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Abstract

We extend the ordinary concept of theory morphism in institutions toextratheory morphisms. Extra theory
morphism map theories belonging to different institutionsacross institution morphisms. We investigate
the basic mathematical properties of extra theory morphisms supporting the semantics of logical multi-
paradigm languages, especially structuring specifications (module systems) á la OBJ-Clear. They include
model reducts, free constructions (liberality), co-limits, model amalgamation (exactness), and inclusion
systems.

We outline a general logical semantics for languages whose semantics satisfy certain “logical” prin-
ciples by extending the institutional semantics developedwithin the Clear-OBJ tradition. Finally, in the
Appendix, we briefly illustrate it with the concrete exampleof CafeOBJ.
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1 Introduction

Computing Motivation

This work belongs to the research area ofinstitutionswhich now constitute the modern level of algebraic
specification tradition. Its results apply to multi-paradigm logical computing languages. Alogical lan-
guage is a specification and/or programming language havingan underlying logic1 in which all its basic
constructs/features can be rigorously explained. This concept was first formulated by Goguen and Mese-
guer in [22] under the name of “logical programming”. Examples of logical languages include most of the
OBJ family of languages, such as OBJ3 [25], Eqlog [21], Maude[5], CafeOBJ [13], etc., but they might
also include (pure) Prolog and (pure) Lisp.

Multi-paradigm logical languages admit institution semantics in which each paradigm has an under-
lying institution and paradigm embedding formally corresponds to institution morphisms. This approach
can be regarded asrelativistic as opposed to the more absolute one that works only with one big institution
embedding all other institutions underlying the various paradigms, and has also been advocated by other
recent works [32, 2]. Following the tradition of Clear [4] and OBJ [25], flattened modules or basic speci-
fications (belonging to either a primary or a more complex paradigm) in logical languages correspond to
theories in the institution underlying that paradigm. A logical language achieving high paradigm integra-
tion must support a global module system, meaning global structuring operations on modules (specifica-
tions), such as (various kinds of) imports, parameterization, etc. As strongly emphasized by the Clear-OBJ
tradition, the structuring operations on modules are modeled by putting together theories via co-limits of
theory morphisms.

In this paper we extend the concept of theory morphism (traditionally local to a given institution; we
call them intra theory morphisms) toextra theory morphisms, which are morphisms of theories across
institution morphisms (embeddings). The core of this work consists of the investigation of the basic prop-
erties for extra theory morphisms supporting the semanticsof multi-paradigm logical languages, especially
advanced module systems for such languages. We devote a section to sketching an extra theory morphism
based generic semantics for multi-paradigm logical languages, and in the Appendix we illustrate this with
the concrete example ofCafeOBJ [14].

Properties of Extra Theory Morphisms

The basic mathematical properties of theory morphisms are well established for the ordinary “intra” ver-
sion, in this paper we investigate them for the more general “extra” concept. Here we briefly review these
properties.

Liberality. Liberality [17, 31] is a basic desirable property expressing the possibility of free construc-
tions generalizing the principle of “initial algebra semantics” which underlies the tight semantics of alge-
braic languages, including semantics for parameterized modules [15]. We extend the traditional concept
of liberality to extra theory morphisms and we investigate some natural sufficient conditions.

Co-limits. Module expressions in algebraic languages in the Clear-OBJtradition are evaluated as co-
limits of theories. In the case of multi-paradigm languages, co-limits in the category of extra theory
morphisms are needed. We show how these more general co-limits can be constructed from ordinary intra
theory morphisms co-limits.

Exactness. Exactness expresses the possibility of amalgamation of consistent implementations for dif-
ferent modules (for more details see [15]) and is a necessarytechnical condition on the underlying logic

1Here “logic” should be understood in the modern relativistic sense of “institution” which provides a mathematical definition
for a logic (see [17]) rather than in the traditional sense.
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for good semantic properties of the module system. We study exactness properties for the general case of
extra theory morphisms.

Inclusions. Theory inclusions model mathematically the concept of module import (see [15]), which
is the most fundamental structuring operation.Inclusion systemswhere first introduced in [15] as the
underlying categorical structure of an institution-independent module algebra. They were further studied
and their definition simplified by Roşu and Căzănescu in [6]. Inclusion systems are related to the better
established concept of factorization systems, but they capture the uniqueness property of inclusions (such
as set-theoretic inclusions). Here we show that an inclusion system of institution morphisms together with
inclusion systems for the signatures of each of the institutions involved naturally determine an inclusion
system for extra theory morphisms.

Finally, this work assumes familiarity with the basics of category theory, and generally uses the same
notation as Mac Lane [27], except that composition is denoted by “;” and written in the diagrammatic order.
The application of functions (functors) to arguments may bewritten either normally using parentheses, or
else in diagrammatic order without parentheses. The category of sets is denoted asSet, and the category
of categories2 asCat. The opposite of a categoryC is denoted byCop. The class of objects of a category
C is denoted by|C|; also the set of arrows inC having the objecta as source and the objectb as target is
denoted asC(a,b).
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terminology. Thanks to Kokichi Futatsugi for providing an excellent working environment during the
CafeOBJ project, and to theCafeOBJ project itself for inspiring this fundamental research. Special
thanks go to the anonymous referee for his excellent detailed technical suggestions.

2 Institutions

In this section we start by reviewing some of the basic concepts and results on institutions, and continue
with introducing new concepts related to extra theory morphisms. A good introduction to institutions is
[17], and [15] contains many results about institutions with direct application to modularization.

From a logic perspective, institutions are much more abstract than Tarski’s model theory, and also
have another basic ingredient, namely signatures and the possibility of translating sentences and models
across signature morphisms. A special case of this translation is familiar in first order model theory: if
Σ → Σ′ is an inclusion of first order signatures andM is aΣ′-model, then we can form thereductof M to
Σ, denotedM↾Σ. Similarly, if e is a Σ-sentence, we can always view it as aΣ′-sentence (but there is no
standard notation for this). The key axiom, called thesatisfaction condition, says thattruth is invariant
under change of notation, which is surely a very basic intuition for traditional logic.

Definition 1: An institution ℑ = (Sign,Sen,MOD, |=) consists of

1. a categorySign, whose objects are calledsignatures,

2. a functorSen: Sign→ Set, giving for each signature a set whose elements are calledsentencesover
that signature,

3. a functor MOD : Sign → Catop giving for each signatureΣ a category whose objects are called
Σ-models, and whose arrows are calledΣ-(model) morphisms, and

2We stay away of any foundational problem related to the “category of all categories”; several solutions can be found in the
literature, see for example [27].
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4. a relation|=Σ⊆ |MOD(Σ)|×Sen(Σ) for eachΣ ∈ |Sign|, calledΣ-satisfaction,

such that for each morphismϕ : Σ → Σ′ in Sign, thesatisfaction condition

M′ |=Σ′ Sen(ϕ)(e) iff M OD(ϕ)(M′) |=Σ e

holds for eachM′ ∈ |MOD(Σ′)| ande∈ Sen(Σ). We may denote the reduct functor MOD(ϕ) by ↾ϕ and
the sentence translationSen(ϕ) by ϕ( ). 1

Definition 2: Let ℑ = (Sign,Sen,MOD, |=) be an institution. For any signatureΣ the closure of a setE
of Σ-sentences isE• = {e | E |=Σ e}3. (Σ,E) is atheory iff E = E•.

A theory morphism ϕ : (Σ,E) → (Σ′,E′) is a signature morphismϕ : Σ → Σ′ such thatϕ(E) ⊆ E′.
Let Th(ℑ) denote the category of all theories inℑ, andsignℑ the forgetful functorTh(ℑ) → Sign. 2

For any institutionℑ, the model functor MOD extends toTh(ℑ), by mapping a theory(Σ,E) to the full
subcategory MOD(Σ,E) of MOD(Σ) formed by theΣ-models that satisfyE.

Definition 3: A theory morphismϕ : (Σ,E) → (Σ′,E′) is liberal iff the reduct functor
↾ϕ : MOD(Σ′,E′) → MOD(Σ,E) has a left-adjoint( )ϕ.

M |=Σ E M //

h
��

(Mϕ)↾ϕ

h′↾ϕ{{vvv
vv

vv
vv

Mϕ

there exists a uniqueh′{{xx
xx

xx
xx

xx

M′ |=Σ′ E′ M′↾ϕ M′

The institutionℑ is liberal iff each theory morphism is liberal. When(Σ,E) is the empty theory for the
signatureΣ, we denote( )ϕ by /E′. 3

General results [31] show that liberality is equivalent to the power of Horn axiomatisability.

Definition 4: An institution ℑ is exact iff the model functor MOD : Sign → Catop preserves finite co-
limits. ℑ is semi-exactiff M OD preserves only pushouts.4

The possibility of amalgamating consistent implementations may also be formalized by a weak4 version
of exactness, which in the case of multi-paradigm languagesis more adequate.

Definition 5: An institutionℑ is weakly semi-exactiff the model functor MOD preserves weak pushouts.
5

Semantics of multi-paradigm systems involves several different institutions which have to be linked
together by using the following concept:

Definition 6: Let ℑ andℑ′ be institutions. Then aninstitution morphism ℑ → ℑ′ consists of

1. a functorΦ : Sign′ → Sign,

2. a natural transformationα : Φ;Sen⇒ Sen′, and

3. a natural transformationβ : Φ;MOD ⇒ MOD′

3E |=Σ e means thatM |=Σ e for anyΣ-modelM that satisfies all sentences inE.
4In the sense of “weak universal properties” of [27] requiring onlyexistencewithout uniqueness for the corresponding univer-

sal arrows.
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such that the followingsatisfaction conditionholds

M′ |=Σ′ αΣ′(e) iff βΣ′(M′) |=′
Σ′Φ e

for anyΣ′-modelM′ from ℑ′ and anyΣ′Φ-sentencee from ℑ. 6

In the literature there are several concepts of institutionmorphism, each of them being adequate to some
specific problem. A good survey of various concepts of institution morphism discussing their usefulness
can be found in [32]. The definition presented above and originally given by Goguen and Burstall [17]
seems to be the most adequate for our approach. However, in our paper the direction of the institution
morphisms goes opposite than in [17]. The choice of [17] (favored by many researchers) fits better with
the understanding of institution morphisms as projections[2], while our choice is motivated mainly by the
co-limit and especially the inclusion paradigms.

For obtaining some technical properties for extra theory morphisms, some technically stronger versions
of this institution morphism are needed. These are very natural technical conditions which are easily
satisfied in practice.

Definition 7: An institution morphism(Φ,α,β) : ℑ → ℑ′ is

• a [strong] embedding iff Φ admits a [left-inverse] left-adjoint [with identity units] Φ,

• liberal iff βΣ′ has a left-adjointβΣ′ for eachΣ′ ∈ |Sign′|, andpersistent iff in addition βΣ′ are also
left-inverses toβΣ′ with identity units, and

• [weakly] additive iff the squares defining the naturality ofβ are [weak] pullbacks.

MOD(Σ′Φ) MOD′(Σ′)
βΣ′oo

MOD(Σ′
1Φ)

MOD(ϕΦ)

OO

MOD′(Σ′
1)βΣ′1

oo

MOD
′
(ϕ)

OO

7

The idea of institution embedding (although not formulateddirectly) is as old as the seminal work on
institutions [17]. Notice that the terminology “institution embedding” is used also by Meseguer [29]
but in a completely different sense. Also, several variantsof persistent institution morphism have been
independently introduced in the literature, such that thecategorical retractive simulationsof [26] and the
extension mapsof [29].

3 Extra Theory Morphisms

Extra theory morphisms generalize the ordinary concept of theory morphism (Definition 2) in that they
map theories across an institution morphism. Intra (i.e., ordinary) theory morphisms can be regarded as
special cases when the institution morphism is an identity.

Definition 8: Let (Φ,α,β) : ℑ → ℑ′ be an institution morphism, andT = (Σ,E) and T ′ = (Σ′,E′) be
theories inℑ andℑ′ respectively. Aextra theory morphism T → T ′ is anℑ-signature morphismϕ : Σ →
Σ′Φ such thatαΣ′(ϕ(E)) ⊆ E′. 8

In the case of institution embeddings we have an equivalent simpler formulation for extra theory morphism
given by Proposition 10. Instances of the following result for the particular case of strong embeddings
appeared in [17, 2]:
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Fact 9: Any institution embedding(Φ,α,β) : ℑ→ℑ′ gives rise to a functorΦ∗ : Th(ℑ)→Th(ℑ′) defined
by

Φ∗(Σ,E) = (ΣΦ,αΣΦ((Σζ)(E))•)

whereζ is the unit of the adjoint pair of functorsΦ,Φ. 9

Proposition 10: Let (Φ,α,β) : ℑ→ℑ′ be an institution embedding and letT ∈ |Th(ℑ)| andT ′ ∈ |Th(ℑ′)|.
Then there is a natural bijection between extra theory morphisms T → T ′ and ℑ′-theory morphisms
Φ∗(T) → T ′.

Proof: Let T be (Σ,E) and T ′ be (Σ′,E′). We have to establish a canonical bijection between extra
theory morphismsT → T ′ andℑ′-theory morphismsΦ∗(T) → T ′. This is given by the restriction of the
adjointness bijection

Sign(Σ,Σ′Φ)
γ
≃ Sign′(ΣΦ,Σ′)

to the subsets{ϕ | αΣ′(ϕ(E))⊆ E′} and{ϕ′ | ϕ′(αΣΦ((Σζ)(E))⊆ E′}. This is well-defined because when-
everϕ′ = γ(ϕ), αΣ′(ϕ(E)) = ϕ′(αΣΦ((Σζ)(E)) by the naturality ofα and becauseΦ is a left-adjoint toΦ,
as shown in the following diagram:

Sen(Σ′Φ)
αΣ′ // Sen′(Σ′)

Sen(ΣΦΦ)
αΣΦ //

Sen(ϕ′Φ)

OO

Sen′(ΣΦ)

Sen′(ϕ′)

OO

Sen(Σ)
Sen(Σζ)

99rrrrrrrrrr

Sen(ϕ)

BB������������������
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For readers familiar with indexed categories [33], the previous results just says that in the case of institution
embeddings extra theory morphisms can be regarded as arrowsin the flattening (i.e., the Grothendick
construction) of the indexed (by the category of institutions) categoryTh.

3.1 Model Reducts

Model reducts are the semantic aspect of theory morphisms, therefore they play a central rôle in any
semantics based on institutions. Model reducts for extra theory morphisms generalize ordinary model
reducts for intra theory morphisms; they are introduced by the following result which can also be regarded
as a Satisfaction Condition for extra theory morphisms:

Proposition 11: Let (Φ,α,β) : ℑ → ℑ′ be an institution morphism. For any extra theory morphism
ϕ : (Σ,E) → (Σ′,E′) there is a reduct functor↾ϕ : MOD′(T ′) → MOD(T) defined by

M′↾ϕ = βΣ′(M′)↾ϕ

for M′ any(Σ′,E′)-model. If(Φ,α,β) is an embedding, then

M′↾ϕ = βΣΦ(M′↾ϕ′)↾Σζ

whereϕ′ : ΣΦ → Σ′ is the free extension ofϕ : Σ → Σ′Φ.

Proof: Firstly, we have to prove thatM′ |=Σ′ E′ impliesβΣ′(M′)↾ϕ |=Σ E. But M′ |=Σ′ E′ impliesM′ |=Σ′

αΣ′(ϕ(E)) which is equivalent (by the Satisfaction Condition for institution morphisms) toβΣ′(M′) |=Φ(Σ′)

ϕ(E) which is equivalent (by the Satisfaction Condition for institutions) toβΣ′(M′)↾ϕ |=Σ E.
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The second part follows by the naturality ofβ applied toϕ and becauseΦ is a left-adjoint toΦ, as
shown in the following diagram:

MOD′(Σ′)
βΣ′ //

MOD
′
(ϕ′)

��

MOD(Σ′Φ)

MOD(ϕ′Φ)
�� MOD(ϕ)

��=
==

==
==

==
==

==
==

==
==

MOD′(ΣΦ)
βΣΦ

// MOD(ΣΦΦ)

MOD(Σζ) &&NNNNNNNNNNN

MOD(Σ)

11

3.2 Liberality

Liberality (i.e., the existence of free extensions along theory morphisms) is one of the fundamental model-
theoretic properties in strong connection with module system semantics for specification/programming
multi-paradigm logical languages.

In this section we provide sufficient conditions for the existence of free extensions along extra theory
morphisms. We fix an institution morphism(Φ,α,β) : ℑ → ℑ′.

Definition 12: An extra theory morphismϕ : (Σ,E)→ (Σ′,E′) is liberal iff the reduct functor ↾ϕ : MOD′(Σ′,E′)→
MOD(Σ,E) has a left adjoint, i.e., iff for any modelM ∈ |MOD(Σ,E)|, there exists a modelM′ ∈ |MOD′(Σ′,E′)|
and a model morphismMη : M → M′↾ϕ such that for any modelN′ ∈ |MOD′(Σ′,E′)| and any model mor-
phismh: M → N′↾ϕ there exists a unique model morphismh′ : M′ → N′ such thath = Mη;h′↾ϕ.

M
Mη //

h   B
BB

BB
BB

B
M′↾ϕ

h′↾ϕ
��

M′

h′

��
N′↾ϕ N′

12

We need a categorical lemma:

Lemma 13: Let U : C→D be a functor with a left-adjointF , letC′ →֒C be a full reflective subcategory,
andD

′ →֒ D be a full subcategory, such thatU(C′) ⊆ D
′. Then the restrictionU↾C′ : C

′ → D
′ has a left-

adjoint.

Proof: Let us denote the left-adjoint toC′ →֒ C by R . Then for eachd′ ∈ |D′| andc′ ∈ |C′|, we have the
following natural isomorphisms:D′(d′,c′U) ≃ D(d′,c′U) ≃ C(d′F ,c′) ≃ C

′(d′F R ,c′). 13

Theorem 14: If ℑ is liberal on signature morphisms,ℑ′ and(Φ,α,β) are liberal, then any extra theory
morphismϕ : (Σ,E) → (Σ′,E′) is liberal. Moreover, the free(Σ′,E′)-model over a given(Σ,E)-modelM
can be obtained asβΣ′(Mϕ)/E′.

Proof: This is obtained by applying Lemma 13 forU the composite of the two right-adjoint functors

MOD′(Σ′)
βΣ′−→ MOD(Σ′Φ)

↾ϕ
−→ MOD(Σ)

and for the full subcategory MOD(Σ,E) →֒ MOD(Σ) and the full reflective subcategory MOD′(Σ′,E′) →֒
MOD′(Σ′). The conditionU(MOD′(Σ′,E′)) ⊆ MOD(Σ,E) holds by Proposition 11.14
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In the case of institution embeddings we can obtain another sufficient condition for the liberality of
extra theory morphisms without requiring any liberality for ℑ.

Theorem 15: If (Φ,α,β) is a strong liberal embedding,ℑ′ is liberal, andβ satisfies the following Satis-
faction Condition:

βΣ′(M) |=Σ′ αΣ′(e) if M |=Σ′Φ e

for all M ∈ |MOD(Σ′Φ)| ande∈Sen(Σ′Φ), then each extra theory morphismϕ : (Σ,E)→ (Σ′,E′) is liberal.

Proof: Following the second part of Proposition 11, the reduct MOD′(Σ′,E′)
↾ϕ

−→ MOD(Σ,E) can be
factored as

MOD′(Σ′,E′)
↾ϕ′

−→ MOD′(ΣΦ,αΣΦ(E)•)
βΣΦ−→ MOD(Σ,E)

The first reduct has a left-adjoint becauseℑ′ is liberal, and the second has as left-adjoint the restriction of
βΣΦ to MOD(Σ,E). This works well because ifM ∈ |MOD(Σ,E)|, thenβΣΦ(M) |=ΣΦ αΣΦ(e). 15

Corollary 16: If (Φ,α,β) is a persistent strong embedding andℑ′ is liberal, then any extra theory mor-
phism is liberal.

Proof: Notice that the Satisfaction Condition from the hypothesesof Theorem 15 follows from the
Satisfaction Condition for persistent institution morphisms. 16

3.3 Theory Co-limits

Co-limits of theories are the main technical tool for evaluating module expressions in the OBJ-Clear tradi-
tion. In the case of multi-paradigm languages one has to consider extra theory morphisms for computing
such co-limits.

In this section we study co-limits of extra theory morphisms. The co-limit of a diagram of extra theory
morphisms is computed in a pre-defined fixed institution in which all institutions underlying the nodes
of the diagram are embedded. This is more general than just doing it in the co-limit of the underlying
diagram of institution embeddings5; since in applications the co-cones of the underlying institutions are
not necessarily co-limit co-cones.6

For the purpose of this section we fix a diagram of institutionmorphisms(ℑi)i∈J, whereℑi = (Signi ,Seni,MODi, |=i

) are institutions fori ∈ |J| andℑu = (Φu,αu,βu) : ℑi → ℑ j are institution morphisms for allu∈ J(i, j).
Then we fix a co-cone of institution embeddings(Φi ,αi ,βi)i∈|J| : (ℑi)i∈J → ℑ0.

Theorem 17: Given a diagram(Ti)i∈J of extra theory morphisms such that

- Ti = (Σi,Ei) is a theory inℑi for eachi ∈ |J|, and

- Tu = ϕu is a extra theory morphismTi → Tj with (Φu,αu,βu) the underlying institution morphism,
for all u∈ J(i, j),

and assuming thatSign0 hasJ-co-limits, then there exists a theoryT0 = (Σ0,E0) in ℑ0 and a co-cone

(ϕi)i∈|J| : (Ti)i∈J → T0

with (Φi ,αi ,βi)i∈|J| the underlying co-cone of institution morphisms, such thatgiven any other institution
morphism(Φ0,α0,β0) : ℑ0 → ℑ1 and any extra theory morphism co-cone(θi)i∈|J| : (Ti)i∈J → T1 with
T1 = (Σ1,E1) and((Φi ,αi ,βi);(Φ0,α0,β0))i∈|J| being the underlying co-cone of institution morphisms for
(θi)i∈|J|, then there exists an unique extra theory morphismδ : T0 → T1 such thatϕi;δ = θi for all i ∈ |J|.

5This co-limit exists by the fundamental results on existence of co-limits of institutions of [17].
6This is also the case ofCafeOBJ see the Appendix.
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ℑi

(Φu,αu,βu)

��

(Φi ,αi ,βi )

��@
@@

@@
@@

@
(Σi,Ei)

ϕu

��

ϕi %%K
KKKKKKKK

θi

**UUUUUUUUUUUUUUUUUUU

ℑ0
(Φ0,α0,β0) // ℑ1 (Σ0,E0)

δ // (Σ1,E1)

ℑ j

(Φ j ,α j ,β j )

??��������
(Σ j ,E j)

ϕ j
99sssssssss θ j

44iiiiiiiiiiiiiiiiiii

Proof: The plan of this proof is as follows:

1. TheJ-diagram(Ti)i∈J of extra theory morphisms generates aJ-diagram(T i)i∈J of intra theory mor-
phisms inℑ′, whereT i = Φ∗ i(Ti) for all i ∈ |J|,

2. Let (Σ0,E0) be the co-limit of(T i)i∈J with (ΣiΦi (ϕi)′

−→ Σ0)i∈|J| the co-limit co-cone. Then(Σi
ϕi

−→
Σ0Φi)i∈|J| is the corresponding co-cone(Ti)i∈J → T0.

3. Given(θi)i∈|J| we prove the existence and uniqueness ofδ : T0 → T1 such thatϕi;δ = θi for all i ∈ |J|.

1. Each arrowϕu : (Σi ,Ei) → (Σ j ,E j) in the original diagram of extra theory morphisms gets mapped to
the theory morphism

(ϕu;Φu(Σ jζ j))′ : (ΣiΦi ,αi
Σi Φi((Σiζi)(Ei))

•) → (Σ jΦ j ,α j

Σ j Φ j
((Σ jζ j)(E j))

•)

(see the following diagram)

Σi
Σiζi

//

ϕu

��

ΣiΦiΦi

(ϕu;Φu(Σ j ζ j ))′Φi

��
Σ jΦu

Φu(Σ j ζ j )
// Σ jΦ jΦ jΦu = Σ jΦ jΦi

In order to prove that(ϕu;Φu(Σ jζ j))′ is indeed a theory morphism we have to show that

(ϕu;Φu(Σ jζ j))′ (αi
Σi Φi ((Σiζi)(Ei))) ⊆ α j

Σ j Φ j
((Σ jζ j)(E j))

•

But
Seni(Σiζi);αi

Σi Φi
;Sen0((ϕu;Φu(Σ jζ j))′)

(naturality of αi) = Seni(Σiζi);Seni((ϕu;Φu(Σ jζ j))′Φi);αi
Σ j Φ j

(functoriality of Seni) = Seni(Σiζi ;(ϕu;Φu(Σ jζ j))′Φi);αi
Σ j Φ j

(adjoint pair Φi ,Φi) = Seni(ϕu;Φu(Σ jζ j));αi
Σ j Φ j

(functoriality of Seni) = Seni(ϕu);Seni(Φu(Σ jζ j));αi
Σ j Φ j

(the syntax part of the co-cone property
of institution embeddings) = Seni(ϕu);Seni(Φu(Σ jζ j));αu

Σ j Φ j Φ j
;α j

Σ j Φ j

(naturality of αu) = Seni(ϕu);αu
Σ j

;Senj(Σ jζ j);α j

Σ j Φ j

Then
(ϕu;Φu(Σ jζ j))′ (αi

Σi Φi
((Σiζi)(Ei))) = α j

Σ j Φ j
(Senj(Σ jζ j)(αu

Σ j
(Seni(ϕu)(Ei))))

(since ϕu is extra theory morphism) ⊆ α j

Σ j Φ j
(Senj(Σ jζ j)(E j))

Finally, the functoriality of mapping theJ-diagram of extra theory morphisms into aJ-diagram of
(intra) theory morphisms can be easily checked by simple diagram pasting.
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2. By Proposition 10,ϕi are extra theory morphismsTi → T0, for i ∈ |J|. We still have to prove the co-cone
property, i.e., thatϕi = ϕu;ϕ j as extra theory morphisms, for eachu∈ J(i, j). This meansϕi = ϕu;ϕ jΦu:

ϕi

(universal property ofΣiζi) = Σiζi;(ϕi)′Φi

(co-cone property of(ϕi)′i∈|J|) = Σiζi;(ϕu;Φu(Σ jζ j))′Φi ;(ϕ j)′Φi

(universal property ofΣiζi) = ϕu;Σ jζ jΦu;(ϕ j)′Φi

= ϕu;Σ jζ jΦu;(ϕ j)′Φ jΦu

(universal property ofΣ jζ j) = ϕu;ϕ jΦu

3. For eachi ∈ |J|, let (θi)′ : ΣiΦi → Σ1Φ0 be the free extension ofθi : Σi → Σ1Φ0Φi . The(θi)′i∈|J| form a

co-cone over theJ-diagramsignℑ0
(T i)i∈J (the proof is similar to the proof of part 2. of this theorem).

Because the forgetful functorsignℑ0
: Th(ℑ0) → Sign0 creates7 co-limits (see [17]), we have that

(ϕi)′i∈|J| is a co-limit forsignℑ0
(T i)i∈J. Theδ : Σ0 → Σ1Φ0 should be theuniquesignature morphism such

that(ϕi)′;δ = (θi)′ for all i ∈ |J|.
The rest of the proof shows thatδ is indeed a extra theory morphism(Σ0,E0)→ (Σ1,E1), which means

α0
Σ1

(δ(E0)) ⊆ E1.
By the fundamental result on theory co-limits (see [17]), weknow thatE0 is the closure of

[

i∈|J|

(ϕi)′(αi
Σi Φi ((Σiζi)(Ei)))

Therefore it is enough if we proved that for alli ∈ |J|,

α0
Σ1

(δ((αi
Σi Φi((Σiζi)(Ei))))) ⊆ E1

But
Seni(Σiζi);αi

Σi Φi
;Sen0(ϕi)′;Sen0(δ);α0

Σ1

(naturality of αi) = Seni(Σiζi);Seni((ϕi)′Φi);αi
Σ0

;Sen0(δ);α0
Σ1

(universal property ofΣiζi

and functoriality of Seni) = Seni(ϕi);αi
Σ0

;Sen0(δ);α0
Σ1

(naturality of αi) = Seni(ϕi);Seni(δΦi);αi
Σ1Φ0;α0

Σ1

(functoriality of Seni) = Seni(θi);αi
Σ1Φ0;α0

Σ1

Then the conclusion follows becauseα0
Σ1

(αi
Σ1Φ0(θi(Ei))) ⊆ E1 sinceθi : (Σi ,Ei) → (Σ1,E1) is a extra

theory morphism. 17

Corollary 18: A diagram of extra theory morphisms has a co-limit whenever the co-limit co-cone of the
underlying diagram of institution morphisms consists of institution embeddings. 18

Corollary 19: Consider a partially ordered set(INST,⊑) of institutions, where the ordering is given
by institution embeddings. If(INST,⊑) has finite least upper bounds and the category of signatures of
each institution inINST has finite co-limits, then the categoryTh(INST,⊑) of the extra theory morphisms
corresponding to(INST,⊑) has finite co-limits. 19

This corollary applies to the case of theCafeOBJ cube presented in the Appendix.

7Using [27] terminology; this means it lifts them uniquely byterminology of [1].
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3.4 Exactness

In this section we study the amalgamation property for consistent models within the general framework of
extra theory morphisms.

Consider the following pushout of extra theory morphisms inthe sense of Section 3.3

T
ϕu1

//

ϕu2

��

T1

ϕ1

��

ℑ
(Φu1,αu1,βu1) //

(Φu2,αu2,βu2)
��

ℑ1

(Φ1,α1,β1)
��

T2
ϕ2

// T0 ℑ2
(Φ2,α2,β2)

// ℑ0

where (by consistency with the notations of Theorem 17)(Φui,αui,βui) : ℑ → ℑi are the institution mor-
phisms underlyingϕui and(Φi ,αi ,βi) : ℑi → ℑ0 are the institution embeddings underlyingϕi , for i ∈ 1,2.

Then, exactness for extra theory morphisms means that the corresponding diagram of model reducts

MOD(T) MOD1(T1)
↾ϕu1

oo

MOD2(T2)

↾ϕu2

OO

MOD0(T0)↾ϕ2

oo

↾ϕ1

OO

is a pullback. Unfortunately, such a result is not possible in the general case even when the institution
embeddings involved have good properties. Very informally, this is basically due to the possibility thatℑ1

andℑ2 share some semantic structure which does not exist inℑ.
Fortunately, some special cases of exactness for extra theory morphisms are enough to explain most

practical situations. An important special case is given bythe pushout between an intra and an extra theory
morphism.

Theorem 20: Consider an institution embedding(Φ,α,β) : ℑ → ℑ1 and letϕu2 : T → T2 be a intra theory
morphism inℑ, andϕu1 : T → T1 be a extra theory morphism with(Φ,α,β) the underlying institution
morphism. Ifℑ1 is (weakly) semi-exact and(Φ,α,β) is (weakly) additive and either of the following
holds:

- (Φ,α,β) is strong, or

- ℑ is (weakly) semi-exact andΦ is surjective on objects and full

then the corresponding diagram of model reducts

MOD(T) MOD1(T1)
↾ϕu1

oo

MOD(T2)

↾ϕu2

OO

MOD1(T0)↾ϕ2

oo

↾ϕ1

OO

is a (weak) pullback.

Proof: Using similar notations to those of Theorem 17, by explicitating the model reduct functors (Propo-
sition 11), we get that the square of model reducts to be proved (weak) pullback can be decomposed into
the following tower consisting of 3 commutative squares.
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MOD(Σ,E) MOD(Σ2,E2)
MOD(ϕu2)oo

MOD(ΣΦΦ,(Σζ)(E))

MOD(Σζ)

OO

MOD(Σ2ΦΦ,(Σ2ζ)(E2))MOD(ϕu2ΦΦ)

oo

MOD(Σ2ζ)

OO

MOD1(ΣΦ,αΣΦ((Σζ)(E)))

βΣΦ

OO

MOD1(Σ2Φ,αΣ2Φ((Σ2ζ)(E2)))

βΣ2Φ

OO

MOD
1
(ϕu2Φ)

oo

MOD1(Σ1,E1)

MOD
1
((ϕu1)′)

OO

MOD1(Σ0,E0)
MOD

1
((ϕ1)′)

oo

MOD
1
(ϕ2′)

OO

The top square commutes by the naturality ofζ, the middle one by the naturality ofβ extended from
signatures to theories by using the Satisfaction Condition, and the bottom one by the construction ofT0 as
a theory pushout inℑ (Theorem 17).

Then the bottom square is a (weak) pullback becauseℑ1 is (weakly) semi-exact. The middle square is
also a (weak) pullback because(Φ,α,β) is (weakly) additive (extended to theories by using the Satisfaction
Condition). The top square collapses if(Φ,α,β) is strong and is (weak) pullback whenℑ is (weakly) semi-
exact andΦ is surjective on objects and full. The latter holds becauseΦ being surjective on objects and full
implies that the underlying square of signature morphisms in ℑ is a weak pushout (by routine manipulation
of the hypotheses) and this lifts to the corresponding theories.

Finally, the big square is a (weak) pullback as a composite of(weak) pullback squares.20

An important open question of this research is finding other relevant sufficient conditions for weak
exactness in the case of extra theory morphisms.

3.5 Inclusion systems

As mentioned above, inclusion systems where first introduced by [15] for the institution-independent study
of structuring specifications. They provide the underlyingmathematical concept for module imports,
which are the most fundamental structuring construct. In this paper we use theweak inclusion systems
of [6], which constitute a improvement of the original definition of inclusion systems of [15].

Definition 21: 〈I , E〉 is a weak inclusion systemfor a categoryC if I andE are two sub-categories
with |I | = |E | = |C| such that

1. I is a partial order, and

2. every arrowf in C can be factored uniquely asf = e; i with e∈ E andi ∈ I .

The arrows ofI are calledinclusions, and the arrows ofE are calledsurjections.8. The domain (source)
of the inclusioni in the factorization off is called called theimage of f and denoted as Im( f ). 21

For the fundamental properties of weak inclusion systems and techniques to construct them consult [6].
We need the following technical definition:

Definition 22: Let C andC
′ be two categories with weak inclusion systems〈I , E〉 and〈I ′, E ′〉 respec-

tively. Then a functorU : C → C
′ lifts inclusions uniquely iff for any inclusionι′ : A′ →֒ BU in I ′ with

B∈ |C|, there exists a unique inclusionι ∈ I such thatιU = ι′. 22

8Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary sense.
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Theorem 23: Consider a category of institutions with a weak inclusion system〈I INST, E INST〉 such that
each of institutions involvedℑ = (Sign,MOD,Sen, |=) has a weak inclusion system〈I ℑ, Eℑ〉 for its cate-
gory of signatures. If

• Φ preserves inclusions for each(Φ,α,β) ∈ I INST, and

• Φ preserves both inclusions and surjections and lifts inclusions uniquely for each(Φ,α,β) ∈ E INST,

then the corresponding category of extra theory morphisms has an inclusion system whereϕ : (Σ,E) →
(Σ′,E′) is

- inclusioniff both the underlying institution morphism(Φ,α,β) : ℑ→ℑ′ and the signature morphism
ϕ : Σ → Σ′Φ are inclusions,

- surjection iff both the underlying institution morphism(Φ,α,β) : ℑ → ℑ′ and the signature mor-
phismϕ : Σ → Σ′Φ are surjections, and ifαΣ′(ϕ(E))• = E′.

Proof: Let us denote byI Th the subcategory of inclusion extra theory morphisms and byETh the
subcategory of surjection extra theory morphisms.

Consider two extra theory morphismsϕ : (Σ,E)→ (Σ′,E′) andϕ : (Σ′,E′)→ (Σ′′,E′′) with (Φ,α,β) : ℑ→

ℑ′ and(Φ′,α′,β′) : ℑ′ → ℑ′′ as underlying institution morphisms. If both of them are inclusions inI Th,
then(Φ,α,β) and(Φ′,α′,β′) are inclusions inI INST, hence their composition is an inclusion inI INST too.
Also, ϕ;ϕ′Φ is an inclusion as a composite of two inclusions inI ℑ where the latter is an inclusion because
Φ preserves inclusions. A similar argument holds for compositions of surjections; however in the case of
surjections we also have to check the closure condition. This follows by routine calculation.

Now, let ϕ : (Σ,E) → (Σ′,E′) be an arbitrary extra theory morphism with(Φ,α,β) : ℑ → ℑ′ as its
underlying institution morphism. Then(Φ,α,β) factors uniquely as

ℑ
(Φ,α,β) //

(Φe,αe,βe) ��?
??

??
??

? ℑ′ Σ
ϕ //

ϕe
��>

>>
>>

>>
> Σ′ΦiΦe

ℑ′′
(Φi ,αi ,βi )

>>~~~~~~~~
Σ1

ϕ1

;;wwwwwwwww

where(Φe,αe,βe) ∈ E INST and (Φi ,αi ,βi) ∈ I INST and ϕ factors uniquely through the weak inclusion
system〈I ℑ, Eℑ〉. SinceΦe lifts inclusions uniquely there exists an unique inclusionϕi : Σ′′ →֒ Σ′Φi such
thatϕiΦe = ϕ1. We then defineE′′ = αe

Σ′′(ϕe(E))•. Therefore,ϕe: (Σ,E) → (Σ′′,E′′) is a surjection extra
theory morphism andϕi : (Σ′′,E′′) → (Σ′,E′) is an inclusion extra theory morphism.

Finally, the uniqueness of this factorization follows stepwise from the uniqueness of the factorization
of the underlying institution morphism, then from the uniqueness of the factorization through the inclusion
system ofℑ (by using the preservation of inclusions by theΦe), then from the uniqueness of the lifting to
I ℑ′′

, and finally from the closure condition on sentences.23

Practical applications use mostly the following much simpler Corollary:

Corollary 24: Consider a partial ordered set of institutions and institution morphisms such that each of
institutions involvedℑ = (Sign,MOD,Sen, |=) has a weak inclusion system〈I ℑ, Eℑ〉 for its category of
signatures withΦ preserving inclusions for each institution morphism(Φ,α,β). Then the corresponding
category of extra theory morphisms has an inclusion system whereϕ : (Σ,E) → (Σ′,E′) is

- inclusioniff the signature morphismϕ : Σ → Σ′Φ is an inclusion inI ℑ,

- surjectioniff the underlying institution morphism is identity and it is a surjection inEℑ

Proof: By considering the inclusion system of the partially ordered set of institutions with all institution
morphisms as inclusions and identities as surjections.24
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4 Logical Semantics for Multi-Paradigm Languages

In this section we outline a general logical semantics for multi-paradigm specification/programming lan-
guages; this semantics is based on the concept of extra theory morphism. We assume the following general
framework and principles:

1. There is a lattice (the partial order being denoted as ⊑) of institution embeddings in which
all basic constructs/features of the language can be rigorously explained.

2. Each institution corresponds to a language paradigm, institution embeddings correspond-
ing to paradigm embeddings.

3. For a given language paradigm, the basic specifications are assimilated to the theories
generated in the corresponding institution.

This intimate relationship between the language and its “underlying logic” (in this case given by the lattice
of institution embeddings) was first conceptualized by Goguen and Meseguer [22] under the name of
logical programming. As mentioned in the Introduction, such logical languages include most of the OBJ
family of languages. In the Appendix we illustrate our logical semantics with the example ofCafeOBJ
[14], a modern successor of OBJ.

4.1 Basic Specifications

At the level of basic specifications (the so-called “programming in-the small”), we have two kinds of
semantics,tight, and loose. Given a basic specificationT (regarded as a theory in an institutionℑ), its
tight denotation is the initial model 0T of MOD(T), and itsloose denotationis given by all models in
MOD(T). The notation for the denotation of a specificationT is [[T]]. To resume

[[T]] =

{

0T if initial semantics
MOD(T) if loose semantics.

4.2 Structured Specifications

This is the level of the logical semantics where most of the results on extra theory morphisms apply. We
extend the basic concepts of the OBJ structuring mechanism (or module system) which are inherited from
earlier work on Clear [4] and further developed at the institutional level in [15] to the more refined situation
of lattice of institution embeddings.

The concept ofmodel expansionis dual to model reducts, and plays a crucial rôle for defining the
denotations of structured specifications:

Definition 25: Given an extra theory morphismϕ : T → T ′, and a modelM of T, an expansion ofM
along ϕ is a modelM′ of T ′ satisfying the following properties:

• M′↾ϕ = M iff the expansion isprotecting,

• there is aninjective9 model homomorphismM →֒ M′↾ϕ iff the expansion isextending,

• there is an arbitrary model homomorphismM → M′↾ϕ iff the expansion isusing, and

• M′ is the free overM with respect toϕ (see Definition 12) iff the expansion isfree.

25

The general structuring mechanism is constituted bymodule expressions, which are iterations of sev-
eral basic structuring operations, such as imports, parameters, instantiation of parameters by views, trans-
lations, etc. In this section we discuss the most important ones: imports and parameterization.

9Under a suitable concept of “injectivity”.
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4.2.1 Imports

Module imports constitute the primitive concept underlying any module interconnection systems, here is
it’s mathematical definition:

Definition 26: A module import T �T ′ is an inclusion extra theory morphismT →֒ T ′, where the insti-
tution ℑT ′ of T ′ embeds the institutionℑT of T (i.e.,ℑT ⊑ ℑT ′ in the fixed lattice of institutions). 26

The (weak) inclusion system underlying this definition is that introduced by Corollary 24 for the current
lattice of institution embeddings.

By following the OBJ tradition, we can distinguish between 3basic kinds of imports,protecting,
extending, andusing. At the level of the language, these should be treated just assemantic declarations
which determine the denotation of the importing module fromthe denotation of the imported module.

Definition 27: Fix an importT �T ′. Then[[T ′]] =

• {M′ | M′ |= T ′,M′ protecting (and free ifT ′ is initial) expansion of a modelM ∈ [[T]]}, when the
importation mode isprotecting,

• {M′ | M′ |= T ′,M′ extending (and free ifT ′ is initial) expansion of a modelM ∈ [[T]]}, when the
importation mode isextending, and

• {M′ | M′ |= T ′, (and free expansion of a modelM of T if T ′ is initial)}, when the importation
mode isusing.

27

Multiple imports are handled by a lattice structure on inclusions (see [15, 6].

Definition 28: Given two modulesT andT ′, theirshared part T ∩T ′ is thegreatest lower boundin the
lattice of imports� and theirsumT +T ′ is thelowest upper bound. 28

We can easily notice the that the institution of the sum unifies the paradigms of the institution of the
components:

Fact 29: ℑT+T ′ = ℑT ⊔ℑT ′ , i.e., the lowest upper bound ofℑT andℑT ′ in the lattice of institution em-
beddings. 29

The following extends a basic result on multiple imports from [15] to the multi-paradigm case:

Corollary 30: Let T andT ′ be two modules. Then we have the following pushout-pullbacksquare (in
ℑT ⊔ℑT ′)

T
� // T +T ′

T ∩T′

�

OO

�

// T ′

�

OO

whereT ∩T′ is the shared part (i.e., the intersection) ofT andT ′. 30
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4.2.2 Parameterization

Parameterized specification/programming is a very important feature of all modern declarative languages.
The mathematical definition of parameterized modules is based on the following concept ofinjection:

Definition 31: Given a (weak) inclusion system, aninjection is the composite between an inclusion and
an isomorphism. 31

Definition 32: A parameterized specification (module)T(X :: P) is aninjection P
X

−→ T. The institu-
tion of the parameterP is embedded in the institution of the bodyT (i.e.,ℑP ⊑ ℑT ).

A view is just an extra theory morphism.32

We distinguish two basic approaches on parameters: a “shared” and a “non-shared’ one. In the “non-
shared” approach, the multiple parameters are mutually disjoint (i.e., Im(X)∩ Im(X′) = /0 for X andX′

two different parameters) and they are also disjoint from any module importsT0�T (i.e., Im(X)∩T0 = /0).
In the “shared” approach this principle is relaxed to being disjoint outside common imports, i.e., Im(X)∩
Im(X′) = ∑T1�X T1∩∑T1�X′ T1 for X andX′ two different parameters and Im(X)∩T0 = ∑T1�X ∩T0 for all
T0 � T. The “non-shared” approach has the potentiality of a much more powerful module system, while
the “shared” approach seems to be more convenient to implement. TheCafeOBJ definition contains both
of them, for details on “non-shared” vs. “shared” parameterization and for a more detailed presentation of
a module system based on this theory, see [14].

Definition 33: Let T(X :: P) be a parameterized module andv: P→ P′ be a view. Then the instantiation
T(v) is given by the following pushout in the sense of Theorem 17

P
X //

v
��

T

v′
��

P′
X(v)

// T(v)

in the “non-shared” approach and by the following co-limit in the sense of Theorem 17

P′∩T
�

))RRRRRRRRRRRRRRRR

�

��3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

P
X

//

v
��

T

v′
��

P′
�

// T(v)

in the “shared” approach. In both cases the embedding institution isℑT ⊔ℑP′. 33

5 Conclusions and Future Research

We have defined a more general concept of theory morphism mapping theories across institution mor-
phisms. This generalizes the ordinary concept of theory morphism which is confined to single institutions.
We have lifted the basic concepts related to theory morphisms from the ordinary case to the “extra” case,
and we have investigated the basic properties of extra theory morphisms. We have proved the following
results:

• Existence of model reducts for extra theory morphisms (equivalent to a Satisfaction Condition for
extra theory morphisms),
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• Sufficient conditions for free constructions along extra theory morphisms,

• Construction of theory co-limits,

• Exactness (model amalgamation) properties, and

• Inclusion systems for extra theory morphisms.

We have also sketched a generic logical semantics for multi-paradigm languages which is based on extra
theory morphisms.

Future research directions include the full development ofa general logical semantics based on extra
theory morphisms (including a corresponding “module algebra”), and further investigations of sufficient
conditions for exactness properties.

References

[1] Jirı́ Adamek, Horst Herrlich, and George Strecker.Abstract and Concrete Categories. John Wiley, 1990.
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[3] Rod Burstall and Răzvan Diaconescu. Hiding and behaviour: an institutional approach. In A. William Roscoe,
editor,A Classical Mind: Essays in Honour of C.A.R. Hoare, pages 75–92. Prentice-Hall, 1994. Also in Techni-
cal Report ECS-LFCS-8892-253, Laboratory for Foundationsof Computer Science, University of Edinburgh,
1992.

[4] Rod Burstall and Joseph Goguen. The semantics of Clear, aspecification language. In Dines Bjorner, editor,
Proceedings, 1979 Copenhagen Winter School on Abstract Software Specification, pages 292–332. Springer,
1980. Lecture Notes in Computer Science, Volume 86; based onunpublished notes handed out at the Sympo-
sium on Algebra and Applications, Stefan Banach Center, Warsaw, Poland, 1978.

[5] Manuel Clavel, Steve Eker, Patrick Lincoln, and Jose Meseguer. Principles of Maude.Electronic Notes in
Theoretical Computer Science, 4, 1996. Proceedings, First International Workshop on Rewriting Logic and its
Applications. Asilomar, California, September 1996.

[6] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems.Mathematical Structures in Computer Sci-
ence, 7(2):195–206, 1997.

[7] Răzvan Diaconescu. Category-based semantics for equational and constraint logic programming, 1994. DPhil
thesis, University of Oxford.
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[13] Răzvan Diaconescu and Kokichi Futatsugi. Logical semantics forCafeOBJ. In Precise Semantics for Software
Modeling Techniques, pages 31–54. Proceedings of an ICSE’98 workshop held in Kyoto, Japan, published as
Technical Report TUM-I9803, Technical University Munchen, 1998. Preliminary version appeared as Techni-
cal Report IS-RR-96-0024S at Japan Advanced Institute for Science and Technology in 1996.

18
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[28] José Meseguer. Conditional rewriting logic as a unified model of concurrency.Theoretical Computer Science,
96(1):73–155, 1992.
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A CafeOBJ

As previously mentioned,CafeOBJ [14], currently under development in Japan,10 is a modern successor
of the famous algebraic language OBJ.CafeOBJ adds new basic paradigms such as behavioural concur-
rent specification [20] and rewriting logic [5]. The following table shows the correspondence between
specification/programming paradigms and institutions as they appear in the actual design ofCafeOBJ,
also pointing to some basic references.

ABBREVIATION LOGIC SPEC/PGM PARADIGM BASIC REF.
MSA many sorted algebraic specification [16]

algebra
OSA order sorted algebraic specification [16, 23, 18]

algebra with subtypes
HSA hidden sorted behavioural concurrent [?]

algebra specification
HOSA hidden order sorted behavioural specification [?, 3]

algebra with subtypes
RWL rewriting logic rewriting logic [28]

specification
OSRWL order sorted rewriting logic

rewriting logic specification
with subtypes

HSRWL hidden sorted behavioural rewriting [12, 9]
rewriting logic logic specification

HOSRWL hidden order sorted behavioural rewriting
rewriting logic logic specification

with subtypes

An approximation of the lattice of the institution embeddings involved is given by the following
CafeOBJ cube:

Other “dimensions” might be added to this cube, most notablythe constraint logic[7, 10] which give
elegant semantics to pre-defined data types and to libraries.

All institution morphisms of theCafeOBJ cube are strong, persistent, and additive embeddings. The
symmetry of theCafeOBJ cube means it is a lattice, therefore all basic hypotheses ofthe logical semantics
of Section 4 are fulfilled. HOSRWL embeds all other institutions, hence it represents the flattening of the
cube; below we briefly present it. However, it is important toconsider theCafeOBJ cube in its entirety
rather than HOSRWL alone since some subtle information on the relationship between the component
features is lost in this flattening. Such flattening works well only when all institution embeddings involved
have the components of the model translations (β) as equivalence of categories11, but in the case of the

10Project supported on a large scale by the Japanese Government through its Information Promotion Agency.
11Called just “institution embeddings” in [29].
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CafeOBJ cube this property does not hold along the RWL dimension because of forgetting the transitions
from the RWL models.

Hidden Order Sorted Rewriting Logic

We devote this appendix to the (rather informal) presentation in some detail of HOSRWL (first introduced
in [12] in the many sorted version) which embeds allCafeOBJ cube institutions. However, the deep
understanding of HOSRWL requires further reading on its main components ([28] for RWL and [?, 20]
for HSA) as well as their integration [12]. We assume familiarity with basic many sorted algebra which
constitutes the underlying level of all algebraic specification developments (relevant background can be
found in [16, 24, 30]), but also with order sorted algebra [23, 18].

Signatures

A hidden signature is a tuple(H,V,≤,Ψ,Σ,Σb), where

• (H,≤) is a partially ordered set ofhidden sorts,

• (V,≤) is a partially ordered set ofvisible sorts,

• (H,≤) and(V,≤) are disjoint,

• Ψ is an(V,≤)-order-sorted (o.s., for short) signature,

• Σ is an(H ∪V,≤)-o.s. signature,

(S1) eachσ ∈ Σw,s with w∈V∗ ands∈V lies in Ψw,s,

• Σb ⊆ Σ is a marked sub-signature ofbehavioural operationssuch thatΣb∩Ψ = /0, and

(S2) eachσ ∈ Σw,s hasexactlyone element ofH in w.

The operations inΣb have object-oriented meaning,σ ∈ Σb
w,s is method if s is hidden andattribute if s is

visible. Condition (S1) is a data encapsulation condition,and (S2) says that methods and attributes act on
(states of) single objects.

A hidden rewrite signature is given by(H,V,≤,Ψ,Σ,Σb,E) where(H,V,≤,Ψ,Σ,Σb) is a hidden o.s.
signature andE is a collection ofΣ-equations. Ahidden sorted rewrite signature morphismφ : (H,V,≤
,Ψ,Σ,Σb,E) → (H ′,V ′,≤,Ψ′,Σ′,Σ′b,E′) is an o.s. signature morphism(H ∪V,≤,Σ) → (H ′∪V ′,≤,Σ′)
such that

(M1) φ(Ψ) ⊆ Ψ′,

(M2) φ(H) ⊆ H ′ andφ(Σb) ⊆ Σ′b,

(M3) if σ′ ∈ Σ′b
w′,s′ and some sort inw′ lies inH ′, thenσ′ = φ(σ) for someσ ∈ Σb,

(M4) if φ(h) < φ(h′) for any hidden sortsh,h′ ∈ H, thenh < h′, and

(M5) E′ |=Σ′ φ(E).

The first two conditions say that hidden sorted signature morphisms preserve visibility and invisibility
for both sorts and operations, the third12 and fourth conditions express the encapsulation of classesand
subclasses (in the sense that no new methods or attributes can be defined on an imported class), while the
fifth expresses the encapsulation of structural axioms.

12Without (M3) the Satisfaction Condition fails, for more details on the logical and computational relevance of (M3) see [?].
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Sentences

Given a signature(H,≤,Σ,E), a sentence is either a (possibly conditional)equation (moduloE) or else a
(possibly conditional)transition (moduloE). Since equations are very traditional to algebraic specifica-
tion, we concentrate here on transitions. A conditional transition is written as

(∀X) [t] → [t ′] if [u1] → [v1] . . . [uk] → [vk]

wheret, t ′,ui ,vi areΣ-terms with variablesX and modulo the equations inE (i.e., equivalence classes of
Σ-terms modulo the congruence determined byE). The left-hand side ofif is the head of the transition and
the right-hand side is the condition of the transition.

Given a signature morphismφ : (H,V,≤,Ψ,Σ,Σb,E) → (H ′,V ′,≤,Ψ′,Σ′,Σ′b,E′) the translation of
sentences is defined by the translation ofΣ-terms (moduloE) to Σ′-terms moduloE′ alongφ by replacing
all symbols inΣ-terms with the corresponding symbols forΣ′. Condition (M5) enforces the correctness of
this definition. For a full rigorous treatment of this issue the reader is advised to consult [7, 11].

Models

Given an algebraic theory(Σ,E), arewrite model for (Σ,E) is given by the interpretation of the algebraic
theory intoCat. More concretely, a modelM interprets each sortsas a categoryMs, each subsort relation
s< s′ as sub-category relationMs⊆Ms′ , and each operationσ∈ Σw,s as a functorσM : Mw →Ms, whereMw

stands forMs1× . . .×Msn for w= s1 . . .sn. EachΣ-termt : w→ sgets a functortM : Mw →Ms by evaluating
it for each assignment of the variables occurring int with arrows from the corresponding carriers ofM.
The satisfaction of an equationt = t ′ by M is given bytM = t ′M;13 in particular all structural equations
should be satisfied byM. A model morphism is a family of functors indexed by the sortscommuting with
the interpretations of the operations inΣ.

This algebra “enriched” overCat is a special case ofcategory-based equational logic(see [7, 8, 19])
when letting the categoryA of models be the interpretations ofΣ into Cat as abovely described, the cate-
gory X of domains to be the category of many sorted sets, and the forgetful functorU : A → X forgetting
the interpretations of the operations and the composition between the arrows, i.e., mapping each category
to its set of arrows. This enables the use of the machinery of category-based equational logic as a technical
aid to the model theory of RWL.

Hidden sorted modelsare just ordinary models (either algebras or rewrite models).

Satisfaction

Let (H,≤,Σ,E) be a hidden sorted signature,[ρ] be a sentence,14 andM be a model for this signature.
Satisfaction in RWL of ordinary equations was explained in the paragraph on models, so we concentrate
on the satisfaction of transitions.

The satisfaction of a transition(∀X) [t] → [t ′] if [u1] → [v1] . . . [uk] → [vk] by M has a rather sophisti-
cated definition using the concept ofsubequalizer. Let w be the string of sorts associated to the collection
of variablesX. Then

M |= (∀X) [t] → [t ′] if [u1] → [v1] . . . [uk] → [vk]

iff there exists a natural transformationJM ; tM ⇒ JM; t ′M whereJM : Subeq((ui M,viM)i∈1...k) → Mw is the

subequalizer functor, i.e., the functor component of the final object in the category having pairs(Dom(S)
S
→

Mw,(S;ui M
αi⇒,S;viM)i∈1...k) as objects and functorsH such thatH;S′ = SandHα′ = α as arrows.

Finally, the satisfaction in HOSRWL isbehavioural (denoted by|≡); for details see [12, 9].

13This definition extends without difficulty to conditional equations.
14We extend the equivalence class notation from terms to sentences in the obvious way.
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