
Constructing Canonical Term
Rewriting Systems

NAKAMURA Masaki

Kanazawa Univ. (~ 2011 Mar.)
 Toyama Prefectural Univ. (2011 Apr.~)

Topic	

 2 / 44

♦  Give a way to construct CafeOBJ specifications
whose corresponding TRSs are canonical
(terminating and confluent)
•  There are lots of studies for termination and confluence in

term rewriting area
•  Try to apply them to CafeOBJ specifications
•  A kind of survey of termination methods for CafeOBJ

♦  Throughout the presentation, only simple
specifications are treated:
•  No conditional equations
•  No operator attributes

Constructing Canonical TRS, Sinaia Workshop 2011

CafeOBJ and Term Rewriting System

♦  The reduction command in CafeOBJ is implemented
based on the term rewriting system (TRS)

♦  For proving an equation in CafeOBJ, decompose it
(make a proof score (proof passages)) until those
leaves can be proved by the reduction command (=
TRS)

Constructing Canonical TRS, Sinaia Workshop 2011 3

Term rewriting system

♦  The term rewriting system (TRS) gives us an efficient
way to prove equations by regarding an equation as a
left-to-right rewrite rule

Constructing Canonical TRS, Sinaia Workshop 2011 4

eq N + 0 = N .

eq M + s N = s (M + N) .

 N + 0 --> N .

 M + s N --> s (M + N) .

s 0 + s s 0 s s 0 + s 0

s (s 0 + s 0)
s (s s 0 + 0)

s s s 0

s s (s 0 + 0)

=E ?

Redex and Rewriting	

♦  A redex is an instance of the LHS of an equation
♦  [Convention] A variable is written in a capital letter in this presentation

♦  (1-step) Rewriting is a replacement of a redex with the
corresponding instance of the RHS

Constructing Canonical TRS, Sinaia Workshop 2011 5

eq M + s N = s (M + N)

 s (0 + s s 0) --> s s (0 + s 0)

Redexs: 0 + s 0 s s 0 + s s 0 s X + s s (Y + s Z)

M <- 0 N <- s 0

with

Reduction and Normal form	

♦  Reduction is repetition of rewriting until it cannot
♦  A reduced term is called a normal form

•  A term is a normal form  It has no redex
(for unconditional TRSs)

Constructing Canonical TRS, Sinaia Workshop 2011 6

s (0 + s 0) --> s s (0 + 0) --> s s 0

eq N + 0 = N .

eq M + s N = s (M + N) .

Variable conditions for TRS

♦  Rewrite rules should satisfy the following variables
conditions
1.  Any LHS should not be a variable

•  E.g. by N = N + 0, reduction does not terminate

2.  Any RHS should not have extra variables, which are
variables not included in the LHS
•  E.g. by 0 = N * 0, a redex can be rewritten into infinitely many

terms (not finitely-branching)

Constructing Canonical TRS, Sinaia Workshop 2011 7

s 0 --> s 0 + 0 --> (s 0 + 0) + 0 --> ...

0 * 0 s s 0 * 0 ...
0

s 0 * 0 sn 0 * 0 ...

Bad equations ignored

♦  The reduction command in CafeOBJ ignores
equations with extra-variables
•  They can be used in the apply command

Constructing Canonical TRS, Sinaia Workshop 2011 8

CafeOBJ> mod* TEST{. . .
 eq N = N + 0 .
 eq 0 = N * 0 .
}
CafeOBJ> select TEST
TEST> red 0 .
-- reduce in TEST : (0):Nat
(0):Nat
(0.000 sec for parse, 0 rewrites(0.000 sec), 0 matches)
TEST>

TRS may not be complete

♦  In general, TRS achieves only a partial equational
reasoning because TRS may not terminate or does not
apply equations in right-to-left direction
•  a = b may not be proved, when {a = a, a = b}

•  b = c is not reduced to true, when {a = b, a = c}

Constructing Canonical TRS, Sinaia Workshop 2011 9

b c =?=

a

a b =?=

a a a

Termination and confluence	

♦  To obtain a complete equational reasoning, the
following properties are important:
•  [Def] A TRS is terminating if the length of every

rewriting sequence is finite

•  [Def] A TRS is confluent if all terms obtained by
rewriting from one ancestor term can be reduced
into a common descendant term 	

Constructing Canonical TRS, Sinaia Workshop 2011 10

t1

t0

t2

t3

t0 t1 t2

Canonical TRS	

♦  A TRS is called canonical when it is both terminating
and confluent

♦  For a canonical TRS, the normal form of a given term
is unique, so

♦  [Thm] For a canonical TRS E, every equation
deducible by given equations (axioms) can be proved
by the reduction command, i.e.,

Constructing Canonical TRS, Sinaia Workshop 2011 11

t =E t’ red t = t’

returns true

Termination and confluence undecidalbe	

♦  In general, both termination and confluence properties
are undecidable, i.e. there is no algorithm to solve the
problem: Is a given TRS terminating (or confluent)?
•  It is known that confluence is decidable for a

terminating TRS

•  Termination guarantees that we can compute a
normal form in finite time

♦  Thus, constructing terminating TRS is the top priority
for our purpose

Constructing Canonical TRS, Sinaia Workshop 2011 12

Constructing terminating TRS

♦  Several termination methods have been proposed

♦  The recursive path ordering (RPO) is one of the most
classical termination methods

•  A well-founded order on terms obtained from a
given precedence order on operation symbols

•  E.g. * + s, 0

♦  [Th] If for every rewrite rule, the left-hand side is
greater than the right-hand side by RPO, then the TRS
is terminating

Constructing Canonical TRS, Sinaia Workshop 2011 13

Recursive Path Ordering	

♦  [Def]

•  s N >rpo N (From 1)
•  [M, s N] >mul [M, N]

•  M + s N >rpo M + N (From 3)
•  M + s N >rpo s(M + N) (From 2 with + s)

Constructing Canonical TRS, Sinaia Workshop 2011 14

€

 s = f (s1,...,sm) >rpo t if
 1. si ≥rpo t for some i, or
 2. t = g(t1,...,tn), f  g and s >rpo t j for every j, or

 3. t = g(t1,...,tn), f = g and [s1,...,sm] >rpo
mul [t1,...,tn]

 eq N + 0 = N .
 eq M + s N = s (M + N)

Constructing RPO-terminating TRS	

♦  [Def] A root symbol of the left-hand side of some
rewrite rule is called a defined symbol (D)

♦  Construct a TRS as follows:
•  Every occurrence g(r1,...rn)of a defined symbol
g in every right-hand side should satisfy

•  Every ri is a subterm of some argument lj of the left-
hand side f(l1,...lm)

•  At least one ri is a strict subterm of some lj
♦  Then, the TRS can be proved terminating by RPO with

the precedence order defined as D C (Constructor
(Non-defined) symbols)

Constructing Canonical TRS, Sinaia Workshop 2011 15

Examples	

♦  Every single module (TRS) above can be proved
terminating by RPO with the precedence

♦  How about a combination of them ... ?	

Constructing Canonical TRS, Sinaia Workshop 2011 16

 eq N + 0 = N .
 eq M + s N = s (M + N)

+ s, 0	

 eq 0 - N = 0 .
 eq M - 0 = M .
 eq s M – s N = (M - N)

- s, 0	

 eq N * 0 = 0 .
 eq M * s N = M + (M * N)

* +, s, 0	

 eq even(0) = true .
 eq odd(0) = false .
 eq even(s N) = odd(N) .
 eq odd(s N) = even(N) .

Even,odd 0,true,false	

Modularity	

♦  [Def] A property P is modular for TRSs if for all TRSs R
and R’ having P, their combination R U R’ also has P
•  Question: Is termination modular?
•  Answer: No

•  Even if R and R’ has no sharing operation symbols,
termination is not modular

Constructing Canonical TRS, Sinaia Workshop 2011 17

 eq f(0,1,X) = f(X,X,X)) .
 eq g(X, Y) = X .
 eq g(X, Y) = Y .

f(0,1,g(0,1)) f(g(0,1),g(0,1),g(0,1))

 f(0,g(0,1),g(0,1)) f(0,1,g(0,1))

Toyama’s famous counterexample	

CE-termination	

♦  [Def] A TRS R is CE-terminating if R U CE is terminating,
where CE={cons(x,y)x, cons(x,y)y}

♦  [Th] CE-termination is modular for disjoint TRSs

♦  Disjoint union is too strong for CafeOBJ specifications
•  Importing and imported modules usually share

operation symbols 	

Constructing Canonical TRS, Sinaia Workshop 2011 18

 eq f(0,1,X) = f(X,X,X)) .
 eq g(X, Y) = X .
 eq g(X, Y) = Y .

RPO	

Simple
 Termination	
 CE- Termination	
 Termination	

Kinds of Combinations	

♦  There are different kinds of combinations
1.  R and R’ are disjoint if they do not have share

operation symbols
2.  R and R’ are constructor-sharing if they share at

most constructors
3.  A hierarchical combination of the base system R and

the extension R’ allows defined symbols of R to
occur as constructors in R’ (not vice versa)	

Constructing Canonical TRS, Sinaia Workshop 2011 19

D	

C	

D’	

C’	

D	

C	

D’	

C’	

D	

C	

D’	

C’	

Examples of combinations	

♦  R+ and R@ are disjoint
♦  R+ and R- are constructor-sharing

•  s and 0 are shared
♦  R* is an extension of the base system R+ (hierarchical

combination)
•  + is a constructor in R*

Constructing Canonical TRS, Sinaia Workshop 2011 20

 eq N + 0 = N .
 eq M + s N = s (M + N)

 eq 0 - N = 0 .
 eq M - 0 = M .
 eq s M – s N = (M - N)

 eq N * 0 = 0 .
 eq M * s N = M + (M * N)

 eq nil @ YS = YS .
 eq (X : XS) @ YS = X : (XS @ YS).

CE-termination and constructor-sharing 	

♦  [Def] A TRS is finitely-branching if for all terms t, the
set { t’ | t  t’ } of one-step reducts of t is finite

♦  [Th] Ce-termination is modular for finitely-branching
constructor-sharing TRSs

♦  Trivially, if the number of equations (rewrite rules) is
finite (= finite TRS), the TRS is finitely-branching

♦  [Cr] Ce-termination is modular for finite constructor-
sharing TRSs	

Constructing Canonical TRS, Sinaia Workshop 2011 21

CE-termination and hierarchical combinations	

♦  In general, CE-termination is not modular for
hierarchical combinations

♦  What is the difference between the upper one and the
lower one?
•  The occurrence of the defined symbols (a and +) of

the base system in the R.H.S. of the extension

Constructing Canonical TRS, Sinaia Workshop 2011 22

 eq a = b . eq f(b) = f(a) .

 eq N + 0 = N .
 eq M + s N = s (M + N)

 eq N * 0 = 0 .
 eq M * s N = M + (M * N)

Restricted proper extension 	

♦  [Def] R’ is a proper extension of R if functions depending on R
are never called within a recursive call of R’
•  f depends on R  f(...) = C[g(...)] exists for some g in D

♦  [Def] R’ is a restricted proper extension of R if it is a proper
extension of R such that no L.H.S of R’ contains defined
symbols strictly below its root

♦  [Th] CE-termination is modular for finite restricted proper
extensions
•  For more precise definitions, see the reference [Ohlebusch

2002]

Constructing Canonical TRS, Sinaia Workshop 2011 23

 eq a = b . eq f(b) = f(a) .

 eq N + 0 = N .
 eq M + s N = s (M + N)

 eq N * 0 = 0 .
 eq M * s N = M + (M * N)

Apply modularity results to CafeOBJ spec.	

♦  To describe a specification of an abstract data type
•  Describe a module for constructors
•  Give a partial order on functions to be defined

•  Like power() > _*_ > _+_	

•  Describe a module for each function on the data
type (one module for one function)

Constructing Canonical TRS, Sinaia Workshop 2011 24

Data:
B-NAT

Data:
B-LIST

Data:
B-BOOL

Function:
NAT+

Function:
NAT*

Function:
NAT= Function:

LIST-len

A module

Constructors	

♦  Equations in each module for functions
should satisfy the following conditions:
•  Every occurrence g(r1,...rn)of a defined symbol

in every R.H.S. should satisfy that
•  Every ri is a subterm of some argument lj of the L.H.S.
f(l1,...lm)

•  At least one ri is a strict subterm of some lj

•  Each argument li is a constructor term for every
eq f(l1, l2, …, ln) = r

Constructing Canonical TRS, Sinaia Workshop 2011 25

Data:
B-NAT

Function:
NAT+

Function:
NAT*

For RPO	

Constructing terminating specification	

Constructing Canonical TRS, Sinaia Workshop 2011 26

Data:
B-NAT

Function:
NAT+

Function:
NAT^

Data:
B-NAT

Function:
NAT+

Function:
NAT*

Data:
B-NAT

Function:
NAT+

Function:
NAT*

Base system	

Extension	

Hierarchical
 combination	

Constructing terminating specification	

Constructing Canonical TRS, Sinaia Workshop 2011 27

Data:
B-NAT

Function:
NAT+

Data:
B-NAT

Function:
NAT+

Function:
LIST-len

Base system	

Extension	

Hierarchical
 combination	

Data:
B-LIST

Data:
B-LIST

Disjoint union	

Constructing terminating specification	

Constructing Canonical TRS, Sinaia Workshop 2011 28

Base system	

Extension	

Hierarchical
 combination	

Data:
B-NAT

Function:
NAT+

Function:
LIST-len

Data:
NLIST

Constructor
-sharing
 system	

Function:
NAT*

Constructor	

Data:
B-NAT

Function:
NAT+

Function:
LIST-len

Data:
NLIST

Function:
NAT*

Function:
LIST-merge

Out of scope	

♦  There are CafeOBJ specifications which do not satisfy
the above conditions of the hierarchical design:
•  Module INT with s p = X and p s X = X

•  Since s is D, eq X + s Y = s(X + Y) has D in the
arguments L.H.S => not restricted proper ext.

•  Built-in modules may include
•  infinitely many constants 0,1,2,3,...
•  infinitely many 0+1=1, 1+1=2, ...

•  Proof scores
•  I.H.: eq n + m = m + n
•  lemma: eq X * (Y + Z) = X * Y + X * Z

Constructing Canonical TRS, Sinaia Workshop 2011 29

Future work	

♦  Extend the theorems of hierarchical combinations to
those covering CafeOBJ specifications
•  INT, built-in modules, proof score
•  Operator attributes: AC-TRS
•  Conditional equations:

•  1-CTRS (conditions have no extra variable)
•  Normal CTRS (condition is interpreted as reachability to

the constant true)
ceq l = r if cond.  l  r if cond * true	

Constructing Canonical TRS, Sinaia Workshop 2011 30

