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We give a logic-independent semantics for predefined (data) types within the categorical abstract
model theoretic framework of the theory of institutions. For this semantics we develop a generic
interpolation result which can be easily applied to various concrete situations from the theory and
practice of specification and programming. Our study of interpolation is motivated by a number of
important applications to computing science especially in the area of structured specifications.

1. Introduction

The practice of programming and specification relies quite a lot upon the use of predefined (data)
types together with that of user defined types. The most common examples of predefined types
include numbers (natural, integers, reals, etc.), Booleans, but also lists and arrays. These are usu-
ally built into the respective programming or specification systems. Another usage of predefined
types may occur when using libraries, often implemented in a lower level language. A model the-
oretic semantics for predefined types was first discussed in (Goguen and Meseguer 1987) within
the context of the (many sorted) equational logic programming paradigm. An important feature
of that semantics was that it promised a smooth and elegant integration of constraint solving
into ordinary (equational) logic programming. The semantics for predefined types discussed in
(Goguen and Meseguer 1987) was fully developed at an abstract category-based level in (Dia-
conescu 1994; Diaconescu 2000). By that abstract approach to logic programming, at least at the
denotational level, large parts of the constraint programming paradigm were realized as special
cases of ordinary logic programming via Herbrand theorems for constraints logic programming
obtained as instances of general abstract Herbrand theorems to the semantic framework for pre-
defined types. All these have been further generalized to a fully logic-independent framework in
(Diaconescu 2004b; Diaconescu 2008).

Here we update this semantics, in the sense of a mathematical simplification, but without re-
ducing the level of generality. This is done at the same logic-independent level of previous works
such as (Diaconescu 2000), given by the so-called institution theory (Goguen and Burstall 1992),
which is a categorical abstract model theory that arose within specification theory as a response
to the explosion in the population of logics in use there. The main concept of institution theory
is that of ‘institution’, which constitutes a formal mathematical model theoretic definition for the
informal concept of logical system; this definition includes syntax (signatures and sentences),
semantics (models), and the satisfaction relation between them. Much of modern formal speci-
fication theory (see (Goguen and Burstall 1992; Sannella and Tarlecki 1988; Diaconescu et al.
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1993) among many other related references) and large parts of model theory (Diaconescu 2008),
respectively, have been developed at the generic level of abstract institutions free of any com-
mitement to the details of particular logics; these are called ‘institution-independent’ computing
science and model theory, respectively. We thus introduce a generic way to define a (model the-
oretic) logic of predefined types on top of any given logical system which is captured as an
institution. We show that the resulting logic turns out to be an institution too.

The emphasis of the current work is on the study of the interpolation properties of the logics
(institutions) of predefined types. The main reason for this is that interpolation, besides being a
notoriously important logical property, it also has a number of important applications in com-
puting science especially in formal specification theory (Bergstra et al. 1990; Diaconescu et al.
1993; Dimitrakos 1998; Bicarregui et al. 2001; Veloso 1996; Borzyszkowski 2000) but also in
data bases (ontologies) (Kutz and Mossakowski 2007), automated reasoning (Nelson and Oppen
1979; Oppen 1980), type checking (Jhala et al. 2007), model checking (Mcmillan 2005), and
structured theorem proving (Amir and MCIlraith 2000; McIlarith and Amir 2001). The main re-
sult of this paper is a general theorem lifting interpolation properties from the base institution
to its corresponding institution of predefined types. The concept of interpolation for predefined
types gets a straightforward definition due to the general concept of interpolation at the level of
abstract institutions. This is one of the examples of the great benefits of developing concepts ab-
stractly at an institution-independent level. The generic interpolation result for predefined types
is illustrated with a couple of concrete examples involving logics common to specification and
logic programming. Moreover, due to its generality, this can be applied to many other concrete
situations. The proof of our generic interpolation theorem for predefined types requires a number
of new general institution theoretic results together with a model amalgamation property for the
institutions of predefined types, all these are also developed here.

The paper has the following structure:

1 A section on preliminaries introducing the institution-theoretic concepts needed by our work
and developing some new general technical results used for proving the main result of this
paper.

2 A section devoted to the construction of institutions of predefined types and the study of their
model amalgamation properties.

3 The section in which we solve the interpolation problem for predefined types.

2. Preliminaries

In this section we recall briefly common technical concepts and results of institution-independent
model theory needed by our current paper and we develop several new general technical results
which we will use specifically for this work. The section contains three parts:

1 A succint recall of some basic category-theoretic notations and concepts used by our paper.
2 A succint presentation of the common institution-theoretic concepts and results needed by

our paper. In this part we also develop a technical result which we will use specifically in the
current paper.

3 The last part of this section is devoted to the generic concept of interpolation in the institution-
independent setting. It also contains a couple of technical results used specifically by our
current work.



Mathematical Structures in Computer Science 3

2.1. Categories

We assume the reader is familiar with basic notions and standard notations from category theory;
e.g., see (Mac Lane 1998) for an introduction to this subject. Here we recall very briefly some of
them. By way of notation, |C| denotes the class of objects of a category C, C(A,B) the set of
arrows with domain A and codomain B, and composition is denoted by “;” and in diagrammatic
order. The category of sets (as objects) and functions (as arrows) is denoted by Set, and Cat is
the category of all categories.† The opposite of a category C (obtained by reversing the arrows
of C) is denoted Cop.

2.1.1. Comma categories. For any object A in a category |C|, the comma category A/C has
arrows f : A → B as objects and h ∈ C(B,B′) with f ; h = f ′ as arrows f → f ′.

A
f //

f ′   A
AA

AA
B

h��
B′

2.1.2. Grothendieck categories. An indexed category is a functor B : Iop → Cat. Given an
indexed category B : Iop → Cat, let B] be the Grothendieck category having 〈i, Σ〉, with
i ∈ |I| and Σ ∈ |B(i)|, as objects and 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, with u ∈ I(i, i′) and
ϕ : Σ → B(u)(Σ′), as arrows. The composition of arrows in B] is defined by

〈u, ϕ〉; 〈u′, ϕ′〉 = 〈u; u′, ϕ; B(u)(ϕ′)〉.

2.2. Institution-theoretic preliminaries

Here we review briefly a series of institution-theoretic concepts and results that we are going to
use for our work. These includes the definition of the concept of institution together with some
examples, the concept of conservative signature morphism, and the institution-theoretic concepts
of presentations, model amalgamation, liberality, as well as the institution-independent method
of diagrams.

2.2.1. Basic notions Institutions have been defined by Goguen and Burstall in (Burstall and
Goguen 1980), the seminal paper (Goguen and Burstall 1992) being printed after a delay of
many years. Below we recall the concept of institution which formalises the intuitive notion of
logical system, including syntax, semantics, and the satisfaction between them.

Definition 2.1 (Institutions). An institution I = (SigI , SenI ,ModI , |=I) consists of

1 a category SigI , whose objects are called signatures,
2 a functor SenI : SigI → Set, giving for each signature a set whose elements are called

sentences over that signature,
3 a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects

are called Σ-models, and whose arrows are called Σ-(model) morphisms, and

† Strictly speaking, this is only a ‘quasi-category’ living in a higher set-theoretic universe.
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4 a relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI |, called Σ-satisfaction,

such that for each morphism ϕ : Σ → Σ′ in SigI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

We may denote the reduct functor ModI(ϕ) by �ϕ and the sentence translation SenI(ϕ) by
ϕ(−). When M = M ′�ϕ we say that M is a ϕ-reduct of M ′, and that M ′ is a ϕ-expansion of
M . When there is no danger of ambiguity, we may skip the superscripts from the notations of the
entities of the institution; for example SigI may be simply denoted Sig. Also, when the signature
is clear we may omit it as subscript of the satisfaction relation |=.
General assumption: We assume that all our abstract institutions are such that satisfaction is
invariant under model isomorphism, i.e. if Σ-models M, M ′ are isomorphic, denoted M ∼= M ′,
then M |=Σ ρ iff M ′ |=Σ ρ for all Σ-sentences ρ. This very basic assumption holds commonly
in all concrete institutions of interest, including those discussed in our current paper.

Notation 2.1. For any Σ-model M and any set E of Σ-sentences by M |=Σ E we denote that
for each ρ ∈ E, M |=Σ ρ.

For E and E′ sets of Σ-sentences in an arbitrary institution by E |=Σ E′ we denote that for
all Σ-models M , if M |=Σ E then M |=Σ E′. By E |=| E′ we denote the situation that E and
E′ are semantically equivalent, i.e. that E |= E′ and E′ |= E.

There are myriads examples of institutions from logic or computing science (see (Diaconescu
2008) for some of these). Below we present a couple of them which we are going to use as
concrete benchmarks for our general results.

Example 2.1 (FOL). Let FOL be the institution of first order logic with equality in its many
sorted form.

Its signatures are triples (S, F, P ) consisting of

— a set of sort symbols S,
— a family F = {Fw→s | w ∈ S∗, s ∈ S} of sets of function symbols indexed by arities (for

the arguments) and sorts (for the results), and
— a family P = {Pw | w ∈ S∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphisms map the three components in a compatible way. This means that a signature
morphism ϕ : (S, F, P ) → (S′, F ′, P ′) consists of

— a function ϕst : S → S′,
— a family of functions ϕop = {ϕop

w→s : Fw→s → F ′
ϕst(w)→ϕst(s) | w ∈ S∗, s ∈ S}, and

— a family of functions ϕrl = {ϕrl
w→s : Pw → P ′

ϕst(w) | w ∈ S∗, s ∈ S}.

Models M for a signature (S, F, P ) are first order structures interpreting each sort symbol s as
a set Ms, each function symbol σ as a function Mσ from the product of the interpretations of the
argument sorts to the interpretation of the result sort, and each relation symbol π as a subset Mπ

of the product of the interpretations of the argument sorts. By |M | we denote {Ms | s ∈ S} and
we call it the universe of M or the carrier set(s) of M . In order to avoid the existence of empty
interpretations of the sorts, which may complicate unnecessarily our presentation, we assume
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that each signature has at least one constant (i.e. function symbol with empty arity) for each sort.
A model homomorphism h : M → M ′ is an indexed family of functions {hs : Ms → M ′

s}s∈S

such that

— h is an (S, F )-algebra homomorphism M → M ′, i.e., hs(Mσ(m)) = M ′
σ(hw(m)) for each

σ ∈ Fw→s and each m ∈ Mw, and
— hw(m) ∈ M ′

π if m ∈ Mπ (i.e. hw(Mπ) ⊆ M ′
π) for each relation π ∈ Pw and each m ∈ Mw.

where hw : Mw → M ′
w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) =

(hs1(m1), . . . , hsn(mn)) for w = s1 . . . sn and for each 1 ≤ i ≤ n, mi ∈ Msi .
For each signature morphism ϕ, the reduct M ′�ϕ of a model M ′ is defined by (M ′�ϕ)x =

M ′
ϕ(x) for each sort, function, or relation symbol x from the domain signature of ϕ.
Sentences are the usual first order sentences built from equational and relational atoms by

iterative application of Boolean connectives and quantifiers. Sentence translations along sig-
nature morphisms just rename the sorts, function, and relation symbols according to the re-
spective signature morphisms. They can be formally defined by induction on the structure of
the sentences. While the induction step is straightforward for the case of the Boolean con-
nectives it needs a bit of attention for the case of the quantifiers. For any signature morphism
ϕ : (S, F, P ) → (S′, F ′, P ′),

SenFOL(ϕ)((∀X)ρ) = (∀Xϕ)SenFOL(ϕ′)(ρ)

for each finite block X of variables for (S, F, P ). The variables need to be disjoint from the
constants of the signature, also we have to ensure that SenFOL thus defined is functorial indeed
and that there is no overloading of variables (which in certain situations would cause a failure of
the Satisfaction Condition). These may be formally achieved by considering that a variable for
(S, F, P ) is a triple of the form (x, s, (S, F, P )) where x is the name of the variable and s ∈ S

is the sort of the variable and that two different variables in X have different names. We often
abbreviate variables (x, s, (S, F, P )) by their name x. Then we let (S, F +X, P ) be the extension
of (S, F, P ) such that (F + X)w→s = Fw→s when w is non-empty and (F + X)→s = F→s ∪
{(x, s, (S, F, P )) | (x, s, (S, F, P )) ∈ X} and we let ϕ′ : (S, F +X, P ) → (S′, F ′+Xϕ, P ′) be
the canonical extension of ϕ that maps each variable (x, s, (S, F, P )) to (x, ϕ(s), (S′, F ′, P ′)).

The satisfaction of sentences by models is the usual Tarskian satisfaction defined recursively
on the structure of the sentences.

Example 2.2. (Horn clause logic with equality).
This is the institution underlying the pure form of the (equational) logic programming paradigm
and we denlote it by HCL. It is precisely the logic underlying the work of the seminal pa-
per (Goguen and Meseguer 1987). HCL has the same signatures and sentences as FOL but
the so-called Horn clauses as sentences. The Horn clauses are just FOL sentences of the form
(∀X)H ⇒ C where H is a finite conjunction of atoms and C is atom. The satisfaction relation
of HCL is just the restriction of the satisfaction relation in FOL.

The following general technical concept is used for proving the main result of the current
paper.

Definition 2.2 (Conservative signature morphisms). A signature morphism ϕ : Σ → Σ′ is
conservative when each Σ-model has a ϕ-expansion.
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For example (see (Diaconescu 2008)) a FOL signature morphism is conservative when all its
components are injective.

One of the most useful properties of conservative signature morphisms is given by the follow-
ing fact which is an easy consequence of the satisfaction condition.

Fact 2.1. For any conservative signature morphism ϕ : Σ → Σ′ and any sets of Σ-sentences E

and Γ

E |=Σ Γ if and only if ϕ(E) |=Σ′ ϕ(Γ).

2.2.2. Presentations In formal specification theory, institution-theoretic presentations capture
the concept of basic (unstructured) specifications. Moreover, the concept of presentation is a
quite useful construction in several model theoretic developments (Diaconescu 2008).

Definition 2.3 (Presentations). In any institution, a presentation is a pair (Σ, E) consisting of
a signature Σ and a set E of Σ-sentences. A presentation morphism ϕ : (Σ, E) → (Σ′, E′) is a
signature morphism ϕ : Σ → Σ′ such that E′ |= ϕ(E).

Fact 2.2. Presentation morphisms are closed under the composition given by the composition of
the signature morphisms.

This fact opens the door for the general construction given by the following definition.

Definition 2.4 (The institution of the presentations). Let I = (Sig, Sen, Mod, |=) be any
institution. The institution of the presentations of I, denoted by
Ipres = (Sigpres,Senpres, Modpres, |=pres), is defined by

– Sigpres is the category Pres of presentations of I,
– Senpres(Σ, E) = Sen(Σ),
– Modpres(Σ, E) is the full subcategory of Mod(Σ) of those models which satisfy E, and
– for each (Σ, E)-model M and Σ-sentence e, M |=pres

(Σ,E) e if and only if M |=Σ e .

Fact 2.3. For any institution I, Ipres is indeed an institution.

The following result is one of the most used institution-theoretic results in formal specification
theory laying the foundations for the modern modularization mechanisms; it is also needed for
our current paper. It was first formulated and proved in (Goguen and Burstall 1992) (see also
(Diaconescu 2008)).

Proposition 2.1 (Colimits of presentations). Ipres has whatever colimits of signatures I has.

2.2.3. The method of diagrams The method of diagrams is one of the most important model
theoretic methods. In the form presented here it has been introduced at the level of institution-
independent model theory in (Diaconescu 2004a) as a categorical property which formalizes the
idea that the class of model homomorphisms from a model M can be represented (by a natural
isomorphism) as a class of models of a theory in a signature extending the original signature
with syntactic entities determined by M . This can be seen as a coherence property between the
semantic structure and the syntactic structure of the institution. By following the basic principle
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that a structure is rather defined by its homomorphisms (arrows) than by its objects, the seman-
tical structure of an institution is given by its model homomorphisms. On the other hand the
syntactical structure of an institution is essentially determined by its atomic sentences.

The institution-independent method of diagrams pervades the development of a lot of model
theoretic results, many of these being presented in (Diaconescu 2008). In the context of our
current work, the general concept of diagram allows for a smooth definition for the semantics
of predefined types. This role was clearly recognized right from the seminal work (Goguen and
Meseguer 1987), but there of course within the concrete framework of Horn clause logic with
equality.

Definition 2.5 (The method of diagrams). An institution I has diagrams when for each signa-
ture Σ and each Σ-model M , there exists a signature ΣM and a signature morphism ιΣ(M) : Σ →
ΣM , functorial in Σ and M , and a set EM of ΣM -sentences such that Mod(ΣM , EM ) and the
comma category M/Mod(Σ) are naturally isomorphic, i.e. the following diagram commutes by
the isomorphism iΣ,M that is natural in Σ and M

Mod(ΣM , EM )
iΣ,M //

Mod(ιΣ(M)) ((QQQQQQQQQQQQ
(M/Mod(Σ))

forgetful
��

Mod(Σ)

The signature morphism ιΣ(M) : Σ → ΣM is called the elementary extension of Σ via M and
the set EM of ΣM -sentences is called the diagram of the model M . Note that i−1

Σ,M (1M ) is the
initial model of (ΣM , EM ), which we denote as MM .

The functoriality of ι means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model
homomorphism h : M → M ′�ϕ, there exists a presentation morphism ιϕ(h) : (ΣM , EM ) →
(Σ′

M ′ , EM ′) such that

Σ
ιΣ(M)//

ϕ

��

ΣM

ιϕ(h)

��
Σ′

ιΣ′ (M ′)

// Σ′
M ′

commutes, that ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h; h′�ϕ) (for another ϕ : Σ′ → Σ′′ and Σ′-model homo-
morphism h′ : M ′ → M ′′�ϕ′), and that ι1Σ(1M ) = 1ΣM .

The naturality of i means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model
homomorphism h : M → M ′�ϕ the following diagram commutes:

Mod(ΣM , EM )
iΣ,M // M/Mod(Σ)

Mod(Σ′
M ′ , E′

M ′)
iΣ′,M′

//

Mod(ιϕ(h))

OO

M ′/Mod(Σ′)

h/Mod(ϕ)=h;(−)�ϕ

OO

Example 2.3. In FOL, for any (S, F, P )-model M , let (FM )→s = F→s ∪ Ms, otherwise let
(FM )w→s = Fw→s, and let MM be the (S, FM , P )-expansion of M such that Mm = m for
each m ∈ M . Then (S, F, P ) ↪→ (S, FM , P ) is the elementary extension of M . For any signature
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morphism ϕ : (S, F, P ) → (S′, F ′, P ′) and any (S, F, P )-model homomorphism h : M →
M ′�ϕ, the signature morphism ιϕ(h) : (S, FM , P ) → (S′, F ′

M ′ , P ′) is defined by

– ιϕ(h)st = ϕst and ιϕ(h)rl = ϕrl, and

– ιϕ(h)op(σ) =
{

ϕop(σ) when σ ∈ Fw→s for any arity w and any sort s,

hs(σ) when σ ∈ Ms for any sort s.

Depending on the chosen concept of model homomorphism one may get various concepts of
diagrams as follows:

1 For the ordinary homomorphisms, the diagram EM is the set of all (relational or equational)
atoms satisfied by MM .

2 When one restricts homomorphisms to injective ones, EM consists of all atoms and negations
of atomic equations satisfied by MM .

3 When one restricts homomorphisms to the closed ones (h : M → N is closed‡ if Mπ =
h−1(Nπ) for each π ∈ P ), EM consists of all atoms and negations of atomic relations
satisfied by MM .

4 When one restricts homomorphisms to closed injective model homomorphisms, EM consists
of all atoms and all negations of atoms satisfied by MM .

5 When model homomorphisms are restricted to elementary embeddings (according to the
literature, e.g. (Chang and Keisler 1990), h : M → N is elementary embedding when
MM and Nh satisfy the same set of sentences, where Nh is the expansion of N such that
(Nh)m = h(m) for each m ∈ |M |), EM = {ρ | MM |= ρ}.

Moreover it is easy to note that HCL has the same diagrams as FOL with the standard model
homomorphisms. This is due to the fact that the diagrams EM in FOL consist of atoms only, and
atoms qualify as HCL sentences too.

2.2.4. Model amalgamation The crucial role of model amalgamation for the semantics studies
of formal specifications comes up in very many works in the area, a few early examples be-
ing (Sannella and Tarlecki 1988; Tarlecki 1986b; Meseguer 1989; Diaconescu et al. 1993). The
model amalgamation property is a necessary condition in many institution-independent model
theoretic results (see (Diaconescu 2008)), thus being one of the most desirable properties for an
institution. It can be considered even as more fundamental than the satisfaction condition since in
institutions with quantifications it is used in one of its weak forms in the proof of the satisfaction
condition at the induction step corresponding to quantifiers.

Model amalgamation properties for institutions formalize the possibility of amalgamating
models of different signatures when they are consistent on some kind of generalized ‘intersec-
tion’ of signatures.

Definition 2.6 (Model amalgamation). A commutative square of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

‡ Other works may call this kind of model homomorphisms strong.
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is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model M2 such that
M1�ϕ1 = M2�ϕ2 , there exists an unique Σ′-model M ′, denoted M1 ⊗ϕ1,ϕ2 M2, or M1 ⊗ M2

for short when there is no danger of ambiguity, such that M ′�θ1 = M1 and M ′�θ2 = M2.

In most of the institutions formalizing conventional or non-conventional logics, pushout squares
of signature morphisms are model amalgamation squares (Diaconescu et al. 1993; Diaconescu
2008). These include our benchmark examples FOL and HCL.

Definition 2.7. An institution has model amalgamation when each pushout square of signatures
is an amalgamation square.

The following result will be used later in our paper.

Proposition 2.2. Consider the following commutative diagram of signature morphisms.

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
�� ζ1

��

Σ2
θ2 //

ζ2 ,,

Σ′

γ

!!C
CC

CC
C

Σ′′

If both the inner square [ϕ1, ϕ2, θ1, θ2] and the outer square [ϕ1, ϕ2, ζ1, ζ2] of this diagram have
the model amalgamation property then the mediating signature morphism γ is conservative.

Proof. Let M ′ be any Σ′-model. By the model amalgamation property of the outer square
[ϕ1, ϕ2, ζ1, ζ2] there exists an unique Σ′′-model M ′′ such that M ′′�ζi = M ′�θi for i ∈ {1, 2}.
Let us prove that M ′′ is a γ-expansion of M ′. For this we have just to note that for i ∈ {1, 2}
we have that (M ′′�γ)�θi = M ′′�θi;γ = M ′′�ζi = M ′

θi
. By the uniqueness side of the model

amalgamation property for the inner square [ϕ1, ϕ2, θ1, θ2] we have that M ′′�γ = M ′.

The following result, also used later in our paper, is part of the folklore of institution theory (a
proof can be found in (Diaconescu 2008)).

Proposition 2.3. For any institution I with model amalgamation, the institution Ipres of the
I-presentations has model amalgamation also.

2.2.5. Liberality Liberality properties express the idea of free constructions at the general institution-
independent level and have been formulated for the first time in the seminal paper (Goguen and
Burstall 1992). Historically (Goguen and Burstall 1992) they constitute a general abstract formu-
lation of the formal specification paradigm of ‘initial algebra semantics’ (Goguen et al. 1977).

Definition 2.8. A signature morphism ϕ : Σ → Σ′ in an arbitrary institution is liberal if the
corresponding model functor Mod(ϕ) has a left adjoint, i.e. for each Σ-model M there exists a
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Σ′-model Mϕ and a Σ-model homomorphism ηM : M → (Mϕ)�ϕ

M
ηM //

h

��

(Mϕ)�ϕ

h′�ϕzzuuuuuuuuu
Mϕ

there exists a unique h′
{{vv

vv
vv

vv
vv

M ′�ϕ M ′

such that for each Σ′-model M ′ and for each Σ-model homomorphism h : M → M ′�ϕ, there
exists a unique Σ′-model homomorphism h′ : Mϕ → M ′ such that ηM ; h′�ϕ = h.

Liberality of all signature morphisms in institutions is a rather common property, exceptions
are rare. A set of widely applicable (including our benchmark examples FOL and HCL) suffi-
cient conditions for liberality have been developed in (Tarlecki 1986b; Diaconescu 2004a) (see
also (Diaconescu 2008)).

2.3. Interpolation

In the algebraic specification literature there are several institution-independent formulations of
interpolation, all of them being strongly related. For example (Tarlecki 1986a) is one of the first
works introducing the concept of interpolation at the level of abstract institutions. The com-
mon feature of these formulations is that they generalise the conventional intersection-union
(of signatures) framework to commutative squares of signature morphisms. In most cases these
commutative squares are required to be pushouts (like in (Tarlecki 1986b; Borzyszkowski 2000;
Borzyszkowski 2001; Dimitrakos and Maibaum 2000)), in other case the signature morphisms
are required to be (abstract) inclusions (like in (Diaconescu et al. 1993)). However in (Dia-
conescu 2004c) it has been noticed that the mere formulation of interpolation does not require
any extra technical assumptions besides a commuting square of signature morphisms, the role of
such additional assumptions having more to do with the proof of interpolation properties rather
than with its formulation.

Here we review the concept of institution-independent interpolation and develop a couple of
new general results which we need for our current work.

Definition 2.9 (Craig-Robinson interpolation). In any institution we say that a commutative
square of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is a Craig-Robinson Interpolation square (abbreviated CRI square) when for each set E1 of Σ1-
sentences and each sets E2 and Γ2 of Σ2-sentences, if θ1(E1) ∪ θ2(Γ2) |=Σ′ θ2(E2), then there
exists a set E of Σ-sentences such that E1 |=Σ1 ϕ1(E) and Γ2 ∪ ϕ2(E) |=Σ2 E2.

The particular case of Craig-Robinson interpolation when Γ2 is empty is called Craig interpo-
lation and in logic this case is usually more studied than Craig-Robinson interpolation. Craig-
Robinson form of interpolation seems to have been first introduced in first order logic by (Mae-
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hara 1961). Several works (Bergstra et al. 1990; Diaconescu et al. 1993; Dimitrakos and Maibaum
2000; Diaconescu 2008) show that Craig-Robinson rather than Craig may be the appropriate in-
terpolation concept for formal specification studies. A particular important example in this sense
is given by Borzyszkowski’s complete calculus for structured specifications of (Borzyszkowski
2000) which in reality relies upon the Craig-Robinson form of interpolation (this was shown in
(Diaconescu 2008) which corrects the rather restricted original result of (Borzyszkowski 2000)
relying upon Craig interpolation plus additional conditions for the base institutions, the latter nar-
rowing significantly the range of the applications of this important and beautiful result). More-
over even in model theory sometimes (Petria and Diaconescu 2006) Craig-Robinson seems to
be the appropriate form of interpolation. This is one of the reasons we adopt here this form of
interpolation, another one being just technical. The name “Craig-Robinson” has been used for
instances of the corresponding interpolation property in (Shoenfield 1967; Veloso 1996; Dim-
itrakos and Maibaum 2000), “Maehara interpolation” in sentential logic studies, while “strong
Craig interpolation” has been used in (Diaconescu et al. 1993). We mention that Craig-Robinson
and Craig forms of interpolation can be shown equivalent under some additional conditions on
the institution (Diaconescu 2008). For example this applies to FOL (which perhaps is the main
reason why in conventional logic Craig-Robinson formulation of interpolation is shadowed by
the simpler Craig formulation), but not to HCL.

Another important aspect of Def. 2.9 is that it uses sets of sentences rather than single sen-
tences, as is common in conventional logic. The works (Rodenburg 1991) and (Diaconescu et al.
1993) argue succesfully that the formulation of interpolation in terms of sets of sentences is more
natural than the more traditional formulations in terms of single sentences. First, on the one hand,
the applications of interpolation do not require the single sentence formulation, and on the other
hand the single sentence formulation excludes important examples such as equational or Horn
logics. Then, in traditional works on or using interpolation, under an assumption of compactness
the two formulations can be shown equivalent (Diaconescu 2008).

The definition below formulates interpolation as a property of institutions. In its current form
it has been introduced in (Diaconescu 2004d) as a simplified variant of the original definition of
(Borzyszkowski 2000).

Definition 2.10 (〈L, R〉-interpolation). For any classes of signature morphisms L,R ⊆ Sig in
any institution, we say that the institution has the Craig-Robinson 〈L, R〉-interpolation if each
pushout square of signature morphisms of the form

• L //

R
��

•

��
• // •

is a CRI square.

Example 2.4. According to (Găină and Popescu 2004; Borzyszkowski 2005), FOL has Craig-
Robinson 〈SigFOL, (i ∗ ∗)〉- and 〈(i ∗ ∗), SigFOL〉-interpolation, where (i∗∗) is the class of the
FOL-signature morphisms that are injective on the sort symbols. Interestingly, this result which
stayed as a conjecture for several years has received an elegant proof in (Găină and Popescu 2004)
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using an institution-independent method; in fact the result proved there is institution-independent
and thus much more general than FOL interpolation.

Example 2.5. According to (Diaconescu 2008), HCL has Craig-Robinson 〈(ie∗), SigHCL〉-
interpolation where (ie∗) is the class of HCL-signature morphisms that are injective on the sorts
and such that no operation symbol outside the image of the signature morphism is allowed to have
the sort in the image of the signature morphism (in other words if ϕ : (S, F, P ) → (S′, F ′, P ′)
and σ′ ∈ F ′

w′→s′ with s′ ∈ ϕ(s) then there exists σ ∈ Fw→s such that ϕ(σ) = σ′). The proof of
this result involves the interpolation result for Grothendieck institutions of (Diaconescu 2004d).

Below in the paper we will make use of the following result.

Proposition 2.4. Consider the following commutative diagram of signature morphisms.

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
�� ζ1

��

Σ2
θ2 //

ζ2 ,,

Σ′

γ

!!C
CC

CC
C

Σ′′

If the inner square [ϕ1, ϕ2, θ1, θ2] is a CRI square and the mediating signature morphism γ is
conservative then the outer square [ϕ1, ϕ2, ζ1, ζ2] is a CRI square too.

Proof. Let E1 ⊆ Sen(Σ1) and E2, Γ2 ⊆ Sen(Σ2) such that

ζ1(E1) ∪ ζ2(Γ2) |=Σ′′ ζ2(E2)

which means

γ(θ1(E1) ∪ θ2(Γ2)) |=Σ′′ γ(θ2(E2)).

Because γ is conservative, by Fact 2.1 we have that

θ1(E1) ∪ θ2(Γ2) |=Σ′ θ2(E2).

Because the inner square [ϕ1, ϕ2, θ1, θ2] is a CRI square there exists an interpolant E ⊆ Sen(Σ)
such that E1 |=Σ1 ϕ1(E) and ϕ2(E) ∪ Γ2 |=Σ2 E2.

The last part of this section is devoted to the lifting of interpolation properties from a base
institution to the institution of its presentations. This result, used below for the proof of the
main result of the paper, requires the Craig-Robinson formulation of interpolation as it cannot be
developed for Craig interpolation.

Notation 2.2. For any institution I and a class S ⊆ Sig of signature morphisms let Spres be the
class of presentation morphisms ϕ such that ϕ ∈ S (as signature morphism).

Proposition 2.5. The institution Ipres of the presentations of I has the Craig-Robinson 〈Lpres, Rpres〉-
interpolation if I has the Craig-Robinson 〈L, R〉-interpolation.
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Proof. Consider a pushout of presentations

(Σ, Γ)
ϕ1 //

ϕ2

��

(Σ1, Γ1)

θ1
��

(Σ2, Γ2)
θ2

// (Σ′, Γ′)

such that ϕ1 ∈ L, ϕ2 ∈ R and let E1 ⊆ Sen(Σ1) and E2,K2 ∈ Sen(Σ2) such that θ1(E1) ∪
θ2(K2) |=(Σ′,Γ′) θ2(E2).

By the general construction of colimits of presentations (see (Goguen and Burstall 1992; Dia-
conescu 2008)) Γ′ |=| θ1(Γ1) ∪ θ2(Γ2) and [ϕ1, ϕ2, θ1, θ2] form a pushout square in Sig. There-
fore θ1(E1 ∪ Γ1) ∪ θ2(K2 ∪ Γ2) |=Σ′ θ2(E2). By the CRI property for the base institution I,
there exists an interpolant E ⊆ Sen(Σ) such that

E1 ∪ Γ1 |=Σ1 ϕ1(E) and ϕ2(E) ∪ K2 ∪ Γ2 |=Σ2 E2

But these just mean

E1 |=(Σ1,Γ1) ϕ1(E) and ϕ2(E) ∪ K2 |=(Σ2,Γ2) E2

which shows the CRI property for presentations.

3. Institutions of predefined types

In this section we introduce our updated institution-independent semantics for predefined types.
The section is structured as follows:

1 A rather detailed presentation of an example with the aim to help the understanding of the
abstract semantics introduced in this section.

2 The definition of the institution of the predefined types, including the proof of its satisfaction
condition.

3 The proof of the model amalgamation property for the institutions of predefined types.

3.1. The Euclidean plane

Let us consider a specification of the Euclidean plane R2 as a vector space. For this we use two
sorts, Real for the real numbers as scalars, and Vect for the vectors. Let S = {Real, Vect}. We
also need operations, denoted F , which are the usual ring operations on the scalar sort Real, i.e.
F→Real = {0}, FReal→Real = {− }, and FRealReal→Real = { + , ∗ }, plus the following oper-
ations for the vector sort Vect: F→Vect = {0}, FRealReal→Vect = {〈 , 〉}, FVect→Vect = {− },
FVectVect→Vect = { + }, and FRealVect→Vect = { ∗ }. Moreover, in addition to the operations F

listed above we have to consider also the real numbers. For reasons that will become more trans-
parent below, these have to be considered not only as purely syntactic entities, but together with
their model theoretic structure. This yields a pair ((S, F ), R) with R denoting the model (ring) of
the real numbers, which defines a signature-like framework for specifiying the Euclidean plane.
It is not a signature in the conventional concrete sense since besides the conventional syntactic
entities (which appear as FOL signature (S, F ), so without relation symbols) it also contains the
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model (ring) R of the real numbers. However, form the abstract viewpoint of institution theory
which regards signatures as abstract objects in categories, the pair ((S, F ), R) may play the role
of a signature.

Now let us consider the models for such signature, models which should include the Euclidean
plane R2. These models have to contain an interpretation of the real numbers, including their ring
structure. This is motivated by the fact that besides the interpretations of the actual numbers con-
sidered as constants, one has also to consider all the relationships between them given by their
ring structure. For example, (the interpretation of) 1.37 ∗ 5.23 should be equal to (the interpreta-
tion of) 7.1651 in all such models. So, how can we interpret the reals inside the models of (S, F )?
The answer is simple: by considering ring homomorphisms from R to the relevant sub-part of
the respective model given by the sub-signature of the ring of the real numbers. In other words,
a model for ((S, F ), R) is just a ring homomorphism R → M�Σ0 where M is any (S, F )-model
and Σ0 is the sub-signature of (S, F ) containing only the entities which refer to the sort Real.
Now how do we characterize the Euclidean plane R2 among these models? We need to consider
only those models that satisfy the axioms of a two-dimensional vector space:

0 = 〈0, 0〉,
(∀{a, b, a′, b′ : Real}) 〈a, b〉 + 〈a′, b′〉 = 〈a + a′, b + b′〉,
(∀{k, a, b : Real}) k ∗ 〈a, b〉 = 〈k ∗ a, k ∗ b〉,
(∀{a, b : Real}) − 〈a, b〉 = 〈−a, −b〉.

But this is not enough since among these models we may still find models quite different from
R2. For example a model interpreting Vect as the set of the real numbers and 〈 , 〉 as addition
still satisfies the above axioms of a vector space. The answer to this problem is that R2 is the
initial model of the above specification.

Let us sum up the situation so far for this example:

— The signature consists of

– the FOL signature (S, F ),
– the sub-signature Σ0 of (S, F ), and
– the ring R of the real numbers as a Σ0-model.

— A model consists of

– an (S, F )-model, and
– a Σ0-model homomorphism R → M�Σ0 .

This quite complex situation, which is characteristic to previous works such as (Diaconescu
2000), can be simplified quite a lot mathematically while maintaining the content, by replacing
the sub-signature Σ0 and the model R by R′, the free (S, F )-model over R. The model R′ exists
because all signature morphisms in FOL are liberal (see (Diaconescu 2008)). The main point
behind this simplification is the freeness of R′, which guarantees a natural bijection between
the homomorphisms R → M�Σ0 and the homomorphisms R′ → M . We may sum up the new
situation of the Euclidean plane specification as follows:

— the signature is just the pair ((S, F ), R′) consisting of a FOL signature and a model of this
signature, and

— the category of the models of ((S, F ), R′) is just the comma category R′/ModFOL(S, F ),
and the Euclidean plane R2 is the initial model satisfying the four axioms above.
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We have already invoked rather informally the concepts of sentence and satisfaction for the
signature of the Euclidean plane specification, now we introduce them formally. As expected,
the sentences are just FOL sentences but using terms formed from the operations from F plus
all the real numbers regarded as (syntactic) constants; let us denote this signature by (S, FR).
For example (∃X, Y ) π ∗ 〈X, Y 〉 = 〈1.2, 2.3〉 is such a sentence. We now argue that that using
(S, FR)-sentences is the same with using (S, FR′)-sentences, where (S, FR′) is the elementary
extension of (S, F ) via R′. In order to understand this fact, it is enough to note that, on the one
hand each (S, FR)-term is obviously a (S, FR′)-term, and on the other hand there are maps p from
(S, FR′)-terms to (S, FR)-terms which preserve the interpretation of the terms in the models. In
order to describe the mapping p, let us recall that the elements of R′ are the equivalence classes of
(S, FR)-terms under the congruence ∼ generated by the diagram of R (i.e. all equalities between
terms formed with real numbers and the ring operations, such as 1.2 ∗ 1.1 = 1.32 for example).
Then p can be defined by p(t/∼) = t for any t/∼ ∈ R′. Of course there can be several such
maps depending on the choice of representatives from the equivalence classes; our argument is
invariant with respect to such choice. We can now formulate our conclusion about the sentences:

the ((S, F ), R′)-sentences are precisely the FOL (S, FR′)-sentences, where (S, FR′) is the elementary
extension of (S, F ) via R′.

The satisfaction of a ((S, F ), R′)-sentence ρ by a ((S, F ), R′)-model h : R′ → M is given
by the FOL satisfaction relation by interpreting any constant denoting a real number r by its
corresponding image h(r) in M . This can be formally defined as the satisfaction of ρ, regarded
as a FOL ((S, F ), R′)-sentence, by the correspondent of h to a model of the diagram of R′

through the natural isomorphism between R′/ModFOL(S, F ) and ModFOL((S, FR′), ER′).

3.2. The definition of the institution of predefined types

The following definition collects the conclusions of the Euclidean plane example above in a form
of a general definition.

Definition 3.1. Let I = (Sig, Sen, Mod, |=, ι) be any institution with diagrams. The institution
with predefined types over I, denoted I o = (Sigo,Seno, Modo, |=o), is defined as follows:

— the category of signatures with predefined type Sigo is the Grothendieck category Mod],
— Seno(Σ, A) = Sen(ΣA) for each signature (Σ, A), and Seno(ϕ, h) = Sen(ιϕ(h)) for each

signature morphism (ϕ, h),
— Modo(Σ, A) = A/Mod(Σ) for each signature (Σ, A), and
— for each signature (Σ, A), (h : A → M) |=o

(Σ,A) ρ if and only if i−1
Σ,A(h) |=ΣA

ρ.

Proposition 3.1. I o is an institution indeed.

Proof. We have to prove the satisfaction condition for I o. For this we consider a I o signature
morphism (ϕ, h) : (Σ, A) → (Σ′, A′), a (Σ′, A′)-model f ′ : A′ → M ′ and a (Σ, A)-sentence ρ.
We have that
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f ′�(ϕ,h) |=o
(Σ,A) ρ iff (h; f ′�ϕ) |=o

(Σ,A) ρ (by the definition of reducts in I o)
iff i−1

Σ,A(h; f ′�ϕ) |=ΣA
ρ (by the definition of |=o)

iff i−1
Σ′,A′(f ′)�ιϕ(h) |=ΣA

ρ (by the naturality of i in Σ and A)
iff i−1

Σ′,A′(f ′) |=Σ′
A′

ιϕ(h)(ρ) (by the satisfaction condition in I)
iff f ′ |=o

(Σ′,A′) (ϕ, h)(ρ) (by the definition of |=o).

The following property will be used below in the paper.

Fact 3.1. In any institution with diagrams (Sig,Sen, Mod, |=, ι), for any signature Σ and any
Σ-model A, for any sets E and Γ of ΣA-sentences

E |=o
(Σ,A) Γ if and only if E |=pres

(ΣA,EA) Γ.

3.3. The model amalgamation property for the institutions of predefined types

Model amalgamation is a very useful property of institutions, often a prerequisite for interpo-
lation (Diaconescu 2004c; Găină and Popescu 2004). Our work is no exception, the following
result being necessary for the proof of our main interpolation result.

Proposition 3.2. For any base institution with diagrams I = (Sig, Sen, Mod, |=, ι) such that

1 its category of signatures Sig has pushouts,
2 each of its signature morphisms is liberal, and
3 for each signature Σ ∈ |Sig|, the category Mod(Σ) of Σ-models has pushouts,

the corresponding institution of predefined types I o has pushouts of signatures. In addition, if the
base institution I has model amalgamation, then I o has model amalgamation too.

Proof. For the first part of the proposition we have only to note that the category Sigo of the
signatures of I o is the Grothendieck category determined by the model functor Mod : Sigop →
Cat regarded as an indexed category. That Sigo has pushouts follows from the general result of
existence of colimits in Grothendieck categories (see (Tarlecki et al. 1991), for example).

For the second part of the proposition we consider a pushout in Sigo as shown in the diagram
below.

(Σ, A)
(ϕ1,h1)//

(ϕ2,h2)

��

(Σ1, A1)

(θ1,g1)

��
(Σ2, A2)

(θ2,g2)
// (Σ′, A′)

Let f1 : A1 → M1 and f2 : A2 → M2 such that h1; f1�ϕ1 = h2; f2�ϕ2 . This also impplies that
M1�ϕ1 = M2�ϕ2 . From the construction of colimits in Grothendieck categories we have that the
following commutative square is a pushout in Sig.

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′
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Hence by the model amalgamation hypothesis on I, there exists an unique Σ′-model M ′ such
that M ′�θi = Mi for each i ∈ {1, 2}. Note that (θi, fi) : (Σi, Ai) → (Σ′, A′) are morphisms in
Sigo and that (ϕ1, h1); (θ1, f1) = (ϕ2, h2); (θ2, f2).

(Σ, A)
(ϕ1,h1)//

(ϕ2,h2)

��

(Σ1, A1)

(θ1,g1)

�� (θ1,f1)

��

(Σ2, A2)
(θ2,g2) //

(θ2,f2) ,,

(Σ′, A′)
(1Σ′ ,f ′)

%%LLLLLLLLLL

(Σ′,M ′)

By the pushout property of the square [(ϕ1, h1), (ϕ2, h2), (θ1, g1), (θ2, g2)] there exists an unique
signature morphism (1Σ′ , f ′) such that (θi, gi); (1Σ′ , f ′) = (θi, fi) for i ∈ {1, 2}, which means
that the model homomorphism f ′ is the unique amalgamation of f1 and f2.

4. Interpolation for predefined types

This section develops the main technical result of this paper, namely the institution-independent
interpolation theorem for predefined types. It also develops two concrete instances of this result.

The concept of intrpolation for predefined types is obtained immediately by applying the
general concept of interpolation (Def. 2.9 and 2.10) to the institution of the predefined types
(Def. 3.1).

Notation 4.1. Let I = (Sig,Sen, Mod, |=, ι) be an institution with diagrams. For any class
S ⊆ Sig of signature morphisms, let S o denote the class of the signature morphisms in I o defined
by S o = {(ϕ, h) ∈ Sigo | ιϕ(h) ∈ S}.

Theorem 4.1. Let I = (Sig,Sen, Mod, |=, ι) be an institution with diagrams such that

1 its category of signatures Sig has pushouts,
2 each of its signature morphisms is liberal,
3 it has model amalgamation, and
4 for each signature Σ ∈ |Sig|, the category Mod(Σ) of Σ-models has pushouts.

If I has Craig-Robinson 〈L, R〉-interpolation then the corresponding institution with predefined
types I o has Craig-Robinson 〈Lo, Ro〉-interpolation.

Proof. By Prop. 3.2 we have that I o has pushouts of signatures. Let us consider a pushout of
signature morphisms in Sigo

(Σ, A)
(ϕ1,h1)//

(ϕ2,h2)
��

(Σ1, A1)

(θ1,g1)
��

(Σ2, A2)
(θ2,g2)

// (Σ′, A′)

such that (ϕ1, h1) ∈ Lo and (ϕ2, h2) ∈ Ro.
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We consider the following commutative diagram of I-presentation morphisms with the in-
ner square [ιϕ1(h1), ιϕ2(h2), φ1, φ2] being a pushout of presentations and γ being the unique
mediating presentation morphism such that the diagram commutes.

(ΣA, EA)
ιϕ1 (h1)//

ιϕ2 (h2)
��

((Σ1)A1 , EA1)

φ1
�� ιθ1 (g1)

��

((Σ2)A2 , EA2)
φ2 //

ιθ2 (g2) --

(Σ′′, E′′)
γ

((PPPPPPPPPP

(Σ′
A′ , EA′)

Note that the commutativity of the outer square [ιϕ1(h1), ιϕ2(h2), ιθ1(g1), ιθ2(g2)] follows di-
rectly from the commutativity of the considered pushout square of I o-signature morphisms since
by the functoriality of ι we have that ιϕi(hi); ιθi(gi) = ιϕi;θi(hi; gi�θi) for i ∈ {1, 2}.

Since the inner square [ιϕ1(h1), ιϕ2(h2), φ1, φ2] of the diagram is a pushout square of I-
presentations, by Prop. 2.3 it has the model amalgamation property. By the natural isomor-
phisms i between the categories of models of the diagrams and the corresponding categories
of model homomorphisms we have that the model amalgamation property for the outer square
[ιϕ1(h1), ιϕ2(h2), ιθ1(g1), ιθ2(g2)] is equivalent to the model amalgamation property the for con-
sidered pushout square of I o signature morphisms. But the latter model amalgamation property
holds by Prop. 3.2, hence the outer square [ιϕ1(h1), ιϕ2(h2), ιθ1(g1), ιθ2(g2)] has the model
amalgamation property too. Now by Prop. 2.2 applied for Ipres, we obtain that the mediating
presentation morphism γ is conservative.

Since by the hypothesis (ϕ1, h1) ∈ Lo and (ϕ2, h2) ∈ Ro we have that ιϕ1(h1) ∈ L and
ιϕ2(h2) ∈ R. By Prop. 2.5 it follows that the inner square [ιϕ1(h1), ιϕ2(h2), φ1, φ2] is a CRI
square and by Prop. 2.4 it further follows that the outer square [ιϕ1(h1), ιϕ2(h2), ιθ1(g1), ιθ2(g2)]
is a CRI square too. By Fact 3.1 we deduce that the pushout square of I o-signature morphisms
[(ϕ1, h1), (ϕ2, h2), (θ1, g1), (θ2, g2)] is a CRI square, which completes this proof.

Corollary 4.1. FOLo has both Craig-Robinson 〈S, SigFOLo〉- and 〈SigFOLo
, S〉-interpolation

for S the class of FOLo-signature morphisms (ϕ, h) with ϕ injective on the sort symbols.

Proof. For the standard system of diagrams for FOL (see Ex. 2.3) it is easy to note that if ϕ

is injective on the sort symbols then ιϕ(h) is also injective on the sort symbols. The conclusion
of the corrolary follows by applying Thm. 4.1 for the FOL interpolation properties presented in
Ex. 2.4.

Corollary 4.2. HCLo has Craig-Robinson 〈L, SigHCLo〉-interpolation for L the class of HCLo-
signature morphisms (ϕ, h) with ϕ a (ie∗) HCL-signature morphism and h a surjective model
homomorphism.

Proof. We first show that the hypotheses on (ϕ, h) imply that ιϕ(h) is an (ie∗) HCL-signature
morphism, where ι is the standard system of diagrams from HCL presented in Ex. 2.3. Let
ϕ : (S, F, P ) → (S′, F ′, P ′) and h : M → M ′�ϕ. Because ϕst is injective we obtain imme-
diately that ιϕ(h)st is injective too. The encapsulation property for ιϕ(h)op, which we have to
show here, means that for any σ′ ∈ (F ′

M ′)w′→s′ with s′ = ϕ(s) (by the injectivity of ϕst we
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have that s is unique) there exists σ ∈ (FM )s such that σ′ = ιϕ(h)op(σ). We distinguish two
cases:

1 When σ′ ∈ F ′
w′→s′ the property follows by the encapsulation property for ϕop.

2 When σ′ ∈ M ′
s′ , because M ′

s′ = (M ′�ϕ)s and hs is surjective there exists σ ∈ Ms such that
hs(σ) = σ′. Then ιϕ(h)op(σ) = σ′.

The conclusion of the corollary now follows by applying Thm. 4.1 for the HCL interpolation
properties presented in Ex. 2.5.

It may be useful to look now, from an applicational perspective, into the meaning of the condi-
tions underlying the concrete interpolation results of Corollaries 4.1 and 4.2. Let us consider the
rather important application of interpolation to the completeness of proof systems for structured
specifications of (Borzyszkowski 2000). We consider this result in its reformed more general ver-
sion presented in (Diaconescu 2008), which unlike the original version of (Borzyszkowski 2000),
can be applied to HCL as well, not only to FOL. Since Cor. 4.2 introduces stronger conditions
than Cor. 4.1 let us focus on the HCLo example.

As readers may recall from (Borzyszkowski 2000; Diaconescu 2008), the above mentioned
completeness result for structured specifications refers to specifications structured by three oper-
ators: sums, translations (i.e. renamings, not necessarily injective or surjective), and derivations
(i.e. information hiding). Although the most common modularization operators in specification
languages, such as imports, module sums, parameterized modules and their instantiations, can be
explained only in terms of sums and translations, information hiding is quite important especially
when related to the behavioural paradigm. The completeness theorem for structured specifica-
tions uses two special classes of signature morphisms, one for translations, and the other for the
derivations. These classes of signature morphisms appear as parameters for the completeteness
theorem. Within the context of Cor. 4.2, the translations are without restrictions, while the signa-
ture morphisms (ϕ, h) used for the derivations are such that ϕ is (ie∗) and h is surjective. Note
that the syntactic encapsulation condition given by (ie∗) and the ‘no junk’ semantic condition
given by the surjectivity of h fit well with the intuitions related to information hiding.

5. Conclusions

In this paper we have updated the semantics of predefined types at a general institution-independent
level, we have proved a model amalgamation property for the resulting institution(s), we have
obtained the concept of interpolation for predefined types as an instance of the general institution-
independent concept of interpolation to the institution(s) of predefined types, and we have for-
mulated and, based on the above mentioned model amalgamation result, proved a general the-
orem lifting interpolation from arbitrary base institutions to the corresponding institutions of
predefined types. We have illustrated the generic interpolation result with applications to prede-
fined types over many-sorted first order logic and over Horn clause logic with equality. Similar
applications may be developed for a multitude of other concrete situations in dependence on
interpolation properties of the base logic.
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