Logical Support for Modularisation®

Razvan Diaconescu Joseph Goguen'
Petros Stefaneas
Programming Research Group, Oxford University

Abstract: Modularisation is important for managing the complex structures
that arise in large theorem proving problems, and in large software and/or
hardware development projects. This paper studies some properties of logical
systems that support the definition, combination, parameterisation and reuse of
modules. Our results show some new connections among: (1) the preservation
of various kinds of conservative extension under pushouts; (2) various distribu-
tive laws for information hiding over sums; and (3) (Craig style) interpolation
properties. In addition, we study differences between syntactic and semantic
formulations of conservative extension properties, and of distributive laws. A
model theoretic property that we call exactness plays an important role in some
results.

This paper explores the interplay between syntax and semantics, and thus
lies in the tradition of abstract model theory. We represent logical systems as
institutions. An important technical foundation is a new axiomatisation of the
notion of inclusion. We also show how to subsume the deduction-based approach
of m-institutions under that of ordinary institutions. Our results illuminate some
interesting differences between equational style logics and first order style logics,
encouraging us to conclude that, on the whole, equational style logics may be
more suitable for modularisation than first order style logics.

1 Introduction

A promising approach to developing large and complex systems (which may be software,
hardware, or both) is to start from a description of the system as an interconnection of
some specification modules. This permits the verification of many properties to be carried
out at the level of design, rather than code, and thus should improve reliability. With
suitable mechanical support, it might also improve the efficiency of the development pro-
cess. In addition, it promotes reuse, because some modules may be taken directly from
a library, or else may be modifications of library modules. For this reason, many mod-
ern programming and specification languages support some form of modularisation, and
most results about modules have appeared in the context of formal software engineering,
particularly specification languages. Modularisation for theorem proving has been studied

*The research reported in this paper has been supported in part by grants from the Science and Engineer-
ing Research Council, and contracts with Fujitsu Laboratories Limited, and the Information Technology
Promotion Agency, Japan, as part of the R & D of Basic Technology for Future Industries “New Models for
Software Architecture” project sponsored by NEDO (New Energy and Industrial Technology Development
Organization).

tAlso, with SRI International, Menlo Park CA 94025.

less. This paper studies some properties of logical systems that support modularisation.
We show that all reasonable institutions support certain simple operations on theories; we
then explore what properties insure that these operations have various desirable properties.
Our approach applies to theorem proving, software specification, hardware description, and
logic-based programming; with some extra effort, it can even apply to imperative program-
ming. Some general discussion and examples of our approach to modularisation are given
in [?].

Two basic operations on theories are sum and renaming. The first simply combines
the resources available from two or more theories, while the second changes the names of
some internal features. Laws concerning such operations could be used, for example, to
prove the correctness of an efficient implementation of a module interconnection facility
in a programming environment. A third operation which makes this challenging is infor-
mation hiding, whereby some internal features of a module are made inaccessible outside
the module. It would be nice if everything true of the visible part of some combination
of modules could be proved from what is known about the visible parts of the component
modules. Unfortunately, this Strong Distributive Law often fails for real systems. However,
we show that more restricted distributive laws hold for many important institutions. We
also show that some other properties are more delicate, and only hold for institutions that
are close to equational logic. Moreover, certain properties depend crucially on how they are
formulated; for example, forms of Craig interpolation that are equivalent for institutions
like first order logic are not at all equivalent for other important institutions.

A particularly important relation between theories is that of conservative extension,
which says that any model of a subtheory can be expanded to a model of the supertheory.
This semantic property can be important for the reuse of modules, and it implies a useful
form of the distributive law. Other semantic properties of extensions arise in connection
with parameterised (i.e., generic) modules.

A framework as abstract as institutions is needed for the comparative study of theories
over logical systems. For example, an assertion of the form “the Craig interpolation prop-
erty and the distributive law are equivalent” is not meaningful for a single logical system
(such as first order logic); it needs to be quantified over logical systems. Perhaps an anal-
ogy will help to clarify this point. Suppose we are interested in properties of groups; two
such properties might be “commutativity” and “finiteness.” Then asserting that “com-
mutativity and finiteness are equivalent” for some group where both properties happen to
hold (such as Z5) is valid, but not very meaningful; such an assertion should be universally
quantified over groups (and then it is false).

Institutions are an abstraction of Tarski’s classic semantic definition of truth [?], based
on a relation of satisfaction between models and sentences. In logic, there is a tradition,
called abstract model theory, which abstracts the Tarskian approach to cover other logical
systems (e.g., see [?, ?]). The goal of research in this area is to generalise as much of
classical first order model theory as possible. Institutions can be seen in this light, but
they are much more general, and are not focussed on first order logic. Institutions use
category theory to achieve generality and simplicity; hence the concepts and arguments in
this paper also need category theory. In particular, a new categorical axiomatisation of
the notion of inclusion permits simple definitions for our operations on theories. A general
discussion of how to apply ideas from category theory in Computing Science in given in [?].

One application for the machinery of this paper is theorem proving, where modules

representing logical theories are important. In particular, these ideas are used in the 20BJ
theorem proving system [?], which supports deduction over any desired logical system by
implementing its abstract data type of proofs in equational logic. 20BJ builds on facilities
from the OBJ3 system [?, ?], including its module system. The logical foundations of
such an approach require formalising the notions of deduction in a logical system, and of
encoding one logical system into another; these formalisations are provided by the notions
of ruled charter (which gives rise to an institution) and ruled charter morphism; see [?],
which builds on work in [?].

1.1 Some History

The earliest work on software modules with which we are familiar is by Parnas [?, 7, ?].
Program modules differ from earlier program structuring mechanisms such as subroutines,
procedures and blocks, in that they may include a number of procedure and data definitions,
may be parameterised, may import other modules, and may hide certain elements. A major
motivation for modules in this sense is to facilitate the modification of software, by localising
the representation of data and the operations that depend upon it; this is called information
hiding. Such modules support software reuse because they can be specified, verified, and
compiled separately. Note that this notion of module is essentially syntactic: it concerns
texts that describe systems.

The earliest work that we know on specification modules is by Goguen and Burstall,
for their specification language Clear [?, 7], the semantics of which is based on institutions.
This approach to modules has been applied to various logic-based languages, particularly
OBJ [?, 7] (an equational based on order sorted algebra), Eqlog [?] (which combines the
functional and logic paradigms), FOOPS [?, ?] (which combines the functional and object
paradigms), and FOOPlog [?] (which combines all three paradigms); it could also be applied
to any pure logic-based programming languages, such as (pure) Lisp and (pure) Prolog. In
[?], it is even extended to imperative programming.

Clear introduced the ideas that a specification module determines a theory, and that
such theories can be put together using colimits; these ideas have their origin in some
earlier work by Goguen on General Systems Theory [?, ?]. Clear provided operations for
summing, renaming, extending, hiding, importing and (in the case of generics) applying
theories. Theories in turn denote classes of models. The earliest work that we know giving
a calculus of modules is also due to Goguen and Burstall [?]. Building on Clear, they
studied laws for horizontal structuring relationships, and vertical implementing (also called
“refinement”) relationships, concluding that the axioms of a 2-category should be satisfied.
Some general laws for the module operations of Clear appear in [?], and others occur in
the proofs in [?]. Some recent results on the formal properties of module composition over
institutions appear in [?]. The present paper is in the same tradition.

The module algebra of Bergstra, Heering and Klint [?] attempts to capture the hor-
izontal structure of modules with equations among certain basic operations on modules,
including sum, renaming, and information hiding. These equations, together with construc-
tors for signatures and sentences, give a many sorted equational presentation, about which
some interesting results can be proved, including a normal form theorem. Unfortunately,
this work has first order logic built into its choice of the constructors for signatures and
sentences. However, Bergstra et al. abstract some interesting general principles from this
special case. In particular, we will see that the equivalence of Craig Interpolation with

a distributive law for information hiding asserted in [?] is actually valid at the level of
institutions under certain conditions (namely, compactness and closure under implication
and false); moreover, we use essentially the same proof that they gave. Indeed, their paper
was a major inspiration for the present paper, and opened what seems to us a fascinating
realm of new questions in the theory of institutions.

The original semantics of Clear [?] did not capture the use of subsignatures and subthe-
ories that is natural in many institutions. The present paper gives a new axiomatisation
of the notion of inclusion, so that sums are given by least upper bounds of inclusions. A
more concrete approach is given by Sannella and Tarlecki in [?]. The desirability of using
inclusions for theories first appeared in the thesis of Sannella [?], which gave a set theoretic
semantics for Clear in the case of many sorted equational logic.

Much interesting work using institutions has been done by Tarlecki [?, ?, ?, ?] and by
Sannella and Tarlecki [?, 7, ?], and we discuss several aspects of this work later.

1.2 Relation with Type Theoretic Approaches

In systems like the Calculus of Constructions [?] and the various AUTOMATH languages [?],
theories appear as dependent sequences of declarations, and are structured by various type
theoretic devices. Hence, signatures and sentences are not cleanly separated; moreover, this
proof-theoretic tradition has no model theory of the kind considered in this paper. Thus,
it may seem unclear how to apply results in the present paper to work in this tradition.

The lack of model theory in type theoretic approaches is no problem, because Theorem
35 shows how to produce a model theory “out of thin air” for logical systems based on
deduction, so that they can be seen as ordinary institutions. Alternatively, it should be
possible to construct appropriate set theories for type theories like those of Martin-Lof, and
then to construct appropriate models within these set theories.

Also, because our approach applies to theories before they are encoded, it should be
possible to apply the machinery of this paper to theorem proving systems based on encod-
ings into type theory, by structuring theories using our constructions, and then translating
into type theory (which it should be possible to do automatically). However, we consider
that research into this interesting area lies outside the scope of the present paper.

1.3 Summary of Results
This paper includes the following:

1. a novel categorical characterisation of the notion of “inclusion,” which is used to
explicate the notion of “theory extension”;

2. a lifting of exactness from the signatures of an institution to its theories;

3. an embedding of the category of w-institutions into the category of ordinary institu-
tions;

4. a general discussion of Craig interpolation for institutions with inclusions;

5. a discussion of the intuitive significance of different distributive laws for information
hiding over the sum of theories;

o

a proof that Craig interpolation is equivalent to a certain distributive law, for rea-
sonable compact institutions with implication and false;

7. results about how sets of sentences and sets of models behave with respect to sum
and information hiding;

8. a study of distributive laws for sum over information hiding for classes of models;

9. a discussion of the relationship between the syntactic and semantic formulations of
conservative extension;

10. a proof that the middle distributive law holds for conservative extensions in reasonable
semiexact institutions;

11. a proof that a pushout of a conservative (or persistent) extension is again conservative
(or persistent) in a reasonable semiexact institution; and

12. a proof that the pushouts of two extensions conservative for initiality are again con-
servative for initiality in a reasonable semiexact institution.

1.4 Prerequisites

This paper assumes familiarity with basic category theory, including categories, functors,
limits, colimits, and adjoints. The necessary material may be found in [?], [?], or in a more
gentle style, [?]. By way of notation, we use “;” for composition, we let 14 denote the
identity morphism at an object A, and we let |C| denote the class of objects of a category
C.

We have found that certain readers may have doubts about set theoretic foundations
when category theory is used. In fact, this paper stays well away from anything that is
problematical, and nearly any foundation that has been proposed for category theory will

do, including the “hierarchy of universes” discussed e.g., by Mac Lane [?] in Section I.6.

1.5 Acknowledgements

We wish to thank Drs. José Fiadeiro, Piet Rodenburg, Don Sannella, and especially An-
drzej Tarlecki, for their very useful comments on drafts of this paper. Prof. Virgil Emil
Cazanescu carefully read several drafts and helped with some technical corrections. We also
thank Prof. Rod Burstall for his important role in creating the theory of institutions. In
addition, we thank Drs. José Meseguer, Donald Sannella, Andrzej Tarlecki, José Fiadeiro,
Piet Rodenburg, and Jan Heering, as well as Profs. Thomas Maibaum, Jan Bergstra and
Paul Klint for their inspiring papers, without which the present paper would not have been
written.

2 Basic Concepts

This section presents some concepts that are needed for the rest of the paper. The first
subsection summarises the necessary aspects of institutions, while the second discusses
inclusions. The third subsection discusses exactness, and the fourth 7-institutions.

2.1 Institutions

An adequate formalisation of logic as used in Computing Science must achieve a delicate
balance between syntax and semantics. On the one hand, syntaz is fundamental, because
we deal with finite texts that (partially) describe VLSI chips, bank balances, computations,
etc., and we manipulate such texts, e.g., with proofs, translations, and type checks. On
the other hand, semantics is fundamental, because we are really interested in the models,
not their descriptions; that is, we are interested in chips, computations, proofs, etc., and
we manipulate the syntactic representations only because we hope that they correspond to
reality’.

Tarski’s semantic definition of truth for first order logic [?] is a traditional reconciliation
of these two views of what is fundamental, based on the notion of satisfaction as a binary
relation between models and sentences. Some such notion is needed for the very basic
notions of soundness and completeness of logical systems, because these notions depend
in an essential way upon the relationship between provability (which is syntactic) and
satisfaction (which is semantic, i.e., concerns “truth” in Tarski’s sense). These notions,
in turn, are basic to classical treatments of the adequacy of rules of deduction for logical
systems; soundness and completeness with respect to an intuitively plausible class of models
give us far greater confidence in a set of rules of deduction, and make their range of
applicability more precise.

In a series of papers beginning in 1979, Burstall and Goguen developed institutions to
formalise the intuitive notion of a logical system; the most recent and complete exposition is
[?]. This approach allows us to discuss the crucial relationship between theories and models
without commitment to either side at the expense of the other. Institutions are much more
abstract than Tarski’s model theory, and they also add another basic ingredient, namely
signatures and the possibility of translating sentences and models from one signature to
another. A special case of this translation may be familiar from first order model theory:
if ¥ — X' is an inclusion of first order signatures, and if M is a ¥'-model, then we can
form My, called the reduct of M to X¥. Similarly, if e is a X-sentence, then we can always
view it as a X'-sentence (but there is no standard notation for this). The key axiom, called
the Satisfaction Condition, says that truth is invariant under change of notation, which is
surely a very basic intuition for traditional logic.

Signatures are needed in Computing Science because we are less interested in “pure”
logics than in “applied” logics, which have special “non-logical” symbols for the particular-
ities of a given application area, such as VLSI chip design for fast Fourier transform. One
of the major lessons of category theory is that it is not enough to consider just the objects,
which in this case are signatures, but one should also consider the relevant “structure pre-
serving” morphisms, which in this case are signature morphisms. Without them, we would
be unable to consider the variation of sentence, model, and satisfaction under change of
notation.

Definition 1 An institution consists of

1. a category Sign, whose objects are called signatures,

L Actually, this is a rather naive view, because we never really “have reality,” but only models; further,
we do not really “have models” either, but only descriptions of them. Moreover, these descriptions are
often given using powerful idealistic constructions, such as power sets and dependent types, whose ultimate
consistency cannot be proved.

2. a functor Sen: Sign — Set, giving for each signature a set whose elements are called
sentences over that signature,

3. a functor Mod: Sign — Cat® giving for each signature X a category whose objects
are called X-models, and whose arrows are called ¥-(model) morphisms, and

4. a relation =5 C [Mod(X)| x Sen(X) for each 3 € |Sign|, called Y-satisfaction,

such that for each morphism ¢: ¥ — X' in Sign, the Satisfaction Condition
M' s Sen(¢)(e) iff Mod(¢p)(M') =5 e

holds for each M’ € |[Mod(Y')| and e € Sen(X).

We may write ¢(e) or even ¢e for Sen(¢)(e), and M or possibly ¢(M'), for Mod(¢)(M');
also we may drop the signature subscripts on the satisfaction relation when it is not con-
fusing. If M is a ¥-model and F is a set of Y-sentences, then we let M [y E mean that
M k5 e for each e € E. Also, if E is a set of Y-sentences and e is a single ¥-sentence, then
we let E =5 e mean that for each 3-model M, if M =5 E then M =y e. Finally, we let
¢(E) = {o(e) | e € E}.

An institution is compact iff whenever E = e then there is a finite subset £’ C FE such
that E' =e. O

Of course, it takes some effort to prove that a given logical system really is an institution.
The basic paper on institutions [?] showed that a number of basic logical systems are in-
stitutions, including the many sorted and unsorted versions of first order logic, equational
logic, and Horn clause logic, with and without equality. Mosses shows that his unified
algebras form an institution in [?]. Yukawa [?] gives an institution for the lambda calculus,
with A\-models as models. Nielsen and Platet [?] give an institution for higher order logic
with polymorphic types. Goguen and Burstall [?] show how to ease checking the Satisfac-
tion Condition through the use of charters and parchments; this technique is applied by
Stefaneas [?] to get institutions for second order and modal logics.

Salibra and Scollo [?] propose weakening the notion of institution by eliminating the
Satisfaction Condition, or replacing “iff” in it by “only if” or “if.” However, we feel that
too much is lost by these generalisations. For example, the reader can check that many
proofs in the present paper require both directions of the Satisfaction Condition. Moreover,
we do not know any examples where this weakening is needed. Although [?] claims that
hidden sorted equational logic is not an institution, but does satisfy half of the Satisfaction
Condition, this is only because their version of hidden sorted equational logic has signature
morphisms that do not respect all of the appropriate structure; see [?] for a proof that with
appropriate signature morphisms, hidden sorted equational logic is indeed an institution.

Ehrig, Baldamus and Orejas [?, ?] have proposed a different weakening of institutions
that they call “specification logics,” which are functors Mod: Th®® — Cat that assign a
category of models to each (abstract) theory. It seems to us that this notion is rather far
from that of logical system: there is no notion of satisfaction, nor even of sentence, and
the invariance of truth under change of notation cannot be expressed. Moreover, many
such functors have nothing to do with logic. Finally, we note that “specification logics”
have earlier been studied under the name of (strict) indexed categories; for example, [?]
proved a number of basic results about limits, colimits and the Grothendieck “flattening”

7

construction. Thus, we believe that the name “specification logic” is misleading, although
the concept is certainly useful. In our opinion, it is more interesting to explore variations
of the institution concept that provide deduction, as well as satisfaction; see [?, 7] and [?]
for further discussion.

There are two equivalent ways to give a denotation for a presentation P: the set of all
sentences entailed by those in P; and the class of all models of P. The first is the “closed
presentation” or “theory” P°®, and the second is the “closed model class” [P]. Although
one is syntactic and the other semantic, there is no essential difference between these two
kinds of “closure” or “completion” of P; there is a dual isomorphism because of the Galois
connection of Proposition 3. However, significant differences do arise when one considers
non-closed collections, because for the usual institutions, there are many more collections
of models than there are collections of sentences. Indeed, usually there are only a countable
number of finite sets of sentences, but there are so many different collections of models that
one cannot even assign a cardinality; moreover, most of these collections could never arise
in practice. The fact designers and verifiers often need to know about consequences of a
specification that do not happen to be in its original presentation suggests using theories
rather than just presentations. This leaves the practical problem of how to manipulate
finite sets of sentences in a way that respects the behaviours of their (generally infinite)
corresponding closed sets of sentences, and of course their corresponding models; in general,
some form of theorem proving may be needed.

This paper does not give a formal definition for the word “module,” because different
languages differ very widely in this respect. However, it may be useful to informally consider
a module to be some kind of finite description for a presentation; then it is necessary
to carefully distinguish such modules from their denotations. In Section 3.4, we discuss
“module expressions” and their denotations.

It follows from our general discussion of syntax and semantics that we should define no-
tions like “conservative extension” semantically, and then seek syntactic criteria for checking
such relationships. Thus, we disagree with the approach of Maibaum, Sadler, and Turski
[?7, 7], who consider only sentences and deduction. In our view, such an approach cannot
adequately formalise the actual situation in (for example) software engineering, which in-
volves models of concrete objects, as well as their descriptions. This is illustrated by the
inability of the purely syntactic notion of conservative extension to capture the underlying
semantic property, and by the fact that the syntactic notion is not preserved under pushouts
for many important institutions. Similarly, we claim that operations on modules should
have corresponding operations on their denotations, as opposed to merely being arbitrary
textual “edit” operations; in this way, semantics provides a “reality check” for syntax.

We now give the precise definitions:

Definition 2 A presentation is a pair (X, F) where X is a signature and FE is a set of
Y-sentences. Let E* denote the collection of all ¥-models that satisfy each sentence in E.
Given a collection M of ¥-models, let M* denote the collection of all ¥-sentences that are
satisfied by each model in M, and let M* denote (3, M*), called the theory of M.

The closure of a collection F of Y-sentences is E**, denoted E®. A presentation
(3, E) is closed iff E = E*, in which case it is called a theory. The Y-theory presented
by (X, FE) is (X, E®). A X-sentence e is semantically entailed by a collection E of X-
sentences, written F = e, iff e € E*.

If T = (%, F) is a theory, then its denotation, which we may write [T7], is the full
subcategory of Mod(X) with objects M such that M =y E.

If (X,F) and (X', E') are presentations, then a presentation morphism (X, F) —
(X', E') is a signature morphism ¢: ¥ — ¥’ such that e € F implies ¢(e) € E™. Let
Pres(Z) denote the category of presentations over an institution Z, and let Th(Z) denote
its subcategory of theories over Z. O

The following basic result is proved in [?].

Proposition 3 The two functions denoted “*” in Definition 2 form what is known as a
Galois connection (see, e.g., [?]), in that they satisfy the following properties, for any
collections F, E' of Y-sentences and collections M, M’ of ¥-models:

1. E C E' implies E'* C E*.
2. M C M' implies M'* C M*.
3. EC E**,
4. M C M**,
These imply the following properties:
5. BE* = EF¥¥*,
6. M* = M***,

7. There is a dual (i.e., inclusion reversing) isomorphism between the closed collections
of sentences and the closed collections of models; this isomorphism takes unions to
intersections and intersections to unions.

The following basic result is proved in [?]:

Theorem 4 If the category of signatures of an institution Z has [finite] colimits, then so
does its category Th(Z) of theories. O

Again following [?], we now present institution morphisms, which are useful for com-
paring and for transferring results among different logical systems:

Definition 5 Let Z and Z' be institutions. Then an institution morphism ®: 7 — 7'
consists of

1. a functor ®: Sign — Sign/,
2. a natural transformation «.: ®; Sen’ = Sen, and

3. a natural transformation 8: Mod = ®; Mod'

such that the following Satisfaction Condition holds

M s ax(e) iff fo(M) Ew, ¢

for any ¥-model M from Z and any ®(X)-sentence €’ from Z'. Institutions with institution
morphisms form a category, which we denote Ins. O

The above is just one of several different kinds of morphism between institutions; while we
feel that it is the one that properly reflects the structure of institutions (see [?] for detailed
arguments on this point), it is not the right notion for certain purposes. For example,
Salibra and Scollo [?] and Astesiano and Cerioli [?] describe some other possibilities.

2.2 Factorisations and Inclusions

In this subsection, we first present the standard notion of a factorisation system (e.g., see
[?]), which has been used many places in Computing Science (e.g., [?, ?]); then we give our
novel axiomatisation for the notion of “inclusion.”

Definition 6 An image factorisation system for a category C consists of a class M of
monics and a class £ of epics in C such that

(1) both £ and M are closed under composition,
(2) all isomorphisms are in both M and &, and

(3) every morphism f in C can be factored as e;m with e € £ and m € M “uniquely up
to isomorphism” in the sense that if €’;m’ is another factorisation of f with e’ € £
and m’ € M, then there is a unique isomorphism from the centre object C of e;m
(i.e., the target of e and the source of m) to the centre object C" of ¢’;m’ such that
the diagram below commutes:

A/ w*B

i

C

The intuition for inclusion systems is that they capture “image subobjects” uniquely,
rather than merely up to isomorphism. This not only better fits certain examples that
interest us, but also has the technical advantage that subobjects are morphisms, instead of
equivalence classes of morphisms, so that we can apply lattice operations to them directly.

Definition 7 An inclusion system for a category C consists of a class I of arrows and a
class & of epics in C such that:

(1) both £ and I are subcategories of C such that |£]| = |I| = |C|;

(2) every morphism f in C can be factored uniquely as e;i with e € £ and i € I;

10

(3) Iis a partial order (i.e., for any objects A, B, there is at most one morphism A — B
in I and if there is also a morphism B — A in I, then A = B);

(4) T has finite least upper bounds (i.e., finite coproducts in I), denoted +; and

We will call the morphisms in I inclusions, and use the notation A — B. Also, we let ()
denote the bottom element of I (i.e., the empty least upper bound, which is also the initial
object in I). Given i: A< B and f: B — C, we let f4 denote the composition i; f, and
call it the restriction of f to A. We will also say that a category with an inclusion system
is inclusive. O

Note that neither inclusion systems nor factorisation systems are a special case of the
other. Most of the categories used in specification and programming have obvious and
natural inclusion systems, including the following:

Example 8 The category Set of sets with 1 the inclusions and £ the surjections is an
inclusion system. O

Example 9 Recall (e.g., from [?]) that a many sorted signature ¥ consists of a set S of
sorts and an S* x S-indexed family of sets ¥, ; whose elements are the operation symbols
of arity (i.e., input sorts) w € S*, and value (i.e., output) s € S. Also, a morphism
(S,%) — (8", %) of many sorted signatures consists of a function f: S — S’ and a S* x S-
indexed family of functions gu,s: Yuw,s — L}, fs)- Then we get an inclusion system in a
natural way by defining I by (S,%) — (5, %) iff § — S" and ¥, ; — ¥, , for each w € S*
and s € S, and defining £ to consist of those (f,g): (S,X) — (S’,%') such that " = f(S)
and E;U,,s, =U{9(Zws) | f(w) =w'" and f(s) = s'}, for each ', s'. O

Example 10 Similarly, the usual category of (unsorted) first order signatures has an ob-
vious inclusion system. Recall that a first order signature is a pair (X,II), where both
> are Il are w-indexed families of sets, with X,, the operation symbols of arity n and II,
the predicate symbols of arity n, for n € w. Also, a morphism (X,II) — (¥',IT') is a
pair (f,g) of w-indexed functions, where f,: ¥, — X! translates operation symbols, and
gn: I, = II] translates predicate symbols. Then we get an inclusion system by defining I
by (3,1I) — (X', IT') iff £, — X! and II, < IT/, for each n € w, and defining £ to be the
(component-wise) surjective signature morphisms. O

Example 11 Any partial order with finite least upper bounds gives rise to a category I
that is an inclusion system with C'= [and £ = |I|. O

Although set theoretic inclusions are the simplest natural example of an inclusion sys-
tem, inclusion systems in general may have properties that are quite different from those
of sets. For example, any inclusion A < B in set theory is “split,” in the sense that B can
be written as a disjoint union (i.e., coproduct) AU C where C is the “difference” between
B and A. This property does not hold for all inclusion systems; for example, consider the
inclusion of many sorted signatures ({s},) — ({s},{f: s — s}). However, the notion of
inclusion system is sufficient to ensure that many familiar properties of inclusions hold, as
shown in the rest of this subsection.

Proposition 12 If C is a category with an inclusion system (I, &), then:

11

1. all inclusions are monics;

2. lis I-right cancellable, in the sense that if f;g € [and g € I, then f € I;
3. & is E-left cancellable (i.e., £P is £%-right cancellable);

4. all isomorphisms in I are identities;

5. all coequalisers in C' are in &;

all isomorphisms in C' are in &;

any morphism f that is both in £ and I is an identity; and

S

the category I of inclusions has all finite colimits. If C has an initial object (), then ()
is also initial in I; hence, C has at most one initial object.

Proof: 1. Let s € I and u;i = v;4. Consider u = ¢;j and v = €; j' where e,e’ € £ and
J,j' € I. From the uniqueness of (I, £)-factorisations, we deduce that e = ¢’ and j;i = j'; 1.
But j = j' because I is a partial order. Therefore, u = v.

2. Factor f as e;7 with e € £ and 7 € I. Then e;1; g is a factorisation of f;g, with
i; g € I because both i and g are inclusions. But f; g also factors trivially as 1; (f; g), and
so (2) of Definition 7 gives e = 1 and f = i. Therefore, f € I.

3. This is similar to 2.

4. By property (3) of Definition 7.

5. Let g be a coequaliser for u and v, i.e., an arbitrary parallel pair of arrows. Consider
q =e;1 withs € I and e € £. Then e is a coequaliser for v and v. Therefore, 7 is an
isomorphism. Since any isomorphism in I is an identity, we conclude that g = e.

6. Because any isomorphism is a coequaliser.

7. f can be factored in two different ways, as f = 1;f and f = f;1. Then f =1 by
property (3) of Definition 7.

8. I trivially has coequalisers because it is a partial order, and it has finite coproducts
by (4) of Definition 7. O

Next, we discuss how the greatest lower and least upper bounds of objects in I relate
to constructions in C; these arguments have a set theoretic flavour.

Proposition 13 Let C be a category with an inclusion system (/,€) and with pullbacks.
Let A — B and A’ — B be inclusions in C. Then there is a unique pullback in C of these
inclusions such that the arrows of the pullback cone are also inclusions.

Proof: Let (P — A,P — A') be a pullback in C of the inclusions of A and A’ into
B. Now factor the pullback arrows as P -+ A = e;C — Aand P - A =¢;C" — A’
where e, e’ € £. Because of the uniqueness of the factorisation of P — B, it follows that
C = C" and e = ¢€'. It now follows that (C' — A,C — A’) is also a pullback cone, and the
uniqueness of C follows from 2. and 4. ofProposition 12. O

Definition 14 Let C be a category with an inclusion system (7,€) and with pullbacks.
Let A and B be objects of C. Then the sum of A and B, denoted A + B, is the coproduct
of A and B in I, and the intersection of A and B, denoted AN B, is the (unique) inclusion
pullback in C of the inclusions (A < A+ B, B < A+ B) given by Proposition 13. O

12

Proposition 15 Let C be a category with an inclusion system (7, &) and with pullbacks.
Then for any objects A, B € |C| we have:

1. the sum A 4 B is the least upper bound of A and B in I,
2. the intersection A N B is the greatest lower bound of A and B in I;
3. sum and intersection are unique;

4. AN B is included in A and B, and all three of these objects are included in A + B;
and

5. the intersection is the pullback in C of the sum.

Proof: The first two assertions follow directly from (4) of Definition 7. Then the sum
A + B is unique by its definition as the least upper bound in I of A and B, and the
intersection is unique because it is the greatest lower bound in I.

The maps AN B — A and AN B — B are inclusions by Proposition 13, and thus
AN B — A+ B is a composite of inclusions.

That the intersection is the pullback in C of the sum follows from the definition of
intersections and the previous Proposition. O

Definition 16 Let C be a category with an inclusion system (I,€) and with pullbacks.
Then the inclusion system (7, £) is strong iff for any objects A, B € |C| their sum is the
pushout of their intersection. O

All examples previously discussed are strong inclusion systems. The property of the
sum being the pushout of the intersection will play an important role in the rest of the

paper.

Definition 17 An inclusion system I for a category C is distributive iff the following two
laws hold for all objects A, B,C in C:

1. A+(BNC)=(A+B)n(A+0C).
2. AN(B+C)=(ANB)+ (ANCQO).
O
We can get a non-distributive inclusion system from any non-distributive lattice L, by

letting C be L regarded as the partial order category with an arrow A — B iff A < B in
L (see Example 11).

Definition 18 Let C and C’ be categories with inclusion systems (I,£) and (I, &’), re-
spectively. Then an inclusion system morphism is a functor F': C — C’ such that

Fy: I —I', and N is preserved. O

The following expresses a basic relationship between pushouts and inclusions that is
important in Section 5:

13

Definition 19 Let C' be an inclusive category. Then pushouts preserve inclusions in
C iff whenever a pair of arrows (A < A’, A — B) has a pushout, then they have a pushout
of the form (B — B', A"’ —» B'). O

Definition 20 An institution with a [strong] inclusion system (I,£) on its category of
signatures respects that inclusion system iff the functor Sen: Sign — Set is an inclusion
system morphism, where Set has the inclusion system described in Example 8; for short, let
us say that such an institution is [strongly] inclusive. Given i: ¥ < ¥’ and a ¥'-model
M, we may write i(M) as M; or My, and call it the reduct of M to X.

An inclusive institution is distributive iff the inclusion system on its signatures is
distributive.

A presentation morphism ¢: (X, F) — (X', E') over an inclusive institution is an in-
clusion iff ¢ is an inclusion; note that in this case, E C E". We also call such morphisms
extensions. [

Example 21 The many sorted algebraic institution is inclusive and distributive with the
inclusion system of Example 9 on its signatures. O

Example 22 The unsorted first order institution is inclusive and distributive with the
inclusion system of Example 10 on its signatures. O

Any non-distributive inclusion system can be turned into a trivial non-distributive in-
clusive institution, with the inclusion system as its category of signatures, and with no
models and no sentences. However, all of the usual logical systems are distributive inclu-
sive institutions, including first-order logic and equational logic.

Example 23 One might think that morphisms of inclusion systems should preserve the epi
part of the inclusion system. That this cannot be assumed is shown by a counterexample
for many sorted equational logic, communicated to us by Virgil Cazanescu. For this insti-
tution, the sentence functor, giving all many sorted equations for each signature, maps the
surjective signature morphism ({s,s'},{c: s = s',a: = §'}) = ({s},{o: s = s,a: — s})
to a non-surjective function between the corresponding sets of equations. For example, no
term of the source signature translates to the term o(a) of the target signature. O

Proposition 24 If 7 is an institution with a factorisation system (I, &) on its signatures,
then (Ipp, E7p,) = ({2 €Th | @ € I}, {®: (X, E) = (X, E') € Th| ® € £ and (®(F))* =
E'}) is a factorisation system on its theories. If 7 respects an inclusion system (/,€) on
its signatures, and if its category of signatures has finite colimits, then (I7,,E7yp,) is an
inclusion system for Th(Z).

Proof: Given a theory morphism ®: (X, E) — (X', E'), let ® = e; m be its factorisation
in Sign, with centre object ¥". Let E” be the closure of e(E). Then e: (X, E) — (X", E")
and m: (X", E") — (X', E') are theory morphisms, and so e;m is a factorisation of ® in
Th. It is easy to check that this forms a factorisation system.

If 7 respects the inclusion system (7,), then (2) and (3) of Definition 7 hold trivially,
and Iy, has finite coproducts by an argument similar to that given for Theorem 4 in [?].
O

Fact 25 Under the hypothesis of Proposition 24, the forgetful functor Th(Z) — Sign is
an inclusion system morphism. Moreover, it is limit and colimit preserving. O

14

The assumptions encapsulated in the following play a basic role in this paper:

Definition 26 An institution is reasonable iff it is strongly inclusive and its signature
category has finite colimits and finite limits. O

All of the institutions that are widely used in Computing Science are reasonable, including
classical first order logic and equational logic, in both sorted and unsorted variants.

Corollary 27 If (X, F) and (X', E) are theories over a reasonable institution, then
1. S,E)+ (X, E)Y=(X+Y,(EUE")");
2. S,E)Nn(X,E)=CEnX,ENE).

Proof: The first equation follows from the proof of Theorem 4, and the same technique
works for intersection, except that we do not need to take the closure because the inter-
section of the (X N X')-theories Sen(X) N E’ and Sen(X') N E is already a (X N X')-theory.
|

Corollary 28 In any reasonable institution, the inclusion system on the category of the-
ories is strong. O

2.3 Exactness

An important model theoretic property of many logical systems is that finite colimits
are preserved by the model functor. Thus, if we combine some theories 7; in a diagram
T: I — Th(Z) having colimit (i.e., result of combination) C, then the denotations of
the T; and C' behave in the way one would hope: Mod(C) is the limit of the diagram
T;Mod®: I — Cat. In particular (and assuming that the categories of ¥-models are
concrete), our intuition would lead us to hope that a model of T} @ T» (the co-product)
would consist of a pair of models, one of 77 and the other of T5; i.e., we intuitively expect
Mod(T; @ T») to be Mod(T;) x Mod(T5,). The situation is similar for a pushout of theory
morphisms 7y — T and Ty — 15, which for simplicity we assume are theory inclusions, so
that T, is shared between T; and T5: we expect that a model of T @1, 1> (the pushout)
can be constructed from a pair of models, one of 7} and the other of 75, by identifying their
reducts to Tp; that is, we expect Mod(Ty @, T>) to be the pullback of Mod(T1) — Mod(T5)
and Mod(Ty) — Mod(T,). This property, which we call ezactness, seems to have first
arisen in [?], and is also used in the pioneering work of Tarlecki [?] on abstract algebraic
institutions, and of Meseguer [?] on categorical logics®.

Definition 29 An institution is exact iff the model functor Mod : Sign — Cat’ preserves
finite colimits, and is semiexact iff Mod preserves pushouts. O

Although many sorted logics tend to be exact, their unsorted variants tend to be only
semiexact. In particular, the model functor does not preserve coproducts for either unsorted
first order logic or unsorted equational logic. This is undesirable from the point of view of
modularisation. Combining this with the well known fact that the coproduct of unsorted

2Meseguer [?] introduced the term exactness, but used it for the concept that we call semiexactness
here.

15

terminating term rewriting systems need not be terminating, although it is terminating
in the many sorted case, we might conclude that unsorted logics are unnatural for many
applications in Computing Science.

It is not hard to see that any chartered institution is exact®. Charters were introduced by
Goguen and Burstall [?] as a general way to produce institutions. The basic intuition is that
the syntax of a logical system is an initial algebra. Because it appears that most institutions
of interest in Computing Science can be chartered, it follows that most institutions of
interest in Computing are exact. In particular, both many sorted first order logic and
many sorted equational logic are exact. On the other hand, unsorted equational logic is
not exact.

Notice that, for any institution Z, the model functor Mod extends to Th(Z), by mapping
a theory (X, E) to the full subcategory Mod(X%, E) of Mod(X) formed by the Y-models
that satisfy E. The following result shows that one can lift exactness from signatures to
theories, so that exactness depends only on the behaviour of signatures, and is independent
of what happens with sentences. Semiexactness for theories plays an important role in the
“categorical logics” described by Meseguer in [?]. Here, we show that this follows from the
corresponding property for signatures:

Proposition 30 If an institution is semiexact, then Mod: Th — Cat’? preserves pushouts.

Proof: Let ¢1: (X', E') = (X1, E1) and ¢9: (X', E') — (32, F3) be morphisms of theories
and let ¢} : (32, E2) — (X, E) and ¢4 : (X1, E1) — (X, E) be their pushout. Recall [?] that
(¢}, &%) is the pushout of (¢1,p2) in Sign and E is the closure of ¢4 (E;) U ¢ (E>).

Let M; be a X;-model of E; and M, a Yo-model of Ey such that My, = Mye,; now
let M' denote this ¥'-model. Then by the Satisfaction Condition, M’ satisfies E'. By
semiexactness and the construction of pullbacks in Cat, there is a ¥-model M such that
Mg, = M, and My, = M. By the Satisfaction Condition again, M satisfies the translations
of both F; and E,, and thus satisfies £. We have now shown that any pair of models
(My, My) with M; € |Mod(X4, Ey)| and My € |Mod(Xs, Ep)| and M4, = Mg, determines
a (X, E)-model M.

Conversely, any (3, E')-model M is determined in this way by its translations M, = My,
and My = My which, by the Satisfaction Condition, satisfy £ and Es, respectively.

Because the models of a theory form a full subcategory of the models of its signature,
we can extend this argument to model morphisms. By semiexactness, 4 : Mod(%, E) —
Mod(¥1, E1) and ¢ : Mod(%, E) — Mod(%, Ep) are the pullback of 4, : Mod(Xy, 1) —
Mod(X', E') and 4, : Mod(3, E5) — Mod(¥', E'). O

A proof of the following result was sketched in [?].

Corollary 31 If an institution is exact, then Mod: Th — Cat®® preserves finite colimits.

Proof: By exactness, Mod maps the initial object of Sign to the terminal (singleton)
category. Because the only model of this category satisfies the empty theory (i.e., the
tautologies over the initial signature) we conclude that the model functor maps the initial
theory to the terminal category. Now we are done, because all finite colimits can be
constructed from pushouts and an initial object. O

3Using the facts that Mod is 2-representable for chartered institutions, and that 2-representable functors
preserve colimits.

16

Here is another “lifting” result that will later help us with pushouts of conservative
extensions:

Fact 32 In an inclusive institution, if pushouts preserve signature inclusions, then pushouts
also preserve theory inclusions.

Proof: This follows from the fact that the forgetful functor Th(Z) — Sign creates both
colimits [?] and inclusions. O

2.4 m-Institutions

It has been claimed (e.g., in [?]) that the standard notion of institution (Definition 1) is
not suitable for the foundations of software engineering, because it is based on satisfaction
rather than deduction. Following the work of Fiadeiro and Sernadas [?], logical systems
based on deduction can be formalised as m-institutions, which have for each signature X
a set of Y-sentences, but no given models. To compensate for this lack, a consequence
relation is given on sentences. We will use the definition of Fiadeiro and Sernadas [?] as
modified by Meseguer [?], rather than that of Maibaum and Fiadeiro [?], which seems
overly complex to us; Harper, Sannella and Tarlecki [?] have given a definition similar to
Meseguer’s, but restricted to finite sets of sentences.

Meseguer [?] showed how to construct an institution from a system of deduction, by
producing a model theory directly from a comma category construction on theories. We
extend this construction to a functor, and use it to show that the category of m-institutions
can be embedded into the category of institutions; hence, m-institutions can be seen as a
special kind of ordinary institutions. Therefore the results of this paper apply can also
be applied to deduction-based approaches to formal software engineering advocated by
Turski and Maibaum [?] and Maibaum and Sadler [?], and later formalised by Fiadeiro and
Maibaum using 7-institutions [?].

Definition 33 A w-institution consists of
1. a category Sign whose objects are called signatures,

2. a functor Sen: Sign — Set, giving for each signature a set whose elements are called
sentences over that signature, and

3. a relation? Fy, C P(Sen(X)) x Sen(X) for each ¥ € |Sign/|, called Y-consequence,
such that the following conditions hold:

A. reflexivity: {e} by e for each e € Sen(X2);

B. monotonicity: if £ty e and E C E' then E' -y, ¢;

C. transitivity: if E Fy ¢’ for each ¢ € E' and if (E U E') -5 e, then E Fy e;

D. translation: if E by e and if ¢: ¥ — X' in Sign, then ¢(E) Fs ¢(e).

A m-institution is compact iff whenever F by e then there is some finite £’ C E such that
E' }_E e. O

4Here P denotes the power set function.

17

Notice that although 7w-institutions axiomatise a syntactic consequence relation, they do
not axiomatise an underlying notion of deduction.

Definition 34 Let Z and Z' be m-institutions. Then a m-institution morphism ®: 7 —
7' consists of

1. a functor ®: Sign — Sign', and

2. a natural transformation «.: ®; Sen’ = Sen,

such that E g(x) e implies ax(E) Fx as(e) for any signature X, for any set £ of ®(X)-
sentences, and any ®(X)-sentence e. Let m-Ins denote the category of m-institutions with
m-institution morphisms. O

There is a forgetful functor & : Ins — w-Ins which maps any institution to a corre-
sponding deductive system, by forgetting the models, and by letting F - e mean F = e.
Applying U to an institution morphism forgets its model part, and the Satisfaction Con-
dition for institution morphisms helps to prove that this indeed gives a m-institution mor-
phism.

In [?], Meseguer gives a comma category construction for categories of models of a
m-institution. It is remarkable that this construction gives exactly the right models for
the most common examples. The following result extends this construction to institution
morphisms, thus giving a functor that embeds the category of m-institutions as a retract
into the category of institutions.

Theorem 35 The forgetful functor & : Ins —n-Ins has a retract (i.e., a left inverse
functor) F: m-Ins — Ins.

Proof: The functor F maps a m-institution (Sign, Sen,) to the institution (Sign, Sen, Mod, =
) with the same category of signatures and the same sentence functor. Given a signature
Y, the category Mod(X) is defined to be the comma category (X,*)/Th. Thus, a ¥-model
is just a theory morphism G;: (X,*) — (34, E1), and a model morphism H: G; — G is
just a theory morphism (X, E1) — (X5, Ey) such that Gy = G1; H.
If D: ¥’ — ¥ is a signature morphism, then a ¥-model G is translated to the ¥'-model
D; G. The satisfaction of a X-sentence e by any Y-model G : (%,°) — (X1, E1) is defined
by Gi(e) € Ej. It is easy to check that these data define an institution.

Now consider a m-institution morphism (®, «): (Sign, Sen,t) — (Sign’, Sen/,"). We
let F map this to (®, a, 8): (Sign, Sen, Mod, =) — (Sign’, Sen’, Mod', ='), where only the
natural transformation 5: Mod = ®%; Mod' has still to be defined. For any signature ¥,
Bs, maps the model Gy : (Z,*) = (X1, E1) to ®(G1): (®(X),*) = (®(Z1), o5, (E1)). That
agll (E}) is a theory follows from the Satisfaction Condition on «. Also, a model morphism
H: G, — G, is mapped to the model morphism ®(H): ®(G,) — ®(Gsy), and ®(H) is
indeed a morphism of theories (®(21), as! (E1)) — (®(X2), a5, (E2)), by the naturality of
Q.

To show the Satisfaction Condition for institution morphisms, we have to check that
for any 3-model G;: (£,*) — (X1, E1) and any ®(X)-sentence €', we have G; 5 ax(€')
iff B2(G1) Fy() €. This condition is equivalent to G1(ase’) € Ey iff ®(G1)e’ € ax, (E).
This holds because ax; G; = ®(G1); ax, by the naturality of a.

This completes the definition of F, and it is not hard to check that ;U is the identity.
O

18

Thus, given a 7-institution P, we get an ordinary institution F(P). It should be clear
what it means for P to be inclusive, distributive, etc., and it is easy to see that these
properties carry over to F(P), because they only depend on Sign. Because P = U(F(P))
and because U interprets - as |=, the theories of P are exactly the same as the theories of
F(P). Also, Meseguer [?] showed that F(P) is semiexact. Putting these results together,
we are able to apply results about institutions to F(P), and hence to P.

3 Basic Module Algebra

Bergstra, Heering and Klint [?] consider a module to be a set of sentences in first order logic,
and develop a “module algebra” which captures many important properties of modules in
this sense, through equations that are satisfied by basic operations on modules. This notion
of module is appropriate for some applications to specification languages, and in any case,
it is interesting to know what equations are satisfied. However, we wish to note that this
approach does not capture generic modules, nor can it characterise the relationships of
import and export that may hold between two modules. Also, we see no way that such an
approach can capture the various notions of conservative extension that are treated in this
paper. Thus, some important aspects of modules are not “algebraic” in this sense.

This section and the next discuss some equations that may be satisfied by operations
on theories over a reasonable institution Z. Recall that we have already shown that Th(Z)
has an inclusion system and finite colimits when Z is reasonable. We will use the following
notations (from [?]): if 7= (X, E), then we let X(7") = 3; and given a signature X, we let
T(X) = (%,0*) and we call it the empty theory. Notice that even for equational logic,
there may be some sentences in 7'(X), for example, those of the form (Vz) z = z.

3.1 Sum

A very basic operation on theories is simply to combine their features into a single theory.
This was modelled with colimits in Clear [?] in a way that permitted shared subtheories.
For a strongly inclusive institution, we can use the specific colimit that is given by the sum.

Recall that given theories 7' and 7", their sum is their coproduct 7'+ 71" in Ipj. In
examples from concrete institutions such as many sorted equational logic and first order
logic, T'+T" is in general not a disjoint union, because there may be some sharing between
T and T".

Proposition 36 Given theories T, 7', T", then:
1. T+T' =T+T.
2. T+ (T'+1T"=T+T1T)+T1".
3.T4+0=T.

4. T+T=T.

Proof: These are immediate from Proposition 24. O

19

3.2 Renaming

In the practical development of large proofs, or large hardware and/or software systems,
it can be very helpful to reuse texts. However, sometimes the source texts will not have
the right names for the intended reuse; for example, we may wish to avoid having some
variables be shared between two given modules. In such circumstances, it is important to
be able to rename features. The operation % described below accomplishes this. (Recall
that we are assuming a reasonable institution.)

Definition 37 Let ¢: ¥ — X' be a signature morphism and let 7 = (X, E) be a X-theory.
Then we let ¢ xT = (X', (4(E))*). O

Fact 38 Let ¢: ¥ < X' be an inclusion and let T = (X, E) be a Y-theory. Then ¢ xT =
(X', E*).

Proof: Because Sen(¢): Sen(X) — Sen(¥') is an inclusion, we have that ¢(e) = e for
all e € Sen(X), and hence ¢(E) = E. O

Proposition 39 Let T and 7" be theories, and let ¢ and v be signature morphisms. Then:
1. If¢: X(T) » X and ¢: X' — X7 then ¥ x (p+T) = (¢;9) x T

2. It i: X(T) — ¥, i'+ S(T") < £, j: S(T) + X(T") — X" and ¢: 2" — 2",
then j;ox (T +T1') = (5;6xT) + (i';¢ xT"). (One might write this loosely as
¢+ (T+T") = (pxT) + (¢%T').)

Proof: First, let T be (X, E) and 7" be (X', E'). Then
br(pxT) =1p* (X, (6(E))") = (X", v((8(E))*)*) = (X", (V(8(E))%)) = (¢:9) * T,

where the second step follows by noting that the Satisfaction Condition implies that any
consequence of ¢(F) is mapped by ¢ into a consequence of ¢¥(¢(F)).

For the second assertion, we will rewrite both sides of the equation to the same expres-
sion:

Jio*x (T +T1") = (Z", (p(EUE))* = (£, (¢(E U E))%)
and

(G xT) + (16 xT") = (57, ($E)*) + (£, (9E")*) = (£", ((6E)* U (6E')*)*)
= (&, (6(EU E"))").

[4

One way to implement a module system with renaming is to consider that the “real
name” of an operation is qualified by the name of the module where it is defined; then one
can use short names when there are no clashes, and one can avoid clashes by using the long
names if necessary. This solution has been implemented in the OBJ3 system [?] simply
by renaming all operations as they are stored into the module database. Then module
importation is just inclusion of the renamed theories. Thus, our mathematical treatment
of theory inclusion already takes account of this practical difficulty.

20

3.3 Information Hiding

Information hiding is an important technique in modern programming, as well as in alge-
braic specification. Parnas [?] emphasised the importance of hiding implementation details
within a module, in order to make it possible (for example) to improve a given data rep-
resentation without having to search through all of a large program for each place where
details of the representation are used. This is accomplished by hiding the data representa-
tion, i.e., by allowing access to it only through operations exported by its module. Similarly,
Majster [?] showed that certain Y-algebras cannot be specified as the initial 3-algebra of a
finite set of Y-equations, while later work by Bergstra and Tucker (see [?], and a summary
of related research in [?]) showed that any recursive Y-algebra could be specified as the
Y-restriction of an initial ¥'-algebra of a finite set of ¥'-equations. Thus, there are some
interesting Y-theories that do not have finite »-presentations, but that are Y-restrictions
of finitely presented Y'-theories, for some ¥ C ¥'. In both cases, we have a signature in-
clusion ¥ — ¥’ and a X-theory Y OT of what is visible, derived by restricting a ¥'-theory
T that includes both the visible and the hidden features. (Recall that we are assuming a
reasonable institution.)

Definition 40 Let ¥’ be a signature and let 7= (X, E)) be a theory. Then
YOT = (XN, EnSen(Y)),
where O is called the information hiding operator. O

Bergstra, Heering and Klint [?] called O the “export operator,” but we think that this
name may be misleading.

Proposition 41 Given a signature inclusion ¥’ < ¥ and a X-theory T, then X'OT is a
Y'-theory.

Proof: Let e be a Y-sentence such that F N Sen(X') s e. Then we have to prove that
e € EN Sen(X'). To prove that e € E, it suffices to prove that F |=x e. Let M be a
model of E. Then also M Ex E N Sen(X'). By the Satisfaction Condition, the reduct
My, also satisfies E N Sen(X). It follows that My =5 e. Now going backwards with the
Satisfaction Condition, we obtain that M [y e, which proves this result. O

Corollary 42 For any signature ¥’ and any Y-theory T, ¥'OT is a (X N X')-theory. O

3.4 Module Expressions

Modules are defined in a wide variety of ways in programming, specification and theorem
proving languages. For example, Clear modules are built up recursively from its combine,
enrich, derive, and apply operations. The module expressions of the OBJ language are
generated in a similar way. Standard ML [?] and Modula-2 [?] also have interesting module
systems. In the context of the present section, we may define module expressions to be
built up from 4, O, and x, plus the finite presentations; i.e., they are the elements of the
free term algebra®. Much of this paper can be seen as exploring equations that hold on the
quotient of this algebra by an equivalence induced by some notion of denotation. What is

5A slightly subtle point is that a sort constraint is needed for application of the renaming operation.

21

attractive about the module algebra of Bergstra et al. [?] is that it provides a normal form
for such module expressions; unfortunately, their development is restricted to the case of
first order logic.

4 Distributive Laws

This section discusses three distributive laws for information hiding over the sum of theories.
The strong distributive law is what we really wish were true, because it says that to prove
something about the visible part of any theory, we do not need to know anything about
what is invisible; this would greatly simplify reasoning about theories with hidden parts.
However, this law does not seem to be satisfied by any institution that is widely used in
Computing Science. The middle distributive law seems to be about the strongest law that
does hold in some institutions of interest; it is a restriction of the strong law by some
conditions on the signatures involved. The weak distributive law is so weak that it is
satisfied by almost all institutions that are widely used in Computing Science.

Definition 43 Let Z be a reasonable institution. Then 7 satisfies the strong distributive
law iff given a X;-theory T, a Yo-theory Ty, and a signature X' such that X' < ¥; and
¥ ey Yo, then

YO(T +T) = (X'07) + (X'07T3).

7 satisfies the (middle) distributive law iff given a ¥;-theory 77 and a Yo-theory T»,
then

(1 NE)O(Ty + T2) = (1 N Ee)OTY) + (X1 N Ee)OTy).

7 satisfies the weak distributive law iff given a ¥;-theory T} and signatures ¥, and Y
such that X' < ¥; and ¥’ < ¥, then

YO(T + T (X)) = (X'07h) + (X'0T(%,)).
O

Notice that a reasonable institution satisfies the (middle) distributive law iff it satisfies the
strong distributive law in the particular case where ' is 3(77) N 3(T3). Also, a reasonable
institution satisfies the weak distributive law iff it satisfies the strong distributive law in
the special case where one of the theories is the empty theory.

The following counterexample shows that equational logic does not satisfy the strong
distributive law. Actually, this example applies to any reasonable institution that supports
an internalisation for equality and for constants. This includes not only first order logic
with equality, but also ordinary first order logic, by introducing a binary relational symbol
for equality plus sentences expressing its transitivity and symmetry.

Example 44 Let ¥’ be an unsorted signature with just the two constants 1 and 2, and
let ¥; and Xy be ¥/ with an additional constant 0. Let 7} be the ¥;-theory generated by
the equation 1 = 0, and let 7, be the ¥,-theory generated by the equation 2 = 0. Then
¥'0T7; and X'OT, are both empty, and so their sum is also empty. But T} + T5 contains
the equation 1 = 2, which is also contained in X'0(7; + T3) because it is a ¥'-sentence. O

22

4.1 Distributive Laws and Interpolation

There are many different formulations of the Craig Interpolation Property at the level of
institutions. Some that are equivalent for first order logic differ for many other important
institutions, and some are so strong that they are not satisfied even by first order logic.
We first formulate the Craig Interpolation Property for institutions in a style used by
Rodenburg [?] for the equational case. Then we connect the middle distributive law with
Craig Interpolation, in the style of [?] and [?].

Definition 45 A reasonable institution satisfies the Craig Interpolation Property iff
for any signatures ¥ and ¥’ and any set FE of Y-sentences and any set E' of ¥'-sentences,
if E =55 E' then there is a set I of (¥ N X')-sentences such that F =5 I and I s E'.
The set I is called the interpolant of £ and E’. O

Without axiomatising inclusions, it is not possible to formulate Craig Interpolation in
quite such an intuitive way. For example, Tarlecki [?] gives a more restrictive definition,
involving a pushout of arbitrary signature morphisms. Another difference is that we con-
sider sets of sentences rather than just single sentences. We agree with Rodenburg [?] that
this is more natural; in particular, note that equational logic satisfies Definition 45, but
not the single sentence version given in [?]. In an institution with (arbitrary) conjunctions,
the single sentence and the set of sentence forms are equivalent; but equational logic does
not have even finite conjunctions.

Maibaum and Sadler [?] give a version of Craig Interpolation that is stronger in a dif-
ferent way, and Maibaum and Fiadeiro [?] give a precise formulation of it for 7-institutions
without inclusions. The following formulates this notion for inclusive institutions:

Definition 46 A reasonable institution Z has the Strong Craig Interpolation Prop-
erty iff for any theories (X1, E1), (X2, E2) and any Yo-sentence e, if 1 UE, =y, 13, €, then
there is a set I of (X, N Xy)-sentences such that F; =y, I and E; U [y, e. O

In order to state the relationships among Craig Interpolation, Strong Craig Interpola-
tion, and the distributive law, we need the following:

Definition 47 An institution is closed under implication iff for any signature X, for
any finite set F of Y-sentences and any single Y-sentence e, there is a set E’ of Y-sentences
such that a Y-model M satisfies E’ iff it satisfies e whenever it satisfies F. We may write
(E = e) for this set E'. An institution has false iff for any signature 3, there is a
Y-sentence falsey, such that no ¥-model satisfies it. O

There are several ways to formulate results like the following, depending for example
on whether closure under finite or arbitrary implication is assumed; but all of the proofs
would be similar to that given below.

Proposition 48 If a reasonable 7 is compact and closed under implication, then it satisfies
Craig Interpolation iff it satisfies Strong Craig Interpolation.

Proof: Craig Interpolation is the special case of Strong Craig Interpolation with Ey =, so
we only have to show that a compact institution with implication and Craig Interpolation
satisfies Strong Craig Interpolation. Thus, assume that we are given theories (X1, E1)

23

and (X9, F»), and let e be a Yy-sentence such that F; U Es =5 e, here ¥ = X; + Y.
By compactness, there are finite sets Ef C E; and E} C F, such that E] U E} Eyx e,
and by closure under implication, there is a set (E} = e) of Xj-sentences such that for
any Yo-model M, we have M [=y, E} implies M =y, e iff M =y, (E) = e). Then
E! s (E} = e), because E] U E} =y e, by applying the Satisfaction Condition for the
inclusion ¥y < 3. Craig Interpolation now gives us a set I of ¥; N Y¥y-sentences such that
E! Ex, I and I 5, (F) = e). Thus, E] =x, I and I U E} 5, e, which implies that
E1):El I and IUEQ):22 e. O

Theorem 49 Let 7 be a reasonable compact institution closed under implication. Then
T satisfies the distributive law if it satisfies the Craig Interpolation Property. Moreover, if
T is a reasonable compact institution closed under implication and false, then it satisfies
the distributive law iff it satisfies the Craig Interpolation Property.

Proof: Let 77 = (X1, Ey) and Ty = (X, E2) be theories. Let ¥’ be X(T1) N X(T3). We
now calculate the two sides of distributive law. First,

EID(Tl + TQ) = EID(Zl =+ 22, (E1 U EQ).) = (EI, Sen(E') N (El U EQ).),
which is a theory by Proposition 41. Next,

(X'0TY) + (X'0T) = (X, E1 N Sen(Y)) + (X, B, N Sen(X')) = (X, ((Ey U Ey) N
Sen(X'))*).

Now let E be the set of (¥; + ¥5)-sentences which is the set theoretic union of E; and
FE,. Notice that because Sen(X') N E*® is a theory (by Proposition 41 again) and because
EnN Sen(Y) is included in it, we have (E N Sen(X'))* C Sen(X') N E*. We will show that
the opposite inclusion follows from the Craig Interpolation Property when 7 is compact
and closed under implication.

We have to prove that for any (3; N 3y)-sentence €', if F; U Ey Eyx, 45, € then (E; U
E5) N Sen(X') Esv €. By compactness, there are finite sets of sentences EY C E; and
EY C E, such that EY U EY =x,.5, €. (EJ = ¢€) is a Yy-sentence by construction, and
E?):531-1-22 (Eg = el)'

Now let I C Sen(X') be an interpolant such that EY =5, I Ex, (EY = €). By
compactness, we may assume that [is finite.

From E; 5, I it follows that I C Ej, because E; is closed. Thus I C E; N Sen(X).
Also, I Ex, (EY = ¢') implies that EY 5, (I = ¢€), which implies that (I = €') C Es,
because E, is closed. Therefore (I = ¢') C Ey N Sen(Y).

The desired conclusion now follows from the facts that IU(I = ¢€') C (E1UE;)NSen(X)
and that JU (I = ¢€') =y €.

Now for the converse, suppose that Z also has false and satisfies the distributive law.
Because 7 is compact, the Craig Interpolation Property is equivalent to its finitary version
(in which all of the sets of sentences in the definition of the Craig Interpolation Property
are finite).

Consider finite sets E; of ¥;-sentences and F5 of 3s-sentences such that Fy Eyx, 45, Fo.
Let T} be the X;-theory generated by E; and T) the X,-theory generated by (E; = falsey;,).
Because falses, = falsey, 5, lies in T} +T5, it follows that falsey, belongs to ¥'07) +X'0T5.

There are finite sets of sentences EY in ¥'O7; and EY in X'0O7; such that EY U EY s
false. We claim that EY will serve as an interpolant. Because 7T is generated by E; we

24

have that F; =y, EY. From EY U (Ey = false) Ex false, it follows that EY =y, Ey. O

It may be worth noting that in proving this result, we could assume closure under
arbitrary implication, instead of compactness and closure under finite implication. But
this would be less realistic, because computing systems only handle finite amounts of data.

There is an apparently stronger formulation of the middle distributive law that is actu-
ally equivalent under certain conditions:

Theorem 50 A reasonable distributive institution with Craig Interpolation satisfies the
(middle) distributive law iff for every X;-theory Ty, Yo-theory T5, and signature X,

We will call this property the Amsterdam distributive law.

Proof: The middle distributive law is the special case where ¥ = 3; N X3, so we only
need to show that the strong form follows from the weak form.

Let 34, 35 and ¥ be signatures such that ¥; NXy C ¥, and let (X4, Fy) and (X9, E9)
be theories. Then we must prove that

ZD(El, El) + ED(EQ, Eg) - ED((Zl,El) + (22, EQ))

A simple computation shows that the signature of each side of this equality is XN (3 +),
which we will denote X'. The equality can be therefore rewritten as

(X, (Sen(T') N (B U By))*) = (=, Sen(E) N (Ey U By)*).

Because the lefthand side is clearly included in the righthand side, we need only prove the
opposite inclusion, that is, if E;UEs 5,4y, € for e € Sen(X'), then Sen(X)N(E1UE,) Ex
e. Let X) =31+ (XNXy) and let 3, = Yo+ (XN ;). Then BN, = (5 4+ (ENX))N
Because X1 N ¥y C 3, we have that X1 NY, =YX N (8, +3,) =%

Now let E] be the X}-theory generated by E1, let E} be the ¥,-theory generated by E,
and suppose that F; U Ey s, .5, e with e € Sen(X'). Because E; C E} and E, C E}, we
also have that F| UFE), =y, 5, e. Now we are in a position to apply the middle distributive
law for (X}, E}) and (X5, E), which gives Sen(X') N (E} U Eb) Es e.

Next we show that Sen(X') N (E; U Es) s Ej N Sen(X'). Pick any Y'-sentence €
in E]. Because Ej is the ¥j-theory generated by Ej, we have that E) =y ¢'. But
Y =X+ (ENX) =X, + X%, while E is a set of ¥;-sentences, and €' is a X'-sentence.
So by the Craig Interpolation Property, we get I C Sen(X' N3;) = Sen(X') N Sen(X;)
such that F; =y, I and I =5 €'. Because E) is a theory and I C Sen(%,), it follows that
I C E;. Because I C Sen(X') as well, I C EyNSen(X'). Thus, £y N Sen(X) Ex €/, which
means that (F1 U Es) N Sen(Y') Ex €.

Similarly, we obtain that (F; U Ey) N Sen(Y') =s Ey N Sen(X).

Therefore (E; U E2) N Sen(Y') Ex (E) U EY) N Sen(Y) sy e. O

The Amsterdam distributive law appears in the work of Bergstra, Heering and Klint

[?], who note that it has the form of a conditional equation; notice also that the middle
distributive law is a special case.

25

Corollary 51 In a reasonable distributive institution that is closed under implication and
has false, the followings are equivalent:

1. the Craig Interpolation Property;
2. the middle distributive law;

3. the Amsterdam distributive law.

Proof: This follows from Theorem 50 and Theorem 49. O

The proof of Theorem 49 resembles the proof of equivalence of the distributive law and
the Craig Interpolation Property given in [?] for first order logic. Indeed, we can apply
the above result to obtain the distributive law for first order logic, because first order
logic is compact, closed under implication and false, and satisfies the Craig Interpolation
Property. However, equational logic, and also conditional equational logic, are not closed
under implication and false, so that we cannot obtain the distributive law in this way for
these logical systems. In fact, the distributive law does not hold for them, as shown by the
following counterexample, adapted from [?]:

Example 52 Consider the unsorted signatures >; containing the constants 0, ¢; and co
and the unary operation symbol —, and Y5 containing the constants ¢; and cy, the unary
operation symbol —, and the ternary operation symbol h.

Let T be the X;-theory generated by the equation —0 = 0 and and let 75 be the 3-
theory generated by the equations h(x,x,y) =y, h(z, —z,¢1) = h(z, —x,¢) and —(—z) =
x. The signature > = ¥; N, contains only ¢; and ¢, as constants and the unary operation
symbol —. T; + T5 contains the equation ¢; = ¢; and so does XO(T; + T5). Notice that
>.0T] is empty and that X075 does not contain ¢; = c3. Therefore ¢; = ¢o does not belong
to (X0T) + (X073). O

A simpler example could be given along the lines of one in [?] showing the need for
explicit quantification in many sorted equational logic with possibly empty carriers. How-
ever, the example given above is stronger, because it shows that the (middle) distributive
law does not hold for unsorted equational logic. We will see in Section 4.3 that this law
does hold when the theory inclusions are conservative extensions, and we will argue that
this covers the expected applications.

4.2 The Weak Distributive Law

This subsection shows that the weak distributive law holds for all of the institutions that
are generally used for specification in Computing Science, by reducing it to a condition
that is easy to check.

Definition 53 An inclusive institution Z is uniform iff for any inclusion of signatures
¥ < 3, any set E' of X'-sentences, and any X'-sentence ¢', if E' =5 €' then E' =5 /. O

Intuitively, this condition says that any semantic consequence e also follows using only the
symbols that actually occur in it. Also, note that we can apply this definition to a syntactic
consequence relation by using Theorem 35 of Section 2.4.

26

Proposition 54 An inclusive institution satisfies the weak distributive law iff it is uniform.

Proof: Consider a signature ¥’ which is included in both 3; and X5. Let E5 be a theory
over Y». Now we calculate the two sides of the weak distributive law. First,

EID((Zl,.) + (22, EQ)) = EID(EI + 22, E;) = (EI, S@TL(ZI) N ES),

which is a theory by Proposition 41; notice that the closure of F5 is taken in ¥; +3¥,. Next,

(X'O(S1,%)) + (F'O(Sy, By)) = (5,°) + (5, B2 1 Sen(X)) = (X, B2 N Sen(S)).

Clearly, we have the inclusion Fy N Sen(X') C Sen(X') N E3.

We next show that the opposite inclusion is equivalent to uniformity. Suppose that
uniformity holds for the inclusion ¥y < 3, +¥,. Pick a ¥s-sentence €’ such that E, =5, 15,
¢'. Then E, =y, €', which implies that Sen(X2) N E5 C E5. The desired inequality follows
by intersecting this inequality with Sen(X').

The converse follows from the particular case where Yy < ;. The weak distributive
law (or more precisely, the inclusion mentioned above) now gives uniformity for Yo < 3.
O

The logical systems that are widely used in Computing Science are uniform (under their
usual notion of inclusion). The rest of this subsection gives some machinery for establishing
the uniformity of institutions.

Definition 55 An inclusive institution has model expansion iff for every signature in-
clusion ¥’ < ¥ and for every ¥'-model M’ there is a ¥-model M such that My, = M'.
O

In the applications, this property is obtained by interpreting the symbols of ¥ that are
not in ¥’ in an arbitrary way in the model M'. This can be done only if we do not have
empty carriers in the models. This can be assured by assuming the existence of at least one
constant for any sort which is the target of a new operation symbol in ¥'. Model expansion
is used, for example, by Rodenburg [?] in his elegant proof of the Craig Interpolation
Property for conditional equational logic.

Lemma 56 Any inclusive institution with model expansion is uniform.

Proof: Let ¥’ < Y be an inclusion of signatures. Let E’ be a set of ¥'-sentences and let
¢’ be a single X'-sentence such that E’ =5 €¢/. Our aim is to prove that E' s €.

Pick a ¥'-model M’ of E'. Let M be a ¥-model such that My, = M’. By the Satisfaction
Condition, M =5 E'. It follows that M =5 €. Going backwards with the Satisfaction
Condition, we obtain M’ =y €. This implies that E' =y €. O

Corollary 57 An inclusive institution satisfies the weak distributive law if it has model
expansion. O

Thus, the weak distributive law is closely related to model expansion and uniformity, and
is not very closely related to the Craig Interpolation Property.

27

4.3 The Distributive Law and Conservative Extensions

We have seen that the (middle) distributive law does not hold for equational logics. This
subsection shows that it does hold for semiexact reasonable institutions, including equa-
tional logics, when only conservative extensions are used.

Definition 58 A theory morphism ¢: (3, E) — (X', E’) is conservative iff for each
(X, E)-model M there is a (X', E')-model M’ such that M is the ¢-reduct of M’ (i.e.,
M} = M). Also ¢ is a conservative extension iff it is an extension and is conservative.
O

We claim that conservative extensions are the case of most interest for applications to
hardware and/or software systems, because good design practice demands that an imported
subsystem should not exhibit behaviour in its new context that differs from what its spec-
ification says it should do, i.e., the inclusion into a larger system should be conservative.
Although rare in software and hardware design, non-conservative extension can easily arise
in theorem proving; for example, we might form the integers modulo 2 from the integers
by adding the equation 2 = 0, or form commutative groups from groups by adding the
commutativity axiom.

Theorem 59 In a semiexact reasonable institution, if 77 = (X1, E1) and Tp = (3, E») are
theories, and if the extensions (3 NY,)07; < T3 and (X;NXy)07 < Ty are conservative,
then the distributive law holds for the theories T} and T5.

Proof: Let X' denote ¥; N Xy. By the computations in the proof of Theorem 49, we see
that the distributive law for 77 and T, is equivalent to

(EI, S@’I’L(EI) N (El U EQ).) g (EI, ((El U EQ) N SE’I’L(EI)).)

Let €' be a ¥'-sentence such that Ey U Fy 5,45, € and pick a ¥'-model M’ of Sen(X') N
(E1UE,). Because M’ is a model for Sen(X')NE; and because X'OT; «— T is conservative,
there is a ¥;-model M; that satisfies £, and whose reduct M5 is M’'. Similarly, there is
a Yo-model M, that satisfies F5 and whose reduct Msyy is M.

Because Mod preserves pushouts and (37 +X9) is the pushout of ¥/ — ¥; and ¥ — ¥,
(by Proposition 15), Mod(%; + X9) is the pullback of Mod(%;) — Mod(X') and Mod(%25) —
Mod(X'). Then there is a (X; + X9)-model M such that My, = M; and My, = M,. By the
Satisfaction Condition, M =y, 1», F1 and M [y, 45, Eo. Therefore M =y, .5, €. Finally,
because M' = My, we conclude that M’ =y €. O

4.4 Summary Concerning the Distributive Laws

Let us now summarise the situation for the distributive laws. The condition that one
might really wish for, the strong distributive law, holds in none of the institutions that are
generally used for specification in Computing Science. This corresponds to the intuition
and experience of designers and users, that not all of the properties of a complex system
that are visible through some interface are explicable without reference to the internals
of the system. However, a weaker version of the distributive law, here called the middle
distributive law, does hold for some institutions of interest. In our view, this is not a
particularly significant property, because its hypothesis unrealistically requires the external

28

visibility of all internal interfaces of a system. Note that it is not in general equivalent to
the Craig Interpolation Property; for example, equational logic satisfies Craig interpolation
but not the middle distributive law. However, these two conditions are equivalent for
institutions with sufficiently rich resources for combining sentences, and they are equivalent
to a strong form of the middle distributive law. Also, at least for first order logic, the middle
distributive law supports a normal form for module expressions, in which information hiding
can be reduced to a single operation which is performed last [?]. Subsection 4.3 showed
that the middle distributive law holds for equational style logics when the extensions are
conservative, and argued that this is the case of greatest interest in applications. Finally,
let us recall that the weak distributive law is so weak that it holds in all of the institutions
that are widely used in Computing Science.

4.5 The Algebra of Model Classes

We now explore some relationships between denotations of modules as sets of sentences, and
as classes of models, assuming a reasonable institution Z. Recall that if P is a presentation,
then [P] denotes its class of models.

From its very beginning in the work of Parnas [?] and others, information hiding has
been a syntactic notion: it refers to scoping conventions that prevent the use of certain
parts of a module that are regarded as internal; the purpose is to make it easier to reuse
and maintain software. Similarly, a proof in mathematics often contains many details
that are hidden in the statement of the result proved; if these details were brought to the
surface, it would make reuse of the result much more difficult. The semantic counterpart
of information hiding is the reduct operation; note that in general we cannot expect to
see all the details of all the models of large systems, because we can only work with their
descriptions. Nevertheless, it is interesting to know how the two kinds of information hiding
relate. We also consider a semantic version of sum.

Definition 60 Let C; be a collection of ¥;-models and Cy be a collection of ¥5-models.
Then C;+Cs is defined to be the collection of those (X;+X2)-models M such that My, € Cy
and ME2 € CQ.

Let ¥ be a signature and let C’ be a class of ¥'-models. Then X OC" is the collection of
(XN X)-models {Myny | M € C'}. O

We first show that sum commutes with denotation:

Fact 61 [T} + T3] = [11] + [1%] for any theories T} and T5.
Proof: this is direct from the definitions and Corollary 27. O

However, the non-commutativity of denotation with some other operations highlights the
difference between the algebra of theories and the algebra of model classes.

Proposition 62 Let 7 be a theory and ¥ a signature. Then XO[7] C [X07], with
equality iff the extension XOT — T is conservative.

Proof: Let T = (X', FE) and let ¥ be any signature. Because ¥O7T = (X N X)OT (by
Definition 40), and X0O[T] = (XN X")3O[T] (by Definition 60), we can replace ¥ by XN X'
And because XNY' < X', we may assume that ¥ < ¥'. Now let M € YO[T], which means

29

that M = MY, for some M' =5y E. Then M' 5y EN Sen(X) and so by the Satisfaction
Condition, My, =x E N Sen(X), i.e., M € [X0OT].

The equality X0O[7] = [E0T] holds iff for any model M of ENSen(X) there is a model
M’ of E such that M = Mj.. O

We now give an example showing that this inclusion can be strict.

Example 63 Let X' be the unsorted signature with two constants ¢ and 0 and an unary
operation symbol —. Let 7" be the Y¥'-theory generated by the equation 0 = —0. Let X
be the signature containing only the constant ¢ and the unary operation symbol —. Then
Y07 is empty, and so its denotation [¥O7] is Mod(X). Now consider the Y-model M
having {1, 2} as its underlying set and interpreting ¢ as 1, and —1 = 2 and —2 = 1. Then
there is no model of T" such that its ¥-reduct is M, because any such model must have at
least one fixpoint for —. Thus O[T is strictly included in [E0O7]. O

Corollary 64 Let T be a theory and X be a signature. Then £0O7 C (X0O[7])*, with
equality iff the extension X OT — T is conservative. O

This result says that information hiding on denotations is more accurate than on theories.
Because of this, we should not be surprised to see that the middle distributive law holds
for model classes. But we might still be surprised at the length of the proof.

Proposition 65 A semiexact reasonable distributive institution satisfies the Amsterdam
distributive law for denotations of theories; i.e., given theories T} = (3, E;) and Ty =
(32, Ey), and given ¥; N Xy C ¥ then

SO([11] + [T2]) = 20[T1] + X0O[T3].

Proof: Let us first compute the two sides of the equation:

0(71] + [72))
= X0O{M € Mod(X; + %3) | My, € Mod(T,) and My, € Mod(T5,)}
= {MEQ(ZH_Ez) | M e MOd(El + 22) and le € MOd(Tl) and M22 € MOd(Tg)},

and

YO[T] + ¥0[T3]
e {Mlzmgl | M, € MOd(T1)} + {MZEQEQ | M, € MOd(Tg)}
={N € Mod(XN (X1 4+ 33)) | Nxnx, has an expansion M; € Mod(T}) and
Nysny, has an expansion My € Mod(T3)}.

Now X0O([71] + [T2]) € X£O[T1] + X0[T3] because for any model N € Mod(X N (X1 + X))
such that N = Myn(s, 45,) for some M € Mod(¥, + X5) with My, € Mod(T}) and My, €
Mod(T5), we have that My, is an expansion of Nyny, for i =1, 2.

The argument for the opposite inclusion may be aided by the diagram below, in which
all arrows are inclusions. First observe that ¥; N3y = (X N X)) N (XN Xy). Because
the institution is distributive, we can apply Proposition 15 to conclude that ¥ N >»; —
XN (21 + 22) and XN Yy <= XN (21 =+ 22) are the pUShOUt of X1NY¥Xy & XN
and X1 N Xy — XN Y. Now consider a model N € Mod(X N (X1 + Xs)) such that

30

Nysnys, has an extension My € Mod(T;) and Nyxny, has an extension My € Mod(T5). Then
Miy,ns, = Mss,ns, = Nsx,ns,. Because the institution is semiexact, there is a model
M € Mod(%; + %) such that My, = M; and My, = M, . All that remains to show is
that Mynes, 43, = N. But (Myae45))sns; = (M) sns; = Misns; = Neay, fori =1,2,
which shows that My, 45, = N. O

/zmzl -3
DaPIN YN(S + %) Y+,
\2022 -,

Corollary 66 A reasonable semiexact institution satisfies the middle distributive law for
denotations of theories; i.e., for any theories T} = (X1, F1) and Ty = (2, Ey), if ¥ = X103,
then

YO([T1] + [T2]) = ZO[T1] + Z0O[T3].

Proof: This follows from the previous result with ¥ = ¥; N X5, noting that in this case
the proof does not need distributivity. O

5 Pushouts of Extensions

The concept of conservative extension can be defined either semantically or syntactically;
the syntactic condition is necessary, but not sufficient for the semantic condition. Byers
and Pitt [?] give a nice discussion of the problem with some counterexamples, and Veloso
and Veloso [?] discuss counterexamples from first order logic in more detail. The fact that
models are the objects of primary interest in Computing Science applications suggests that
the model theoretic definition of conservative extension should be given priority, and the fact
that the syntactic formulation does not exactly characterise what happens to the models
seems to us evidence against taking a purely deductive approach to the foundations of
software engineering, as advocated by Maibaum, Turski, Sadler and others [?, ?|. However,
this does not mean that w-institutions should be abandoned; for example, they may be
appropriate for deductive databases (as was suggested in [?]), where it seems reasonable®
to take theories as models, as in the construction of Theorem 35.

This section considers pushouts of three different variants of the notion of conservative
extension. The first is the notion in Definition 58 of the previous section. Then we consider a
stronger form of conservatism called persistency, that is relevant to parameterised modules.
Finally, we consider extensions that conserve initial models of the theories involved; this is
relevant to the specification of data types. Similar results have been previously obtained
for the equational case by Ehrig, Kreowski, Thatcher, Wagner and Wright [?], by Goguen
and Meseguer [?], and by others; early work extending these concepts to institutions was
done by Goguen and Burstall in [?].

6This is based on the view that a database is a self-contained hypothetical world, which may or may
not correspond to “reality.” Actually, large databases are rarely completely accurate, because of typing
errors, social and political issues, delayed updates, and a wide variety of other causes.

31

5.1 Conservative Extensions

This section shows that pushouts of conservative extensions are conservative under some
weak assumptions.

Proposition 67 Given a semiexact institution with pushouts of signatures, let (¢',1') be
a pushout of the theory morphisms ¢: P — T and ¢p: P — P'. Then ¢': P' — T" is
conservative if ¢: P — T is conservative.

Proof: Suppose that ¢: P — T is conservative, and pick an arbitrary model N’ of P'.
Then Ny, is a model of P by the Satisfaction Condition. Because ¢ is conservative, there
is a model M of T" such that My = N,,. By Proposition 30, there is a model M" of T* such
that My, = M and Mg = N'. Because N' was arbitrary, we conclude that any P'-model
has an ¢’-expansion to a T’'-model. 5

P

T
|
| !
| ¥
PP————T
¢I
O

Corollary 68 In any semiexact strongly inclusive institution where pushouts preserve sig-
nature inclusions, pushouts also preserve conservative theory extensions.

Proof: We can lift the preservation of inclusions by pushouts from signatures to theories
by Fact 32, and then apply Proposition 67. O

The following notion is often found in the literature. We will show that it is a necessary
but insufficient condition for conservation:

Definition 69 A theory extension (X, F) — (X', E’) is syntactically conservative iff
E=FE'"nNSen(X). O

Proposition 70 If a theory extension (2,) — (X', E') is conservative, then it is syntac-
tically conservative.

Proof: It suffices to show that E' N Sen(X) C E, because E C E' already. So let
e’ € E'N Sen(X); then it suffices to show €' € E.

Let M =5 E. Then there is an M’ such that M Eyx E' and M{, = M. Therefore
M' =y €. Thus, M{, Ex €', ie., M |=x €. Therefore ¢’ € E* = E. O

Maibaum and Sadler [?] gave an example showing that syntactic conservatism is not
preserved under pushouts in the equational institution. From this, they concluded that
equational logic is defective. However, we conclude instead that syntactic conservatism
is not a sufficient condition for true conservatism. For if it were, then Corollary 68 and
the above proposition would imply that pushouts preserve syntactic conservativism in any
semiexact strongly inclusive institution, including equational logic, which their example
shows is false. From this we conclude that the syntactic definition of conservatism is
defective. We have already given a similar example in this paper: because an extension
(X, E) — (X', E') is syntactically conservative iff S O(X', E') = (X, E), Example 63 provides
an extension XO(X', E') — (X', E') that is syntactically but not semantically conservative.

32

5.2 Persistent Extensions

Persistence is a stronger notion than conservative extension, and is important for the se-
mantics of parameterised data types (e.g., see [?]).

Definition 71 A theory morphism ¢: P — T is persistent iff its associated reduct
functor _,: Mod(T) — Mod(P) has a left adjoint such that each component of the unit of
the adjunction is an equality. O

Fact 72 A persistent theory morphism is conservative. O

The following result is related to the semantics of applying a generic module to an
actual parameter module using a “view,” as proposed in Clear and implemented in OBJ3:

Proposition 73 Given a semiexact institution with pushouts of signatures, let (¢',1') be
the pushout of theory morphisms ¢: P — T and ¢v: P — P'. Then:

1. If the functor _,: Mod(T) — Mod(P) has a left inverse ¢* : Mod(P) — Mod(T), then
there is a left inverse ¢'® of ¢ such that the following diagram commutes:
$

Mod(P) Mod(T)
» »
Mod(P') Mod(T")

¢

2. ¢' is persistent if ¢ is persistent.

Proof: To show the first assertion, pick an arbitrary model N’ of P'. Then N = N, is
a model of P by the Satisfaction Condition. Let M be ¢*(N). Then M, = N}, = N. By
Proposition 30, there is a model M’ of T" such that M,, = M and M}, = N'. The mapping
N’ — M’ defines the functor ¢’® on objects, and its definition on arrows is similar. Next,
¢ preserves identities because 1,1y = ¢'*(1n/)y and 1y g = ¢ (151)y for any P'-model
N'. By Proposition 30, 17 = ¢*(1y/). The same argument gives the preservation of
composition by ¢'%.

For the second assertion, we will show that ¢ is left-adjoint to _y if ¢* is left-adjoint to
_¢» that is (using the above notations), M’ is a free T"-model over N' if M is a free T-model
over N. Pick an arbitrary 7"-model M; and an arbitrary model morphism A: N' — M.
We have to prove that there is a unique model morphism A* : M’ — M| such that hf, = h.
Notice that by Proposition 30, any h*: M’ — M] is uniquely determined by its reducts
h=hi: N'— M|y and f = hi,: M — M}, and by the condition hy = f;.

Now let f be the unique model morphism M — M/ such that hy = f, (since M is free
over N). Then the morphism h#: M’ — M determined by (f,h) is the desired extension
of h to a model morphism M’ — Mj. O

Corollary 74 If pushouts preserve signature inclusions in a semiexact strongly inclusive
institution, then pushouts also preserve persistent theory extensions.

Proof: We can lift the preservation of inclusions by pushouts from signatures to theories
by Fact 32, and then apply Proposition 73. O

33

5.3 Conservative for Initiality

A rather different notion of conservative extension is appropriate when considering data
types that are defined by initial model semantics.

Definition 75 A theory morphism ¢: P — T is conservative for initiality iff the
theories P and 7" admit initial models, Op and Or, respectively, such that 07y = 0. O

Fact 76 If both theories P and T of a persistent morphism ¢: P — T admit initial
models, then ¢ is conservative for initiality.

Proof: This follows from the preservation of initial objects (which are colimits) by left
adjoint functors. O

Proposition 77 Given a semiexact institution with pushouts of signatures, let (¢',1') be
the pushout of theory morphisms ¢: P — T and ¢: P — P'. If both ¢ and 9 are
conservative for initiality, then the pushout morphisms ¢’ and 1)’ are also conservative for
initiality.

Proof: Because 07, = 0pry, by Proposition 30, Or and Opr determine a 7"-model 07 such
that 071y = Or and Op g = Opr. Then initiality of O+ follows from the initiality of 07 and
0p and the fact that any 7'-morphism Oz — M’ is uniquely determined by its reducts
Oy — M,I/J; and Opr — Mé, O

6 Conclusions

In order to compare the properties of different logical systems, it is necessary to employ
some formalisation of the notion of logical system. Otherwise, it is difficult to be sure
that general properties have been formulated correctly, and it is impossible to rigorously
compare relationships among different general properties. We have used institutions to
formalise logical systems. An alternative formalisation would have been m-institutions. But
these leave out the vital connection with models; also, this paper shows that 7-institutions
can be seen as a subcategory of ordinary institutions.

We have been particularly interested in the comparison between equational logic and
classical first order logic. Some authors have argued that certain properties of equational
logic render it unsuitable for use in specification. These include the following:

1. the failure of pushouts to preserve conservative extensions [?];
2. failure of the (middle) distributive law for information hiding over sum [?]; and

3. failure of the Strong Craig Interpolation Property [?, ?].

The first point rests on using a syntactic formulation of conservative extension, rather than
the semantic formulation that we have argued correctly describes the behaviour of the
models that are the real result of the design process. Indeed, the fact that pushouts do not
necessarily preserve syntactically conservative extensions, even for equational logic, seems
to us further confirmation of the inappropriateness of the syntactic formulation.

34

As argued in Section 4.3, non-conservative importation has little practical importance
for software and/or hardware design, because good design practice demands that the im-
ported material should behave as advertised in its new context. Therefore failure to satisfy
the middle distributive law for all extensions should not be held against an institution.

The third point rests on a result relating the Strong Craig Interpolation Property to the
preservation of conservative extensions under pushouts. However, we have argued above
that the syntactic formulation of conservative extension used in this result is inappropriate;
therefore Strong Craig Interpolation is not relevant.

Many of those attacking equational logic have preferred first order logic. But in fact,
there are many desirable properties satisfied by equational logic that are not satisfied by
classical first order logic, including the following:

1. the existence of initial models for all theories, and more pointedly, a close connection
with the most natural models for presentations, which are the computable algebras
or abstract data types, and more generally, with the semi-computable models.

2. left adjoints for all forgetful functors induced by theory morphisms (i.e., liberality),
supporting free extensions of models; and

3. algorithms like term rewriting, Knuth-Bendix, and narrowing, which give equational
logic a strong computational aspect, and make it especially suitable for mechanisation.

Some additional points are that equational logic can be used conveniently for the speci-
fication and verification of imperative programs [?], as well as object oriented programs
[?]. Moreover, equational deduction is significantly simpler than deduction for full first
order logic, and has significant advantages for computation. Thus, the case for using equa-
tional logic in Computing Science wherever it can be used seems quite strong. Of course,
equational logic cannot be used for everything, but it can be used (for example) for many
problems in hardware and software specification”.

Equational logic also seems promising as a metalanguage for describing other logics,
and hence for theorem proving over arbitrary logical systems. This approach is taken in
the 20BJ system [?], a metalogical® theorem prover that supports deduction in any logical
system, by implementing its abstract data type of proofs in equational logic. 20BJ builds
on facilities of the OBJ3 system [?, ?]. Both 20BJ and OBJ3 have module systems based
on the approach described in this paper. Foundations for the 20BJ approach to theorem
proving require formalising the notions of deduction in a logical system, and of encoding
one logical system into another; these are provided by the notion of a ruled charter (which
gives rise to an institution) and a ruled charter morphism [?], which are elaborations of
ideas from [?].

Given our position that the consideration of logic in Computing Science should involve
a delicate balance between syntax and semantics, it is interesting to compare our intuitive
discussions of information hiding and conservative extensions. In the first case, we argued
that information hiding as used in practice is by its nature syntactic, since it refers to

Tt should be noted that there are many variants of equational logic. Although the unsorted variant is
the most traditional in mathematics, it is perhaps the least suitable for Computing Science applications;
for example, order sorted algebra [?] is much better, because of its capabilities to handle subsorts, errors,
polymorphism and overloading.

8Following [?], this means that the system supports metalevel reasoning, that is, reasoning about proofs,
as well as object level reasoning.

35

certain bits of text that are not exported. Hence, we interpret the fact that some laws
are satisfied by O on model classes, but not on theories as explaining why programs with
hidden parts work correctly in practice, even though proving this may require use of the
hidden material; that is, verification may require “unhiding.”

By contrast, in the case of conservative extensions, we argued that the semantic notion
should have priority, because we are primarily interested in the correct operation of models
in some new context. We then noted that the syntactic criterion is necessary but not
sufficient to ensure this.

To try to sum up the whole paper now, we hope to have shown that institutions can be
used to define a variety of properties of logical systems that support modularisation, and
to clarify the relationships among them. In particular, we have shown that certain kinds of
conservative extension are preserved by pushouts, under certain conditions. These results
cover extensions that are conservative for initiality, and that are persistent, as well as ordi-
nary conservative extensions. Extensions that are conservative for initiality are important
for importing (abstract) data types, and our result for this case requires that both exten-
sions be conservative for initiality. Persistent extensions are important for applications of
parameterised modules, while ordinary conservative extensions are important for importing
and reusing modules. We have also considered various forms of Craig interpolation, and
various algebraic laws for operations on theories; in particular, we have argued that the
distributive laws for information hiding over the sum of theories are most significant for
applications to hardware and/or software design when the theory extensions involved are
conservative, and have given a general theorem that covers this case. Many of our results
involve assumptions of (semi)exactness and reasonability, which appear to hold for most
institutions of interest in Computing Science. Finally, we hope to have furthered under-
standing of the sometimes subtle relationships between syntax and semantics in formal
methods for software and/or hardware engineering.

36

Contents

1

Introduction

1.1 Some History
1.2 Relation with Type Theoretic Approaches
1.3 Summary of Results oo
1.4 Prerequisites L e
1.5 Acknowledgements
Basic Concepts

2.1 Imstitutions e e
2.2 Factorisations and Inclusions
2.3 Exactness e e
2.4 m-Institutions L.
Basic Module Algebra

3.1 Sum ... L e
3.2 Renaming L
3.3 Information Hiding
3.4 Module Expressions
Distributive Laws

4.1 Distributive Laws and Interpolation
4.2 'The Weak Distributive Law
4.3 The Distributive Law and Conservative Extensions
4.4 Summary Concerning the Distributive Laws

4.5 The Algebra of Model Classes

Pushouts of Extensions

5.1 Conservative Extensions . .
5.2 Persistent Extensions
5.3 Conservative for Initiality .
Conclusions

37

19
19
20
21
21

22
23
26
28
28
29

31
32
33
34

34

