H user manuall
— version 1.0.0 —

Mihai Codescu' and Razvan Diaconescu?
nstitute of Mathematics ”Simion Stoilow” of the Romanian
Academy, Research Group of the project PED-0494, Bucharest,
Romania
’Institute of Mathematics ”Simion Stoilow” of the Romanian
Academy, Bucharest, Romania

!This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS/CCCDI — UEFISCDI, project number PN-
[11-P2-2.1-PED-2016-0494, within PNCDI III.

Chapter 1

Introduction

1.1 Reconfigurable systems in H

A reconfigurable system is one with different modes of operation, called config-
urations, and with the ability of to commute between these modes during its
execution along transitions between these modes. Here, we present H, avail-
able at http://imar.ro/~diacon/forver, a tool for formal specification and
verification of reconfigurable systems that supports their correct and efficient
development. The key idea is to have a generic language for specifying the
configurations and the transitions between them, while the formalism used for
specifying the local behavior of the system, for each configuration, can be freely
chosen by the user as the most appropriate for the given requirements.

Formally, this is achieved by applying a generic construction, called hy-
bridization, that has as parameters the base logic, the kinds of symbols that are
allowed to appear as variables in quantifications and constraints on the inter-
pretations of various symbols in the configurations. The result is again a logic,
that we will refer as a hybridized logic. Its signatures extend the signatures of
the base logic with nominals (names of configurations) and modalities (names
of events causing reconfigurations). The sentences can be sentences of the base
logic, nominals, modal box- and diamond-sentences, retrieve sentences (meant
to hold at a given state), combinations of sentences using Boolean connectors
and, when the parameter allows, quantification on nominals and/or symbols
from the base logic. Models are Kripke frames with each nominal interpreted
as one of the possible worlds and the events as an accessibility relation between
these worlds.

1.2 The Heterogeneous Tool Set

From an implementation point of view, H is an extension of the Heterogeneous
Tool Set (Hets), a multi-formalism parsing, static analysis and proof manage-
ment tool for the specification and verification of formal systems. The multi-

formalism aspect of Hets means that the system supports a variety of logics and
languages and integrates their specific state-of-the-art proof tools. Moreover,
Hets provides support for proof-by-translation technique: this enables the de-
velopment of proof capabilities for new logical formalisms, with no dedicated
or not sufficiently developed tool support, by means of translations to other
tool-supported logics that are integrated into Hets. Hets has been implemented
in such a way that a new logic can be integrated with moderate effort, and
the implementation of H relies on this fact. Since H was implemented as an
extension of Hets, the interfaces of the H and Hets tools are identical, and any
component of Hets is also a part of H.

1.3 Structure

Chapter 2 provides instructions for downloading and installing the H environ-
ment. In Chapter 3 we illustrate how to write specifications in H and how to
use the system to parse and analyze them. Chapter 4 explains how to verify
properties of reconfigurable systems specified in H, using the first-order provers
integrated in Hets. In Chapter 5 we discuss the notations used for the partic-
ular case of layered hybridization, when the logic used at the local level is a
hybridized one. Chapter 6 shows how to write structured specifications in H.
Finally, in Chapter 7 we present a more advanced feature of H, namely how
to set the parameters for the hybridization process in order to obtain a new
hybridized institution and make it available for specification and verification in
the tool.

Acknowledgements. We thank Till Mossakowski and Fabian Neuhaus for
discussions on language design and implementation issues and to Ionut Tutu
for comments on several versions of this document.

Chapter 2

Getting the H environment

To be able to use H, choose one of the two binaries available at http://imar.
ro/~diacon/forver according to the notation that you prefer: one for mathe-
maticians, closer to textbooks on modal and hybrid logic, and one for engineers,
closer to natural language. Note that both binaries are large files, about 90 Mb
in size. Then install Hets:

sudo apt-get install software-properties-common

sudo apt-add-repository ppa:hets/hets

sudo apt-get update

sudo apt-get install hets-desktop
and replace the binary file (found at \usr\bin\hets) with the one downloaded
from the H homepage. Fig. 2.1 below shows the interface for proving a conjecture
in the H system.

To check that H has been installed properly, type in a terminal: hets.
This will display information about the command flags available in Hets We
will mention here only those Hets flags that directly relevant for H:

e -vX (where X is between 0 and 5) — sets the verbosity level. Use -v2 to
display warnings.

e —g — displays the development graph of the specifications being analyzed.
The general syntax for running H is
hets [OPTION] [FILE]

where OPTION is a command flag and FILE is the file to be analyzed. The file sent
as an argument is checked for correctness w.r.t. syntax (i.e. do all declarations of
every specification in the file respect the grammar of the language?) and static
semantics (e.g. have all used symbols been declared before use?). If both checks
are passed, Hets builds a development graph, consisting of a representation of the
import structure between the specifications of the argument file and including
the open conjectures. Informally, the nodes in development graphs correspond
to theories. The edges can be of several kinds, divided in two categories: import

0 [

savetptpFile | show Details

Help Save config close

Figure 2.1: The H system

links, which can be within the same logic or along a logic translation, and
theorem links, carrying the intended semantics that the sentences at the source
of the link are logical consequences of those of the target of the link. Conjectures
are marked in the graph by the red color of the nodes corresponding to the
theories with open proof goals. We will see in Chapter 4 how to use the logic-
specific provers integrated in Hets to discharge them.

The hybridized logics currently supported by H are:
HProp hybridization of propositional logic, no quantification, no constraints.

HPropNoms hybridization of propositional logic, admits quantification on
nominals, no constraints.

HPropT like HProp, accessibility relation between worlds must be reflexive.
HPropS4 like HProp, accessibility relation between worlds must be a preorder.

HPropS5 like HProp, accessibility relation between worlds must be an equiv-
alence.

HFOL hybridization of first-order logic, admits quantification on nominals.

HFOLR hybridization of first-order logic with rigid symbols, quantification on
rigid constants and nominals.

HFOLRC like HFOLR, rigid symbols are interpreted in the same way in each
world.

HRigidCASL hybridization of logic of partial algebras with rigid symbols,
quantification on rigid total constants and nominals.

HRIigidCASLC like HPAR, rigid sorts and rigid total functions are interpreted
in the same way in each world, the domain of each rigid partial function
is the same in each world.

In Chapter 5 we will add more logics to this list.

Chapter 3
Writing H specifications

Each H specification has 3 parts: the current logic, the data part and the
configuration part.

3.1 Current logic

For each specification in a hybridized logic, we must specify its underlying logic.
This determines which logic-specific parser and static analysis tool are called
during the analysis of the specification. The syntax is

hlogic: LOGIC-NAME
where LOGIC-NAME is the name of a hybridized logic supported in H.

Example 3.1.1. We can set the current logic to be the hybridization of the
logic of propositional logic by writing

spec Test =
hlogic: HProp

3.2 Data part

The syntax is logic-specific. The examples we use involve hybridization of propo-
sitional logic, of first-order logic and its sublogics (no function symbols other
than constants, no predicate symbols), of the logic of partial algebras and of
logics with rigid symbols. In the following we will briefly give a quick reference
for writing specifications in these logics: propositional logic has its own syntax,
first-order and partial logics appear in Hets as sublogics of the CASL logic and
inherit its syntax, and rigid symbols are written, in the appropriate logics, as
usual declarations prefixed by the keyword rigid. For every logic, sentences
start with a dot and they have optional names, written % (name)?%. Comments
start with %%. Specifications in a base logic L are written

spec S =
logic L
{

<logic—specific declarations>

}

3.2.1 In propositional logic

Propositional symbols are declared using the keyword props. Sentences are
formed through repeated applications of the Boolean connectors to the propo-
sitional symbols. We illustrate the syntax with some well-known tautologies:

props a, b

not (a \/ b) <=> (not a /\ not b)
%(deMorgan)%

(a = b) <=> (not b => not a)
%(contraposition)%

((not a =>b) /\ (not a => not b)) = a
%(reductio_ad_absurdum)%

Note that negation binds strongest, followed in order by conjunction, dis-
junction, implication and equivalence.

3.2.2 In a sublogic of CASL

Declarations may include sorts, total or partial function symbols and predicate
symbols. Sentences are formed by applying Boolean connectors and quantifica-
tion over total variables to atomic formulas. These can be predications, strong
or existential equalities or definedness assertions. For example, we can specify
natural numbers in Peano style, with the constant 0, the successor function suc,
the partial predecessor function pre and the smaller-than predicate <, in infix
form, as below:

sort Nat
ops 0 : Nat;
suc : Nat —> Nat;
pre : Nat —>7 Nat
pred __<__ : Nat x Nat

forall x : Nat . not (suc(x) = 0)
forall x, y : Nat . suc(x) = suc
not def(pre(0))

forall x : Nat . pre(suc(x)) = x
not (0 < 0)

forall x : Nat . 0 < suc(x)
forall x, y : Nat . x < y = suc(x) < suc(y)

3.3 Configuration part

In the configuration part we declare the named configurations of the system
together with the axioms that hold for each state, the events causing reconfig-
urations of the systems and the properties of the entire system. Therefore, we
consider three types of declarations.

Declarations of configurations start with the keyword nominal (or in the
notation for engineers, state) and are followed by the name of the state.

Declarations of reconfigurations start with the keyword modality (event
in the notation for engineers) and are followed by the name of the reconfiguration
and its arity.
Hybrid logic sentences are either

e base sentences, written in the syntax of the logic being hybridized,

e nominals, thus allowing state names to appear in sentences,

e combination of sentences using the ordinary Boolean connectors,

e modal box and diamond sentences,

e retrieve sentences, that are meant to hold at a given state and,

e depending on the hybrid logic we use, quantifications over nominals and /or
symbols from the base logic of a certain kind, e.g. total constants or rigid
total constants.

The ”Hello world”-like example below introduces a system with three states,
all explicitly named, an accessibility relation between them, and such that a
proposition p declared in the data part S of the specification holds in two of them.
The underlying logic of the specification is the hybridization of propositional
logic with quantification on nominals.

data:
S

configuration :

%% three state names
nominals sl, s2, s3

%% one binary modality
modality gamma : 2

%% there are no states other than the named ones

sl \/ s2 \/ s3
%% the states are different

. @ sl : not s2 /\ not s3
. @ s2 : not sl /\ not s3

%% transitions and labeling function

. @ sl : <gamma> s2
. @ sl : <gamma> s3
. @ sl :p
. @ 82 : [gamma] s2
. @ 52 : <gamma> s2
. @ s2 : not p
. @ 83 : <gamma> sl
. @ 83 : <gamma> s3
. @s3 :p

In the notation for engineers, the same example is written as follows:
data:

S

configuration:

%% three state names
states sl, s2, s3

%% one binary event
event gamma : 2

%% there are no states other than the named ones

sl \/ s2 \/ s3

%% the states are different
At state sl : not s2 /\ not s3
At state s2 : not sl /\ not s3

%% transitions and labeling function

At state sl : Through gamma, sometimes s2

At
At

At
At
At

At

At
At

3.4

state
state

state
state
state

state
state
state

sl
sl

s2
s2
s2

s3
s3
s3

Through gamma, sometimes s3

p

Through gamma,
Through gamma,
not p

Through gamma,
Through gamma,

p

Running Hets

always s2
sometimes s2

sometimes sl
sometimes s3

el NN CAENES

BB Ee vlsls |2

Figure 3.1: H windows.

If the specification is correct, when executed with the -g flag, H will suc-
cessfully analyze it and produce two windows: the library window and the de-
velopment graph window. The library window shows the structure of imported
files (left of Fig. 3.1) and the development graph window shows the structure of
the specification analyzed (right of Fig. 3.1).

3.5 Typical properties for reconfigurable systems

In the following we present a list of patterns of how properties of reconfigurable
systems are written in the H syntax.

e The only possible configurations are the named ones:

where the 4, .

11 VigV ... Vi

.., 1, are all state names declared in the configuration part.

e A property P holds in the state denoted by a nominal i:

@i :

10

P

e There is a transition from state i to state j along the event M:
@i : <M> j
e In all states reachable from a state 7, the property P holds:
@i : [M] P
e A property P holds for each state:
forallH nominal i . P

This construction is valid only if the logic must admit quantification on
nominals.

3.6 Troubleshooting

If the specification contains errors, H will display appropriate error messages or
warnings, together with a pointer (file line and column of the start and end in
the input file) to the most likely cause of the error. We give a list of the most
common errors below:

e undeclared nominal NAME — a state name appears in a sentence without
having been previously declared.

e undeclared modality NAME — an event name appears in a sentence with-
out having been previously declared.

e no operation with N arguments found for ’NAME’ — an N-ary func-
tion symbol appears in a sentence without having been previously de-
clared.

e unknown sort NAME — a sort name appears in the arity of a function or
predicate symbol without having been previously declared.

e The sublogic of the analyzed theory should be ..., but it is ...

— occurs if we apply the hybridization method to a sublogic of a Hets logic
and we write a specification in a more expressive sublogic of that logic.

11

Chapter 4

Proofs in H

Conjectures are specified as an extension of specifications, using the syntax
spec S’ = S then %implies {<list-of-axioms>}

where 8 is the specification in a hybrid logic whose properties (given in the
<list-of-axioms>) we want to verify. In the development graph built dur-
ing the static analysis of the specification, this is represented as a theorem
link with the source in S’ and target in S. After the user selects
) Auto-DG-Prover|, the development graph calculus introduces the sentences from

<list-of-axioms> as new conjectures in S.

uDraw(Graph) 3.1.1 - Hets Development Graph for 3states

Eile Edit Yiew Havigation MAkstraction Lagout Options HEIF‘

e B L (e e

= =

Tevelopment Graph initialized.

Figure 4.1: Proving at a node.

These conjectures can be discharged by translating the specification to first-
order logic and then calling one of the first-order provers connected to H. To do
this, the user selects "Prove” in the pop-up menu that appears when clicking
the right button of the mouse over a node with open proof goals.

The system selects a translation from the current hybrid logic to first-order

12

Goals:

Selected goal(s):
Proof details | Display || Prove

Sublogic of currently selected theory:
HPAR
Pick theorem prover:
Darwin
EProver
MathServe Broker
Quickcheck

All None Invert | Selected comorphism path:

id_HPAR;HPAR2CASL;CASL2Softt
Select open goals =

Fine grained composition of theory

Axioms to include: Theorems to include if proven:

Ax1

Ax11
Ax2 Ax12
Ax3 Ax13
Axa
All None Invert
Deselect former theorems All None Invert
Show theory Show selected theory Close

Figure 4.2: Selecting the prover and the conjectures to be proven.

. As we see in Fig. 4.2, the user can then select from a list the desired
prover and set the proof parameters: which conjectures will be proven and which
axioms can be used during the proof (in both cases, by default all). Finally, by
pushing the "Prove” button we attempt to prove the selected conjectures. If
this is successful, Hets will display a '+’ sign before it, if not, a -’ sign, and if
the prover returns no answer within the time limit set by the user a ’t’ sign.

Goals: Selected goal(s):
[Ax13 Proof details | Display || Prove
[+ Ax11 Sublogic of currently selected theory:
[+ Ax12 CASL Prenex=
Pick theorem prover:
Darwin
EProver
MathServe Broker
QuickCheck
All None Invert | Selected comorphism path:
Select open goals | id_CASL.Prenex=;CASL2SoftFOL

Fine grained composition of theory

Axioms to include: Theorems to include if proven:

ga_domain_c AX11
Ax1 Ax12
Ax2 Ax13
Ax3
All None Invert
Deselect former theorems All None Invert
Show theory Show selected theory Close

Figure 4.3: The result of proving.

For example, in the case of the system with 3 states introduced in Chap. 3.3,
we can check that there is a state where the property p does not hold and
moreover that there is a state where after a transition we reach a state where

1 Actually, this is composed with a translation from first-order logic to the input logic of

13

the property p does not hold. We also include a conjecture that is not true,
namely that for each state the property p(c) holds:

existsH nominal i . @ i : not p(c) %implied
existsH nominal i . @ i : <shift> not p(c) %implied
forallH nominal i . @ i : p(c) %implied

In Fig. 4.3 the results of proving are displayed: the first two conjectures are
proven (marked with green and '+’) while the third is, as expected, not a logical
consequence of the specification (marked with red and *-").

14

Chapter 5

Double hybridization

If the base logic parameter of the bybridization process is itself a hybridized
logic, special syntactic features are needed to disambiguate between sentences
appearing at different levels of hybridization. Let us assume that the logic used
at the base level is named HI and the new hybridized logic is named HHI. In the
case of base formulas and of Boolean connectors, no disambiguation is needed.
Nominals and modalities appearing in formulas as well as quantified sentences
may be qualified with the name of the logic where they belong: ::HHI for top-
level symbols and : :HHI for base-level symbols. If the qualification is missing,
it defaults to the top-level.

The following example illustrates the new syntactic features and shows how
the static analysis of H solves qualifications and rejects ill-formed sentences,
when the sentences legal at the lower /upper level of quantification are no longer
legal at the other level. The logic HHPropNomsQuant is the hybridization of
the hybridization of propositional logic with nominals HPropNoms, and it allows
itself quantification on propositional symbols, but not on nominals.

spec D =

logic Propositional
{

props p, q

- Pp=4q

}

end

spec S =
hlogic: HPropNoms

data: D

configuration:

15

nominals sl1, s2
modality t: 2

. sl : <t> s2
. @ s2 : <t> sl

. sl : p
. @s2 g
end

spec T =
hlogic: HHPropNomsQuant

data: S
configuration :

nominals wl, w2
modality 1 : 2

Q@ wl o o<I> w2
@ w2 s o <I> wl

forallH :: HPropNoms nominal i . @ i : p
%% works, base logic admits
%% quantification on nominals

forallH :: HHPropNomsQuant p . @ wl : p
%% works , top logic admits
%% quantification on propositions

forallH p . @ wl : p
%% works, no qualification
%% defaults to top logic

forallH nominal i . @ i : p
%% incorrect , defaults to top logic

forallH :: HHPropNomsQuant nominal i
.@i :p
%% incorrect , no quantification

%% on nominals in top logic

forallH :: HPropNoms nominal i

16

forallH p
.@1i :p
%% incorrect , no quantification
%% on propositions in base logic

forallH :: HPropNoms nominal i
forallH :: HHPropNomsQuant p
.@1i :p

%% incorrect , formula from top layer
%% can’t appear in a base formula
end

The following double hybridizations are already available in our distribution
of H:

HHProp double hybridization of propositional logic, no quantification, no con-
straints,

HHPropNoml double hybridization of propositional logic, quantification on
the top-level nominals,

HHPropNom double hybridization of propositional logic, quantification on
low-level nominals, no quantification at the top-level,

HHPropNomNom1 double hybridization of propositional logic, quantifica-
tion on both top-level and low-level nominals.

17

Chapter 6

Structured specifications

H specifications can be written in a modular way, such that their complexity
is reduced. This is particularly useful for large systems. We illustrate the spec-
ification structuring constructs of the H specification language with a running
example in the hybridization of first-order logic.

spec SD =
logic CASL :
{

sort s

op ¢ : 8

}

end

spec TD =
logic CASL :
{

sort t

opd : t

}

end

spec S =

hlogic: HFOL

data: SD

configuration :
nominal ws
modality lam : 2

end

spec T =

18

hlogic: HFOL

data: TD

configuration :
nominal wt
modality gamma : 2

end

Firstly, symbols of a, H specification can be renamed, thus avoiding name
clashes or giving the symbol a name that is better suited in a different context.
This is done by specifying what the new name of a symbol is, using the syntax
oldName |-> newName. In the case of nominals and modalities, we must add
the keyword nominal or modality before the old name of the symbol.

spec SRen =
S with nominal ws |-> ws’, modality lam |-> lam’

Specifications can be united. Here, the “same name, same thing” principle
from CASL applies: common symbols appear in the union only once.

spec STUnion =
S and T

Finally, specifications can be extended with new declarations of nominals,
modalities or axioms.

spec SExt =
S then
{nominal wse}

19

Chapter 7

Adding new hybridized
logics in H

If a hybridized logic is missing in H, it can be added with moderate effort. This
is however a rather advanced feature of the system, as it requires recompilation
of the H sources. The steps for doing this are as follows:

1. download the Hets sources:

$ git clone https://github.com/spechub/Hets.git
$ cd Hets

2. switch on the H development branch:
$ git checkout rigid_casl

In the near future, this branch will be merged on the main branch of Hets,
so this step will no longer be needed.

3. setup the compilation of the Hets sources, following the instructions at
http://hets.eu, section Build Hets using Stack.

4. if the base logic that you want to hybridize is missing in Hets, it should
be implemented. This requires knowledge of the Haskell programming
language.

5. the following parameters of the hybridization process must be set:

e name in Hets of the logic being hybridized. If it appears a sublogic
of a main logic, the syntax is logicName.sublogicName,

e list of constraints imposed on the local models. These can be restric-
tions on the interpretation of the accessibility relation or on the inter-
pretation of symbols of a certain kind. For the former, this is specified

20

using one of the keywords Reflexive, Transitive, Symmetric,
Serial, Euclidean, Functional, Linear, Total, corresponding
to typical constraints on the accessibility relations in modal logics,
while for the latter, we can choose from

— SameInterpretation(nominal),

— SamelInterpretation(world),

— SamelInterpretation(<kind>), where the kinds appearing in
<kind> can be symbol kinds in the base logic (e.g. proposition,
constant, total function, etc.),

— SameDomain(p) where p is either partial or rigid partial,
to state that the domain of partial/rigid partial functions is the
same in each local model

as in the example below:

newhlogic HProp =
base: Propositional
end

newhlogic HHPropNomsQuant =
base: HPropNoms

quant: prop

end

newhlogic HRigidCASLC =

base: RigidCASL

constr: Samelnterpretation (rigid sort),
Samelnterpretation(rigid total op),
SameDomain (rigid partial)

quant: rigid const, nominal

end

Alternatively we can select a hybridized logic already specified in Hets and
add more constraints or more kinds of symbols allowed in quantifications.
For example, below we extend the existing definition of the hybridization
of propositional logic with quantification on nominals:

newhlogic HPropNoms =
hlogic: HProp

quant: nominal

end

The new hybridized logic definition must be written in a file that contains
only one such definition. Let us assume the file name is newlogic.dol.

6. in the folder with the hets sources, analyze the new definition

Hets$./hets newlogic.dol

21

This generates a new instance of the Haskell class Logic of Hets, in a new
folder in the source code.

7. The generated code must be compiled:
make

Thus the new logic is made available in H, and we can write specifications
in that logic.

7.1 Hybridization of comorphisms

To get proof support for such a hybridized logic, we must also lift a translation
from its base logic to first-order logic to a translation from the hybridized logic
to first-order logic. This is also done by instantiating a generic method, whose
parameters are the Hets name of the comorphism being lifted and the name of
the hybridized logic (this is needed because the base logic admits more than one
hybridization):

newhcomorphism HRigid2CASL =
basecomorphism: Rigid2CASL
sourcehlogic: HRigidCASLC
end

Again this definition must be written in a file newcom.dol that is next anal-
ysed in H by calling Hets$. /hets newcom.dol and the resulting Haskell code
must be compiled with make. Thus the new comorphism is made available in
H and we can use it for making proofs.

22

