S ,≤, F)-signature. Given Σ-model M
and an S-sorted set X of variables, a valuation θ : X → M
consists of an S-sorted family of maps {θs : Xs → Ms}s∈S .

I Each Σ(X)-term t can be interpreted as a value θ(t) in the
model M for each valuation θ : X → M in the following
inductive manner:

- Mf if t is a constant f ,
- θ(x) if t is a variable x ,
- Mf (θ(t1), . . . , θ(tn)) if t is of the form f (t1, . . . , tn) for some

f ∈ Fs1...sns and terms ti of sort si .

31 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Equation satisfaction

I Let Σ be a signature. A Σ-equation ((∀X) t = t ′ if C) is
satisfied by a Σ-algebra M, denoted as

M |=Σ ((∀X) t = t ′ if C)

iff θ(t) = θ(t ′) whenever θ(C) for all valuations θ : X → M.
Where θ(C) means (∀ tc = t ′c ∈ C) θ(tc) = θ(t ′c). Notice that
θ({}) holds for any valuation θ.

I An equation is satisfied by an algebra iff all possible ways to
assign values to variables evaluate both sides of the equation
as the same value, with proviso that the condition C is
satisfied.

32 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Mod(SP), SP |= e, SP |= E

A basic equational specification SP is defined to be a pair of
signature Σ and a set of Σ-equations E , and denoted as SP =
(Σ,E).

I A Σ-algebra M is a model of a specification SP = (Σ, E) iff
((∀ e ∈ E) M |=Σ e).

I Mod(SP) is the set of all models that satisfy SP.

I An Σ-equation e is defined to be satisfied by a specification
SP, denoted as SP |= e, iff ((∀M ∈ Mod(SP)) M |= e).

I A set of Σ-equations E is defined to be satisfied by a
specification SP, denoted as SP |= E , iff ((∀ e ∈ E) SP |= e).

33 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

A congruence ≡ on an (S ,≤, F)-algebra M is an S-sorted
equivalence on M (i.e., an equivalence ≡s on Ms for each sort
s ∈ S) such that

I if ai ≡si a′i for i ∈ {1, . . . , n} then
Mf (a1, . . . , an) ≡s Mf (a

′
1, . . . , a

′
n) for all f ∈ Fs1...sns and for

all ranks s1 . . . sns.

34 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Given a set E of equations for order-sorted signature of
Σ = (S ,≤, F), then we construct the algebra TΣ,E as follows

I for each s ∈ S let (TΣ,E)s be the set of equivalence classes of
Σ-terms in TΣ under the congruence ≡E defined as t ≡E t ′ iff
(Σ,E) |= (∀{}) t = t ′.

I each operation f ∈ Fs1...sns is interpreted as
(TΣ,E)f (t1/≡E , . . . , tn/≡E) = f (t1, . . . , tn)/≡E for all
ti ∈ (TΣ)si (i ∈ {1, . . . , n}) by using the property of ≡E as
congruence on TΣ.

35 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

The initial algebra of order-sorted algebras

TΣ,E has the following initiality property, and is the model giving
the tight denotation of the equational specification (Σ, E).

FT Let (Σ, E) be an equational specification of order-sorted
signature Σ which does not contain constructor declarations.
For any Σ-algebra M satisfying all equations in E , there exists
a unique Σ-algebra-morphism TΣ,E → M.

36 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

Sufficiently completeness

Let SP be a constructor-based order-sorted specification with the
signature (S ,≤,F ,F c), and

Sc be the set of constrained sorts, and
S l be the set of loose sorts, and

F Sc def
= {f : w → s | f ∈ F , s ∈ Sc}, and

ΣSc def
= (S ,≤, F Sc

), and

Σc def
= (S ,≤,F c), and

Y be any S l sorted set of variables.
A specification SP is defined to be sufficiently complete if for

any term t ∈ TΣSc (Y) there exits a term t ′ ∈ TΣc (Y) such that
SP |= (∀Y) t = t ′.

37 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

The initial algebra of constractor-based order-sorted algebras

Sufficiently completeness is a sufficient condition for the existence
of the initial algebra of constructor-based order-sorted algebras.

FT Let SP = (Σ, E) be a constructor-based order-sorted
specification with the signature Σ = (S ,≤, F , F c). If the
specification SP is sufficiently complete, for any Σ-algebra M
satisfying all equations in E , there exists a unique
Σ-algebra-morphism TΣ,E → M.

38 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

We consider the following four specification building operations of
BS, SU, PR, IN for constructing a new specification from old
ones.

(BS) A specification SP is built by giving its signature and set of

equations. That is, SP = (Σ, E) and Sig(SP)
def
= Σ,

Mod(SP)
def
= Mod(Σ, E).

(SU) A new specification SP1 ∪ SP2 is built by making sum of two
specifications SP1 and SP2 with the same signature Σ. That
is,

Sig(SP1 ∪ SP2)
def
= Sig(SP1) = Sig(SP2) = Σ,

Mod(SP1 ∪ SP2)
def
= Mod(SP1) ∩ Mod(SP2).

39 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Signatures
Order-sorted signature
Constructors-based order-sorted signature
Models
Sentences: equations
Satisfaction
Initial algebras
Specification building operations

(PR) A new specification PR(SP, Σ′) is built by protecting a
specification SP and add a new part of signature Σ′. That is,

Sig(PR(SP, Σ′)
def
= Sig(SP) ∪ Σ′,

Mod(PR(SP, Σ′))
def
=

{M ∈ Mod((Sig(SP) ∪ Σ′, {})) | M¹Σ ∈ Mod(SP)},
where M¹Sig(SP) is Sig(SP) part of the model M.

(IN) A new specification SP ! is built by declaring the tight
denotation. That is,

Sig(SP !)
def
= Sig(SP), and

Mod(SP !)
def
={

{0SP} if the initial algebra of Mod(SP) exists
{} otherwise.

40 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

CafeOBJ reduction

Equation calculus is a syntactic definition of equational deduction with
respect to a fixed SP. The equational calculus for an equational
specification ((S ,≤,F), E) is defined by the following rules. Notice that
this calculus is for deducing an unconditional equation.

[reflexivity]
(∀X) t = t

[symmetry]
(∀X) t = t ′

(∀X) t ′ = t

[transitivity]
(∀X) t = t ′ (∀X) t ′ = t ′′

(∀X) t = t ′′

[congruence]
(∀X) ti = t ′i for all i ∈ {1, . . . , n}
(∀X) f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

for all operations f ∈ Fs1...sns , and ti of sort si for all i ∈ {1, . . . , n}.

[instantiation]
(∀X) θ(ti) = θ(t ′i) for all ti=t ′i ∈ C

(∀X) θ(t) = θ(t ′)

for any conditional equation ((∀Y) t = t ′ if C) in E and any valuation
θ : Y → TΣ(X).

41 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

CafeOBJ reduction

Let SP ⊢eq e denote that a unconditional equation e (=
(∀X) t = t ′) is deducible by the equation calculus with respect to
SP. SP ⊢eq e is called an equation entailment.

FT With respect to an order sorted equational specification SP,
the equation calculus is sound in the sense that
((SP ⊢eq e) implies SP |= e) holds.
If the specification SP does not contain constructor
declarations (i.e. SP = ((S ,≤, F , {}), E)), the equation
calculus is complete with respect to the denotational
semantics in the sense that (SP |= e implies SP ⊢eq e)
holds.

42 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

CafeOBJ reduction

I The reduction command “red in SP : t .” (for a ground
term t) of CafeOBJ applies all the equations of SP as
rewriting rules from left to right as much as possible and gets
a normal form of t.

I For interpreting equations as rewriting rules, the following
syntactic condition is used in CafeOBJ.

var(t ′) ⊆ var(t) and var(C) ⊆ var(t)

where var(t) is the set of variables occurring in the term t
and var(C) is the set of variables occurring in a term that
constitutes some equation in C .

43 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

CafeOBJ reduction

I Let SP ⊢eq t <->rd t ′ denote that the CafeOBJ reduction
command “red in SP : t = t ′ .” returns true. Because of the
honesty of CafeOBJ reduction to the equation calculus, the
following holds.

[cafeRed]
SP ⊢eq t <->rd t ′

SP ⊢eq (∀{}) t = t ′

This rule is the base for constructions of proof trees for the
verifications with proof scores.

44 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

-- using built-in BOOL
set include BOOL on
--> a set of elements with a void element
mod* TRIVvo {[Elt] op vo : -> Elt}
--> parametrized list
mod! LISTvo (X :: TRIVvo){
[Nil NnList < List]
op nil : -> Nil {constr}
op _|_ : Elt List -> NnList {constr} }

45 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

--> append _@_ operation on lists with a void element
mod! APPENDvo(X :: TRIVvo){
pr(LISTvo(X))
-- append operation on List with a void element
op _@_ : List List -> List .
eq [@1]: nil @ L2:List = L2 .
eq [@2]: (E:Elt.X | L1:List) @ L2:List

= if (E = vo) then (L1 @ L2)
else E | (L1 @ L2) fi . }

--> associative predicate about _@_
mod! APPENDvo-ASSOC(X :: TRIVvo){
pr(APPENDvo(X))
-- "_@_" is associative
pred @assoc : List List List .
eq @assoc(L1:List,L2:List,L3:List)

= ((L1 @ L2) @ L3 = L1 @ (L2 @ L3)) . }

46 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

mod* @ASSOCvo(X :: TRIVvo){pr(APPENDvo-ASSOC(X))
-- for arbitrary lists l1 l2 l3
ops l1 l2 l3 : -> List }
--> [0] the goal
-- check whether "@assoc(l1,l2,l3)" is deducible
-- at "@ASSOC"
red in @ASSOCvo : @assoc(l1,l2,l3) .
--> does not return "true"

47 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

**> decide to use induction w.r.t.
**> the first argument l1 of "@assoc(l1,l2,l3)"
--> Induction base
mod* @ASSOCvo-iBase(X :: TRIVvo){pr(@ASSOCvo(X))}
--> [00] sub-goal 0 for the goal [0]
-- check whether "@assoc(nil,l2,l3)" is deducible
-- at "@ASSOC-iBase"
red in @ASSOCvo-iBase : @assoc(nil,l2:List,l3:List) .
--> returns "true"

48 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

--> Induction step
mod* @ASSOCvo-iStep(X :: TRIVvo){pr(@ASSOCvo(X))
-- induction hypothesis,
-- i.e. @assoc(l1,L2:List,L3:List) = true
eq (l1 @ L2:List) @ L3:List = l1 @ (L2 @ L3) .

-- for arbitrary element e
op e : -> Elt.X . }

--> [01] sub-goal 1 for the goal [0]
-- check whether "@assoc(e | l1,l2,l3)" is deducible
-- at "@ASSOC-iStep"
red in @ASSOCvo-iStep : @assoc(e | l1,l2,l3) .
--> does not return "true"

49 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

**> decide to do case splitting
**> using the predicate (e = vo)
--> case of ((e = vo) = true) i.e. (e = vo)
mod* @ASSOCvo-iStep-c0(X :: TRIVvo)

{pr(@ASSOCvo-iStep(X))
eq e = vo .}
--> [010] sub-goal 0 for sub-goal [01]
-- check whether "@assoc(e | l1,l2,l3)" is deducible
-- at @ASSOC-iStep-c0
red in @ASSOCvo-iStep-c0 : @assoc(e | l1,l2,l3) .
--> returns "true"

50 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

--> case of ((e = vo) = false)
mod* @ASSOCvo-iStep-c1(X :: TRIVvo)

{pr(@ASSOCvo-iStep(X))
eq (e = vo) = false .}
--> [011] sub-goal 1 for sub-goal [01]
-- check whether "@assoc(e | l1,l2,l3)" is deducible
-- at @ASSOC-iStep-c1
red in @ASSOCvo-iStep-c1 : @assoc(e | l1,l2,l3) .
--> returns "true"
--> QED

51 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

@ASSOCvo-iStep-c0 |=
@assoc(e | l1,l2,l3)

@ASSOCvo-iStep-c1 |=
@assoc(e | l1,l2,l3)

@ASSOCvo-iStep |= @assoc(e | l1,l2,l3)

52 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Modified specification: TRIVvo, LISTvo
Modified specification: APPENDvo, APPEND-ASSOCvo
Modified proof scores
Proof scores for case splitting
Proof rule for case splitting

Overall Proof Tree

@ASSOC ⊢eq

@assoc(nil,l2,l3)
<->rd true

@ASSOC |=
@assoc(nil,l2,l3)

@ASSOCvo-iStep-c0 ⊢eq

@assoc(e | l1,l2,l3)
<->rd true

@ASSOCvo-iStep-c0 |=
@assoc(e | l1,l2,l3)

@ASSOCvo-iStep-c1 ⊢eq

@assoc(e | l1,l2,l3)
<->rd true

@ASSOCvo-iStep-c1 |=
@assoc(e | l1,l2,l3)

@ASSOCvo-iStep |= @assoc(e | l1,l2,l3)

@ASSOC |= @assoc(l1,l2,l3)

53 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[initMod]
0SP |=Sig(SP) e

SP ! ⊢sp e

[cafeRed]
SP ⊢eq t <->rd t ′

SP ⊢eq (∀{}) t = t ′

[eqToSp]
SP ⊢eq e

SP ⊢sp e

54 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[axiom]
(Σ, E ∪ {e}) ⊢sp e [protect]

SP ⊢sp e

PR(SP,Σ′) ⊢sp e

[lemma]
SP ⊢sp {e1, . . . , en} SP ∪ (Sig(SP), {e1, . . . , en}) ⊢sp e

SP ⊢sp e

Here SP ⊢sp {e1, . . . , en}
def
= {SP ⊢sp ei | ei ∈ {e1, . . . , en}}.

[sum]
SP1 ⊢sp e

SP1 ∪ SP2 ⊢sp e
[union]

SP ⊢sp E1 SP ⊢sp E2

SP ⊢sp E1 ∪ E2

Here E1 and E2 is sets of equations; a equation e can be
understood as a singleton set of the equation {e}.

55 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[thConst1]
SP ⊢sp (∀Y) ε

PR(SP, Y) ⊢sp (∀{}) ε

[thConst2]
PR(SP, Y) ⊢sp (∀{}) ε

SP ⊢sp (∀Y) ε

56 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[condEq1]
(Σ, E) ⊢sp (∀{}) t = t ′ if {t1 = t ′1, . . . , tn = t ′n}

(Σ, E ∪ {(∀{}) t1 = t ′1, . . . , (∀{}) tn = t ′n}) ⊢sp (∀{}) t = t ′

[condEq2]
(Σ, E ∪ {(∀{}) t1 = t ′1, . . . , (∀{}) tn = t ′n}) ⊢sp (∀{}) t = t ′

(Σ, E) ⊢sp (∀{}) t = t ′ if {t1 = t ′1, . . . , tn = t ′n}

57 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[imp1]
SP ⊢sp (∀{}) t = t ′ if {t1 = t ′1, . . . , tn = t ′n}

SP ⊢sp (∀{}) ((t1 = t ′1 and, . . . , and tn = t ′n) implies t = t ′) = true

[imp2]
SP ⊢sp (∀{}) ((t1 = t ′1 and, . . . , and tn = t ′n) implies t = t ′) = true

SP ⊢sp (∀{}) t = t ′ if {t1 = t ′1, . . . , tn = t ′n}

58 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[conAbst]
{SP ⊢sp (∀Y) θ(ε) | θ : X → TΣc (Y),Y : finite}

SP ⊢sp (∀X) ε

[conInd]

SP ′ def
= PR(SP, {{x}s}) ∪ {(∀{}) ε}

{SP ′ ⊢sp (∀Z f) ε[x ← f (z1, .., zi−1, x , zi+1, .., zn)] | f ∈ F c
∗s}

SP ⊢sp (∀{{x}s}) ε

59 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

[caseSplit]
{PR(SP, Y) ∪ {u= t} ⊢sp e | t ∈ TΣc (Y)sc , Y :finite}

SP ⊢sp e

[caseSplitBool]
SP ∪ {u=true} ⊢sp e SP ∪ {u=false} ⊢sp e

SP ⊢sp e

60 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

Nodes, trees, roots, and sub-trees are defined as follows.

(T1) An entailment “SP ⊢sp e”, “SP ⊢eq e”, or
“SP ⊢eq t <->rd t ′” is a node which is called sp-node,
eq-node, or rd-node respectively. A node n is a tree, and n is
called the root of the tree.

(T2) If n is a node and t1, . . . , ti for i ∈ {0, 1, . . .} are trees,
({t1, . . . , ti}, n) is a tree. n is called the root of the tree, and
t1, . . . , ti are called sub-trees of the tree or the node n.
Sub-tree is transitive relation and if ta is a sub-tree of tb and
tb is sub-tree of tc then ta is a sub-tree of tc . If i = 0 then
({}, n) is a tree with empty sub-trees. Whereas, a node is a
tree with no sub-trees.

61 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

Based on the proof rules in the specification calculus, p-trees
(proof trees) are defined as follows.

(T3) A tree with empty sub-trees, an eq-node, or a rd-node is a
p-tree. Let ({t1, . . . , ti}, n) be a tree, and n1, . . . , ni be the
roots of the sub-trees t1, . . . , ti respectively. The tree
({t1, . . . , ti}, n) is a p-tree if (1) t1, . . . , ti are p-trees, and (2)
n1,...,ni

n is an instance of one of the proof rules of the
specification calculus.

(T4) A sub-tree of a tree is a leaf if (1) it is a node, or (2) it is a
tree with empty sub-trees. A p-tree is also defined to be a
tree such that any of whose leafs is (1) a tree with empty
sub-trees, (2) an eq-node, or (3) a rd-node.

62 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

I A node leaf is a leaf that is a node. A set of node leafs of a
p-tree is called a proof score of the p-tree if any eq-node in
the set is of the form SP ⊢eq (∀{}) t = t ′. Notice that the
validity of this kind of equation entailment can be checked by
CafeOBJ system to execute the reduction command of “red
in SP : t = t ′ .”.

I If any leaf of a p-tree is either a tree with empty sub-trees or a
rd-node, the p-tree is called effective. An effective proof
score is a proof score of an effective p-tree. Notice that an
effective proof score consists only of rd-nodes (i.e. entailments
of the form “SP ⊢eq t <->rd t ′”) whoes validity are proved by
executing CafeOBJ reduction commands.

63 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

I Given a predicate p about a specification SP , if we can
construct an effective p-tree whose root is the entailment
SP ⊢sp (p = true) then the satisfaction assertion
SP |= (p = true) is proved to hold.

64 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

@ASSOC ⊢eq

@assoc(nil,l2,l3)
<->rd true

@ASSOC ⊢sp

@assoc(nil,l2,l3)

@ASSOCvo-iStep-c0 ⊢eq

@assoc(e | l1,l2,l3)
<->rd true

@ASSOCvo-iStep-c0 ⊢sp

@assoc(e | l1,l2,l3)

@ASSOCvo-iStep-c1 ⊢eq

@assoc(e | l1,l2,l3)
<->rd true

@ASSOCvo-iStep-c1 ⊢sp

@assoc(e | l1,l2,l3)

@ASSOCvo-iStep |= @assoc(e | l1,l2,l3)

@ASSOC ⊢sp @assoc(l1,l2,l3)

65 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Bridges
Axiom, protect, lemma, sum, union
Theorem of constants
Conditional equation and implication
Constructor abstraction and induction
Case Splitting
Proof trees and proof scores
Quasi-completeness theorem

Let SP ⊢ e denote that a p-tree with the root of SP ⊢sp e can be
constructed.

PR [soundness] SP ⊢ E implies SP |= E .

We need sufficiently completeness for describing the converse
implication precisely.

TH [quasi-completeness] SP |= E implies SP ⊢ E if

- SP is formed by applying the three specification building
operators of BS, SU and PR,

- SP is sufficiently complete.

66 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Characteristics of the proof score method
Future issues

I CafeOBJ is a language for systems specification based on
algebraic abstract types, and has a high potential to describe
specifications in an appropriate abstraction level.

I Automated parts of verification are done solely by rewriting
(or reduction) of CafeOBJ language system which is honest to
equational deduction. And the interactive parts are formally
modeled as the specification calculus. This two layered
structure can provide simple, transparent, but powerful
architecture for interactive verification.

I Semantics of verifications are defined based on models which
satisfy specifications. The specification calculus is based on
this semantics and formalize the verification procedures at the
level of goals expressed as satisfaction assertions SP |= e.

67 / 68

Overview
Motivating Example: Assoc of LIST append

Models and Satisfaction
Equation Calculus

The Motivating Example Again
Specification Calculus

Conclusions

Characteristics of the proof score method
Future issues

I To develop the theory or method to guarantee that every
specification appearing during the specification calculus is
terminating, confluent, and/or sufficiently complete as a
TRS.

I Constructions of p-trees and proof scores themselves can
be specified and analysed, and/or verified in CafeOBJ/Maude
based on the specification calculus. It can lead to
semi-automatic construction of p-trees and proof scores, and
is a challenging research topic in the future.

68 / 68

