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♦  Give a way to construct CafeOBJ specifications 
whose corresponding TRSs are canonical 
(terminating and confluent) 
•  There are lots of studies for termination and confluence in 

term rewriting area  
•  Try to apply them to CafeOBJ specifications 
•  A kind of survey of termination methods for CafeOBJ 

♦  Throughout the presentation, only simple 
specifications are treated: 
•  No conditional equations 
•  No operator attributes 
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CafeOBJ and Term Rewriting System 

♦  The reduction command in CafeOBJ is implemented 
based on the term rewriting system (TRS) 

♦  For proving an equation in CafeOBJ, decompose it 
(make a proof score (proof passages)) until those 
leaves can be proved by the reduction command (=  
TRS) 
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Term rewriting system 

♦  The term rewriting system (TRS) gives us an efficient 
way to prove equations by regarding an equation as a 
left-to-right rewrite rule 
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eq N + 0 = N . 

eq M + s N = s (M + N) .  

   N + 0 --> N . 

 M + s N --> s (M + N) .  

s 0 + s s 0 s s 0 + s 0 

s (s 0 + s 0) 
s (s s 0 + 0) 

s s s 0 

s s (s 0 + 0) 

=E ? 



Redex and Rewriting	


♦  A redex is an instance of the LHS of an equation 
♦  [Convention] A variable is written in a capital letter in this presentation 

♦  (1-step) Rewriting is a replacement of a redex with the 
corresponding instance of the RHS 
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eq M + s N = s (M + N)  

    s (0 + s s 0) --> s s (0 + s 0) 

Redexs:  0 + s 0    s s 0 + s s 0   s X + s s (Y + s Z)  

M <- 0   N <- s 0 

with 



Reduction and Normal form	


♦  Reduction is repetition of rewriting until it cannot 
♦  A reduced term is called a normal form  

•  A term is a normal form  It has no redex 
(for unconditional TRSs) 
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s (0 + s 0) --> s s (0 + 0) --> s s 0 

eq N + 0 = N . 

eq M + s N = s (M + N) .  



Variable conditions for TRS 

♦  Rewrite rules should satisfy the following variables 
conditions 
1.  Any LHS should not be a variable 

•  E.g. by N = N + 0, reduction does not terminate 

2.  Any RHS should not have extra variables, which are 
variables not included in the LHS 
•  E.g. by 0 = N * 0, a redex can be rewritten into infinitely many 

terms (not finitely-branching)  
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s 0 --> s 0 + 0 --> (s 0 + 0) + 0 --> ... 

0 * 0 s s 0 * 0 ... 
0 

s 0 * 0 sn 0 * 0 ... 



Bad equations ignored 

♦  The reduction command in CafeOBJ ignores 
equations with extra-variables 
•  They can be used in the apply command 
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CafeOBJ> mod* TEST{. . . 
 eq N = N + 0 . 
 eq 0 = N * 0 . 
} 
CafeOBJ> select TEST 
TEST> red 0 . 
-- reduce in TEST : (0):Nat 
(0):Nat 
(0.000 sec for parse, 0 rewrites(0.000 sec), 0 matches) 
TEST>  



TRS may not be complete 

♦  In general, TRS achieves only a partial equational 
reasoning because TRS may not terminate or does not 
apply equations in right-to-left direction 
•  a = b may not be proved, when {a = a, a = b} 

•  b = c is not reduced to true, when {a = b, a = c} 
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b c =?= 

a 

a b =?= 

a a a 



Termination and confluence	


♦  To obtain a complete equational reasoning, the 
following properties are important: 
•  [Def] A TRS is terminating if the length of every 

rewriting sequence is finite  

•  [Def] A TRS is confluent if all terms obtained by 
rewriting from one ancestor term can be reduced 
into a common descendant term 	
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t1 

t0 

t2 

t3 

t0 t1 t2 



Canonical TRS	


♦  A TRS is called canonical when it is both terminating 
and confluent 

♦  For a canonical TRS, the normal form of a given term 
is unique, so 

♦  [Thm] For a canonical TRS E, every equation 
deducible by given equations (axioms)  can be proved 
by the reduction command, i.e., 
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t  =E  t’ red t = t’ 

returns  true 



Termination and confluence undecidalbe	


♦  In general, both termination and confluence properties 
are undecidable, i.e. there is no algorithm to solve the 
problem: Is a given TRS terminating (or confluent)? 
•  It is known that confluence is decidable for a 

terminating TRS 

•  Termination guarantees that we can compute a 
normal form in finite time 

♦  Thus, constructing terminating TRS is the top priority 
for our purpose 
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Constructing terminating TRS 

♦  Several termination methods have been proposed 

♦  The recursive path ordering (RPO) is one of the most 
classical termination methods 

•  A well-founded order on terms obtained from a 
given precedence order      on operation symbols 

•  E.g.  *   +    s, 0 

♦  [Th] If for every rewrite rule, the left-hand side is 
greater than the right-hand side by RPO, then the TRS 
is terminating 
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Recursive Path Ordering	


♦  [Def] 

•  s N  >rpo N   (From 1) 
•  [M, s N]  >mul [M, N]  

•  M + s N  >rpo  M + N (From 3) 
•  M + s N  >rpo  s(M + N) (From 2 with +     s) 
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€ 

            s = f (s1,...,sm ) >rpo t   if  
  1.  si ≥rpo t  for some i,  or
  2.  t = g(t1,...,tn ),  f  g and s >rpo t j   for every j,  or

  3.  t = g(t1,...,tn ),  f = g and [s1,...,sm ] >rpo
mul  [t1,...,tn ]

 eq N +   0 = N . 
 eq M + s N = s (M + N) 



Constructing RPO-terminating TRS	


♦  [Def] A root symbol of the left-hand side of some 
rewrite rule is called a defined symbol (D) 

♦  Construct a TRS as follows: 
•  Every occurrence g(r1,...rn)of a defined symbol 
g in every right-hand side should satisfy  

•  Every ri is a subterm of some argument lj of the left-
hand side f(l1,...lm) 

•  At least one ri is a strict subterm of some lj 
♦  Then, the TRS can be proved terminating by RPO with 

the precedence order defined as  D       C (Constructor 
(Non-defined) symbols)  
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Examples	


♦  Every single module (TRS) above can be proved 
terminating by RPO with the precedence 

♦  How about a combination of them ... ?	
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 eq N +   0 = N . 
 eq M + s N = s (M + N) 

+    s, 0	


 eq   0 -   N = 0 . 
 eq   M -   0 = M . 
 eq s M – s N = (M - N) 

-    s, 0	


 eq N *   0 = 0 . 
 eq M * s N = M + (M * N) 

*    +, s, 0	


 eq even(0) = true . 
 eq odd(0) = false . 
 eq even(s N) = odd(N) . 
 eq odd(s N) = even(N) . 

Even,odd   0,true,false	




Modularity	


♦  [Def] A property P is modular for TRSs if for all TRSs R 
and R’ having P, their combination R U R’ also has P 
•  Question: Is termination modular? 
•  Answer: No 

•  Even if R and R’ has no sharing operation symbols, 
termination is not modular 

Constructing Canonical TRS, Sinaia Workshop 2011      17 

 eq f(0,1,X) = f(X,X,X)) . 
 eq g(X, Y) = X . 
 eq g(X, Y) = Y . 

f(0,1,g(0,1))    f(g(0,1),g(0,1),g(0,1))           

     f(0,g(0,1),g(0,1))    f(0,1,g(0,1)) 

Toyama’s famous counterexample	




CE-termination	


♦  [Def] A TRS R is CE-terminating if R U CE is terminating, 
where CE={cons(x,y)x, cons(x,y)y} 

♦  [Th] CE-termination is modular for disjoint TRSs 

♦  Disjoint union is too strong for CafeOBJ specifications  
•  Importing and imported modules usually share 

operation symbols 	
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 eq f(0,1,X) = f(X,X,X)) . 
 eq g(X, Y) = X . 
 eq g(X, Y) = Y . 

RPO	


Simple
 Termination	
 CE- Termination	
 Termination	




Kinds of Combinations	


♦  There are different kinds of combinations 
1.  R and R’ are disjoint if they do not have share 

operation symbols 
2.  R and R’ are constructor-sharing if they share at 

most constructors 
3.  A hierarchical combination of the base system R and 

the extension R’ allows defined symbols of R to 
occur as constructors in R’ (not vice versa)	
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D	


C	


D’	


C’	


D	


C	


D’	


C’	

D	


C	


D’	


C’	




Examples of combinations	


♦  R+ and R@ are disjoint 
♦  R+ and R- are constructor-sharing  

•  s and 0 are shared 
♦  R* is an extension of the base system R+ (hierarchical 

combination) 
•  + is a constructor in R* 
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 eq N +   0 = N . 
 eq M + s N = s (M + N) 

 eq   0 -   N = 0 . 
 eq   M -   0 = M . 
 eq s M – s N = (M - N) 

 eq N *   0 = 0 . 
 eq M * s N = M + (M * N) 

 eq nil @ YS = YS . 
 eq (X : XS) @ YS = X : (XS @ YS). 



CE-termination and constructor-sharing 	


♦  [Def] A TRS is finitely-branching if for all terms t, the 
set { t’ | t   t’ } of one-step reducts of t is finite 

♦  [Th] Ce-termination is modular for finitely-branching 
constructor-sharing TRSs 

♦  Trivially, if the number of equations (rewrite rules) is 
finite (= finite TRS), the TRS is finitely-branching 

♦  [Cr] Ce-termination is modular for finite constructor-
sharing TRSs	
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CE-termination and hierarchical combinations	


♦  In general, CE-termination is not modular for 
hierarchical combinations 

♦  What is the difference between the upper one and the 
lower one? 
•  The occurrence of the defined symbols (a and +) of 

the base system in the R.H.S. of the extension 
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 eq a = b .  eq f(b) = f(a) . 

 eq N +   0 = N . 
 eq M + s N = s (M + N) 

 eq N *   0 = 0 . 
 eq M * s N = M + (M * N) 



Restricted proper extension 	


♦  [Def] R’ is a proper extension of R if functions depending on R 
are never called within a recursive call of R’ 
•  f depends on R  f(...) = C[g(...)] exists for some g in D 

♦  [Def] R’ is a restricted proper extension of R if it is a proper 
extension of R such that no L.H.S of R’ contains defined 
symbols strictly below its root 

♦  [Th] CE-termination is modular for finite restricted proper 
extensions 
•  For more precise definitions, see the reference [Ohlebusch 

2002] 
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 eq a = b .  eq f(b) = f(a) . 

 eq N +   0 = N . 
 eq M + s N = s (M + N) 

 eq N *   0 = 0 . 
 eq M * s N = M + (M * N) 



Apply modularity results to CafeOBJ spec.	


♦  To describe a specification of an abstract data type 
•  Describe a module for constructors 
•  Give a partial order on functions to be defined 

•  Like power() > _*_ > _+_	


•  Describe a module for each function on the data 
type (one module for one function) 
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Data: 
B-NAT 

Data: 
B-LIST 

Data: 
B-BOOL 

Function: 
NAT+ 

Function: 
NAT* 

Function: 
NAT= Function: 

LIST-len 

A module 



Constructors	


♦  Equations in each module for functions                   
should satisfy the following conditions:  
•  Every occurrence g(r1,...rn)of a defined symbol 

in every R.H.S. should satisfy that  
•  Every ri is a subterm of some argument lj of the L.H.S.  
f(l1,...lm) 

•  At least one ri is a strict subterm of some lj 

•  Each argument li is a constructor term for every 
eq f(l1, l2, …, ln) = r 
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Data: 
B-NAT 

Function: 
NAT+ 

Function: 
NAT* 

For RPO	




Constructing terminating specification	
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Data: 
B-NAT 

Function: 
NAT+ 

Function: 
NAT^ 

Data: 
B-NAT 

Function: 
NAT+ 

Function: 
NAT* 

Data: 
B-NAT 

Function: 
NAT+ 

Function: 
NAT* 

Base system	


Extension	


Hierarchical
 combination	




Constructing terminating specification	
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Data: 
B-NAT 

Function: 
NAT+ 

Data: 
B-NAT 

Function: 
NAT+ 

Function: 
LIST-len 

Base system	


Extension	


Hierarchical
 combination	


Data: 
B-LIST 

Data: 
B-LIST 

Disjoint union	




Constructing terminating specification	
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Base system	


Extension	


Hierarchical
 combination	


Data: 
B-NAT 

Function: 
NAT+ 

Function: 
LIST-len 

Data: 
NLIST 

Constructor
-sharing
 system	


Function: 
NAT* 

Constructor	


Data: 
B-NAT 

Function: 
NAT+ 

Function: 
LIST-len 

Data: 
NLIST 

Function: 
NAT* 

Function: 
LIST-merge 



Out of scope	


♦  There are CafeOBJ specifications which do not satisfy 
the above conditions of the hierarchical design: 
•  Module INT with s p = X and p s X = X 

•  Since s is D, eq X + s Y = s(X + Y) has D in the 
arguments L.H.S => not restricted proper ext. 

•  Built-in modules may include 
•  infinitely many constants 0,1,2,3,...  
•  infinitely many 0+1=1, 1+1=2, ...  

•  Proof scores 
•  I.H.: eq n + m = m + n  
•  lemma: eq X * (Y + Z) = X * Y + X * Z 
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Future work	


♦  Extend the theorems of hierarchical combinations to 
those covering CafeOBJ specifications 
•  INT, built-in modules, proof score 
•  Operator attributes: AC-TRS 
•  Conditional equations:  

•  1-CTRS (conditions have no extra variable)  
•  Normal CTRS (condition is interpreted as reachability to 

the constant true) 
ceq l = r if cond.   l  r if cond * true	
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