Multiple Parameterised Specifications with Sharing

Ionuț Țuțu
Department of Computer Science, University of Leicester
"Simion Stoilow" Institute of Mathematics of the Romanian Academy

Sinaia, 2012

Foundations of parameterised specifications

From specifications to signatures

Sig: Specifications \rightarrow Signatures

- parameterised specifications and their instantiation depend heavily on the properties of both signatures and Sig

The signatures

Example (Many-sorted algebra (MSA)) signatures: (S, F)

- S is a set of sorts,
- F is a family $\left\{F_{w \rightarrow s} \mid w \in S^{*}, s \in S\right\}$ of operation symbols
morphisms: $\varphi:(S, F) \rightarrow\left(S^{\prime}, F^{\prime}\right)$
- $\varphi^{\text {st }}: S \rightarrow S^{\prime}$ is a function
- $\varphi^{o p}=\left\{\varphi_{w \rightarrow s}^{o p}: F_{w \rightarrow s} \rightarrow F_{\varphi^{s t}(w) \rightarrow \varphi^{s t}(s)}^{\prime}\right\}$ is a family of functions

Example (Order-sorted algebra (OSA))

Example (Partial algebra (PA))

The signatures

Example (Many-sorted algebra (MSA))

Example (Order-sorted algebra (OSA)) signatures: (S, \leq, F)

- (S, F) is a MSA signature such that $s_{1} \leq s_{2}$ whenever $w_{1} \leq w_{2}$ and $F_{w_{1} \rightarrow s_{1}} \cap F_{w_{2} \rightarrow s_{2}} \neq \emptyset$
- $(S \leq)$ is a partially ordered set
morphisms: $\varphi:(S, \leq, F) \rightarrow\left(S^{\prime}, \leq^{\prime}, F^{\prime}\right)$
- $\varphi:(S, F) \rightarrow\left(S^{\prime}, F^{\prime}\right)$ is a MSA signature morphism
- $\varphi^{\text {st }}:(S, \leq) \rightarrow\left(S^{\prime}, \leq^{\prime}\right)$ is a monotone function

Example (Partial algebra (PA))

The signatures

Example (Many-sorted algebra (MSA))

Example (Order-sorted algebra (OSA))

Example (Partial algebra (PA))

signatures: $(S, F, T F)$

- (S, F) is a MSA signature
- $T F=\left\{T F_{w \rightarrow s} \subseteq F_{w \rightarrow s}\right\}$ is a family of total operation symbols
morphisms: $\varphi:(S, F, T F) \rightarrow\left(S^{\prime}, F^{\prime}, T F^{\prime}\right)$
- $\varphi:(S, F) \rightarrow\left(S^{\prime}, F^{\prime}\right)$ is a MSA signature morphism
- $\varphi_{w \rightarrow s}^{o p}\left(T F_{w \rightarrow s}\right) \subseteq T F_{\varphi^{s t}(w) \rightarrow \varphi^{s t}(s)}^{\prime}$

Definition (Parameterised specification)

A parameterised specification, denoted $S P(P)$, consists in a specification morphism $\iota: P \rightarrow S P$ such that $\operatorname{Sig}(\iota)$ is the inclusion $\operatorname{Sig}(P) \subseteq \operatorname{Sig}(S P)$.
an inclusion of signatures $\operatorname{Sig}(P) \subseteq \operatorname{Sig}(S P)$ such that for each model M of $S P$, the reduct $M\lceil\operatorname{sig}(P)$ is a model of P

Example (ELT $\xrightarrow{\iota}$ LIST)

Single parameterised specifications

Definition (Inclusion)

An inclusion of (algebraic) signatures is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)
$(S, F) \subseteq\left(S^{\prime}, F^{\prime}\right):$

- $S \subseteq S^{\prime}$
- $F_{w \rightarrow s} \subseteq F_{w \rightarrow s}^{\prime}$

Example (Inclusions of OSA signatures)

Example (Inclusions of PA signatures)

Single parameterised specifications

Definition (Inclusion)

An inclusion of (algebraic) signatures is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)

Example (Inclusions of OSA signatures)

$$
\begin{array}{ll}
(S, \leq, F) \subseteq\left(S^{\prime}, \leq^{\prime}, F^{\prime}\right): & \bullet(S, F) \subseteq\left(S^{\prime}, F^{\prime}\right) \\
& \bullet(S, \leq) \subseteq\left(S^{\prime}, \leq^{\prime}\right)
\end{array}
$$

Example (Inclusions of PA signatures)

Single parameterised specifications

Definition (Inclusion)

An inclusion of (algebraic) signatures is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)

Example (Inclusions of OSA signatures)

Example (Inclusions of PA signatures)

$$
\begin{aligned}
(S, F, T F) \subseteq\left(S^{\prime}, F^{\prime}, T F^{\prime}\right): \quad & \bullet(S, F) \subseteq\left(S^{\prime}, F^{\prime}\right) \\
& \bullet T F_{w \rightarrow s} \subseteq T F_{w \rightarrow s}^{\prime}
\end{aligned}
$$

Definition (Instantiation of parameters)

- consider a parameterised specification $S P(P)$ and
- a specification morphism $v: P \rightarrow P^{\prime}$ that preserves P^{\prime}

The instantiation of the parameterised specification $S P(P)$ by v is

$$
S P(P \Leftarrow v)=S P \star v^{\prime} \cup P^{\prime} \star i
$$

given by the pushout of signatures depicted below.

$$
\begin{aligned}
& \operatorname{Sig}(P) \cup\left(\operatorname{Sig}(S P) \cap \operatorname{Sig}\left(P^{\prime}\right)\right) \xrightarrow{\subseteq} \operatorname{Sig}(S P) \\
& v \vee \operatorname{vid} \downarrow \\
& \operatorname{Sig}\left(P^{\prime}\right) \xrightarrow[i]{ } \mid v^{\prime} \\
& v^{\prime}
\end{aligned}
$$

Single parameterised specifications

Definition

Unions are least upper bounds in the category of inclusions. Dually, intersections are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

$$
\begin{aligned}
& \left(S_{1}, F_{1}\right) \cup\left(S_{2}, F_{2}\right)=(S, F) \quad \bullet S=S_{1} \cup S_{2} \\
& \text { - } F_{w \rightarrow s}=\bigcup_{\substack{i \in\{1,2\} \\
w \in S_{i}^{*}, s \in S_{i}}}\left(F_{i}\right)_{w \rightarrow s} \\
& \text { - } S=S_{1} \cap S_{2} \\
& \text { - } F_{w \rightarrow s}=\left(F_{1}\right)_{w \rightarrow s} \cap\left(F_{2}\right)_{w \rightarrow s} \\
& \left(S_{1}, F_{1}\right) \cap\left(S_{2}, F_{2}\right)=(S, F) \\
& \text { - } S=S_{1} \cap S_{2} \\
& \text { - } F_{w \rightarrow s}=\left(F_{1}\right)_{w \rightarrow s} \cap\left(F_{2}\right)_{w \rightarrow s}
\end{aligned}
$$

Example (Unions and intersections of OSA signatures)

Example (Unions and intersections of PA signatures)

Single parameterised specifications

Definition

Unions are least upper bounds in the category of inclusions.
Dually, intersections are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of OSA signatures)

- unions may not exist because of antisymmetry

Example (Unions and intersections of PA signatures)

Single parameterised specifications

Unions and intersections

Definition

Unions are least upper bounds in the category of inclusions.
Dually, intersections are greatest lower bounds.
Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of preorder-based OSA signatures)
$\left(S_{1}, \leq_{1}, F_{1}\right) \cup\left(S_{2}, \leq_{2}, F_{2}\right)$

- $(S, F)=\left(S_{1}, F_{1}\right) \cup\left(S_{2}, F_{2}\right)$
$=(S, \leq, F)$
- $\leq=\left(\leq_{1} \cup \leq_{2}\right)^{m *}$
$\left(S_{1}, \leq_{1}, F_{1}\right) \cap\left(S_{2}, \leq_{2}, F_{2}\right)$
- $(S, F)=\left(S_{1}, F_{1}\right) \cap\left(S_{2}, F_{2}\right)$
$=(S, \leq, F)$
- $\leq=\leq_{1} \cap \leq_{2}$

Example (Unions and intersections of PA signatures)

Single parameterised specifications

Unions and intersections

Definition

Unions are least upper bounds in the category of inclusions.
Dually, intersections are greatest lower bounds.
Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of preorder-based OSA signatures)

Example (Unions and intersections of PA signatures)
$\left(S_{1}, F_{1}, T F_{1}\right) \cup\left(S_{2}, F_{2}, T F_{2}\right)$

- $(S, F)=\left(S_{1}, F_{1}\right) \cup\left(S_{2}, F_{2}\right)$
$=(S, F, T F)$
- $T F=T F_{1} \cup T F_{2}$
$\left(S_{1}, F_{1}, T F_{1}\right) \cap\left(S_{2}, F_{2}, T F_{2}\right)$
$=(S, F, T F)$
- $(S, F)=\left(S_{1}, F_{1}\right) \cup\left(S_{2}, F_{2}\right)$
- $T F=T F_{1} \cap T F_{2}$

Single parameterised specifications

Compatible morphisms

Definition (Compatible morphisms)

Two morphisms $\varphi_{1}: \Sigma_{1} \rightarrow \Sigma_{1}^{\prime}$ and $\varphi_{2}: \Sigma_{2} \rightarrow \Sigma_{2}^{\prime}$ are compatible when

$$
\left(\Sigma_{1} \cap \Sigma_{2} \subseteq \Sigma_{1}\right) ; \varphi_{1} ;\left(\Sigma_{1}^{\prime} \subseteq \Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}\right)=\left(\Sigma_{1} \cap \Sigma_{2} \subseteq \Sigma_{2}\right) ; \varphi_{2} ;\left(\Sigma_{2}^{\prime} \subseteq \Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}\right) .
$$

A morphism φ preserves a signature Σ if φ and 1_{Σ} are compatible. It strongly preserves a signature Σ when, in addition to preserving Σ, it satisfies $\operatorname{cod}(\varphi) \cap \Sigma \subseteq \operatorname{dom}(\varphi) \cap \Sigma$.

Definition (Instantiation of parameters)

- consider a parameterised specification $S P(P)$ and
- a specification morphism $v: P \rightarrow P^{\prime}$ that preserves P^{\prime}

The instantiation of the parameterised specification $S P(P)$ by v is

$$
S P(P \Leftarrow v)=S P \star v^{\prime} \cup P^{\prime} \star i
$$

given by the pushout of signatures depicted below.

$$
\begin{aligned}
& \operatorname{Sig}(P) \cup\left(\operatorname{Sig}(S P) \cap \operatorname{Sig}\left(P^{\prime}\right)\right) \xrightarrow{\subseteq} \operatorname{Sig}(S P) \\
& v \vee \operatorname{vid} \downarrow \\
& \operatorname{Sig}\left(P^{\prime}\right) \xrightarrow[i]{ } \mid v^{\prime} \\
& v^{\prime}
\end{aligned}
$$

Single parameterised specifications

Example (Lists of natural numbers)

$$
\begin{aligned}
& (\{\mathrm{Elt}\}, \emptyset) \longrightarrow\binom{\{\text { Elt }, \text { List }\},}{\{\text { nil }:[] \rightarrow \text { List }, \ldots: \text { Elt List } \rightarrow \text { List }\}} \\
& \text { Elt } \mapsto \text { Nat } \\
& \binom{\{\text { Nat }\},}{\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat }\right\}} \xrightarrow[\subseteq]{ }\left(\begin{array}{l}
\{\text { Nat, List }\}, \\
\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat },\right. \\
\text { nil: [] } \rightarrow \text { List, _- }: \text { Nat List } \rightarrow \text { List }\}
\end{array}\right)
\end{aligned}
$$

- consider the single instantiation $S P(P \Leftarrow v)$

$$
\begin{aligned}
& \operatorname{Sig}(P) \cup\left(\operatorname{Sig}(S P) \cap \operatorname{Sig}\left(P^{\prime}\right)\right) \xrightarrow{\subseteq} \operatorname{Sig}(S P) \\
& \subseteq \downarrow \quad \downarrow \subseteq \\
& \operatorname{Sig}(P) \cup \operatorname{Sig}\left(P^{\prime}\right) \xrightarrow{\subseteq} \operatorname{Sig}(S P) \cup \operatorname{Sig}\left(P^{\prime}\right) \\
& \vee \vee 1_{\operatorname{sig}\left(P^{\prime}\right)} \downarrow \quad P O \quad \downarrow^{\prime} \\
& \operatorname{Sig}\left(P^{\prime}\right) \longrightarrow \Sigma^{\prime}
\end{aligned}
$$

Proposition

The outer square is a pushout square if and only if the lower square is a pushout square.

Definition (Instantiation of parameters)

- consider a parameterised specification $S P(P)$ and
- a specification morphism $v: P \rightarrow P^{\prime}$ that preserves P^{\prime}

The instantiation of the parameterised specification $S P(P)$ by v is

$$
S P(P \Leftarrow v)=S P \star\left(\iota ; \nu^{\prime}\right) \cup P^{\prime} \star \iota^{\prime}
$$

given by the free extension depicted below.

Definition (Free extension)

Let $\varphi_{1}: \Sigma_{1} \rightarrow \Sigma_{1}^{\prime}$ be a signature morphism and $\Sigma_{1} \subseteq \Sigma_{2}$.
A free extension of φ_{1} along $\Sigma_{1} \subseteq \Sigma_{2}$ is a signature morphism $\varphi_{2}: \Sigma_{2} \rightarrow \Sigma_{2}^{\prime}$ such that the square below is a pushout square and every signature preserved by φ_{1} is also preserved by φ_{2}.

$$
\begin{array}{cc}
\Sigma_{1} & \subseteq \Sigma_{2} \\
\left.\varphi_{1}{ }_{\downarrow} P O\right|_{\downarrow} \\
\Sigma_{1}^{\prime} & \underset{\subseteq}{ } \Sigma_{2}^{\prime}
\end{array}
$$

Single parameterised specifications

Free extensions along inclusions

Example (Free extensions of functions)

A function $f: A \rightarrow A^{\prime}$ admits free extensions along $A \subseteq B$ if and only if A^{\prime} and $B \backslash A$ are disjoint. The free extension $g: B \rightarrow B^{\prime}$ is defined by $B^{\prime}=(B \backslash A) \cup A^{\prime}$ and

$$
g(a)= \begin{cases}f(a) & a \in A, \\ a & a \notin A .\end{cases}
$$

Proposition (Free extensions of MSA signature morphisms)

Every MSA signature morphism $\varphi_{1}:\left(S_{1}, F_{1}\right) \rightarrow\left(S_{1}^{\prime}, F_{1}^{\prime}\right)$ such that $\left(S_{1}^{\prime}, F_{1}^{\prime}\right) \subseteq\left(S_{1}, F_{1}\right)$ has free extensions φ_{2} along any inclusion of signatures $\left(S_{1}, F_{1}\right) \subseteq\left(S_{2}, F_{2}\right)$.
Moreover, for any fixed signature $\left(S_{0}, F_{0}\right)$, we can choose the free extension $\varphi_{2}:\left(S_{2}, F_{2}\right) \rightarrow\left(S_{2}^{\prime}, F_{2}^{\prime}\right)$ such that

$$
\left(S_{0}, F_{0}\right) \cap\left(S_{2}^{\prime}, F_{2}^{\prime}\right) \subseteq\left(S_{0}, F_{0}\right) \cap\left(S_{2}, F_{2}\right)
$$

Single parameterised specifications

Example (Predicates on natural numbers)

$$
\begin{aligned}
& \binom{\{\text { Elt, Nat }\},}{\{0:[] \rightarrow \text { Nat, s_: Nat } \rightarrow \text { Nat }\}} \xrightarrow{\subseteq}\left(\begin{array}{l}
\{\text { Elt, Bool, Nat }\}, \\
\text { \{true: }[] \rightarrow \text { Bool,false : }[] \rightarrow \text { Bool } \\
\text { P: Elt } \rightarrow \text { Bool, } \\
0:[] \rightarrow \text { Nat, s_: Nat } \rightarrow \text { Nat }\}
\end{array}\right) \\
& \text { Elt } \rightarrow \text { Nat } \\
& \binom{\{\text { Nat }\},}{\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat }\right\}} \xrightarrow[\subseteq]{ } \\
& \{\text { Nat, Bool }\} \text {, } \\
& \{0:[] \rightarrow \text { Nat, s_: Nat } \rightarrow \text { Nat, } \\
& \text { true: [] } \rightarrow \text { Bool, false: [] } \rightarrow \text { Bool } \\
& \text { (P, Elt, Bool, Fo) : Nat } \rightarrow \text { Bool }\}
\end{aligned}
$$

Proposition (Free extensions of OSA signature morphisms)

- are obtained by lifting free extensions from the category of MSA signatures

Proposition (Free extensions of PA signature morphisms)

Proposition (Free extensions of OSA signature morphisms)

- are obtained by lifting free extensions from the category of MSA signatures

$$
\begin{aligned}
& \left(S_{1}, \leq_{1}, F_{1}\right) \longrightarrow\left(S_{2}, \leq_{2}, F_{2}\right) \\
& \stackrel{\varphi_{1}}{\downarrow} \\
& \left(S_{1}^{\prime}, \leq_{1}^{\prime}, F_{1}^{\prime}\right) \xrightarrow[\subseteq]{\longrightarrow}\left(S_{2}^{\prime},\left(\varphi_{2}^{s t}\left(\leq_{2}\right) \cup \leq_{1}^{\prime}\right)^{m *}, F_{2}^{\prime}\right)
\end{aligned}
$$

Proposition (Free extensions of PA signature morphisms)

Single parameterised specifications

Free extensions along inclusions

Proposition (Free extensions of OSA signature morphisms)

- note that we can no longer always choose φ_{2} such that

$$
\left(S_{0}, \leq_{0}, F_{0}\right) \cap\left(S_{2}^{\prime}, \leq_{2}^{\prime}, F_{2}^{\prime}\right) \subseteq\left(S_{0}, \leq_{0}, F_{0}\right) \cap\left(S_{2}, \leq_{2}, F_{2}\right)
$$

for a fixed signature $\left(S_{0}, \leq 0, F_{0}\right)$

$$
\begin{aligned}
& \left(\left\{\mathbf{s}, \mathbf{s}^{\prime}\right\},\left\{\mathbf{s} \leq 0 \mathbf{s}^{\prime}\right\}, \emptyset\right) \\
& \left(\left\{\mathrm{t}, \mathbf{s}^{\prime}\right\}, \emptyset, \emptyset\right) \xrightarrow{\subseteq}\left(\left\{\mathbf{s}, \mathrm{t}, \mathbf{s}^{\prime}\right\},\left\{\mathbf{s} \leq_{2} \mathrm{t}\right\}, \emptyset\right) \\
& t \rightarrow s^{\prime}{ }^{2} \quad \downarrow^{t \mapsto s^{\prime}} \\
& \left(\left\{s^{\prime}\right\}, \emptyset, \emptyset\right) \longrightarrow\left(\left\{s, s^{\prime}\right\},\left\{\mathbf{s} \leq_{2}^{\prime} s^{\prime}\right\}, \emptyset\right)
\end{aligned}
$$

Proposition (Free extensions of PA signature morphisms)

Single parameterised specifications
Free extensions along inclusions

Proposition (Free extensions of OSA signature morphisms)

Proposition (Free extensions of PA signature morphisms)

- are obtained by lifting free extensions from the category of MSA signatures

$$
\begin{gathered}
\left(S_{1}, F_{1}, T F_{1}\right) \xrightarrow{\varphi_{1}} \xrightarrow{\downarrow}\left(S_{2}, F_{2}, T F_{2}\right) \\
\mid \varphi_{2} \\
\left.\left(S_{1}^{\prime}, F_{1}^{\prime}, T F_{1}^{\prime}\right) \xrightarrow{\varphi}\right) \xrightarrow{\hookrightarrow}\left(S_{2}^{\prime}, F_{2}^{\prime}, \varphi_{2}^{o}\left(T F_{2}\right) \cup T F_{1}^{\prime}\right)
\end{gathered}
$$

- moreover, for any fixed signature ($S_{0}, F_{0}, T F_{0}$), we can choose a free extension φ_{2} such that

Proposition (Free extensions of OSA signature morphisms)

Proposition (Free extensions of PA signature morphisms)

- are obtained by lifting free extensions from the category of MSA signatures

$$
\begin{gathered}
\left(S_{1}, F_{1}, T F_{1}\right) \xrightarrow{\varphi_{1}} \xrightarrow{\downarrow}\left(S_{2}, F_{2}, T F_{2}\right) \\
\stackrel{\varphi_{2}}{\bullet} \\
\left(S_{1}^{\prime}, F_{1}^{\prime}, T F_{1}^{\prime}\right) \xrightarrow{\longrightarrow}\left(S_{2}^{\prime}, F_{2}^{\prime}, \varphi_{2}^{o p}\left(T F_{2}\right) \cup T F_{1}^{\prime}\right)
\end{gathered}
$$

- moreover, for any fixed signature ($S_{0}, F_{0}, T F_{0}$), we can choose a free extension φ_{2} such that

Single parameterised specifications

Free extensions along inclusions

Proposition (Free extensions of OSA signature morphisms)

Proposition (Free extensions of PA signature morphisms)

- are obtained by lifting free extensions from the category of MSA signatures

$$
\begin{gathered}
\left(S_{1}, F_{1}, T F_{1}\right) \xrightarrow{\subseteq}\left(S_{2}, F_{2}, T F_{2}\right) \\
\stackrel{\varphi_{1}}{\varphi_{1}} \downarrow \\
\left(S_{1}^{\prime}, F_{1}^{\prime}, T F_{1}^{\prime}\right) \xrightarrow{\hookrightarrow} \xrightarrow{\hookrightarrow}\left(S_{2}^{\prime}, F_{2}^{\prime}, \varphi_{2}^{o p}\left(T F_{2}\right) \cup T F_{1}^{\prime}\right)
\end{gathered}
$$

- moreover, for any fixed signature $\left(S_{0}, F_{0}, T F_{0}\right)$, we can choose a free extension φ_{2} such that

$$
\left(S_{0}, F_{0}, T F_{0}\right) \cap\left(S_{2}^{\prime}, F_{2}^{\prime}, T F_{2}^{\prime}\right) \subseteq\left(S_{0}, F_{0}, T F_{0}\right) \cap\left(S_{2}, F_{2}, T F_{2}\right)
$$

Definition (Instantiation of parameters)

- consider a parameterised specification $S P(P)$ and
- a specification morphism $v: P \rightarrow P^{\prime}$ that preserves P^{\prime}

The instantiation of the parameterised specification $S P(P)$ by v is

$$
S P(P \Leftarrow v)=S P \star\left(\iota ; \nu^{\prime}\right) \cup P^{\prime} \star \iota^{\prime}
$$

given by the free extension depicted below.

Single parameterised specifications

Lists of natural numbers via free extensions

Example (Lists of natural numbers via free extensions)

$$
\begin{aligned}
& \binom{\{\text { Elt, Nat }\},}{\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat }\right\}} \xrightarrow{\subseteq}\left(\begin{array}{l}
\{\text { Elt, List, Nat }\}, \\
\{\text { nil }:[] \rightarrow \text { List, ,-: Elt List } \rightarrow \text { List } \\
\left.0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat }\right\}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\{\text { Nat }\},}{\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat }\right\}} \xrightarrow[\subseteq]{ }\left(\begin{array}{l}
\{\text { Nat, List }\}, \\
\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat },\right. \\
\text { nil: [] } \rightarrow \text { List, _-: Nat List } \rightarrow \text { List }\}
\end{array}\right)
\end{aligned}
$$

Multiple parameterised specifications

Definition

A multiple parameterised specification is a specification with several parameters, denoted $S P\left(P_{1}, \ldots, P_{n}\right)$.

```
Example (ELT \stackrel{\mp@subsup{\iota}{1}{\prime}}{\longrightarrow}\mathrm{ PAIR }\stackrel{\mp@subsup{\iota}{2}{\prime}}{\leftarrow}\mathrm{ ELT)}
mod* ELT { [ Elt ] {
```


Multiple parameterised specifications

- for any multiple parameterised specification $S P\left(P_{1}, \ldots, P_{n}\right)$ we have that $S P\left(P_{1} \cup \cdots \cup P_{n}\right)$ is a single parameterised specification

Proposition

Let $\left\{v_{i}: P_{i} \rightarrow P_{i}^{\prime} \mid 1 \leq i \leq n\right\}$ be a set of pairwise compatible morphisms. Then there exists $\bigvee v_{i}: \bigcup P_{i} \rightarrow \bigcup P_{i}^{\prime}$ such that

$$
\left(P_{j} \subseteq \bigcup P_{i}\right) ; \bigvee v_{i}=v_{j} ;\left(P_{j}^{\prime} \subseteq \bigcup P_{i}^{\prime}\right), \quad \text { for any } 1 \leq j \leq n
$$

Moreover, if the inclusion system is distributive, for any set of signatures $\left\{Q_{j} \mid 1 \leq j \leq m\right\}$, if v_{i} preserves Q_{j}, for all $1 \leq i \leq n$ and $1 \leq j \leq m$, then the join $\bigvee v_{i}$ preserves the union $\bigcup Q_{j}$.

Multiple parameterised specifications

Proposition

The MSA inclusion system and the PA inclusion system are both distributive.

- note that the OSA inclusion system is not distributive

$$
\Sigma_{1} \cap\left(\Sigma_{2} \cup \Sigma_{3}\right) \supsetneq\left(\Sigma_{1} \cap \Sigma_{2}\right) \cup\left(\Sigma_{1} \cap \Sigma_{3}\right)
$$

Multiple parameterised specifications

Proposition

The MSA inclusion system and the PA inclusion system are both distributive.

- note that the OSA inclusion system is not distributive

Multiple parameterised specifications

Simultaneous instantiation of parameters

Definition (Simultaneous instantiation of parameters)

Let us consider a multiple parameterised specification $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ and a set of pairwise compatible morphisms $\left\{v_{i}: P_{i} \rightarrow P_{i}^{\prime} \mid 1 \leq i \leq\right.$ $n\}$ such that any morphism v_{i} preserves any specification P_{j}^{\prime}, for $1 \leq i, j \leq n$.
The simultaneous instantiation of $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ by $\left\{v_{1}, \ldots, v_{n}\right\}$, denoted

$$
\Sigma\left(\left\{P_{i} \Leftarrow v_{i} \mid 1 \leq i \leq n\right\}\right)
$$

is defined as the single parameter instantiation

$$
\Sigma\left(\bigsqcup P_{i} \Leftarrow \bigvee v_{i}\right)
$$

Multiple parameterised specifications

Pairs of natural numbers and Boolean values

Example (Pairs of natural numbers and Boolean values)

$$
\begin{aligned}
& \left(\begin{array}{l}
\left\{\mathrm{Elt}_{1}, \mathrm{Elt}_{2}, \text { Nat, Bool }\right\}, \\
\left\{0:[] \rightarrow \text { Nat, } \mathrm{s}_{-}: \text {Nat } \rightarrow\right. \text { Nat, } \\
\text { true: }[] \rightarrow \text { Bool, false: }[] \rightarrow \text { Bool }\}
\end{array}\right) \xrightarrow{\subseteq}\left(\begin{array}{l}
\left\{\mathrm{Elt}_{1}, \mathrm{Elt}_{2}, \text { Pair, Nat, Bool }\right\}, \\
\left\{\left\langle_{-},\right\rangle: \mathrm{Elt}_{1} \mathrm{Elt}_{2} \rightarrow\right. \text { Pair, } \\
0:[] \rightarrow \text { Nat, } \mathrm{s}_{-}: \text {Nat } \rightarrow \text { Nat, }, \\
\text { true : [] } \rightarrow \text { Bool, false }:[] \rightarrow \text { Bool }\}
\end{array}\right) \\
& \begin{array}{l|l}
\mathrm{Elt}_{1} \mapsto \mathrm{Nat} \\
\mathrm{Elt}_{2} \mapsto \mathrm{Bool} \\
\\
& \\
\forall \mathrm{Elt} \mathrm{t}_{2} \mapsto \mathrm{Bool}
\end{array} \\
& \left(\begin{array}{l}
\{\text { Nat, Bool }\}, \\
\{0:[] \rightarrow \text { Nat, s_: Nat } \rightarrow \text { Nat, } \\
\text { true: }[] \rightarrow \text { Bool, false }:[] \rightarrow \text { Bool }\}
\end{array}\right) \xrightarrow{\subseteq}\left(\begin{array}{l}
\{\text { Nat, Bool, List }\}, \\
\{0:[] \rightarrow \text { Nat, s_: Nat } \rightarrow \text { Nat, } \\
\text { true: [] } \rightarrow \text { Bool, false: [] } \rightarrow \text { Bool, } \\
\left.\left\langle_{-},{ }_{-}\right\rangle: \text {Nat Bool } \rightarrow \text { Pair }\right\}
\end{array}\right)
\end{aligned}
$$

Multiple parameterised specifications

Towards sequential instantiation of parameters

Proposition

Let $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ be a multiple parameterised specification and $v_{i}: P_{i} \rightarrow P_{i}^{\prime}$ a morphism that preserves the instance P_{i}^{\prime} and all parameter specifications P_{j}, for $1 \leq j \neq i \leq n$.
If the instantiation of parameters is based on free extensions then $\Sigma\left(P_{i} \Leftarrow v_{i}\right)$ is a parameterised specification, with the parameters $\left\{P_{j} \mid 1 \leq j \neq i \leq n\right\}$.

Multiple parameterised specifications

Definition (Sequential instantiation of parameters)

Let us consider a multiple parameterised specification $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ and a set of pairwise compatible morphisms $\left\{v_{i}: P_{i} \rightarrow P_{i}^{\prime} \mid 1 \leq i \leq\right.$ $n\}$ such that for every $1 \leq i \leq n, v_{i}$ preservers P_{i}^{\prime} and all P_{j}, where $1 \leq j \neq i \leq n$.
The sequential instantiation of $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ by $\left\{v_{1}, \ldots, v_{n}\right\}$, denoted

$$
\Sigma\left(P_{i} \Leftarrow v_{i}\right)_{1 \leq i \leq n},
$$

is defined as the iterated (single) parameter instantiation

$$
\Sigma\left(P_{0} \Leftarrow v_{0}\right) \cdots\left(P_{n-1} \Leftarrow v_{n-1}\right) .
$$

Multiple parameterised specifications

Pairs of natural numbers and Boolean values

Example (Pairs of natural numbers and Boolean values)

$$
\begin{aligned}
& \mathrm{ELT}_{1} \cup \mathrm{NAT} \longrightarrow \text { PAIR } \\
& v_{1} \vee 1_{\text {NAT }} \downarrow \downarrow \nu^{\nu_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
v_{2} \vee 1_{\text {BOOL }} \downarrow \\
\mathrm{BOOL} \\
\varrho
\end{array}
\end{aligned}
$$

Multiple parameterised specifications

Theorem

Let $\Sigma\left(P_{1}, \ldots, P_{n}\right)$ be a multiple parameterised specification and $\left\{v_{i}: P_{i} \rightarrow P_{i}^{\prime} \mid 1 \leq i \leq n\right\}$ a set of morphisms such that for every $1 \leq i \leq n, v_{i}$ preserves P_{j} and P_{k}^{\prime}, for all $1 \leq j \neq i, k \leq n$.
If the instantiation of parameters is based on free extensions then the simultaneous and the sequential instantiation procedures produce isomorphic results, provided that for any morphism v: $P \rightarrow P^{\prime}$ for which we consider free extensions, and any signature Q preserved by v, we can choose a free extension of v that strongly preserves Q.

$$
\Sigma\left(\bigsqcup P_{i} \Leftarrow \bigvee v_{i}\right) \cong \Sigma\left(P_{i} \Leftarrow v_{i}\right)_{1 \leq i \leq n}
$$

Multiple parameterised specifications

The isomorphism theorem

- when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)

$$
\begin{aligned}
& \left(\left\{\text { Elt }_{1}\right\}, \emptyset\right) \xrightarrow{\subseteq}\left(\begin{array}{l}
\left\{\text { Elt }_{1}, \text { Elt }_{2}, \text { Pair }\right\} \\
\left\{\langle-,-\rangle: \text { Elt }_{1} \text { Elt }_{2} \rightarrow \text { Pair },\right. \\
\text { obs: Pair } \left.\rightarrow \text { Elt }_{1}\right\}
\end{array}\right) \stackrel{\subseteq}{\leftrightarrows}\left(\left\{\text { Elt }_{2}\right\}, \emptyset\right) \\
& \left(\left\{\text { Elt }_{1}\right\}, \emptyset\right) \xrightarrow{\text { Elt }_{1} \mapsto \mathrm{Nat}}\binom{\{\mathrm{Nat}\},}{\left\{0:[] \rightarrow \mathrm{Nat}, \mathrm{~s}_{-}: \mathrm{Nat} \rightarrow \mathrm{Nat}\right\}} \\
& \left(\left\{\mathrm{Elt}_{2}\right\}, \emptyset\right) \xrightarrow{\mathrm{Elt}_{2} \mapsto \mathrm{Nat}}\left(\begin{array}{l}
\{\text { Nat }, \text { Pair }\}, \\
\left\{0:[] \rightarrow \mathrm{Nat}, \mathrm{~s}_{-}: \mathrm{Nat} \rightarrow \mathrm{Nat},\right. \\
\text { obs: Pair } \rightarrow \text { Nat }\}
\end{array}\right)
\end{aligned}
$$

Multiple parameterised specifications

The isomorphism theorem

- when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)

- by simultaneous instantiation we may obtain

$$
\operatorname{PAIR}^{\text {obs }}\left(\mathrm{ELT}_{1} \cup \mathrm{ELT}_{2} \Leftarrow v_{1} \vee v_{2}\right)=\left(\begin{array}{l}
\{\mathrm{Nat}, \text { Pair }\} \\
\left\{0:[] \rightarrow \text { Nat, } \mathrm{s}_{-}: \text {Nat } \rightarrow \text { Nat },\right. \\
\left\langle_{-},{ }_{-}\right\rangle: \text {Nat Nat } \rightarrow \text { Pair } \\
\text { obs: Pair } \rightarrow \text { Nat } \\
\text { obs } \left.^{\prime}: \text { Pair } \rightarrow \text { Nat }\right\}
\end{array}\right)
$$

Multiple parameterised specifications

The isomorphism theorem

- when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)

- by sequential instantiation we may obtain

$$
\begin{aligned}
& \operatorname{PAIR}^{\text {obs }}\left(\mathrm{ELT}_{1} \Leftarrow v_{1}\right)\left(\mathrm{ELT}_{2} \Leftarrow v_{2}\right)=\left(\begin{array}{l}
\{\text { Nat, Pair }\} \\
\left\{0:[] \rightarrow \text { Nat, } s_{-}: \text {Nat } \rightarrow \text { Nat },\right. \\
\langle-,-\rangle: \text { Nat Nat } \rightarrow \text { Pair }, \\
\text { obs: Pair } \rightarrow \text { Nat }\}
\end{array}\right)
\end{aligned}
$$

Thank you!

