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We extend the concept of quasi-variety of first-order models from classical logic to multiple valued logic (MVL)
and study the relationship between quasi-varieties and existence of initial models in MVL. We define a concept
of ‘Horn sentence’ in MVL and based upon our study of quasi-varieties of MVL models we derive the existence
of initial models for MVL ‘Horn theories’.
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1 Introduction

Multiple valued logic (abbreviated MVL and also known as ‘many-valued’ or ‘multi-valued’ logic) has a long
tradition [17, 15, 7] and needs no presentation. In this paper we lift the concept of quasi-variety of first-order
models from classical (two valued) logic to MVL and study some of its important properties. Our results can be
seen as MVL extensions or generalizations of corresponding classical results.

In the classical two valued framework quasi-varieties of models have been studied rather extensively by pi-
oneers such as Mal’cev [16]; in their algebraic version they also play an important role in general or universal
algebra [10]. Because of their close relationship with initiality and because of the great role played by the latter
concept in programming language semantics [9, 13] and logic programming (there known as ‘least Herbrand
models’) [14], they have also been studied in computing science motivated works such as [18] within the very
general categorical abstract model theoretic framework of the so-called ‘theory of institutions’ of Goguen and
Burstall [8]. A more recent upgraded study of quasi-varieties at the level of abstract institutions can be found in
[4].

The motivation for our investigation of quasi-varieties of MVL models and of their relationship to the existence
of initial models (of theories) may be seen from two different but complementary directions.

– From the side of the theory of quasi-varieties, there is a legitimate interest to investigate the scope and limits
of its most important concepts and results, how they apply to various less conventional frameworks. This
motivation may be regarded as of pure theoretical nature.

– From the side of MVL, recently there have been efforts to develop its own first order model theory. However
as the current literature seems to indicate (for example [11, 2, 6]) MVL first order model theory may still
be at its beginning development stages, at least when one compares it with the classical one [1, 12]. In
particular, in spite of its high relevance for formal specification or logic programming, the algebraic flavored
style of model theory, such as the theory of (quasi-)varieties, seems to be absent from these developments.
Our work can also be seen from the perspective of trying to fill this gap.

Understanding these motivations together seem to be very much on the side of the kind of relationship between
the conventional logic and fuzzy logic research interests, that Petr Hájek advocates in his monograph [11].

The work reported here can be developed and presented in two different ways. One way would be by making
use of the powerful and sophisticated institution-independent model theory machinery of [4]; however this would
have made the presentation of this work rather heavy. We have therefore chosen a second way, that of staying
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2 Răzvan Diaconescu1: On quasi-varieties of multiple valued logic models

within the concrete MVL framework, already quite abstract (but in a different way than institution theory). We
believe that our choice of development fits better the current MVL/fuzzy logic culture, and therefore may be
more useful for readers in the area.

The contents of our paper is as follows:

1. A preliminary section recalls the concept of residuated lattice and fixes notations and terminology for the
MVL model theory framework used by our work.

2. In the next section we extend the concept of quasi-variety of models from classical logic to MVL, prove
that each quasi-variety of MVL models has a reachable initial model, and prove a reciprocal of the above
mentioned result. The domain of this reciprocal is however restricted to the classes of models of MVL
‘theories’.

3. The last technical section introduces a concept of MVL ‘Horn sentence’, that involves also the residual
connector characteristic to MVL, and proves that models of ‘Horn theories’ form a quasi-variety. Conse-
quently we obtain that Horn theories admit initial models. From the perspective of fuzzy logic programming
[19, 6] our ‘Horn theories’ correspond to (fuzzy) logic programs and our existence of initial model result
corresponds to the ‘least Herbrand model’ construction there. So, this may be regarded as an alternative
way to obtain the (same) denotational semantics for fuzzy logic programming, a way which we regard as
more structural and which bridges the gap towards the formal (algebraic) specification culture (see [3] for a
general algebraic oriented approach to logic programming).

2 Preliminaries

In this section we recall some basic notions from MVL model theory and fix our framework.

2.1 Residuated lattices

The characteristic feature of MVL, which appears explicitly in the terminology ‘multiple valued’, is that the truth
values are not only the two classical ones, true and false, but they may be many. While in classical logic the
truth values are structured as a Boolean algebra, in MVL these are structured as a ‘residuated lattice’ [20, 11, 5].
Recall from [11] that a residuated lattice L is a bounded lattice (with ≤ denoting the underlying partial order that
has binary infimum ∧, binary supremum ∨, biggest > and least ⊥ elements) and which comes equipped with an
additional commutative and associative binary operation ⊗ which has > as identity and such that for all elements
x, y and z

1. (x ⊗−) is monotonic, i.e. (x ⊗ y) ≤ (x ⊗ z) if y ≤ z, and

2. there exists an element x ⇒ z such that y ≤ (x ⇒ z) if and only if x ⊗ y ≤ z.

Other works (such as [5]) may define residuated lattices slightly more generally, for example without the com-
mutativity of ⊗. From a category theoretic perspective the condition 1. just reads that x ⊗ − is a functor on the
partial order (L,≤), and the condition 2. that this has a left adjoint x ⇒ −. For this reason, condition 2. is
sometimes referred to as the adjunction condition.

The ordinary two valued situation of classical logic can be recovered when L is the two valued Boolean
algebra with ⊗ being the conjunction. Then ⇒ is the ordinary Boolean implication. There is a myriad of
interesting examples of residuated lattices used for multiple valued logics for which ⊗ gets an interpretation
rather different from the ordinary conjunction. One famous such example is the so-called Łukasiewicz arithmetic
conjunction on the closed real numbers interval [0, 1] defined by x⊗y = 1−max{0, x+y−1)}. In this example
x ⇒ y = min{1, 1 − x + y}.

For this work we consider that our residuated lattice are complete, i.e. each set X of elements of L has an
infimum, denoted

∧
X . This implies that each X ⊆ L has a supremum too, denoted

∨
X .
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2.2 MVL model theory

Let us fix a complete residuated lattice L.
An MVL signature is a tuple (C, P ) with C set of symbols of constants and P = (Pn)n∈ω a family of sets of

relation symbols, with Pn denoting the set of symbols of arity n. Note that here we have not considered operation
symbols other than constants. The only reason for this is the simplicity of the presentation, all our results can be
presented without any significant additional effort within more refined frameworks including operation symbols,
and even (crisp of similarity) equality, and many sortedness.

Given a signature (C, P ), the set Sen(C, P ) of the (C, P )-sentences is the least set

– containing ⊥ and >,

– containing the set At(C, P ) of the (C, P )-atoms π(c) where n ∈ ω, π ∈ Pn and c ∈ Cn,

– which is closed under the binary operators ∧, ∨, ⇒, and ⊗ and

– under universal and existential quantification by finite sets of variables (new constants), i.e. if ρ is a (C ∪
X,P )-sentence then (∀X)ρ and (∃X)ρ are (C ∪ X,P )-sentences.

For any signature (C,P ), a (C,P )-model M consists of

– an underlying set, denoted Ms,

– an interpretation of each constant symbol c ∈ C as an element Mc ∈ Ms, and

– an interpretation of each relation symbol π ∈ Pn as a function Mπ : Mn
s → L.

As a matter of notation, for each (c1, . . . , cn) ∈ Cn we let M(c1,...,cn) denote the tuple (Mc1 , . . . , Mcn).
When C ⊆ C ′, we say that a (C ′, P )-model M ′ is a (C ′, P )-expansion of a (C, P )-model M when M ′

x = Mx

for each x ∈ C or x ∈ Pn (for each n ∈ ω). Alternatively, we say that M is the (C, P )-reduct of M ′.
A (C,P )-model homomorphism h : M → N is function h : Ms → Ns such that

– h(Mc) = Nc for each c ∈ C, and

– Mπ(m) ≤ Nπ(hn(m)) for each π ∈ Pn and m ∈ Mn
s (where hn(m) denotes the n-tuple (h(m1), . . . , h(mn))

for m = (m1, . . . , mn)).

M is a sub-model of N when Ms ⊆ Ns and this inclusion is a homomorphism M → N .
The satisfaction relation between models and sentences is a relation with four arguments that besides the

signatures, the models, and the sentences it also involves the elements of the residuated lattice L. This is defined
by induction on the structure of the sentences in the style of Tarski by means of the following an auxiliary
mapping that for a given (C, P )-model M evaluates the ‘truth value’ of each (C,P )-sentence:

– M [⊥] = ⊥ and M [>] = >,

– M [π(c)] = Mπ(Mc) for each atom π(c),

– M [ρ1 ? ρ2] = M [ρ1] ? M [ρ2] for any (C,P )-sentences ρ1 and ρ2 and each ? ∈ {∧,∨,⊗,⇒},

– M [(∀X)ρ′] =
∧
{M ′[ρ′] | M ′ is (C ∪ X,P )-expansion of M} for any (C ∪ X, P )-sentence ρ′, and

– M [(∃X)ρ′] =
∨
{M ′[ρ′] | M ′ is (C ∪ X,P )-expansion of M} for any (C ∪ X, P )-sentence ρ′.

Then for any (C, P )-model M , any (C,P )-sentence ρ, and any y ∈ L, we define

M |=y
(C,P ) ρ if and only if y ≤ M [ρ].

Remark 2.1 Our definitions of MVL models, sentences, and satisfaction between them follow with those of
the literature (such as [11] which is one of the basic references in the area of MVL/fuzzy model theory), however
besides being based upon the same concept of ‘truth degrees’ (M [ρ] in our notation) our satisfaction relation |=
is in addition parameterized by the elements of the residuated lattice. This is more a notational difference rather
than a conceptual one, in the framework of [11] and of other works this being however recuperated at the level of
theories.
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3 Quasi-varieties versus initiality for MVL models

This section is structured as follows.

1. We introduce the concept of quasi-variety for MVL models.

2. We show that each quasi-variety of MVL models admits initial models.

3. We show a kind of reciprocal of the former item, which roughly means that the classes of models of ‘theories’
that admit initial models are quasi-varieties.

All these extend corresponding concepts and results from classical model theory or universal algebra to MVL.

Definition 3.1 (Closed homomorphisms) In any MVL signature (C,P ), a model homomorphism h : M →
N is closed if and only if for each n ∈ ω, π ∈ Pn, and m ∈ Mn

s , we have Mπ(m) = Nπ(hn(m)).
Consequently, M is a closed sub-model of N when M is a sub-model of N such that the corresponding

inclusion homomorphism M → N is closed.

Note that in [6] our closed homomorphisms are called ‘full homomorphisms’.
The following recalls the concept of categorical isomorphism within the particular framework of MVL models.

Definition 3.2 (Model isomorphisms) In any MVL signature (C, P ), a model homomorphism f : M → N
is isomorphism when it has an inverse, i.e. g : N → M such that both f ◦g and g◦f are identities. The existence
of isomorphisms M → N is denoted by '.

The rather straightforward proofs of the following useful facts are omitted.

Fact 3.1 A model homomorphism h : M → N is an isomorphism if and only if it is closed and h : Ms → Ns

is a bijective function.

Fact 3.2 The satisfaction relation is invariant under model isomorphisms, i.e. if M ' N , then for each y ∈ L
and each sentence ρ, we have that M |=y

(C,P ) ρ if and only if N |=y
(C,P ) ρ.

Definition 3.3 (Direct products of models) Let (M i)i∈I be any family of models for an MVL signature
(C,P ). A (C, P )-model M together with a family of homomorphisms (pi : M → M i)i∈I is a direct product
of (M i)i∈I when for any other (C,P )-model N and family of homomorphisms (qi : N → M i)i∈I there exists
an unique homomorphism h : N → M such that pi ◦ h = qi for each i ∈ I .

M
pi

// M i

N

h

OO

qi

=={{{{{{{{

For those readers familiar with basic category theory, the definition above just gives the concept of (categorical)
product in the category of the (C,P )-models. From general category theory, or simply directly from Dfn. 3.3, it
follows that direct products (of MVL models) are unique up to isomorphisms. The following result shows their
existence.

Proposition 3.4 (Existence of direct products of models) For any MVL signature (C, P ), any family of
(C,P )-models has direct products.

P r o o f. Let (M i)i∈I be any family of (C, P )-models. We define a direct product (pi : M → M i)i∈I as
follows.

– Ms is the cartesian product
∏

i∈I M i
s; for each i ∈ I let us denote by pi : Ms → M i

s the corresponding
projection,

– for each c ∈ C we let Mc = (M i
c)i∈I , and

– for each π ∈ Pn and each m ∈ Mn
s we let Mπ(m) =

∧
i∈I M i

π(mi), where mi = (pi)n(m) for each i ∈ I .
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Note that each pi is a homomorphism since by the infimum property we have that Mπ(m) ≤ M i
π((pi)n(m)).

Now let us consider any other family of homomorphisms (qi : N → M i)i∈I . The condition pi ◦ h = qi

determines an unique h : N → M by h(x) = (qi(x))i∈I ; it remains to show that this is indeed a homomorphism
N → M . Because each qi is homomorphism we have that Nπ(m) ≤ M i

π((qi)n(m)) for each π ∈ Pn and
m ∈ Nn. Hence Nπ(m) ≤

∧
i∈I M i

π((qi)n(m)) =
∧

i∈I M i
π((pi)n(hn(m))) = Mπ(hn(m)).

The definition below extends the well know concept of quasi-variety of models from classical logic to multiple
valued logic.

Definition 3.5 (Quasi-varieties of MVL models) Let (C,P ) be an MVL signature. A class Q of (C,P )-
models is a quasi-variety if and only if it is closed under direct products and closed sub-models.

Closure under direct products means that for any family (M i)i∈I if each M i ∈ Q then any direct product of
the family belongs to Q too. Closure under closed sub-models means that if M is a closed sub-model of N and
N ∈ Q then M ∈ Q too. In the above definition it is crucial that the sub-models considered are closed, just plain
sub-models instead would not do for the developments of our results.

Definition 3.6 (Reachable models) A (C, P )-model M is reachable when Ms = {Mc | c ∈ C}.
The following recalls the categorical concept of initiality for MVL models.
Definition 3.7 (Initial models) A (C,P )-model M is initial for a class Q of (C, P )-models when for each

N ∈ Q there exists an unique homomorphism M → N .
Fact 3.3 If they belong to Q, then any two initial models for Q are isomorphic.

The following extends a well known result from classical model theory and universal algebra.
Proposition 3.8 Each quasi-variety Q of MVL models contains a reachable initial model for Q.

P r o o f. For any model M of an MVL signature (C, P ) let us denote by R(M) its reachable closed sub-model
defined by

– R(M)s = {Mc | c ∈ C},
– R(M)c = Mc for each c ∈ C, and
– R(M)π(m) = Mπ(m) for each π ∈ Pn and each m ∈ R(M)n

s .

Let us denote by I the isomorphism classes of {R(M) | M ∈ Q}. Then I is a set since it is less than the number
of partitions of C times

∏
n∈ω

∏
π∈Pn

[Cn → L] where [Cn → L] is the set of all functions Cn → L.
For each i ∈ I we pick a model Ai ∈ i and consider a direct product (pi : A → Ai)i∈I of the family (Ai)i∈I .

We define the candidate initial model for Q as R(A).
Since each R(M) is a closed sub-model of M , we have that {R(M) | M ∈ Q} ⊆ Q. Note that quasi-

varieties are closed under isomorphisms because any model that is isomorphic to a model M can be considered
as a direct product of the family consisting only of the model M . It follows that each Ai belongs to Q and further
that A ∈ Q. Since R(A) is a closed sub-model of A it follows that R(A) ∈ Q.

Now let us consider any M ∈ Q. Let i be the isomorphism class of R(M). A homomorphism R(A) → M
can be obtained as the composition of the following homomorphisms

R(A) // A
pi

// Ai ' R(M) // M.

The uniqueness of the homomorphism h : R(A) → M follows from the reachability of R(A) which implies
that as homomorphism h is constrained to h(R(A)c) = Mc for each c ∈ C.

The remaining part of this section is devoted to a reciprocal of Prop. 3.8. This reciprocal is significantly harder
than Prop. 3.8 and is restricted to classes of models of MVL ‘theories’. For this we introduce the following
notation.

Notation 3.9 For each signature (C, P ), each set Γ ⊆ L × Sen(C,P ), and each set E ⊆ C × C let
Mod(C,P )(Γ, E) denote the class of (C,P )-models M satisfying M |=y

(C,P ρ for each (y, ρ) ∈ Γ and Mc1 =
Mc2 for each (c1, c2) ∈ E. When E is empty we may denote Mod(C,P )(Γ, ∅) simply by Mod(C,P )(Γ).
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6 Răzvan Diaconescu1: On quasi-varieties of multiple valued logic models

Remark 3.10 Note that the subsets Γ ⊆ L×Sen(C, P ) correspond to ‘fuzzy theories’ T : Sen(C, P ) → L of
the literature MVL ([6] for example) . This goes as follows: for each Γ as above we define T (Γ) : Sen(C,P ) →
L by T (Γ)(ρ) =

∨
{x | (x, ρ) ∈ Γ}. On the other hand, each T : Sen(C, P ) → L determines Γ(T ) ⊆

L × Sen(C, P ) by Γ(T ) = {(x, ρ) | T (ρ) = x > 0}.
Fact 3.4 The classes Mod(C,P )(Γ, E) are closed under model isomorphisms.
Theorem 3.11 Let (C,P ) be an MVL signature and Γ ⊆ L × Sen(C, P ). If for any C ′ ⊇ C, for any

A ⊆ L × At(C ′, P ) and for any E ⊆ C ′ × C ′ the class of models Mod(C′,P )(Γ ∪ A,E) has a reachable initial
model, then Mod(C,P )(Γ) is a quasi-variety.

P r o o f. We have to show that under the hypothesis of the theorem Mod(C,P )(E) is closed under (1) sub-
models and (2) direct products. We first introduce a couple of notations in support of our proof. For any (C,P )-
model M :

– Let MM be the (C ∪ Ms, P )-expansion defined by (MM )m = m for each m ∈ Ms.
– Let A(M) = {(Mπ(x), π(x)) | n ∈ ω, π ∈ Pn, x ∈ Mn

s } ⊆ L × At(C ∪ Ms, P ).
– Let E(M) = {(c,Mc) | c ∈ C} ⊆ (C ∪ Ms) × (C ∪ Ms).

Note that MM ∈ Mod(C∪Ms,P )(A(M), E(M)) and that MM is initial for Mod(C∪Ms,P )(A(M), E(M)). In-
deed, for any N ′ ∈ Mod(C∪Ms,P )(A(M), E(M)) the unique (C ∪ Ms, P )-homomorphism h : MM → N ′

is defined by h(m) = N ′
m for each m ∈ (MM )s = Ms. That h preserves the interpretations of the constants

of Ms follows directly from the its definition, that it preserves the interpretations of the constants of C follows
by E(M), and the other homomorphism property follows by A(M). Now we proceed with the proofs of the
quasi-varieties properties for Mod(C,P )(Γ).

(1) Let N be a closed sub-model of a model M ∈ Mod(C,P )(Γ). We have to show that N ∈ Mod(C,P )(Γ) too.
Let A be a reachable initial model in Mod(C∪Ns,P )(Γ∪A(N), E(N)). Since A ∈ Mod(C∪Ns,P )(A(N), E(N)),
by the initiality property of NN , let h : NN → A be the unique (C ∪ Ns, P )-homomorphism. Let MN be the
(C ∪ Ns, P )-expansion of M defined by Mx = Nx for each x ∈ Ns. Evidently, MN ∈ Mod(C∪Ns,P )(Γ).
Moreover, MN ∈ Mod(C∪Ns,P )(Γ ∪ A(N), E(N)). Thus we let f : A → MN be the unique (C ∪ Ns, P )-
homomorphism given by the initiality property of A.

NN
h // A

f // MN

Since f and h are (C ∪ Ns, P )-homomorphisms for each x ∈ Ns we have that (MN )x = f(Ax) and Ax =
h((NN )x), which implies (MN )x = f(h((NN )x)). Since (MN )x = (NN )x = x it follows that f ◦ h is
identity. Because A is a reachable (C ∪ Ns, P )-model it follows that h is also surjective, hence it is a bijective
homomorphism. For each n ∈ ω, π ∈ Pn and m ∈ Nn

s by the homomorphism property for f we have that
Aπ(hn(m)) ≤ (MN )π(fn(hn(m))). Since f◦h is identity it follows that Aπ(hn(m)) ≤ (MN )π(m) = Mπ(m).
Since N is closed sub-model of M we have that Mπ(m) = Nπ(m) = (NN )π(m), hence Aπ(hn(m)) ≤
(NN )π(m). This shows h is closed, and because we have already proved it is bijective too, from Fact 3.1 it
follows that it is isomorphism. Now, because A and NN are isomorphic, by Fact 3.4 we obtain that NN ∈
Mod(C∪Ns,P )(Γ ∪ A(N), E(N)) which implies NN ∈ Mod(C∪Ns,P )(Γ). Since ρ is a (C, P )-sentence for each
(y, ρ) ∈ Γ, NN ∈ Mod(C∪Ns,P )(Γ) implies that N ∈ Mod(C,P )(Γ).

(2) Let (M i)i∈I be a family of models such that M i ∈ Mod(C,P )(Γ) for each i ∈ I and let (pi : N → M i)i∈I

be a product of this family. We have to prove that N ∈ Mod(C,P )(Γ) too.
For each i ∈ I we define the (C ∪ Ns, P )-expansion M i

N of M i by (M i
N )x = pi(x) for each x ∈ Ns.

This makes each pi into a (C ∪ Ns, P )-homomorphism NN → M i
N . Moreover the family (pi : NN →

M i
N )i∈I is a product of (C ∪ Ns, P )-models. Indeed for any other family (qi : B′ → M i

N )i∈I of (C ∪ Ns, P )-
homomorphisms, by the universal property of the product (pi : N → M i)i∈I , we consider the unique (C,P )-
homomorphism h : B → N such that pi ◦ h = qi for each i ∈ I , where B is the (C,P )-reduct of B′. Then h
is a (C ∪ Ns, P )-homomorphism because for each x ∈ Ns and each i ∈ I we have that pi(h(B′

x)) = qi(B′
x) =

(M i
N )x = pi((NN )x), which implies h(B′

x) = (NN )x.
Now let us show that M i

N ∈ Mod(C∪Ns,P )(Γ ∪ A(N), E(N)) for each i ∈ I . Since ρ is a (C,P )-sentence
for each (y, ρ) ∈ Γ and M i ∈ Mod(C,P )(Γ), we have that M i

N ∈ Mod(C∪Ns,P )(Γ). For A(N) and E(N) we
have the following arguments.
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– For each (Nπ(x), π(x)) ∈ A(N) by the definition of (M i
N )x and by the homomorphism property for pi we

have that (M i
N )π((M i

N )x) = M i
π(pi(x)) ≥ Nπ(x) which means M i

N |=Nπ(x) π(x).
– For each (c,Nc) ∈ E(N), on the one hand since M i

N is expansion of M i and by the homomorphism
property of pi we have that (M i

N )c = M i
c = pi(Nc), and on the other hand by definition we have that

(M i
N )Nc = pi(Nc). Hence (M i

N )c = (M i
N )Nc .

Thus each M i
N ∈ Mod(C∪Ns,P )(Γ∪A(N), E(N)). Let A be the initial model of Mod(C∪Ns,P )(Γ∪A(N), E(N))

and for each i ∈ I let f i : A → M i
N be the unique homomorphism given by the initiality of A. Let h : A → NN

be the unique homomorphism such that pi ◦h = f i for each i ∈ I , given by the universal property of the product
(pi : NN → M i

N )i∈I .

A
h

//

fi &&

NN

pi

��

goo

M i
N

Because NN is initial in Mod(C∪Ns,P )(Γ∪A(N), E(N)) and A ∈ Mod(C∪Ns,P )(A(N), E(N)) ⊆Mod(C∪Ns,P )(A(N), E(N)),
there exists an unique homomorphism g : NN → A. By the initiality of NN we obtain that h ◦ g is iden-
tity and by the initiality of A that g ◦ h is identity. Hence A and NN are isomorphic which implies that
NN ∈ Mod(C∪Ns,P )(Γ ∪ A(N), E(N)). From this we obtain that N ∈ Mod(C,P )(Γ).

Remark 3.12 A(M) above bears similarity to the concept of diagram of [2], the difference being that A(M)
considers all atoms rather than all sentences. In the particular two valued situation, [1] call A(M) the positive
diagram of M. E(M) above just fills the gap given by the absence of (crisp) equalities in the language.

The following result helps putting together the conclusions of Thm. 3.11 and Prop. 3.8 as an ‘if and only if’
result.

Proposition 3.13 Mod(C,P )(A,E) is a quasi-variety for any MVL signature (C, P ), any A ⊆ At(C,P ) and
any E ⊆ C × C.

P r o o f. We have to prove that Mod(C,P )(A,E) is closed under (1) closed sub-models and under (2) direct
products.

(1) Let M ∈ Mod(C,P )(A,E) and let N be a closed sub-model of M . We prove that N ∈ Mod(C,P )(A,E)
too.

– Let (y, π(c)) ∈ A. We have M |=y π(c) which means y ≤ Mπ(Mc). Because N is a sub-model of
M we have Nc = Mc, because it is closed we have Nπ(x) = Mπ(x) for each x ∈ Nn

s . It follows that
Nπ(Nc) = Mπ(Mc), hence N |=y π(c).

– Let (c1, c2) ∈ E. We have that Mc1 = Mc2. Because N is a sub-model of M we have Nc1 = Mc1 and
Nc2 = Mc2 hence Nc1 = Nc2.

(2) Let (M i)i∈I be a family of (C, P )-models such that each M i ∈ Mod(C,P )(A, E). Let (pi : N → M i)i∈I

be a product of (M i)i∈I . We prove that N ∈ Mod(C,P )(A, E) too.

– Let (y, π(c)) ∈ A. We have that Nπ(Nc) =
∧

i∈I M i
π((pi)n(Nc) =

∧
i∈I M i

π(M i
c). Since M i |=y π(c) for

each i ∈ I means y ≤ M i
π(M i

c) for each i ∈ I , it follows that y ≤ Nπ(Nc) which means N |=y π(c).

– Let (c1, c2) ∈ E. We have that Nc1 = Nc2 because for each i ∈ I we have pi(Nc1) = M i
c1 = M i

c2 =
pi(Nc2).

Corollary 3.14 Let (C,P ) be an MVL signature and Γ ⊆ L × Sen(C, P ). Then Mod(C,P )(Γ) is a quasi-
variety if and only if for any C ′ ⊇ C, for any A ⊆ L × At(C ′, P ) and for any E ⊆ C ′ × C ′ the class of models
Mod(C′,P )(Γ ∪ A, E) has a reachable initial model.
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P r o o f. One implication is given by Thm. 3.11. For the other implication, let us assume that Mod(C,P )(Γ)
is a quasi-variety. It is easy to note that Mod(C′,P )(Γ) is quasi-variety too. Since the intersection of quasi-
varieties is quasi-variety (we omit the proof of this straightforward fact here), by using Prop. 3.13 it follows that
Mod(C′,P )(Γ ∪ A,E) = Mod(C′,P )(Γ) ∩ Mod(C′,P )(A,E) is quasi-variety. Then Mod(C′,P )(Γ ∪ A,E) has a
reachable initial model by virtue of Prop. 3.8.

4 Horn sentences

In this section we introduce the concept of Horn sentence in MVL and we show that the models satisfying Horn
sentences form quasi-varieties. We draw the consequence that Horn ‘theories’ admit initial models.

Definition 4.1 (Horn sentence) Any (C, P )-sentence of the form (∀X)H ⇒ ρ is called a Horn sentence when
ρ is an (C ∪X,P )-atom and H is a quantifier-free (C ∪X, P )-sentence formed from atoms and the connectives
∧, ∨, and ⊗. Let Horn(C, P ) denote the set of the Horn (C, P )-sentence.

Within the framework of fuzzy logic programming [19, 6] the Horn sentences defined above are the clauses of
fuzzy logic programs. Note that fuzzy logic programming may involve several residuated operators, each of them
paired with a corresponding fuzzy implication, each such pair satisfying the adjointness condition. Although
meaningful in the applications, this multiple residuated operator aspect would be an inessential generalization of
our Horn sentences.

The result below can also be found in [6].

Proposition 4.2 (Preservation by closed-submodels) If M is a closed sub-model of N and ρ is a quantifier-
free sentence then for each y ∈ L we have that

N |=y
(C,P ) (∀X)ρ implies M |=y

(C,P ) (∀X)ρ.

P r o o f. Let us assume N |=y
(C,P ) (∀X)ρ. We have to show that y ≤ M [(∀X)ρ] which is equivalent to

showing that y ≤ M ′[ρ] for each (C ∪ X,P )-expansion M ′ of M .
Let us consider any (C ∪ X, P )-expansion M ′ of M . This determines a (C ∪ X,P )-expansion N ′ of N

defined by N ′
x = M ′

x for each x ∈ X . By induction on the structure of ρ, we prove that M ′[ρ] = N ′[ρ].

– If ρ is an atom π(c), then we have that M ′[ρ] = M ′[π(c)] = M ′
π(M ′

c) = Mπ(M ′
c). Similarly, N ′[ρ] =

Nπ(N ′
c). The conclusion for this case follows by noting that M ′

c = N ′
c and that Mπ(x) = Nπ(x) for each

x ∈ Mn
s (where π ∈ Pn).

– If ρ is ρ1 ? ρ2 where ? ∈ {∧,∨,⊗}, then we have that M ′[ρ1 ? ρ2] = M ′[ρ1] ? M ′[ρ2] and N ′[ρ1 ? ρ2] =
N ′[ρ1] ? N ′[ρ2]. The conclusion follows by using the induction hypothesis M ′[ρk] = N ′[ρk].

Thus M ′[ρ] = N ′[ρ] ≥ y.

Lemma 4.3 Let (M i)i∈I be any family of (C, P )-models and let (pi : N → M i)i∈I be a product of this
family. For any quantifier-free sentence H formed from atoms and the connectives ∧, ∨, and ⊗, we have that
N [H] ≤

∧
i∈I M i[H].

P r o o f. We prove the lemma by induction on the structure of H .

– If H is an atom π(c) where π ∈ Pn, then we have

N [π(c)] = Nπ(Nc) =
∧
i∈I

M i
π((pi)n(Nc)) =

∧
i∈I

M i
π(M i

c) =
∧
i∈I

M i[π(c)].

– If H is ρ1 ? ρ2 where ? ∈ {∧,∨,⊗}, then we have that N [H] = N [ρ1 ? ρ2] = N [ρ1] ? N [ρ2]. By the
induction hypothesis, because each ? ∈ {∧,∨,⊗} is monotonic as operation on L, it follows that

N [H] ≤ (
∧
i∈I

M i[ρ1]) ? (
∧
i∈I

M i[ρ2]). (1)
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By using again the monotonicity of ? we obtain that

(
∧
i∈I

M i[ρ1]) ? (
∧
i∈I

M i[ρ2]) ≤ M i[ρ1] ? M i[ρ2] = M i[H]. (2)

From (1) and (2) it follows that N [H] ≤ M i[H] for each i ∈ I , hence N [H] ≤
∧

i∈I M i[H].

Proposition 4.4 (Preservation by products) Let (M i)i∈I be any family of (C, P )-models and let (pi : N →
M i)i∈I be a product of this family. Let (∀X)H ⇒ρ be any Horn (C, P )-sentence. Let us assume that M i |=yi

(∀X)H⇒ρ for each i ∈ I . Then N |=
V

i∈I yi

(∀X)H⇒ρ.

P r o o f. We let y denote
∧

i∈I yi. We have to show that y ≤ N ′[H ⇒ρ] for each (C ∪ X, P )-expansion N ′

of N .
We consider an arbitrary (C ∪ X,P )-expansion N ′ of N . This determines, for each i ∈ I , a (C ∪ X,P )-

expansion M ′i of M i defined for each x ∈ X by M ′i
x = pi(N ′

x). By replicating an argument from the beginning
of the second part of the proof of Thm. 3.11, we have that (pi : N ′ → M ′i)i∈I is a product of (C∪X, P )-models.

Since M i |=yi

(∀X)H⇒ρ we have that yi ≤ M ′i[H⇒ρ] which implies y ≤ M ′i[H⇒ρ]. This means

y ≤ M ′i[H] ⇒ M ′i[ρ]. (3)

By the adjunction property of the residuated lattice, (3) means

y ⊗ M ′i[H] ≤ M ′i[ρ]. (4)

Since the property (4) holds for each i ∈ I , it follows that∧
i∈I

(y ⊗ M ′i[H]) ≤
∧
i∈I

M ′i[ρ]. (5)

By Lemma 4.3 and by the monotonicity of ⊗ as operator on L (applied twice) we have

y ⊗ N ′[H] ≤ y ⊗
∧
i∈I

M ′i[H] ≤ y ⊗ M ′i[H]. (6)

Since (6) holds for each i ∈ I it follows that

y ⊗ N ′[H] ≤
∧
i∈I

(y ⊗ M ′i[H]). (7)

From (7) and (5) we obtain that y ⊗ N ′[H] ≤
∧

i∈I M ′i[ρ] which because ρ is atom this means

y ⊗ N ′[H] ≤ N ′[ρ] (8)

The desired conclusion, namely that y ≤ (N ′[H] ⇒ N ′[ρ]), now follows from (8) by the adjunction property of
the residuated lattice.

From Prop. 3.8, Prop. 4.2 and Prop. 4.4 we derive immediately the following result.

Corollary 4.5 For any Γ ⊆ L × Horn(C, P ), the class of models Mod(C,P )(Γ) is a quasi-variety. Conse-
quently Mod(C,P )(Γ) has a reachable initial model.
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5 Conclusions and Future Work

We have lifted the concept of quasi-variety of models from classical logic to MVL and have developed a mutual
relationship between MVL quasi-varieties and existence of initial models of theories. We have defined a concept
of Horn sentence in MVL, that involves the residual connector (⊗) and the MVL implication and which cor-
responds to clauses of fuzzy logic programs, and proved that the models of Horn theories form a quasi-variety
and consequently admit initial models. This result provides a common semantic foundations for formal speci-
fication and logic programming with multiple truth values, in the tradition of initial semantics. From the fuzzy
logic programming culture perspective, this result may be seen as an alternative way to obtain the ‘least Herbrand
model’.

There are several avenues for future research. An important one is to develop axiomatizability results for quasi-
varieties of MVL models. Preliminary investigations showed that the nature of this problem may be different
from that of the classical two valued case, and significantly more difficult, a situation that hints to the conclusion
that the generalization of the concept of quasi-variety from classical logic to MVL is far from being a canonical
process.

Acknowledgements The author is grateful to the anonymous referee for carefully reading this work and helping improve
the introduction and the references.
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