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formalism permits an extension to novel onepts whih bring new pratialstrength to the spei�ation and veri�ation methodologies. The main novel on-ept, whih onstitutes the ore of this work, is that of behavioural oherene,whih is essentially a property of preservation of behavioural strutures. We de-�ne this onept and study its main denotational and omputational3 properties,and also show how the extension of hidden algebra with behavioural oherenestill aommodates the oindution proof method advoated by lassial hiddenalgebra. The emphasis of this paper is however on the methodologies related tobehavioural oherene. We present the basi methodologies of behavioural o-herene by means of examples atually run under the CafeOBJ system, inludingmany proofs with the system exiled to appendies.Our extended hidden algebra formalism onstitutes the semanti foundationfor the behavioural spei�ation paradigm as realized in the new objet-orientedalgebrai spei�ation language CafeOBJ [6℄. In fat, all onepts de�ned hereare faithfully reeted by the CafeOBJ formal de�nition and were introdued ina rather onise form in [6℄ whih ontains the formal de�nition and semantisof the CafeOBJ. Therefore, this paper serves also as an introdution to advanedbehavioural spei�ation with CafeOBJ. Other important publiations on be-havioural methodologies for algebrai spei�ation in CafeOBJ inlude a generalsurvey [7℄ presenting both the basi methodologies and the objet ompositionones, and [13℄ whih fouses on the objet omposition methodology. In this on-text let us also mention that our extended hidden algebra formalism is highlyonvergent to the so-alled \observational logi" of Bidoit and Henniker [12℄.Finally, let us enumerate several pratial methodologial bene�ts of be-havioural oherene. The use of behaviourally oherent \methods" and \at-tributes" for objet spei�ation may result in big simpli�ations at the veri-�ation stage, while keeping smooth omputational harateristis. Behaviouraloherent \methods" and \attributes" an be also used e�etively in a denota-tional rôle. Another important appliation area is that of \hidden" onstrutorson the states of objets, this methodology being partiularly e�etive for spe-ifying objet non-determinism in a simple and elegant way. It should be notedthat this use of behavioural oherene puts hidden algebra beyond the powerof other behavioural spei�ation formalisms, suh as the so-alled \o-algebra"[14℄.1.1 Basi Algebra Conepts, Notations, and TerminologyIn this setion we review the basi onepts, notations, and terminology, whihonstitute now the folklore of algebrai spei�ation. Although the hidden alge-bra formalism aommodates well (and even gets more power from) the order-sorted approah (see [3℄), for reasons of simpliity of presentation, we developall formal de�nition and results in a many-sorted framework.4Given a sort set S, an S-indexed (or sorted) set A is a family fAsgs2Sof sets indexed by the elements of S. In this ontext, a 2 A means that a 2 Asfor some s 2 S. Similarly, A � B means that As � Bs for eah s 2 S, and an S-indexed (or sorted) funtion f : A! B is a family ffs : As ! Bsgs2S . Also,we let S� denote the set of all �nite sequenes of elements from S, with [℄ the3 Inluding a speial onept of term rewriting emerging from our approah.4 This will not prevent us to use sub-sorting in the examples.



empty sequene. Given an S-indexed set A and w = s1:::sn 2 S�, we let Aw =As1 � � � � �Asn ; in partiular, we let A[℄ = f?g, some one point set. Also, for anS-sorted funtion f : A! B, we let fw : Aw ! Bw denote the funtion produtmapping a tuple of elements (a1; : : : ; an) to the tuple (fs1(a1); : : : ; fsn(an)).A (n S-sorted) signature (S;�) is an S��S-indexed set � = f�w;s j w 2S�; s 2 Sg; we often write just � instead of (S;�). Note that this de�nitionpermits overloading, in that the sets �w;s need not be disjoint. Call � 2 �[℄;s aonstant symbol of sort s. A signature morphism � from a signature (S;�)to a signature (S0; �0) is a pair (f; g) onsisting of a map f : S ! S0 of sortsand an S� � S-indexed family of maps gw;s : �w;s ! �0f�(w);f(s) on operationsymbols, where f� : S� ! S0� is the extension of f to strings5. We may write�(s) for f(s), �(w) for f�(w), and �(�) for gw;s(�) when � 2 �w;s.A �-algebra A onsists of an S-indexed set A and a funtion A� : Aw ! Asfor eah � 2 �w;s; the set As is alled the arrier of A of sort s. If � 2�[℄;s then A� determines a point in As whih may also be denoted A� . A �-homomorphism from one �-algebra A to another B is an S-indexed funtionh : A! B suh that hs(A�(a)) = B�(hw(a))for eah � 2 �w;s and a 2 Aw. (When n = 0, this ondition just says thatf(A�) = B� .) A �-homomorphism h : A ! B is a �-isomorphism i� eahfuntion hs : As ! Bs is bijetive (i.e., one-to-one and onto, in an older termi-nology).Given a many sorted signature �, an S-indexed set X will be alled a setof variable symbols if the sets Xs are disjoint from eah other and from allof the sets �w;s. Given a set X of variable symbols, we let �(X) denote thesignature formed by adding the elements of X to � as new onstants, and we letT�(X) denote T�(X) viewed as a �-algebra. It is alled the �-term algebraor free �-algebra generated by X , and has the property that if � : X !A is an valuation, i.e., a (S-sorted) funtion to a �-algebra A, then thereis a unique extension of � to a �-homomorphism �� : T�(X) ! A. (Stritlyspeaking, the usual term algebra is not free unless the onstant symbols in �are mutually disjoint; however, even if they are not disjoint, a losely relatedterm algebra, with eah onstant annotated by its sort, is free.) Also, we letT� denote the initial term �-algebra T�(;), noting that this means there is aunique �-homomorphism T� ! A for any �-algebra A. Call t 2 T� a ground�-term. When the unique �-homomorphism T� ! A is surjetive, we all A areahable algebra. Thus, eah element of a reahable algebra an be denoted bya ground term. The �-terms (modulo renaming of the variables) an be regardedas derived operations by de�ning the arity ar(t) for terms t by the followingproedure:- onsider the set var(t) of all variables ourring within t,- transform var(t) into a string by �xing an arbitrary order on this set, and- �nally, replae the variables in the string previously obtained by their sorts.5 This extension is de�ned by f�([℄) = [℄ and f�(ws) = f�(w)f(s), for w in S� and sin S.



If the arity of a term t is w, then for any �-algebra A we an de�ne the in-terpretation of t as derived operation At : Aw ! As by At(a) = ��(t) where� : var(t) ! A is the valuation orresponding to the string a 2 Aw.A �-ontext [z℄ is a �-term  with a marked variable z ouring only onein .A onditional �-equation onsists of a variable setX , terms t; t0 2 T�(X)sfor some sort s, and terms tj ; t0j 2 T�(X)sj for j = 1; :::;m. Suh an equation isgenerally written in the form(8X) t = t0 if t1 = t01; :::; tm = t0m :The speial ase where m = 0 is alled an (unonditional) equation, writ-ten (8X) t = t0. A ground equation has X = ;. A �-algebra A satis�es aonditional equation, writtenA j=� (8X) t = t0 if t1 = t01; :::; tm = t0m ;i� for all valuations � : X ! A, we have ��(t) = ��(t0) whenever ��(tj) = ��(t0j)for j = 1; :::;m. Given a set E of (possibly onditional) �-equations, we all any�-algebra that satis�es E a (�;E)-algebra.A �-ongruene on a �-algebra A is an S-sorted family of relations, �son As, eah of whih is an equivalene relation, and whih also satisfy theongruene property, that given any � 2 �w;s and any a 2 Aw, thenA�(a) �s A�(a0) whenever a �w a0.6 The quotient of A by �, denoted A=�,has arriers (A=�)s = As=�s, whih inherit a �-algebra struture by de�ningA=��([a1℄; : : : ; [an℄) = [A�(a)℄, where � 2 �w;s and a 2 Aw, where [a℄ denotesthe �-equivalene lass of a.We now onsider the logi of many sorted algebra, that is, rules for dedu-ing new equations from old ones. Given a set E of (possibly onditional) �-equations, we de�ne the (unonditional) �-equations that are derivable fromE reursively, by the following rules of dedution:(1) Reexivity: Eah equation (8X) t = t is derivable.(2) Symmetry: If (8X) t = t0 is derivable, then so is (8X) t0 = t.(3) Transitivity: If (8X) t = t0 and (8X) t0 = t00 are derivable, then so is (8X) t =t00.(4) Congruene: If (8X) ti = t0i is derivable, where ti; t0i 2 T�(X)si for i =1; :::; n, then for any � 2 �s1:::sn;s, the equation (8X)�(t1; : : : ; tn) = �(t01; : : : ; t0n)is also derivable.(5) Substitutivity: Given (8Y ) t = t0 if t1 = t01; : : : ; tm = t0m in E and given asubstitution � : Y ! T�(X) suh that (8X) ��(tj) = ��(t0j) is derivable forj = 1; :::;m, then (8X) ��(t) = ��(t0) is also derivable.Given a set E of �-equations, let E denote the S-sorted set of pairs (t; t0) ofground �-terms suh that (8;) t = t0 is derivable from E. Then E is a �-ongruene by rules (1){(4). The following ompleteness result was �rst provedby Goguen and Meseguer [11℄, although the unonditional one sorted form isvery well known, going bak to Birkho� [2℄ in 1935:6 Meaning ai �si a0i for i = 1; :::; n, where w = s1 : : : sn and a = (a1; : : : ; an).



Theorem1. Given a set E of (possibly onditional) �-equations, an unondi-tional �-equation is satis�ed by every (�;E)-algebra i� it is derivable from Eusing the rules (1){(5).Goguen and Meseguer [11℄ use the above to prove the following basi result:Theorem2. The �-algebra T�;E = T�=E is an initial (�;E)-algebra, inthe sense that for any (�;E)-algebra A there is a unique �-homomorphismh : T�;E ! A.Of ourse, there are many other initial (�;E)-algebras, but they are all �-isomorphi to this one.Now we briey reall some basi rewriting onepts and notations. For sim-pliity we restrit the disussion to the unonditional ase. Given a signature �,a �-rule is given by (8) t -> t0where t; t0 are �-terms suh that var(t0) � var(t). A �-TRS7 is a �nite ol-letion of �-rules. Given a �xed TRS, then a �-term t0 rewrites (in one step)to the �-term t1 i� there is a TRS-rule (8) t -> t0 suh that t0 = [��(t)℄ andt1 = [��(t0)℄ for some �-ontext (alled rewrite ontext)  and some sub-stitution �. This is denoted as t0 ! t1. The transitive-reexive losure of !is denoted as �!. A TRS is (ground) onuent i� for any (ground) term t0,if t0 �! t1 and t0 �! t2, then there exists t3 suh that t1 �! t3 and t2 �! t3,and it is (ground) terminating i� there are only �nite rewrite hains fromany (ground) term t. A term t is in normal form i� there is no rewrite fromt. When the TRS is onuent and terminating, then eah term t has a uniquenormal form nf(t) suh that t �! nf(t).Given a signature morphism � : � ! �0 and a �0-algebra A0, we an de�nethe redut of A0 to �, denoted �(A0) or A0j�, to have arriers A0�(s) for s 2 S,and to have operations �(A0)� for � 2 �w;s de�ned by �(A0)�(m) = A0�(�)(m)for m 2 A0�(w). Also, given a �0-homomorphism h : A01 ! A02, we an de�nehj� : A01j� ! A02j� by (hj�)s = h�(s) for s 2 S.Similarly, given a �-equation e of the form (8X) t = t0, we de�ne �(e) to bethe �0-equation (8X 0) �(t) = �(t0), where X 0 is the S0-indexed set, also denoted�(X), with X 0s0 = S�(s)=s0 Xs for s0 2 S0, and where � : T�(X) ! T�0(X0) isthe S-indexed funtion de�ned by viewing T�0(X0) as a �(X)-algebra using theredut onstrution given above, and then the initiality of T�(X).An important property of these translations on algebras and equations undersignature morphisms is alled the Satisfation Condition, whih expresses theinvariane of satisfation under hange of notation:Theorem3. Given an signature morphism � : � ! �0, a �0-algebra A0, anda �-equation e, then �(A0) j=� e i� A0 j=�0 �(e):7 Abbreviation for term rewriting system.



This theorem was �rst proved in the original version of [8℄, and onstitutes thebasi axiom of the so-alled institutions, whih have reently been emerging asthe mathematial struture underlying the modern level of algebrai spei�ationtheory.2 Coherent Hidden AlgebraIn this setion we extend the hidden algebra formalism for behavioural spe-i�ation (as de�ned in seminal papers suh as [9, 10℄ and abbreviated here asHA). Our extension yields a suitable framework for the development of the novelonept of behavioural oherene, and also orresponds exatly to the semantisof the behavioural spei�ation paradigm as realized in the algebrai spei�a-tion language CafeOBJ [6℄. We refer to this extension as oherent hidden algebra(abbreviated CHA).Hidden algebra (formerly alled \hidden sorted algebra") was invented byGoguen as an extension of the (order sorted) equational logi formalism under-lying the modern theory of abstrat data types and, generally, onstituting thelogial foundation for lassial algebrai spei�ation. One of the early paperswhih present hidden algebra is [9℄, while the basi referene for this area mightnow be the survey [10℄. An institution-independent approah to HA an be foundin [3℄. Hidden algebra extends ordinary algebra with sorts representing states ofobjets rather that data elements and also introdues a new onept of satisfa-tion between models (algebras) and sentenes, alled behavioural satisfation.CHA extends HA by introduing expliit onepts of behavioural operationand behavioural sentene. Beause of behavioural sentenes, CHA does not needa speial notation for behavioural satisfation, that would be treated just as thesatisfation of behavioural sentenes. This has the advantage of a unitary institu-tion for CHA with a unique satisfation relation for both strit and behaviouralsentenes and of allowing strit equations on hidden sorts.De�nition 4. A CHA signature is a tuple (H;V;�;�b), where{ H and V are disjoint sets of hidden sorts and visible sorts, respetively,{ � is an (H [ V )-sorted signature,{ �b � � is a subset of behavioural operations suh that eah � 2 �bw;shas exatly one hidden sort in w.Notie that very often we will shorten the notation (H;V;�;�b) to (H;V;�),or just �, when no onfusion is possible.From a methodologial perspetive, the operations in �b have objet-orientedmeaning, � 2 �bw;s is thought as an ation (or \method" in a more lassialjargon) on the spae (type) of states if s is hidden, and thought as observation(or \attribute" in a more lassial jargon) if s is visible. The last ondition saysthat the ations and observations at on (states of) single objets.De�nition 5. ACHA signature morphism� : (H;V;�;�b)! (H 0; V 0; �0; �0b)is a signature morphism � ! �0 suh that(M1) �(V ) � V 0 and �(H) � H 0,



(M2) �(�b) = �0b and ��1(�0b) � �b,These onditions say that hidden sorted signature morphisms preserve visibilityand invisibility for both sorts and operations, and the �0b � �(�b) inlusionexpresses the enapsulation of lasses (in the sense that no new ations (methods)or observations (attributes) an be de�ned on an imported lass)8. However, thislast inlusion ondition applies only to the ase when signature morphisms areused as module imports (the so-alled horizontal signature morphisms); whenthey model spei�ation re�nement this ondition might be dropped (this aseis alled vertial signature morphism).Now, we turn our attention to models.De�nition 6. Given a CHA signature �, the lass of its models onsists of all�-algebras A.De�nition 7. Given a CHA signature �, a behavioural ontext9 is any �-ontext [z℄ suh that all operations above z in  are behavioural.While ordinary satisfation orresponds to reasoning about strit equality,behavioural satisfation orresponds to reasoning about behavioural equivalene,whih an be regarded as a looser form of equality. Behavioural equivalene is themain onept underlying the behavioural abstration mehanism of spei�ationsbased on hidden algebra, hene it plays a entral rôle in CHA.De�nition 8. Given a �-algebra A, two elements (of the same sort s) a and a0are alled behaviourally equivalent, denoted a �s a0 (or just a � a0) i�A(a) = A(a0)10for all visible behavioural ontexts .Remark that the behavioural equivalene is a (H[V )-sorted equivalene relation,and on the visible sorts the behavioural equivalene oinides with the (strit)equality relation.The onept of behavioural equivalene leads also to a di�erent notion ofequation and satisfation:De�nition 9. Given a CHA signature �, a behavioural �-equation is a sen-tene of the form (8X) t � t0 if t1 �1 t01; : : : ; tm �m t0mwhere eah �i is either = or � for all i 2 f1; : : : ;mg, all other symbols havingthe same meaning as for ordinary equations.Now, we are ready to de�ne the notion of satisfation for hidden algebra.8 Without it the Satisfation Condition fails, for more details on the logial and om-putational relevane of this ondition see [9℄.9 Notie that the CafeOBJ onept of \behavioural ontext" orresponds to \visiblebehavioural ontext" in the sense of this paper.10 Notie that this equality means an equality between funtions Aw1w2 ! As0 , where : w1sw2 ! s0 with w1; w2 2 (H [ V )� and s0 2 V .



De�nition 10. Given a CHA signature � and a �-algebra A, a behaviouralequation (8X) t � t0 if t1 �1 t01; : : : ; tm �m t0m is satis�ed (also denoted byj=) by A i���(t) � ��(t0) whenever ��(ti) �i ��(t0i) for all i 2 f1; : : : ;mgfor all valuations � : X ! A.Note that the CHA satisfation generalizes the HA behavioural satisfation[10, 9℄ sine the satisfation of (8X) t � t0 if t1 � t01; : : : ; tm � t0m orrespondsexatly to the HA behavioural satisfation of(8X) t = t0 if t1 = t01; : : : ; tm = t0m.De�nition 11. Given a CHA signature � and a �-algebra A, a hidden on-gruene is an equivalene relation � on A whih is identity on visible sorts andis a �b-ongruene.The following result onstitutes the foundations for the oindution [10℄proof method for hidden algebra. We do it here again, sine the CHA formalismis an extension of HA.Theorem12. Given a CHA signature � and a �-algebra A, the behaviouralequivalene relation on A is the largest hidden ongruene on A.Proof. Consider a hidden ongruene � on A. We have to prove that for anyelements a; a0 of the same sort h, a �h a0 implies a �h a0, i.e., A(a) = A(a0) forall visible behavioural ontexts . We prove this by indution on the length ofthe ontext . We may assume that h is hidden, otherwise the onlusion followsdiretly from the de�nition of hidden ongruenes.If the length of [z℄ is 1, then [z℄ is just of the form �(t; z) where � : vh! s(with v 2 V � and h 2 H) is a visible sorted behavioural operation and t 2(T�(X))v is a v-tuple of terms. Beause � is a �b-ongruene, we have thatA(x; a) = A�(At(x); a) � A�(At(x); a0) = A(x; a0) for any valuation x 2Aar(t). Beause � is a hidden ongruene and the sort of � is visible we havethat A�(At(x); a) = A�(At(x); a0), thus A(x; a) = A(x; a0) for all x 2 Aar(t)follows. Therefore A(a) = A(a0) as funtions Aar(t) ! As.If the length of  is greater than 1, then there exists a visible behaviouralontext 0 : wh0 ! s (with h0 2 H; s 2 V , and w 2 (H [ V )� of length smallerthan the length of  and a behavioural operation � : vh ! h0 (with v 2 V �and h 2 H), suh that [z℄ = 0[�(t; z)℄ for t 2 (T�(X))v a v-tuple of terms.Therefore, for all x 2 Aar(t) and y 2 Aw, A(y; x; a) = A0(y;A�(At(x); a))and A(y; x; a0) = A0(y;A�(At(x); a0)). Beause � is a hidden ongruene,A�(At(x); a) �h0 A�(At(x); a0), and by the indution hypothesis we get A(a) =A(a0) as funtions Aar(t);w ! As.3 Behaviourally Coherent Operations3.1 The De�nitionDe�nition 13. Given a CHA signature � and a hidden �-algebra A, an op-eration � 2 � � �b is behaviourally oherent for A i� it preserves the



behavioural equivalene relation on A, i.e., if and only ifA�(a) �s A�(a0) if a �w a0for all a; a0 2 Aw, where � 2 (� ��b)w;s.Notie that the operations having only visible sorts in the arity are triviallybehaviourally oherent for any �-algebra A, so we will omit them from ourarguments.Corollary 14. If all operations in ���b are behaviourally oherent, then � isa �-ongruene.Corollary 15. Given a CHA signature � and a �-algebra A for whih all op-erations in � ��b are behaviourally oherent, there exists another �-algebra A(alled the behavioural image of A) suh thatA j= (8X) t � t0 i� A j= (8X) t = t0for all behavioural �-equations (8X) t � t0.Proof. By Corollary 14, � is a �-ongruene. Let A be the quotient algebraA=�, and [ ℄ : A! A be the orresponding quotient algebra morphism.First assume A j= (8X) t = t0. Let � : X ! A be an arbitrary valuation. Byhypothesis we have that (�; [ ℄)�(t) = (�; [ ℄)�(t0), whih means [��(t)℄ = [��(t0)℄,therefore ��(t) � ��(t0). This onludes that A j= (8X) t � t0.Conversely, let A j= (8X) t � t0 and onsider and arbitrary valuation� : X ! A. There exists a valuation � : X ! A suh that �; [ ℄ = �. We havethat ��(t) = (�; [ ℄)�(t) = [��(t)℄ = [��(t0)℄ = ��(t0), whih onludes the proof ofA j= (8X) t = t0.This result has a speial signi�ane, sine it an be generalized to any kind ofsentenes. In this way, given a onept of sentene (whih need not be equational,it an be Horn lause, full �rst order, seond order, et.) we an de�ne on top of ita onept of behavioural sentene with a orresponding notion of (behavioural)satisfation. This idea has been fully exploited in [3℄ for developing an institution-independent theory of behavioural spei�ation generalizing the onrete hiddenalgebra. We have all reasons to believe that this an be further developed in orderto inorporate CHA.Related to above, it might be interesting to briey present the onept ofbehavioural image of an algebra from a ategorial perspetive.Proposition16. Consider a hidden signature (H;V;�;�b), and let �0 be itssub-signature without the non-behavioural operations having at least one hid-den sort in the arity. Given a �-algebra A, we may onsider the unique �0-homomorphism h to the �nal �0-algebra in the sub-ategory of �0-algebras A0with A0j�v = Aj�v (whih always exists [3, 10℄), where �v is the maximal visiblesub-signature �v � �. We fator h as e; i where e is surjetive and i is an in-lusion. Then, denote the image (target) of e as A0. A0 is an algebra whih is thequotient under behavioural equivalene of the redut Aj�0 . If all operations from� � �b are behaviourally oherent for A, then the quotient A0 an be uniquelyexpanded to a �-algebra A whih is a quotient of A. Then A is the behaviouralimage of A.



3.2 Sound DedutionIn this setion we show that in the presene of behavioural oherene, equationaldedution is sound for behavioural equivalene. This onstitutes the basis for theexeution of languages implementing CHA; the next setion is devoted to theterm rewriting-based operational semantis of CHA.Theorem17. Given a set E of (possibly behavioural) equations for a hiddensignature �, the lass of (�;E)-algebras for whih all operations in � ��b arebehaviourally oherent is inluded in the lass of (�;E)-algebras for whih theordinary equational dedution rules are sound for behavioural equations.Proof. First we will show that all equational dedution rules besides Congrueneare sound anyway. For Base this is obvious, and the soundness of rules (1){(3) follow immediately from the fat that behavioural equivalene is indeed anequivalene relation. We onentrate now on the Substitutivity rule.Consider an algebra A, and a behavioural equation (sine for ordinary equa-tions the argument holds by the soundness of ordinary equational logi) (8Y ) t �t0 if t1 � t01; : : : ; tm � t0m in E. Assume that for some substitution � : Y !T�(X), (8X) ��(tj) � ��(t0j) is true for j 2 f1; : : : ;mg . We have to prove that(8X) ��(t) � ��(t0) is also true. Pik up an arbitrary valuation  : X ! A.Then for all j 2 f1; : : : ;mg we have that  �(��(tj)) �  �(��(t0j)) whih means(�; �)�(tj) � (�; �)�(t0j) for all j 2 f1; : : : ;mg. Beause A j= (8Y ) t �t0 if t1 � t01; : : : ; tm � t0m, it follows that (�; �)�(t) � (�; �)�(t0), thus �(��(t)) �  �(��(t0)).Now, we fous on Congruene. We show that Congruene is sound wheneverall operations from � � �b are oherent. Assume (8X) ti � ti is true inA for i = 1; :::; n. We have to prove that (8X) �(t1; : : : ; tn) � �(t01; : : : ; t0n)is also true in A. Consider a valuation  : X ! A. Then  �(ti) �  �(t0i) fori = 1; :::; n. Beause � is oherent for A, we have that A�( �(t1); : : : ;  �(tn)) �A�( �(t01); : : : ;  �(t0n)). By the homomorphism property of  �, we have that �(�(t1; : : : ; tn)) �  �(�(t01; : : : ; t0n)).Corollary 18. Given a set E of (possibly behavioural) equations for a hiddensignature �, the lass of reahable (�;E)-algebras for whih all operations in���b are behaviourally oherent is exatly the lass of reahable (�;E)-algebrasfor whih the ordinary equational dedution rules are sound for behavioural sen-tenes.Proof. Consider a reahable (�;E)-algebra A. We will show that if Congrueneis sound, then all operations in � � �b are behaviourally oherent. Considersuh an operation � : w ! s and a; a0 2 Aw. Eah omponent of either a ora0 an be denoted by a ground term, therefore let a = At and a0 = At0 , witht; t0 2 (T�)w. Then A j= (8;) t � t0 (notie that this is a �nite onjuntion ofbehavioural equalities indexed by w). Now, we have only to apply the hypothesisfor Congruene for �, i.e., A j= (8;) �(t) � �(t0), whih means A�(a) � A�(a0).This Corollary onstitutes the foundations for omputing with behaviourallyoherent operations. The following setion is devoted to this issue.



3.3 Behavioural RewritingThe operational semantis of CHA requires a more sophistiated notion of rewrit-ing whih takes speial are of the use of behavioural sentenes during the rewrit-ing proess.The following de�nition extends the onept of behavioural ontext withbehaviourally oherent operations.De�nition 19. Given a CHA signature � and a �-algebra A, a behaviourallyoherent ontext for A is any �-ontext [z℄ suh that all operations above11the marked variable z are either behavioural or behaviourally oherent for A.Notie that any behavioural ontext is also behaviourally oherent.Proposition20. Consider a CHA signature �, a set E of �-sentenes regardedas a TRS, and a �-algebra A satisfying the sentenes in E. If t0 is a groundterm and for any rewrite step t0 ! t1 whih uses a behavioural equation from E,the rewrite ontext has a visible behaviourally oherent sub-ontext for A, thenA j= (8;) t0 = t1. If the rewrite ontext is behaviourally oherent for A, thenA j= (8;) t0 � t1.Proof. We prove only the �rst ase; the proof of the seond ase follows bya similar argument. There exists a behavioural equation (8X) t � t0 in Esuh that t0 = [��(t)℄ and t1 = [��(t0)℄ for some rewrite ontext  and somevaluation � : X ! T�. Let 0 be a visible behavioural oherent sub-ontext of ,this means [z℄ = 00[0[z℄℄ for some other rewrite ontext 00. Denote the unique�-homomorphism T� ! A by h. Therefore At0 = A00(A0(h(��(t)))) and At1 =A00(A0(h(��(t0)))). Beause A satis�es the sentenes in E, we also have thath(��(t)) � h(��(t0)). Beause 0 is a visible behaviourally oherent ontext forA, by indution on its length, we an prove that A0(h(��(t))) = A0(h(��(t0))).Then At0 = At1 , whih means A j= (8;) t0 = t1.This ondition on rewriting was �rst introdued in [6℄, under the name ofbehaviourally oherent ontext ondition and it is implemented by theCafeOBJ rewriting engine. It an be visualized by the following �gure:
A

B

CHere A is the top position of the term to be redued (represented by the bigtriangle), and C is the position of the sub-term (represented by the white triangle)to whih the rule is applied. The rewriting ontext is represented by the wholegray area, and the behaviourally oherent sub-ontext by the dark gray area(with the top at B). The ondition says that the sort of the operation at positionB is visible, and that on the path between B and C there are no operations whihare non-behavioural and not oherent.11 Meaning that z is in the subterm determined by the operation.



4 Behavioural Coherene MethodologiesIn this setion we disuss several spei�ation methodologies for behaviouraloherene. We use the CafeOBJ notation for behavioural spei�ation.4.1 The Conservative MethodologyConsider the following parameterized spei�ation of a bu�er objet with twomethods (take and put) and two attributes (get and empty?).We start by speifying the elements of the bu�er:mod! TRIV+(X :: TRIV) {op err : -> ?Elt}The (initial denotation) module TRIV+ is parameterized by the (loose denotation)built-in module TRIV whih has only one sort Elt. The system also provides thebuilt-in error super-sort ?Elt. The denotation of TRIV+ onsists of all sets (asinterpretation for Elt) plus an new element err of sort ?Elt but outside theinterpretation of Elt. In this spei�ation, the sort Elt stands for the elementsof the bu�er, and err is an error value. TRIV beomes a parameter of (the belowspei�ation) BUF1, one an instantiate the elements of the bu�er to any onreteset. Now, we an speify the bu�er objet:mod* BUF1 { proteting(TRIV+)*[ Buf ℄*op init : -> Bufop put : Elt Buf -> Buf {oherent}bop get_ : Buf -> ?Eltbop take_ : Buf -> Bufop empty? : Buf -> Bool {oherent}var E : Eltvar B : Bufeq empty?(init) = true .eq empty?(take B) = true if empty?(B) .eq empty?(put(E, B)) = false .eq empty?(B) = true if (get B) == err .beq take put(E, B) = put(E, take B) if not empty?(B) .beq take(put(E, B)) = B if empty?(B) .eq get B = err if empty?(B) .eq get put(E, B) = E if empty?(B) .eq get put(E, B) = get B if not empty?(B) .}The states of the bu�er objet are represented by the hidden sort Buf and thereare only two behavioural operations (denoted by the keyword bop). The keywordseq, eq, and beq stand for (strit) unonditional equations, (strit) onditionalequations, and onditional behavioural equations, respetively.Notie that the prediate empty? (whih heks the emptiness of the bu�er)is spei�ed as a Boolean-valued operation by using the built-in Boolean datatype BOOL having one sort Bool with two onstants (true and false) and theusual Boolean operations. The denotation of the BOOL data type onsists ofthe initial algebra (more preisely, of the isomorphism lass of initial algebras)



interpreting the sort Bool as a set with only two elements, orresponding to theinterpretations of the onstants true and false.12An interesting point of this spei�ation is that one method (put) and oneattribute (empty?) of the bu�er objet are delared as behaviourally oherentoperations rather than behavioural operations. One important pratial onse-quene of this is that the de�nition13 of the behavioural equivalene relationgets drastially simpli�ed, while the denotation of the spei�ation remains un-hanged. This is supported by the following proposition:Proposition21. For eah BUF1-model M , the operations put and empty? arebehaviourally oherent.Proof. We �rst prove that empty? is behaviourally oherent. We have thus toshow that Mempty?(b) = Mempty?(b0) whenever b �Buf b0. From b �Buf b0 wededue thatMget(b) =Mget(b0). If both of them areMerr, thenMempty?(b) =Mempty?(b0) = Mtrue by the last equation on empty?. Otherwise, both ofthem are di�erent than Merr, whih means that Mempty?(b) = Mempty?(b0) =Mfalse by the �rst equation on get and beause MBool has only two elements,i.e., the interpretations of true and false.Now, in order to omplete the proof of this proposition we use the followinglemma (its proof by using the CafeOBJ system is given in Appendix A.2):Lemma22. The oherene of empty? implies the oherene of put.To resume, the operations empty? and put are behaviourally oherent in allBUF1-models, hene the denotation of BUF1 is the same as the denotation whenboth empty? and put were spei�ed as behavioural operations. This suggests the�rst (and in some sense the simplest) use of behavioural oherene:Some operations an be spei�ed as behaviourally oherent rather thanbehavioural provided their oherene (with respet to the rest of the spe-i�ation) an be proved. This results in a simpli�ation of the de�nition ofbehavioural equivalene, with potential for simplifying the whole veri�ationproess related to this spei�ation.Notie that reently, Bidoit and Henniker [1℄ gave pratially relevant syn-tati suÆient onditions for the onservative methodology.4.2 The Non-Conservative MethodologyNow, we turn to a more sophistiated use of behavioural oherene. In the pre-vious ase, from the semantial perspetive, the main point was that the oher-ene property held in all models. In other words, in that ase the delaration12 The BOOL data type plays a ruial rôle for CafeOBJ onditional equations sinetheir onditions are in fat Bool-sorted terms. This is more general than the lassialde�nition of onditional equations (adopted also by this paper) and allows some formsof negation and dis-equality. Preisely speaking, the underlying logis of CafeOBJare onstrained over the built-in (or pre-de�ned) data type BOOL, and this is fullyexplained by the framework of onstraint logis [5, 4℄.13 N.B. the behavioural equivalene relation remains the same, only its de�nition issimpli�ed.



\foherentg" for operations it treated as a pure omputational delaration14with no onsequene on the denotations. In this setion we explore a denotationalrôle for suh delarations.The oherene delaration for an operation has the e�et that the denotationof the spei�ation is restrited to those models for whih the orresponding op-eration is behaviourally oherent. Let us look again at the bu�er example. Theabove BUF1 spei�ation leads to non-terminating omputations due to the pres-ene of the last equation on empty? and the �rst equation on get. But theseequations are exatly the ones whih ensure the oherene of empty?. The samesituation an be ahieved by dropping the last equation on empty? and by re-striting the lass of BUF1-models only to those for whih empty? is oherent.Notie that by dropping the last equation on empty?, there are models for whihempty? is not behaviourally oherent. Any model M with a bu�er state b whihfor whih Mget(b) = Merr and with Mempty?(b) = false would be suh anexample.15So, onsider the spei�ation BUF1 minus the last equation on empty?.mod* BUF { proteting(TRIV+)*[ Buf ℄*op init : -> Bufop put : Elt Buf -> Buf {oherent}bop get_ : Buf -> ?Eltbop take_ : Buf -> Bufop empty? : Buf -> Bool {oherent}var E : Eltvar B : Bufeq empty?(init) = true .eq empty?(take B) = true if empty?(B) .eq empty?(put(E, B)) = false .beq take put(E, B) = put(E, take B) if not empty?(B) .beq take(put(E, B)) = B if empty?(B) .eq get B = err if empty?(B) .eq get put(E, B) = E if empty?(B) .eq get put(E, B) = get B if not empty?(B) .}This spei�ation avoids any non-termination, and its denotation is the same asthat of BUF1. Lets denote by Mod(BUF) the denotation of BUF, by Mod(BUF1)the denotation of BUF1, and by Mod(BUF0) the denotation of the spei�a-tion BUF' whih is the same as BUF but without any oherene delarationsfor operations. We have that Mod(BUF) � Mod(BUF0) as strit inlusion. Also,Mod(BUF) =Mod(BUF1). The stritness ofMod(BUF) �Mod(BUF0) shows thatthe oherene delarations (in fat really only that of empty?) shrink the deno-tation to a smaller lass of models, hene this is why this methodology is alled\non-onservative".The non-onservative methodology for behavioural oherene is strongly sim-ilar to the lassial use of operation attributes (suh as assoiativity (A), ommu-tativity (C), identity (I), or idempotene (Z)) in ordinary algebrai spei�ation.For example, imagine a spei�ation of the data type of natural numbers withthe plus operation delared ommutative:14 Inreasing the power of behavioural rewriting.15 Though suh model annot be a reahable one.



op _+_ : Nat Nat -> Nat {omm}In the ase of the natural numbers suh delaration is denotationally redun-dant sine the ommutativity of + would be satis�ed anyway by the stan-dard (initial) model16 whih onstitutes the denotation of the natural numbersdata type. Hene, this use of \omm" delaration is a onservative methodol-ogy, the same as \oherent" delaration for put. However, the omputationalonsequenes of the \omm" delaration are ruial: by omputing modulo om-mutativity the non-termination of omputations is avoided. The same happensin the ase of \oherent" delarations, the omputation gets more power17.In the ase of the oherene of empty? the similarity is almost perfet, sine\oherent" delaration is used for avoiding non-terminating omputations. Onthe side of non-onservative methodology, imagine a spei�ation of monoidsand a ommutativity delaration for its binary operation:op _;_ : Mon Mon -> Mon {omm}This delaration restrits the denotation only to the ommutative monoids, thushaving a similar denotational e�et as the oherene delaration for empty?. Inboth ases the omputational e�et is maintained.We may resume the non-onservative methodology by the following:Behavioural oherene delarations for operations restrit the denotation ofthe spei�ation to the models for whih these operations are behaviourallyoherent, also giving more omputational power. This usage of oherenedelarations is similar to the usage of operation attributes (suh as A,C,AC,I,et.) in ordinary algebrai spei�ation.As in the ase of traditional A/C/I/Z attributes, oherene delarationsshould be used with some are beause they might have an undesirable denota-tional impat. Abusing them might result in shrinking denotations too muh, tothe point of eliminating some desirable models (implementations). In general itis reommended to use the onservative methodology as muh as possible, sinethis might simplify a lot the veri�ation proess without the burden to verify thatertain implementations satisfy the oherene delarations (sine in the onser-vative ase these oherene properties are supposed to be proved at the abstratlevel of the spei�ation). The non-onservative methodology is reommendedfor situations similar to the \oherent" delaration for empty?, when the shrinkof the denotation is rather natural and helps with avoiding some omputationalproblems.4.3 The Hidden Construtor MethodologyThe HA formalism requires that operations on hidden sorts have at most onehidden sort in their arity. This monadiity ondition is essential for the aseof behavioural operations (and in fat all hidden sorted operations in HA aremeant as CHA behavioural operations) but may limit the spei�ation power.Behaviourally oherent operations onstitute the solution to this problem. Sine16 This is a standard indution exerise in algebrai spei�ation introdutory texts.17 Due to the easier satisfation of the so-alled \behaviourally oherent ontext on-dition" hek, see Appendix A.1.



they do not de�ne the behavioural equivalene, they are not subjet to themonadiity ondition. On the other hand, they an be used e�etively in be-havioural spei�ations beause they preserve the behavioural equivalene andthus they have smooth denotational and omputational properties. We all suhoperations hidden onstrutors. Hidden osntrutors play a similar rôle inobjet-oriented algebrai spei�ation as lassial onstrutors play in ordinary(data type oriented) algebrai spei�ation.The hidden onstrutor methodology is \orthogonal" to the onservative vs.non-onservative methodologies in the sense that the behavioural oherene ofa hidden onstrutor might be a onsequene of the rest of the spei�ation, orits oherene delaration might really shrink the denotation of the spei�ation.We illustrate this methodology by the spei�ation of an unreliable bu�erobjet. This means that there is a \put" method on the bu�er objet whih isunreliable in the sense that the element whih is put into the bu�er might belost.18 We reuse the above \reliable" bu�er objet spei�ation, the unreliablebu�er objet being thought as a re�nement of the reliable bu�er.mod* UBUF { proteting(BUF)*[ Buf < UBuf ℄*op put : Elt UBuf -> UBuf {oherent}bop take_ : UBuf -> UBufop _|_ : UBuf UBuf -> UBuf {oherent}op put? : Elt UBuf -> UBuf {oherent}op get? : Buf ?Elt -> Bool {oherent}bop get? : UBuf ?Elt -> Boolvar B : Bufvars U1 U2 U : UBufvar E : Eltvar E' : ?Elteq put (E, U1 | U2) = put(E, U1) | put(E, U2) .eq put?(E, U1 | U2) = put?(E, U1) | put?(E, U2) .eq take( U1 | U2) = (take U1) | (take U2) .eq get?( U1 | U2, E') = get?(U1, E') or get?(U2, E') .eq put?(E, U) = U | put(E, U) .eq get?(B, E') = (E' == get B) .}The states of the unreliable bu�er objet (represented by the sort UBuf) arethought as a non-deterministi extension of the states of the reliable bu�er withthe hidden onstrutor | \building" the non-deterministi states of the unreli-able bu�er. The reliable bu�er methods are extended to the unreliable bu�er, anunreliable put method is introdued (put?), and, in the unreliable ase, the \get"attribute beomes a relation (get?) rather than a funtion. Notie that the lastequation expresses the fat that get? is an atual extension of get to the unre-liable ase, and the equation before the last one expresses the non-deterministirelationship between the unreliable \put" method and the reliable one. Notiealso that get? is spei�ed as behavioural operation sine it is thought as anextension of a behavioural operation. The oherene of | , put, put?, and get?(on Buf) an be proved from the spei�ation (we leave this as exerise to thereader). However, the oherene of the hidden onstrutor | deserves speial18 These kinds of \unreliable" objets are very useful for protools spei�ation andveri�ation.



mention. This is a onsequene of the four (strit) equations speifying the be-haviour of | with respet to the appliation of the \methods" and \attributes"of the unreliable bu�er objet. The stritness of these four equation is a mat-ter of style rather than of methodology, for this spei�ation we think that theimplementations should stritly satisfy those equations.The hidden onstrutor | also has some useful properties, suh as be-havioural assoiativity, ommutativity, and idempotene. The proofs of thesean be seen in Appendix A.3. Also, in Appendix A.4 we present some proofsabout the unreliable bu�er objet.The hidden onstrutor methodology an be resumed as:Operations on hidden sorts having several hidden sorts in the arity might bee�etively used in spei�ations provided they are behaviourally oherent.It is reommended to use them in onjuntion with a onservative method-ology, i.e., their oherene property is a onsequene of the rest of thespei�ation.5 Conlusions and Future WorkWe extended the traditional HA to a more powerful behavioural spei�ationformalism (CHA) whih inludes expliit onepts of behavioural operation andbehavioural sentene and also permits operations with several hidden sorts inthe arity. We de�ned the novel onept of behaviourally oherent operation,studied its basi denotational and omputational properties, and presented itsbasi methodologies via several CafeOBJ examples.Further work will be dediated for testing these methodologies for largerCASE studies. Work in this diretion is already under development by theCafeOBJ team.AknowledgmentsMany thanks to Joseph Goguen for onstant enouragement of this researh,for useful disussions of notation and terminology, and for his strong interest inoherene onepts. We wish also to thank the LDL group at JAIST for usefulfeedbak and disussions on this researh, and for providing an exellent researhenvironment. We are very grateful to Toshimi Sawada, the implementor of theCafeOBJ system, for his implementation of behavioural spei�ation paradigmin the CafeOBJ system, inluding the onepts introdued in this paper. Thisimplementation supported ruially the researh reported here.Referenes1. Mihel Bidoit and Rolf Henniker. Observer omplete de�nitions are be-haviourally oherent. In K. Futatsugi, J. Goguen, and J. Meseguer, editors,OBJ/CafeOBJ/Maude at Formal Methods '99, pages 83{94. Theta, Buharest,1999.2. Garrett Birkho�. On the struture of abstrat algebras. Proeedings of the Cam-bridge Philosophial Soiety, 31:433{454, 1935.
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In CafeOBJ, there is a lear distintion between the strit equality (denotedsyntatially by eq and supported semantially by the strit equality prediate==) and the behavioural equivalene (denoted syntatially by beq and supportedsemantially by the behavioural equivalene prediate =b=). The most basi ex-eution ommand, alled redue, orresponds to reduing the input term toa normal form whih is thought as stritly equal to the input term under thespei�ation, thus it is oneptually linked to ==. There is also a behaviouralounterpart to this ommand, alled beh-redue, oneptually linked to =b=,but this is muh less used in pratie.19When exeuting by redue or when evaluating the prediate == speial areshould be taken with respet to the use of behavioural equations as rewrite rules.The reason is that they denote behavioural rather than strit equality, thustheir appliation might dilute the strit equality into a behavioural equality.The so-alled behaviourally oherene ontext ondition mentioned in Setion3.3 ensures the safety of use of behavioural equalities as rewrite rules.A.2 Proof of Lemma 22In this appendix setion we prove that the oherene of the empty? attributeof the bu�er spei�ation implies the oherene of the put method. We do thisproof by the CafeOBJ system.We �rst enode the behavioural equivalene relation in CafeOBJ:mod! BARE-NAT {[ NzNat Zero < Nat ℄op 0 : -> Zeroop s_ : Nat -> NzNat}mod* BUF-BEQ { proteting(BUF + BARE-NAT)op _R[_℄_ : Buf Nat Buf -> Bool {oherent}bop take : Nat Buf -> Bufvar N : Natvars B B1 B2 : Bufeq take(0, B) = B .eq take(s(N), B) = take(N, take B) .eq B1 R[N℄ B2 = get take(N, B1) == get take(N, B2) .}The module BARE-NAT spei�es a very simple data type for the natural numbers.The operation take introdued in BUF-BEQ is a seond order generalization of themethod take of BUF, whih is neessary for de�ning the behavioural equivalene.The behavioural equivalene on Buf is de�ned by the parameterized relationR[ ℄ .The following is the proof sore for Lemma 22:open BUF-BEQ .ops b1 b1' b2 b2' : -> Buf .vars B1 B2 : Bufop n : -> Nat .op e : -> Elt .19 There are several reasons for this. One of them is that the urrent proof methods forbehavioural equivalene rarely require the diret use of beh-redue or =b=. Anotherreason lies in the inherent inompleteness of the evaluation of =b=.



The following are the assumptions orresponding to the ase when both bu�ersare empty or to the ase when both bu�ers are non-empty. These are the onlyases to be onsidered beause of the oherene of empty?.beq b1 = b2 .beq b1' = b2' .eq empty?(b2) = true .eq empty?(b2') = false .In the �rst ase the proof of the oherene of put is given by the following redu-tions (notie also the ase analysis orresponding to the parameter of R[ ℄ ):red put(e, b1) R[0℄ put(e, b2) .red put(e, b1) R[s n℄ put(e, b2) .For the seond ase, we need to proeed by indution. Here is the base ase:red put(e, b1') R[0℄ put(e, b2') .For the indutive step, we �rst assume the indution hypothesisq get(take(n, put(e, B1))) == get(take(n, put(e, B2))) = trueif B1 =b= B2 .and we then perform the following redution:red put(e, b1') R[s n℄ put(e, b2') .A.3 Proofs of behavioural ACZ properties of |In order to prove the ACZ of | as behavioural properties, we extend theCafeOBJ enoding of behavioural equivalene from the reliable bu�er objet tothe unreliable one.mod* UBUF-BEQ { proteting(UBUF + BUF-BEQ)op _R[_,_℄_ : UBuf Nat ?Elt UBuf -> Bool {oherent}bop take : Nat UBuf -> UBufvar N : Natvar E : ?Eltvars U U1 U2 : UBufeq take(0, U) = U .eq [take℄ : take(s(N), U) = take(N, take U) .eq U1 R[N,E℄ U2 = get?(take(N, U1), E) == get?(take(N, U2), E) .}We then build an environment for proofs:mod* UBUF-PROOF { proteting(UBUF-BEQ)ops u u' u'' : -> UBufop n : -> Natop e : -> Eltop e' : -> ?Eltvars U1 U2 U : UBufvar E : Eltvar N : Nat}We need to prove a lemma:



Lemma23. take(N, U1 | U2) = take(N, U1) | take(N, U2)Proof. We prove this by indution on the natural number parameter:open UBUF-PROOF .This is the base ase:red take(0, u | u') == take(0, u) | take(0, u') .Now we assume the indution hypothesis:eq take(n, U1 | U2) = take(n, U1) | take(n, U2) .and then do the indution step:red take(s(n), u | u') == take(s(n), u) | take(s(n), u') .loseNow we an proeed with the main proof.open UBUF-PROOF .by using Lemma 23:eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .and then prove the ACZ behavioural properties:red (u | u') R[n,e'℄ (u' | u) .red (u | u') | u'' R[n,e'℄ u | (u' | u'') .red u | u R[n,e'℄ u .loseA.4 Proofs about the Unreliable Bu�erIn this appendix setion we prove some (behavioural) properties of the unreliablebu�er. Firstly, we do some testing redution in order to get a feeling abouthow the unreliable bu�er works. We just show the output from the CafeOBJinterpreter:-- opening module UBUF(X.TRIV+).. done._*-- redue put?(e1,put?(e2,init))(init | put(e1,init)) | (put(e2,init) | put(e1,put(e2,init))) : UBuf-- redue get?(put?(e1,put?(e2,init)),e1)true : Bool-- redue get?(put?(e1, put?(e2, init)), e2)true : Bool-- redue get?(put?(e1, put?(e2, init)), err)true : Bool-- redue get?(put?(e1, put?(e2, b)),err)false : Bool-- redue get?(take put?(e1, put?(e2, init)), e1)true : Bool-- redue get?(take put?(e1, put?(e2, init)), e2)false : Bool-- redue take put(e1, put?(e2, init)) == take put?(e1, put(e2, init))false : Bool-- redue take put(e1, put?(e2, init)) =b= take put?(e1, put(e2, init))true : Bool



Now we prove a true onurreny property between the reliable and unreliable\put" methods. This an be formulated asput(e; put?(e; u)) � put?(e; put(e; u))for eah unreliable bu�er state u and eah element e. Here is the proof:open UBUF-PROOF .We assume a previously proved lemma:eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .and then perform the orresponding redutions by taking are of a small aseanalysis:red put(e, put?(e, u)) R[n,e℄ put?(e, put(e, u)) .red put(e, put?(e, u)) R[n,e'℄ put?(e, put(e, u)) .loseThe reahable unreliable bu�er objets are riher in properties. For examplethe following onstitute a omplete axiomatization of the attribute get?. Notiethat in the unreliable ase the same is not possible for take.mod* UBUF! { proteting(UBUF)vars E E' : Eltvar U : UBufeq get?(put(E, U), err) = false .q get?(put(E, U), E') = get?(U, E')if not(get?(U, err)) or (E =/= E' and get?(U, err)) .q get?(put(E, U), E) = true if get?(U, err) .q get?(take U, err) = true if get?(U, err) .beq take put(E, U) = put(E, take U) if not get?(U, err) .}We leave the proof of these properties for the reahable ase to the reader.Now we an onentrate to prove a last property for reahable unreliablebu�er objet models:take put?(e; u) � put?(e; take u) if get?(u; err) is falseWe open the environment for the reahable unreliable bu�er objet and assumethe hypothesis:open UBUF-PROOF + UBUF! .eq get?(u, err) = false .and then perform the redutions:red take put?(e, u) R[n,e℄ put?(e, take u) .red take put?(e, u) R[n,e'℄ put?(e, take u) .lose


