Constructing Canonical Term
Rewriting Systems

NAKAMURA Masaki

Kanazawa Univ. (~ 2011 Mar.)
- Toyama Prefectural Univ. (2011 Apr.~)

Topic

¢ Give a way to construct CafeOBJ specifications
whose corresponding TRSs are canonical
(terminating and confluent)

e There are lots of studies for termination and confluence in
term rewriting area

* Try to apply them to CafeOBJ specifications
* A kind of survey of termination methods for CafeOBJ

¢ Throughout the presentation, only simple
specifications are treated:

* No conditional equations
* No operator attributes

Constructing Canonical TRS, Sinaia Workshop 2011

CafeOBJ and Term Rewriting System

¢ The reduction command in CafeOBJ is implemented
based on the term rewriting system (TRS)

¢ For proving an equation in CafeOBJ, decompose it
(make a proof score (proof passages)) until those
leaves can be proved by the reduction command (=
TRS)

NAT +|— (V.y)(.) +.‘s*y= S0+ p) NAT+ U{(Vy)a+ sy= J(.d-l-.}/).} |—(Vy)ya+ sy=S(sa+ y)
NAT + |- (V)0 + 5p= 50 +), NAT + |-(V)s0 + 5= (50 +), NAT + -(V)s50 + 5= s(50 + »), ...
NAT + |—(Vx)(Vy)x+ sy=s(x+ p)

Constructing Canonical TRS, Sinaia Workshop 2011

Term rewriting system

¢ The term rewriting system (TRS) gives us an efficient
way to prove equations by regarding an equation as a
left-to-right rewrite rule

eq N+ 0 =N . N+ 0 --> N .
eqM+ s N=s (M + N) . M+ sN->s (M + N)
s 0+ss O = s s 0+s0 ?

\ s (s s 0 + 0)
SS(SO-I-O)\ /

s s s O

Constructing Canonical TRS, Sinaia Workshop 2011

Redex and Rewriting

¢ Aredexis an instance of the LHS of an equation
¢ [Convention] A variable is written in a capital letter in this presentation

eqg M+ s N=s (M + N)

Redexs: 0 + s 0O s s 0+ s s 0 s X+ s s (Y + s Z)

¢ (1-step) Rewriting is a replacement of a redex with the
corresponding instance of the RHS

s (0 + s s 0) -—> s s (0 + s 0)
with

M<-0 N <-s 0

Constructing Canonical TRS, Sinaia Workshop 2011

Reduction and Normal form

¢ Reduction is repetition of rewriting until it cannot
¢ A reduced term is called a normal form

e Atermis a normal form < It has no redex
(for unconditional TRSs)

S SO + s 0) —-—> s s 50 + 0) -—> s s 0

eq N + 0 =N .

eqg M+ s N=3s (M+ N) .

Constructing Canonical TRS, Sinaia Workshop 2011

Variable conditions for TRS

¢ Rewrite rules should satisfy the following variables
conditions

1. Any LHS should not be a variable

« E.g. by N=N +0, reduction does not terminate

s 0 -——>s 0+ 0 -—> (s O +0) +0 —-—> ...

2. Any RHS should not have extra variables, which are
variables not included in the LHS

« E.g. by 0 =N *0, a redex can be rewritten into infinitely many
terms (not finitely-branching)

0 * 0 s s 0 * 0 ...
T
s 0 O s 0 * 0 ...

Constructing Canonical TRS, Sinaia Workshop 2011

Bad equations ignored

¢ The reduction command in CafeOBJ ignores
equations with extra-variables
* They can be used in the apply command

CafeOBJ> mod* TEST{. ..
eqN=N+0.
eq0=N*0.

}
CafeOBJ> select TEST

TEST>red 0.

-- reduce in TEST : (0):Nat

(0):Nat

(0.000 sec for parse, 0 rewrites(0.000 sec), 0 matches)
TEST>

Constructing Canonical TRS, Sinaia Workshop 2011

TRS may not be complete

¢ In general, TRS achieves only a partial equational
reasoning because TRS may not terminate or does not
apply equations in right-to-left direction
* a = Db may not be proved, when {a = a, a = b}

a == b

N\

A —5> 3 —» g — -=-

* b =cis not reduced to true, when {a=b, a =c}

a
/
b == C

Constructing Canonical TRS, Sinaia Workshop 2011

Termination and confluence

¢ To obtain a complete equational reasoning, the
following properties are important:

* [Def] A TRS is terminating if the length of every
rewriting sequence is finite

ty, — t, — t, —> X

* [Def] A TRS is confluent if all terms obtained by
rewriting from one ancestor term can be reduced
Into a common descendant term

b
4 \t

1., a2
N\
3

Constructing Canonical TRS, Sinaia Workshop 2011 10

t

Canonical TRS

¢ A TRS is called canonical when it is both terminating
and confluent

¢ For a canonical TRS, the normal form of a given term
IS unique, so

¢ [Thm] For a canonical TRS E, every equation
deducible by given equations (axioms) can be proved
by the reduction command, i.e.,

t = t’ (@) red t =t

returns true

Constructing Canonical TRS, Sinaia Workshop 2011

Termination and confluence undecidalbe

¢ In general, both termination and confluence properties
are undecidable, i.e. there is no algorithm to solve the
problem: Is a given TRS terminating (or confluent)?

* |t is known that confluence is decidable for a
terminating TRS

* Termination guarantees that we can compute a
normal form in finite time

¢ Thus, constructing terminating TRS is the top priority
for our purpose

Constructing Canonical TRS, Sinaia Workshop 2011

Constructing terminating TRS

¢ Several termination methods have been proposed

¢ The recursive path ordering (RPO) is one of the most
classical termination methods

* A well-founded order on terms obtained from a
given precedence order > on operation symbols
cEg. *>+ > s, O

¢ [Th] If for every rewrite rule, the left-hand side is
greater than the right-hand side by RPO, then the TRS
IS terminating

Constructing Canonical TRS, Sinaia Workshop 2011

Recursive Path Ordering

08 [Def] s=f(s,....8,) >, t 1t)
l. s; =z ,t for some i, or

2. t=g(t,..,t,), f>gand s> t foreveryj, or

rpo

3. t=g(t,), f = gand[s;,....s,] S A

*sN > N (From1) e e d
'[M,SN] >m“'[|\/|,N] eq M+ s N

*M+sN >, M+N (From 3)

* M+sN >, s(M+N)(From 2 with + [>s)

Constructing Canonical TRS, Sinaia Workshop 2011

Constructing RPO-terminating TRS

¢ [Def] A root symbol of the left-hand side of some
rewrite rule is called a defined symbol (D)

¢ Construct a TRS as follows:

* Every occurrence g (r,, . ..r) of a defined symbol
g in every right-hand side should satisfy

* Every r, is a subterm of some argument 1. of the left-
hand side £ (1,,...1.)

* Atleast one r, is a strict subterm of some 1.

¢ Then, the TRS can be proved terminating by RPO with

the precedence order defined as D [> C (Constructor
(Non-defined) symbols)

Constructing Canonical TRS, Sinaia Workshop 2011

Examples

eq N + 0 =N . 22 31: Igi;
eqg M+ sN=s (M + N) egsM-sN-= (M- N)
+ [>s, 0 - >s, 0
eq even(0) = true .
eq N * 0O =0 . eq odd(0) = false .
eqM* s N=M+ (M * N) eq even(s N) = odd(N)
eq odd(s N) = even (N)

* >+, s, O

Even,odd [>0,true, false

¢ Every single module (TRS) above can be proved
terminating by RPO with the precedence

¢ How about a combination of them ... ?

Constructing Canonical TRS, Sinaia Workshop 2011

Modularity

¢ [Def] A property P is modular for TRSs if for all TRSs R
and R’ having P, their combination R U R’ also has P

e Question: Is termination modular?

e Answer: No

- Even if R and R’ has no sharing operation symbols,
termination is not modular

Toyama’s famous counterexample

[
X

eq g(X, Y)

eq £(0,1,X) = £(X,X,X)) eq g (X, Y)

£(0,1,g(0,1))—>£(g(0,1),9(0,1),9(0,1))
£(0,9(0,1),9(0,1)) £(0,1,9(0,1))

Constructing Canonical TRS, Sinaia Workshop 2011

Cc-termination

¢ [Def] A TRS R is Cg-terminating if R U Cg is terminating,
where C={cons(X,y)=2>X, cons(X,y)=2>V}

¢ [Th] Cc-termination is modular for disjoint TRSs

X .
Y .

eq g(X, Y)

eqg £(0,1,X) = £(X,X,X)) . eq g(X Y)

Simple L L
[Termination]I:>[Cc- Termination]I:>[Termination]

¢ Disjoint union is too strong for CafeOBJ specifications

* Importing and imported modules usually share
operation symbols

Constructing Canonical TRS, Sinaia Workshop 2011

Kinds of Combinations

¢ There are different kinds of combinations

1. R and R’ are disjoint if they do not have share
operation symbols

2. R and R’ are constructor-sharing if they share at
most constructors

3. A hierarchical combination of the base system R and
the extension R’ allows defined symbols of R to
occur as constructors in R’ (not vice versa)

O OO
©© €O,

Constructing Canonical TRS, Sinaia Workshop 2011

Examples of combinations

¢ R, and R are disjoint
¢ R, and R_are constructor-sharing
* s and 0 are shared

¢ R.is an extension of the base system R, (hierarchical
combination)

e +|s a constructor in R.

eqg N + 0 =N . eq nil @ ¥S = ¥S .

eq M+ s N=s (M + N) eq (X : XS) @ ¥YS =X : (XS @ ¥s).
0 - N=20

°d eq N * 0 =20 .

sq Ll= =l egM* sN=M+ (M * N)

egsM-sN= (M- N) q

Constructing Canonical TRS, Sinaia Workshop 2011

Ce-termination and constructor-sharing

¢ [Def] A TRS is finitely-branching if for all terms t, the
set{t |t = t } of one-step reducts of t is finite

¢ [Th] C_-termination is modular for finitely-branching
constructor-sharing TRSs

¢ Trivially, if the number of equations (rewrite rules) is
finite (= finite TRS), the TRS is finitely-branching

¢ [Cr] C_-termination is modular for finite constructor-
sharing TRSs

Constructing Canonical TRS, Sinaia Workshop 2011

Ce-termination and hierarchical combinations

¢ In general, Cc-termination is not modular for
hierarchical combinations

eqa=>b . eq £(b) = £(a) .
eq N + 0O =N . eq N * 0 =0 .
eq M+ s N=s (M + N) eqM* s N=M+ (M * N)

¢ What is the difference between the upper one and the
lower one?

* The occurrence of the defined symbols (a and +) of
the base system in the R.H.S. of the extension

Constructing Canonical TRS, Sinaia Workshop 2011

Restricted proper extension

¢ [Def] R’ is a proper extension of R if functions depending on R
are never called within a recursive call of R’

 fdependson R < f(...) = C[g(...)] exists for some g in D

¢ [Def] R’ is a restricted proper extension of R if it is a proper
extension of R such that no L.H.S of R’ contains defined
symbols strictly below its root

¢ [Th] C-termination is modular for finite restricted proper
extensions

* For more precise definitions, see the reference [Ohlebusch

2002] -
eqa=>b . eqf(b)

eq N + 0O =N . eq N * 0O =0 .

eq M+ s N=s (M + N) eqM*sN=M+

Constructing Canonical TRS, Sinaia Workshop 2011

Apply modularity results to CafeOBJ spec.

¢ To describe a specification of an abstract data type

e Describe a module for constructors
* Give a partial order on functions to be defined
 Like power () > * > 4+

e Describe a module_fc;r ea;;h_function on the data
type (one module for one function)

— Amodule

&

Function:

NAT*

Function:
NAT+

|

Data:
B-NAT

Constructing Canonical TRS, Sinaia Workshop 2011

Function:
NAT=

Data:
B-BOOL

Function:
LIST-len

Data:
B-LIST

Function:

Constructors NAT”

unction:
NAT+

¢ Equations in each module for functions Data,
should satisfy the following conditions: ST

E Every occurrence g (r,, . . .r) of a defined symbol \
in every R.H.S. should satisfy that

* Every r, is a subterm of some argument 1. of the L.H.S.

f(lll...lm) -
J

* Atleast one r, is a strict subterm of some 1.
e Each argument 1, is a constructor term for every]

eq f(1,1, ..,1,) =1

n

Constructing Canonical TRS, Sinaia Workshop 2011

Constructing terminating specification

Function:
NAT*

NAT+

Function:

Function:
NAT+

Data:
B-NAT

Hierarchical
combination

Extension

Base system

Constructing Canonical TRS, Sinaia Workshop 2011

Function:
NATA

Function:
NAT*

Function:
NAT+

Data:
B-NAT

Constructing terminating specification

Hierarchical
Disjoint union combination

Function:
LIST-len

Extension

Function:
NAT+ B-LIST

Function:
NAT+

Base system

Constructing Canonical TRS, Sinaia Workshop 2011

Constructing terminating specification

Hierarchical
combination

Constructor
—Sharing Function:
LIST-merge
system Extension
Function: Function: . o
NAT* LIST-len F“,{KT'?”' 'T_lfg‘}t'f;?]
Function: Data: D
NAT+ NLIST
Data:
B-NAT B t
asSe sysiem
Constructor y

Constructing Canonical TRS, Sinaia Workshop 2011

Out of scope

¢ There are CafeOBJ specifications which do not satisfy
the above conditions of the hierarchical design:

* Module INTwithsp=Xandps X=X

« SincesisD,eqX+sY=s(X+Y)hasDinthe
arguments L.H.S => not restricted proper ext.

e Built-in modules may include
* infinitely many constants 0,1,2,3,...
e infinitely many 0+1=1, 1+1=2, ...
* Proof scores
* |lH:egn+m=m+n
* lemma:eq X*(Y+2)=X*Y+X*~Z

Constructing Canonical TRS, Sinaia Workshop 2011

Future work

¢ Extend the theorems of hierarchical combinations to
those covering CafeOBJ specifications

* INT, built-in modules, proof score
e Operator attributes: AC-TRS

e Conditional equations:
« 1-CTRS (conditions have no extra variable)

* Normal CTRS (condition is interpreted as reachability to
the constant true)

ceql=rifcond. & | > rif cond 2 true

Constructing Canonical TRS, Sinaia Workshop 2011

