
Coinduction for preordered algebra

Răzvan Diaconescu

Institute of Mathematics “Simion Stoilow” of the Romanian Academy

Abstract

We develop a combination, called hidden preordered algebra, between preordered algebra, which is an
algebraic framework supporting specification and reasoning about transitions, and hidden algebra, which is
the algebraic framework for behavioural specification. This combination arises naturally within the hetero-
geneous framework of the modern formal specification language CafeOBJ. The novel specification concept
arising from this combination, and which constitutes its single unique feature, is that of behavioural tran-
sition. We extend the coinduction proof method for behavioural equivalence to coinduction for proving
behavioural transitions.

Key words: Coinduction, behavioural specification, preordered algebra, hidden algebra, rewriting logic,
heterogeneous specification, CafeOBJ

1. Introduction

Modern algebraic specification practice and theory has extended the traditional many-sorted algebra
based specification to several new paradigms. Two of the most promising ones are behavioural specification
[4, 8–10, 13–15] and rewriting logic [2]. An important effort has been undertaken to develop languages and
systems supporting such extensions of traditional algebraic specification. To mention just a couple of them,
Maude [1] in the area of rewriting logic and CafeOBJ [3, 5] in the area of behavioural specification and
rewriting logic. The latter realizes both paradigms above mentioned within a single specification framework,
which constitutes one of the earliest examples of a heterogenous specification language. However it has to
be said that CafeOBJ employs a rather diluted but quite effective form of rewriting logic, which corresponds
to the unlabelled form of rewriting logic, which we call preordered algebra.

In such heterogenous specification frameworks it is crucial that any two logical formalisms involved
have a ‘least upper bound’, which should appear as a ‘super-logic’ to both of them. Thus in the case of
a system like CafeOBJ one needs to study such a combination between hidden algebra (HA), i.e. the
logic underlying the behavioural specification paradigm, and preordered algebra (POA). This has already
been defined in model theoretic terms in [3, 5] (although only the latter reference constitutes the definitive
solution to this combination problem). The single characteristic outcome of this combination is the novel
concept of behavioural transition. Although behavioural transitions already constitute a language construct
in CafeOBJ, unfortunately its methodological aspects remain unexplored. Our current paper takes a first
step to filling this gap by providing a coinduction-like proof method for behavioural transitions which
extends the well known coinduction for proving behavioural equivalences.

Our paper is organised as follows:

Email address: Razvan.Diaconescu@imar.ro (Răzvan Diaconescu)
Preprint submitted to Information and Computation November 1, 2010



1. We briefly review some basic concepts from many sorted algebra, hidden algebra, and preordered
algebra needed for our work. Most notably, in this preliminary section we introduce a novel concept
of congruence for preordered algebras.

2. In the next section we develop hidden preoredered algebra (HPOA) and prove the main result of this
paper, namely the existence of the largest hidden preordered congruence for any algebra.

3. In the final technical section we extract a coinduction principle for behavioural transitions and give
an application as example.

Some of our examples are written in CafeOBJ. However the reader is not required to have deep knowledge
of this notation since this follows anyway quite closely the mathematical notations for the basic algebraic
specification concepts. When necessary we also provide additional explanations. The relationship between
the terminology employed by our paper and that of the foundational work on CafeOBJ (as appears in [5]) is
as follows. The logics RWL and HRWL, respectively, of the CafeOBJ cube of [5] appear here as POA and
HPOA, respectively. For the sake of simplicity of presentation here we have not developed the order-sorted
algebra dimension of the CafeOBJ cube (i.e. the *OS* logics). This aspect can be added easily to our
framework. Note also that here we take the perspective of logic embedding, which is dual but in our case
semantically equivalent to the perspective of logic projections that underlies the CafeOBJ cube in [5]. This
simply means that from the perspective of the terminology of our paper the CafeOBJ cube of [5] should be
read with all arrows reversed.

Acknowledgement. I wish to thank both anonymous referees for their comments that have helped improve
the presentation of this work.

2. Preliminaries

2.1. Many-sorted algebra
This is the traditional framework for algebraic specification and constitutes the core framework for all

algebraic specification formalisms. In the following we introduce the main concepts of many-sorted algebra
needed by our work.

Definition 2.1 (Many-sorted signatures). We let S ∗ denote the set of all finite sequences of elements from
S , with [] the empty sequence. A(n S -sorted) signature (S , F) is an S ∗ × S -indexed set F = {Fw→s | w ∈
S ∗, s ∈ S } of operation symbols.

Note that this definition permits overloading, in that the sets Fw→s need not be disjoint. Call σ ∈ F[]→s

(sometimes denoted simply F→s) a constant symbol of sort s.
An (S , F)-term t of sort s ∈ S , is a structure of the form σ(t1, . . . , tn), where σ ∈ Fw→s and t1, . . . , tn are

(S , F)-terms of sorts s1 . . . sn, where w = s1 . . . sn.
A signature morphism ϕ from a signature (S , F) to a signature (S ′, F′) is a pair (ϕsort, ϕop) consisting of

– a map ϕsort : S → S ′ of sorts, and

– maps ϕop
w→s : Fw→s → F′(ϕsort)∗(w)→ϕsort(s) for all w ∈ S ∗ and s ∈ S .

Definition 2.2 (Many-sorted algebras). Given a sort set S , an S -indexed (or sorted) set A is a family
{As}s∈S of sets indexed by the elements of S ; in this context, a ∈ A means that a ∈ As for some s ∈ S . Given
an S -indexed set A and w = s1...sn ∈ S ∗, we let Aw = As1 × · · · × Asn; in particular, we let A[] = {?}, some
one point set.

A (S , F)-algebra A consists of
2



– an S -indexed set A (the set As is called the carrier of A of sort s), and

– a function Aσ : Aw → As for each σ ∈ Fw→s.

If σ ∈ F→s then Aσ determines a point in As which may also be denoted Aσ.
Given a signature morphism ϕ : (S , F)→ (S ′, F′) and a (S ′, F′)-algebra A′, we can define the ϕ-reduct

of A′ to (S , F) to be the following (S , F)-algebra:

– As = A′
ϕst(s) for s ∈ S , and

– Aσ = A′ϕop(σ) for σ ∈ F.

The (S , F)-algebra A may be denoted A′�ϕ (or simply A′�(S ,F) when ϕ is an inclusion of signatures). Then
A′ is called an ϕ-expansion of A along ϕ.

Definition 2.3 (Algebra homomorphisms). An S -indexed (or sorted) function f : A → B is a family
{ fs : As → Bs}s∈S .

Also, for an S -sorted function f : A → B, we let fw : Aw → Bw denote the function product mapping a
tuple of elements (a1, . . . , an) to the tuple ( fs1(a1), . . . , fsn(an)).

An (S , F)-homomorphism from a (S , F)-algebra A to another (S , F)-algebra B is an S -indexed function
h : A→ B such that for each σ ∈ Fw→s and a ∈ Aw

hs(Aσ(a)) = Bσ(hw(a)).

Definition 2.4 (Sentences). A (S , F)-equation is an equality t = t′ between (S , F)-terms t and t′. Equations
are the simplest (S , F)-sentences.

For ρ1 and ρ2 any (S , F)-sentences, let ρ1 ∧ ρ2 be their conjunction which is also a (S , F)-sentence.
Other Boolean connectives are disjunction (∨), implication (⇒), negation (¬), etc.

For any set X of variables for a signature (S , F), (∀X)ρ is an (S , F)-sentence for each (S , F∪X)-sentence
ρ. Likewise we have existential quantification.

Definition 2.5 (Satisfaction). Any (S , F)-term t = σ(t1, . . . , tn), where σ ∈ Fw→s is an operation symbol
and t1, . . . , tn are (S , F)-(sub)terms corresponding to the arity w, gets interpreted as an element At ∈ As in
a (S , F)-algebra A by At = Aσ(At1 , . . . , Atn).

The satisfaction relation between algebras and sentences is the Tarskian satisfaction defined inductively
on the structure of sentences. Given a fixed arbitrary signature (S , F) and an (S , F)-algebra A,

– A |= t = t′ if At = At′ for equations,

– A |= ρ1 ∧ ρ2 if A |= ρ1 and A |= ρ2 and similarly for the other Boolean connectives, and

– for each (S , F ∪ X)-sentence A |= (∀X)ρ if A′ |= ρ for each expansion A′ of A along the signature
inclusion (S , F) ↪→ (S , F ∪ X).

Definition 2.6 (Congruences). An (S , F)-congruence on a (S , F)-algebra A is an S -sorted family of rela-
tions, ≡s on As, each of which is an equivalence relation, and which also satisfy the congruence property,
that given any σ ∈ Fw→s and any a ∈ Aw, then Aσ(a) ≡s Aσ(a′) whenever a ≡w a′.1

1Meaning ai ≡si a′i for i = 1, ..., n, where w = s1 . . . sn and a = (a1, . . . , an).
3



Definition 2.7. Each congruence on an (S , F)-algebra A determines a quotient algebra A/≡ such that

– (A/≡)s = (As)/≡s for each sort s ∈ S , i.e. the equivalence classes of ≡s, and

– (A/≡)σ(a/≡) = Aσ(a)/≡ for each operation symbol σ ∈ Fw→s and each a ∈ Aw.

Let the kernel =h of a homomorphism h : A→ B be defined by a =h b if and only if h(a) = h(b).

Fact 2.1. For any algebra homomorphism h, its kernel =h is a congruence.

2.2. Hidden algebra

This is the mathematical framework underlying the so-called ‘behavioural specification’ paradigm [4,
8–10, 13–15] which is a generalisation of ordinary (many-sorted) algebraic specification. Behavioural
specification characterises how objects (and systems) behave, not how they are implemented. This new form
of abstraction can be very powerful in the specification and verification of software systems since it naturally
embeds other useful paradigms such as concurrency, object-orientation, constraints, nondeterminism, etc.
(see [9] for details). Behavioural abstraction is achieved by using specification with hidden sorts and a
behavioural concept of satisfaction based on the idea of indistinguishability of states that are observationally
the same, which also generalises process algebra and transition systems (see [9]).

Our brief presentation of the main concepts of hidden algebra (abbreviatted HA) given below follows the
so-called ‘coherent hidden algebra’ [4, 5] framework employed by CafeOBJ. This is both a simplification
and extension of the classical hidden algebra of [8, 9] in several directions, most notably by allowing
operations with multiple hidden sorts in the arity, and differs only slightly from other modern formalizations
of hidden algebra in the literature [10, 15]. HA also is significantly more general than coalgebra with final
semantics [11] since it integrates smoothly data types and it allows behavioural operations with multiple
hidden sorts.

Definition 2.8 (Hidden algebra signatures). A hidden algebraic signature (H,V, F, Fb) consists of

– disjoint sets H of hidden sorts, V of (ordinary) visible sorts,

– an indexed family F of (H ∪ V)-sorted operation symbols such that (H ∪ V, F) is a many-sorted
signature, and

– a distinguished subset Fb
w→s ⊆ Fw→s of behavioural operations for each arity w and sort s such that

w contains at least one hidden sort.

The ‘hidden’ sorts are used to specify the spaces of the states of objects (or abstract machines) while
the ‘visible’ ones are used for the ordinary data types.

Definition 2.9 (Hidden algebras). Given a hidden algebraic signature (H,V, F, Fb), a (H,V, F, Fb)-algebra
is just an (H ∪ V, F)-algebra.

Definition 2.10 (Hidden congruence). Given a (H,V, F, Fb)-algebra A, a hidden (H,V, F, Fb)-congruence
∼ on A is just an (H ∪ V, Fb)-congruence which is identity on the visible sorts.

Definition 2.11 (Behavioural equivalence). The largest hidden (H,V, F, Fb)-congruence∼A on a (H,V, F, Fb)-
algebra A is called the behavioural equivalence on A.

4



A proof of the following crucial result can be found for example in [15].

Theorem 2.1. Behavioural equivalence exists for any (H,V, F, Fb)-algebra.

This result generalises the final semantics employed by the early hidden algebra frameworks [8] or by
the coalgebraic approaches [11] to the situation of behavioural operations with multiple hidden sorts in the
arity and of loose interpretation of the visible part of the signature.

Definition 2.12 (HA sentences). Given a hidden algebraic signature (H,V, F, Fb), a behavioural equation
t ∼ t′ consists of a pair of (H ∪ V, F)-terms of the same sort.

The full set of sentences for the signature is obtained in the manner of Def. 2.4 from the (strict) equa-
tions t = t′ and from the behavioural equations t ∼ t′ by iterative applications of Boolean connectives
(conjunction, disjunction, negation, implication, etc.) and by universal and existential quantifications.

Definition 2.13 (Behavioural satisfaction). An (H,V, F, Fb)-algebra A satisfies a behavioural equation t ∼
t′, i.e. A |= t ∼ t′, when At ∼A At′ . The satisfaction of all HA sentences by algebras is defined inductively
on the structure of the sentences as in Def. 2.4.

The following simple example shows the difference between the satisfaction of (ordinary strict) (H ∪
V, F)-equations t = t′ and that of behavioural (H,V, F, Fb)-equations t ∼ t′.

Example 2.1. Consider the following CafeOBJ specification of a counter abstract machine.

mod* COUNTER {
protecting(NAT)

*[ Counter ]*
bop add : Nat Counter -> Counter
bop read : Counter -> Nat
var N : Nat
var C : Counter
eq read(add(N,C)) = N + read(C) .

}

The declaration protecting(NAT) represents an import of the data type of the natural numbers which
does not alter them in any way (i.e. all algebras of COUNTER interpret the NAT part in a fixed way, as
the standard model of the natural numbers), the specification has only one hidden sort Counter, and two
behavioural operations add and read. The only equation of the specification reads as

(∀N : Nat)(∀C : Counter) read(add(N,C)) = N + read(C).

It is rather easy to show that for any algebra A of COUNTER we have that

a ∼A a′ if and only if Aread(a) = Aread(a′).

Now let us consider the equation

add(1,add(2, c)) = add(3, c).

This is satisfied in the strict sense by the algebra of COUNTER which interprets the sort Counter as
the natural numbers and add as addition of natural numbers. However it is not satisfied by algebras for

5



which Counter stores states having more refined information. Such an example is given by a ‘history’
algebra A which interprets Counter as the set of pairs of naturals 〈m, n〉, such that Aread(〈m, n〉) = m and
Aadd(x, 〈m, n〉) = 〈x + m, n + 1〉.

But the above equation is satisfied behaviourally by any algebra of COUNTER (the proof of this fact is
rather easy and is left to the reader).

2.2.1. Coinduction
Thm. 2.1 provides the foundation for the rather famous coinduction proof method. Suppose that one

wants to prove that two states, represented as terms s and s′, are behaviourally equivalent. Then it is enough
to perform the following steps.

1. Define an equivalence relation R (called a coinduction relation) for each hidden sort,
2. Prove that R is a hidden congruence, and
3. Prove that s R s’.

The coinduction proof method contains a heuristic component which is represented by the choice of the
relation R. Often R happens to be the behavioural equivalence, however the coinduction method does not
require this. The choice of R is thus left to the user which has to rely upon his insight into the problem. Some
methods have been invented in order to assist and ease the process of finding such coinduction relations,
such as the so-called ‘circular coinduction’ of [15].

2.3. Preordered algebra

This specification formalism (abbreviatted POA) can be regarded as a simplified form of rewriting
logic [12] which is a non-trivial extension of traditional algebraic specification towards specification and
formal verification of concurrent systems. POA thus incorporates many different models of concurrency
in a natural, simple, and elegant way. Due to these attributes POA has been adopted by the CafeOBJ
language as a framework for specification and reasoning about transitions in general [5], with applications
to algorithm specification and verification [3, 6], to automatic generation of case analysis [3], etc.

The main difference between POA and the full version of rewriting logic [2] lies in the fact that POA
does not permit full reasoning about multiple transitions between states (or system configurations), but
provides proof support for reasoning about the existence of transitions between states (or configurations). At
the level of the semantics, this amounts to the fact that the POA models are preorders rather than categories.
This avoids many of the semantical complications resulting from the labelled version of rewriting logic of
[2]. However, this simplification given by POA still allows a multitude of pragmatic methodologies and
moreover has the advantage of a great semantical and methodological simplicity.

In the following we present the basic concepts of the POA framework.

Definition 2.14 (POA signatures). The POA signatures are just the many-sorted signatures (of Dfn. 2.1).

Definition 2.15 (Preordered algebras). A preordered algebra (M,≤) for a signature (S , F) consists of an
(S , F)-algebra M and of a family ≤= {≤s⊆ Ms × Ms | s ∈ S } of preorders such that the interpretation of
each operation in F is monotonic with respect to ≤.

Definition 2.16 (POA homomorphism). A homomorphism of preordered algebras h : (M,≤)→ (N,≤′) is
an algebra homomorphism M → N which is also monotonic with respect to the preorders ≤ and ≤′.

6



Definition 2.17 (POA sentences). The POA atomic sentences are either equations t = t′ or transitions
t−> t′ with t and t′ being terms of the same sort. The POA sentences are formed from (atomic) equations
and transitions by iterations of the usual logical connectives and quantification.

Definition 2.18 (Satisfaction in POA). A transition t−> t′ is satisfied by a preordered algebra (M,≤) if and
only if Mt ≤ Mt′ .

The following is an example of a POA specification in CafeOBJ.

Example 2.2. Consider the following specification of non-deterministic naturals. The following module
specifies multi-sets of natural numbers.

mod! NNAT {
extending(NAT)
op | : Nat Nat -> Nat { assoc comm }
vars M N1 N2 : Nat
eq M + (N1 | N2) = (M + N1) | (M + N2) .

}

The extending importation for the import of the data type of natural numbers (with addition +) just
means that no natural numbers are collapsed but new ‘non-deterministic’ naturals are introduced to the
standard model of natural numbers. The declaration mod! means that the only models considered are those
which are initial. The only explicit equation gurantees that these initial models have indeed only multi-
sets of naturals rather than expressions containing also +. The fact that this gives multi-sets of naturals is
also determined by the two implicit associativity and commutativity equations specified as attributes for the
constructor | .

The next step is to define a non-deterministic choice on the non-deterministic naturals. In fact this gives
sense to non-determinism for this example. This choice is non-confluent and is specified as transitions.

mod! NNAT-CHOICE {
protecting(NNAT)
vars M N : Nat
trans N | M => N .
trans N | M => M .

}

The initial model of this specification has all non-deterministic naturals as elements, with the addition
operation + (but it is of course possible to consider any of the the other standard operations on the naturals),
and with the preorder given by the multi-set reduction. For example (1 | 2 | 3) ≤ (1 | 3). It is easy
to see that addition + is monotonic with respect to this preorder.

The existence of initial models for preordered algebra specification is guaranteed for the case when all
the sentences of the specification are Horn sentences. The proof of this result (see [7] for example) is rather
similar to the ordinary many-sorted algebra case by using the concept of preordered algebra congruence
introduced below. Since the focus of our paper is rather different we skip here the proof of this result.

In the following we extend the concept of congruence from ordinary many-sorted algebra (see Dfn. 2.6)
to preordered algebras.

7



Definition 2.19 (Preordered algebra congruences). A POA-congruence (preordered algebra congruence)
on a preordered algebra (M,≤) for a signature (S , F) is a pair (∼,v) such that

– ∼ is an (S , F)-congruence on the (S , F)-algebra M,

– v is a (n S -sorted) preorder on M which contains ≤, i.e. ≤ ⊆ v, and which is compatible with the
operations, and

– a′ ∼ a, a v b, b ∼ b′ implies a′ v b′ for all elements a, a′, b, b′ of M.

Congruences form a partial order under inclusion, i.e. (∼,v) ⊆ (∼′,v′) if and only if ∼ ⊆ ∼′ and v ⊆ v′.

Proposition 2.1. Each POA-congruence on a preordered algebra (M,≤) determines a quotient preordered
algebra homomorphism (M,≤)→ (M,≤)/(∼,v) such that

– the algebra underlying (M,≤)/(∼,v) is the quotient algebra M/∼,

– the preorder ≤′ on (M,≤)/(∼,v) is defined by m/∼ ≤′ m′/∼ if and only if m v m′.

Proof. The definition of the preorder relation ≤′ is correct since it is independent of the choice of m and m′.
Indeed, let m ∼ m1 and m′ ∼ m′1. Then by the definition of the preorder congruences we have that m v m′

if and only if m1 v m′1. The fact that v is a preorder implies that ≤′ is a preorder.
In order to complete the argument that (M,≤)/(∼,v) is a preordered algebra we have to show that the

interpretations of the operations are monotonic with respect to the preorder ≤′. Let σ be any operation
symbol and (m1, . . . ,mn) and (m′1, . . . ,m

′
n) appropriate lists of arguments for Mσ. We have to prove that

(M/∼)σ(m1/∼, . . . ,mn/∼) ≤′ (M/∼)σ(m′1/∼, . . . ,m
′
n/∼)

if mk/∼ ≤′ m′k/∼ for each 1 ≤ k ≤ n. This is equivalent to

Mσ(m1, . . . ,mn)/∼ ≤′ Mσ(m′1, . . . ,m
′
n)/∼

and to

Mσ(m1, . . . ,mn) v Mσ(m′1, . . . ,m
′
n)

The above relation follows because mk v m′k (since mk/∼ ≤′ m′k/∼) for each 1 ≤ k ≤ n and by the definition
of the preordered congruence which guarantees that Mσ is monotonic with respect to the preorder v. 2

Definition 2.20. The kernel ker(h) of a preordered algebra homomorphism h : (M,≤) → (N,≤′) is a pair
(=h,≤h) of binary relations such that a =h b if and only if h(a) = h(b) and a ≤h b if and only if h(a) ≤ h(b).

Fact 2.2. ker(h) is a POA-congruence.

8



3. Hidden preordered algebra

Specification frameworks which contain both POA and HA, such as CafeOBJ require a combination
of both of them which would emerge as a ‘super-logic’ to both POA and HA.

Example 3.1. Consider a specification of a counter (like in Ex. 2.1) but this time with non-deterministic
naturals (see Ex. 2.2) instead of the ordinary naturals. This may be achieved just by replacing NAT with
NNAT-CHOICE in COUNTER; let us denote this version of COUNTER that uses non-deterministic naturals
rather than naturals by NCOUNTER. The semantics of this module can be given only in a framework which
contains both POA (for NNAT-CHOICE) and HA (for COUNTER).

Hidden preordered algebra (abbreviatted HPOA) defined below, gives a natural combination between
POA and HA, both of them appearing as ’sub-logics’ of HPOA.

Definition 3.1 (HPOA signatures). The signatures of hidden preordered algebra are the HA signatures
(Dfn. 2.8).

Definition 3.2 (HPOA models). The models of a HPOA signature (H,V, F, Fb) are the preordered (H ∪
V, F)-algebras.

Definition 3.3 (HPOA sentences). The sentences of a HPOA signature are formed from atomic (strict)
equations t = t′, behavioural equations t ∼ t′, transitions t−> t′, and behavioural transitions t ∼> t′ by
iteration of Boolean connectives and of quantifiers.

The following couple of definitions are crucial contributions of this paper. While the former combines
the concept of POA congruence (Dfn. 2.19) with the concept of hidden congruence (Dfn. 2.10), the latter
constitutes a generalisation of the concept of behavioural equivalence.

Definition 3.4 (Hidden POA congruence). A hidden POA-congruence on a HPOA-algebra (A,≤) is a
POA (H ∪ V, Fb)-congruence (≡,v) on (A,≤) such that on the visible sorts ≡ is the identity and v is ≤.

Definition 3.5 (Behavioural POA congruence). The behavioural POA-congruence on (A,≤) is the which
is the largest hidden POA-congruence on (A,≤).

Definition 3.6 (Satisfaction in HPOA). The satisfaction of HPOA sentences by HPOA models (algebras)
is defined inductively on the structure of the sentences like in Dfn. 2.5, where the satisfaction of the atomic
equations t = t′ is given by Dfn. 2.5, that of atomic transitions t−> t′ by Dfn. 2.18, that of the atomic
behavioural equations t ∼ t′ by Dfn. 2.13, and

(A,≤) |= t ∼> t′ if and only if At .A At′ .

Note that HPOA is more than just putting POA and HA together because of the behavioural transitions.
The concept of behavioural transition arises naturally by symmetry to that of behavioural equation. The
CafeOBJ language supports the specification of behavioural transitions by the keyword btrans. The def-
inition of HPOA above relies upon the existence of behavioural POA-congruence, a result which represents
an extension of Thm. 2.1 from HA to HPOA and which is developed below.

Our definitions of HPOA corrects the corresponding definitions from [5] by defining the concepts of
behavioural equivalence and behavioural POA congruence, respectively, as the largest hidden congruence
and hidden POA congruence, respectively, rather than defining them with contexts as in [5]. When the
visible (data) part of the algebras are not reachable the respective concepts of behavioural equivalence of
behavioural POA congruence differ from our paper to [5].

9



Theorem 3.1. Behavioural POA-congruence exists for any preordered (H,V, F, Fb)-algebra.

Proof. Let (A,≤) be any preordered (H,V, F, Fb)-algebra. We extend the signature of (A,≤) by adding the
elements of A as new constants; let FA be the new set of operation sysmbols thus obtained. Then FA may
be formally defined as

(FA)w→s =

{
Fw→s when w , []
F→s ] As when w = []

Then (A,≤) can be expanded canonically to a preordereded (H,V, FA, Fb)-algebra (AA,≤) which interprets
each new constant (i.e. element of A) as itself, that is (AA)a = a for each a ∈ A.

Let z be a new constant of any sort in H ∪ V . Any (H ∪ V, FA ] {z})-term c is a behavioural context for
A when it is either

• z (which is a new constant), or

• σ(t1, . . . , c′, . . . , tn) where σ is a constant or a behavioural operation, c′ is a behavioural context, and
t1, . . . , tn are FA-terms.

A behavioural context c is called visible when the sort of c belongs to V .
For any element a ∈ A of the same sort as z, let c(z/a) denote the (H ∪ V, FA)-term obtained from c by

replacing z by a. Then for any elements a and a′ of A, having the same sort, let us define

a ∼A a′ if and only if (AA)c(z/a) = (AA)c(z/a′) for all visible behavioural contexts c

and

a .A a′ if and only if (AA)c(z/a) ≤A (AA)c(z/a′) for all visible behavioural contexts c.

We show that (∼A,.A) is the behavioural POA-congruence on (A,≤) by showing first that it is a hidden
POA-congruence and then that it is the largest one.

By definition it is clear that ∼A is an equivalence. Let us also note that from the definition of ∼A, if the
sort of a and of a′ is visible we obtain that a ∼A a′ if and only if a = a′ by taking the context c to be just
z. Now let us consider a behavioural operation σ ∈ Fb

w→s. For any appropriate lists of arguments for Aσ,
namely (a1, . . . , an) and (a′1, . . . , a

′
n), we have to show that

Aσ(a1, . . . , an) ∼A Aσ(a′1, . . . , a
′
n) if ak ∼A a′k for each 1 ≤ k ≤ n.

We first show that this relation holds for the particular case when a2 = a′2, a3 = a′3, ..., an = a′n. Let us
consider any visible sorted behavioural context c. We build a new context c′ by

c′ = c(σ(z, a2, . . . , an)).

Since (AA)c(z/Aσ(a1,a2,...,an)) = (AA)c′(z/a1) and (AA)c(z/Aσ(a′1,a2,...,an)) = (AA)c′(z/a′1) and because a1 ∼A a′1 we
obtain that (AA)c(z/Aσ(a1,a2,...,an)) = (AA)c(z/Aσ(a′1,a2,...,an)), hence

Aσ(a1, a2, . . . , an) ∼A Aσ(a′1, a2 . . . , an).

Now by replicating the same argument for a2 and a′2 when a′1, a3, ..., an are fixed, and then further for a3
and a′3 and so on, because the arity of σ is finite, by the transitivity of ∼A, we finally get that

Aσ(a1, . . . , an) ∼A Aσ(a′1, . . . , a
′
n).

We have thus shown that ∼A is a hidden congruence.
10



That .A is reflexive and transitive follows directly from its definition. The proof that the behavioural
operations of A are monotonic with respect to .A is similar to the the proof that the behavioural operations of
A preserve ∼A. In order to complete the proof that .A is a hidden POA-congruence let us consider a .A a′

and a ∼A a1 and a′ ∼A a′1. Then for each visible behavioural context c we have that (AA)c(z/a) ≤A (AA)c(z/a′)
and (AA)c(z/a) = (AA)c(z/a1) and (AA)c(z/a′) = (AA)c(z/a′1). This implies that (AA)c(z/a1) ≤ (AA)c(z/a′1) for each
visible behavioural context c, which means that a1 .A a′1.

We have thus shown that (∼A,.A) is a hidden POA-congruence. Now we have to prove that it is the
largest one. For this we consider another hidden POA-congruence (≡,v) on (A,≤). For any a and a′ we can
prove by induction on the depth of c, that for any behavioural context c

1. if a ≡ a′ then (because the behavioural operations on A preserve ≡) (AA)c(z/a) ≡ (AA)c(z/a′), and
2. if a v a′ then (because the behavioural operations on A preserve v) (AA)c(z/a) v (AA)c(z/a′).

In particular if c is visible sorted the above relations says that (AA)c(z/a) = (AA)c(z/a′) and (AA)c(z/a) ≤A

(AA)c(z/a′) respectively. This just shows that (≡,v) ⊆ (∼A,.A). 2

Note that ∼A is just the behavioural equivalence on A when we forget about its preordered structure.
Hence the proof of Thm. 3.1 above contains the proof of of the existence of behavioural equivalences
Thm. 2.1 as a special case.

4. Coinduction for hidden preorder algebras

From Thm. 3.1 we can extract the following coinduction proof principle for hidden preorder algebras.

Corollary 4.1 (Coinduction for behavioural transitions). The coinduction proof method for HPOA con-
sists of the following steps.

1. Define an equivalence relation R and a preorder relation P for each hidden sort such that

(s P s’) and (s R s1) and (s’ R s’1) imply (s1 P s’1)

and

(s −> s’) implies (s P s’)

for all s, s’, s1, s’1,
2. Prove that both R and P are preserved by the behavioural operations,
3. (a) If we want to prove that t ∼ t’ then we show that t R t’, and

(b) If we want to prove that t ∼> t’ then we show that t P t’.

Example 4.1. For the specification NCOUNTER let us show by coinduction that

add(p, add(m | n, c)) ∼> add(m, add(p, c))

for all non-deterministic naturals m, n, and p, and for each state c of Counter. Let us first note that this
transition does not hold in the strict sense. One model M of NCOUNTER that does not satisfy

add(p, add(m | n, c))−> add(m, add(p, c))

may be defined as follows

11



• (MCounter,≤) is the partial ordered set of the lists of non-deterministic naturals, i.e. lists of elements
of MNat. The partial order between these lists is defined by (m1)(m2) . . . (mk) ≤ (n1)(n2) . . . (n j) iff
k = j and mi ≤ ni for each i ∈ {1, . . . , k}. (Recall that the partial order m ≤ n on the non-deterministic
naturals is given by the existence of a transition, a ‘choice’ in this case, from m to n.)

• Madd(m, c) = (m)c for each m ∈ MNat and c ∈ MCounter.

• Mread((m1) . . . (mk)) = m1 + . . . + mk.

Note that since for example (1)(2 | 3) � (2 | 1), the considered transition does not hold in the strict sense.

Proposition 4.1. COUNTER |= add(p, add(m | n, c)) ∼> add(m, add(p, c)) for all m, n, and p of sort Nat
and all c of sort Counter.

Proof. Instead of a conventional mathematical proof we present a CafeOBJ proof score implementing
the coinduction method for HPOA extracted above. The actual proof is performed by the reductions below
(command reduce) which are done by the CafeOBJ system rewriting, and all of them give the answer
true.

1. The following introduces the relations R and P required by the HPOA coinduction method.

mod* NCOUNTER-PROOF {
protecting(NCOUNTER)
op _R_ : Counter Counter -> Bool
op _P_ : Counter Counter -> Bool
vars C C’ : Counter
eq C R C’ = read(C) == read(C’) .
eq C P C’ = read(C) ==> read(C’) .

}

(The predicates == and ==> are the CafeOBJ built-in semantic equality and preorder predicates, respec-
tively.) Note the rather simple definitions for R and P.

The following is the proof score for the fact that

(s P s’) and (s R s1) and (s’ R s’1) imply (s1 P s’1).

open NCOUNTER-PROOF .
ops s s’ s1 s’1 s2 s’2 : -> Counter .

(By the couple of declarations above we have introduced new arbitrary temporary constants which play the
role of variables. They cease to exist when the module is closed back by the command close.)

We now introduce the hypotheses:

trans read(s) => read(s’) .
eq read(s1) = read(s) .
eq read(s’1) = read(s’) .

and execute the conclusion:

red s1 P s’1 .

12



We now proceed with the proof that

(s −> s’) implies (s P s’)

The following is the hypothesis:

trans s2 => s’2 .

and now we execute the conclusion:

reduce s2 P s’2 .
close

2. The next step is to prove that both R and P are preserved by the behavioural operations. For the case of
read this property holds by the definitions of R and P. We therefore focus on add.

open NCOUNTER-PROOF .
ops s s’ s1 s’1 s2 s’2 : -> Counter .
op n : -> Nat .

We introduce the hypotheses:

eq read(s1) = read(s) .
trans read(s2) => read(s’2) .

and now we execute the conclusions:

red add(n,s) R add(n,s1) .
red add(n,s2) P add(n,s’2) .
close

3. The final step is the proof of the actual property of this proposition.

open NCOUNTER-PROOF .
ops m n p : -> Nat .
op c : -> Counter .
reduce add(p, add(m | n, c)) P add(m, add(p, c)) .
close

2

5. Conclusions

We have defined an upper bound logic for POA and HA as a natural combination between them and
based on the novel concept of POA-congruence introduced we have proved the existence of the largest
behavioural POA-congruence for any hidden preoredered algebra. From this result we have extracted a
coinduction principle for hidden preordered algebras which subsumes the well know coinduction principle
of hidden algebra but also provides a proof method for the novel concept of behavioural transition.

Future work need to focus on developing pragmatic methodologies for using behavioural transitions in
specification. This seem to us a very promising research direction which has not been explored yet.

13



References

[1] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer, and Carolyn Talcott.
All About Maude - A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

[2] Manuel Clavel, Steve Eker, Patrick Lincoln, and Jose Meseguer. Principles of Maude. Electronic Notes in Theoretical
Computer Science, 4, 1996. Proceedings, First International Workshop on Rewriting Logic and its Applications. Asilomar,
California, September 1996.

[3] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and Methodologies for
Object-Oriented Algebraic Specification, volume 6 of AMAST Series in Computing. World Scientific, 1998.

[4] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented algebraic specification. Universal
Computer Science, 6(1):74–96, 2000. First version appeared as JAIST Technical Report IS-RR-98-0017F, June 1998.

[5] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of CafeOBJ. Theoretical Computer Science, 285:289–318,
2002.

[6] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida. CafeOBJ Jewels. In Kokichi Futatsugi, Ataru Nakagawa, and
Tetsuo Tamai, editors, Cafe: An Industrial-Strength Algebraic Formal Method. Elsevier, 2000.

[7] Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.
[8] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the object paradigm. In Harmut Ehrig and

Fernando Orejas, editors, Recent Trends in Data Type Specification, volume 785 of Lecture Notes in Computer Science,
pages 1–34. Springer, 1994.

[9] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55–101, 2000.
[10] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Haeberer, editor, Algebraic Methodology and Software

Technology, number 1584 in LNCS, pages 263–277. Springer, 1999. Proc. AMAST’99.
[11] B. Jacobs and J.M. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of EATCS, 62:222–259, 1997.
[12] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73–155,

1992.
[13] Horst Reichel. Behavioural equivalence – a unifying concept for initial and final specifications. In Proceedings, Third

Hungarian Computer Science Conference. Akademiai Kiado, 1981. Budapest.
[14] Horst Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Clarendon, 1987.
[15] Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

14


