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This research exploits the view of constraint programming as computation in a logical system,
namelyconstraint logic. The basic ingredients of constraint logic are:constraint modelsfor the
semantics (they form a comma-category over a fixed model of “built-ins”), generalized polynomials
in the rôle of basic syntactic ingredient, and aconstraint satisfactionrelation between semantics and
syntax.Category-basedconstraint logic means the development of the logic is abstract categorical
rather than concrete set theoretical.
We show that (category-based) constraint logic is an institution, and we internalize the study of
constraint logic to the abstract framework of category-based equational logic, thus opening the door
for considering constraint logic programming over non-standard structures (such as CPO’s,
topologies, graphs, categories, etc.). By embedding category-based constraint logic into
category-based equational logic, we integrate the constraint logic programming paradigm into
(category-based) equational logic programming. Results include completeness of constraint logic
deduction, a novel Herbrand theorem for constraint logic programming characterizing Herbrand
models as initial models in constraint logic, and logical foundations for modular combination of
constraint solvers based on amalgamated sums of Herbrand models in the constraint logic
institution.

1. Introduction

1.1. Extensible Constraint Logic Programming

Constraint logic programming has been recently emerging asa powerful programming paradigm
and it has attracted much research interest over the past decade. Constraint logic programming
merges two declarative programming paradigms: constraintsolving and logic programming.
Mathematical Programming, Symbolic Computation, Artificial Intelligence, Program Verifica-
tion and Computational Geometry are examples of application areas for constraint solving. Con-
straint solving techniques have been incorporated in many programming systems; CLP (Jaffar
and Lassez, 1987), PrologIII (Colmerauer, ), and Mathematica are the best known examples. The
computational domains include linear arithmetic, booleanalgebra, lists, finite sets. Conventional
logic programming (i.e., Prolog) can be regarded as constraint solving over term models (i.e.,
Herbrand universes). In this way, constraint logic programming can be regarded as a generaliza-
tion of logic programming that replaces unification with constraint solving over computational
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domains. In general, the actual constraint logic programming systems allow constraint solving
for a fixed collection of data types or computational domains.1 Constraint logic programming
allowing constraints overanydata type (possibly given with loose semantics) will be calledex-
tensible(abbreviatedECLP).

This paper presents an (abstract) model theoretic semantics for ECLP, without directly ad-
dressing the computational aspect. This is a rather novel approach on the area of constraints
where almost all efforts have been devoted to computationaland operational issues; it is im-
portant the reader understands the model-theoretic and foundational orientation of this paper.
However, we plan to gradually develop the computational side based on these foundations as
further research (Section 7.2 sketches some of the directions of such further research). Some
computational aspects of this theory can already be found in(Diaconescu, 1996c).

This semantics is

— logical,
— abstract, and
— institution-independent.

The first aspect means that there is an underlying logic in which all main features of ECLP can
be rigorously explained. The second means that we develop the main concepts and results at the
“highest appropriate level of abstraction”, leaving out unnecessary details whilst still addressing
the substance of ECLP. Finally, “institution-independent” addresses both former aspects within
the theory of institutions (Goguen and Burstall, 1992), which represents now the modern level of
algebraic specification. This means that our semantics to ECLP can be internalized to various in-
stitutions (i.e., logics), thus providing an uniform way for integrating ECLP into various systems
with rigorous logical semantics, but also developing ECLP over novel structures.

The main results reported in this paper are:

— define a generic logic underlying ECLP (calledconstraint logic),
— embedding constraint logic into the category-based equational logic of (Diaconescu, 1994;

Diaconescu, 1995; Goguen and Diaconescu, 1995; Diaconescu, 1996b),
— a generic Herbrand Theorem for constraint logics providingfoundations for the concept of

constraint solving in ECLP,
— a generic institution for ECLP providing foundations for modular ECLP and for connecting

constraint logic to other computing logics via institutionmappings (morphisms), and
— logical foundations for modular combination of constraintsolvers via amalgamation of Her-

brand models in constraint logic.

The embedding of constraint logics into category-based equational logic constitute the engine
for most of the main results in this paper, but also a potential source for further developments.
Due to this embedding, the constraint logic institution hasproperties close to algebraic spec-
ification institutions; also we are able to prove a Herbrand Theorem for ECLP by using the

1 From a model-theoretic perspective, a computational domain may be abstracted to a model (not necessarily the stan-
dard one) of a certain data type specification. There can be several specifications which have a certain domain as
their model, a typical example being the case of the real numbers which can be regarded as monoid in two different
ways, as ring, as commutative ring, etc. Since in many cases it is not possible to find a finite specification which has
the respective domain as its initial model, one has to consider the most appropriate specification of the domain with
respect to the intended application.
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corresponding result for category-based equational logic(see (Diaconescu, 1995; Diaconescu,
1994)). On the more practical side, this means the possibility to directly transfer software engi-
neering and implementation techniques and methodologies developed for algebraic specification
to ECLP. Examples include advanced modularization techniques (for modular combination of
constraint solvers, for example) and the operational semantics based onconstraint paramodula-
tion of (Diaconescu, 1996c). Finally, since the development of ECLP can be internalized to any
category-based equational logic, this means the possibility of systematically developing ECLP
over non-set-theoretic structures (such as graphs or categories, for example). This is an area of
great potential not yet explored, and is the subject of future research.

Our approach to ECLP (informal)As with the CLP approach of Jaffar and Lassez (Jaffar and
Lassez, 1987), both constraint relations and programs are (sets of) sentences in the same logi-
cal system. But our constraint logics are much more general than Horn clause logic. Also, the
computational domain plays a primary rôle in our definitionof constraint logic, rather than being
axiomatized in Horn clause logic, as in (Jaffar and Lassez, 1987).

When regarded as a model in constraint logic, the computational domain is aninitial model.
This is mathematically linked to the semantics of OBJ-like module systems, the fundamental
idea being to regard the models of ECLP as expansions of an appropriatebuilt-in model Aalong
a signature inclusionι : Σ →֒Σ′, whereΣ is the signature of built-in sorts, operations and relations,
andΣ′ adds new “logical” symbols. In practice, the constraint relations (i.e., the logical relations
one wishes to impose on potential solutions) are limited to atomic sentences involving bothΣ-
symbols and elements of the built-in modelA. However, at the theory level there is no reason to
restrict constraint relations to be atomic formulae. The models for ECLP are expansions of the
built-in model to the larger signatureΣ′, and morphisms of constraint models must preserve the
built-ins. Thus the constraint models form a comma category, A/MOD(ι).

Example 1.1. (The Euclidean plane)Consider the example of a specification of the Euclidean
plane as a vector space over the real numbers.

obj R2 is
pr FLOAT * (sort Float to Real) .
sort Vect .

op 0 : -> Vect .
op <_,_> : Real Real -> Vect .
op _+_ : Vect Vect -> Vect .
op -_ : Vect -> Vect .
op _*_ : Real Vect -> Vect .

vars a b a’ b’ k : Real .
eq 0 = < 0 , 0 > .
eq < a , b > + < a’ , b’ > = < a + a’ , b + b’ > .
eq k * < a , b > = < k * a , k * b > .
eq - < a , b > = < - a , - b > .

endo
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The signatureΣ of built-in sorts, operation and relation symbols containsone sortReal2 for
the real numbers together with the usual ring operation symbols and a relation symbol< . The
built-in model is just the usual ring of real numbers (denoted asR) with < interpreted as the
usual ‘strictly less than’ predicate. The signatureΣ′ of the moduleR2 introduces a new operation
symbol< , > for representing the points of the Euclidean plane as tuplesof real numbers, and
overloads the ring operations by organizing the Euclidean plane as a vector space over the real
numbers. The axioms express the basic fact that the evaluation of the ring operations on vectors
is done component-wise.
A standard model for this specification, denotedR2, is given by the Cartesian representation of
the points of the Euclidean plane, i.e., any point is represented as the tuple of its coordinates. An-
other model for (the corresponding ’theory” version, allowing loose models, of)R2 interprets the
sortVect as the set of real numbers, theR-module3 operations onVect as ordinary operations
on numbers, but< , > as addition of numbers. We denote this model byR+.

Example 1.2. (Equational logic with a built-in Boolean type) Very oftenly modern algebraic
specification systems provide some pre-defined data types, such as the Booleans. For example, in
both OBJ (Goguen et al., ) andCafeOBJ (Diaconescu and Futatsugi, 1998) each module imports
the data type of the Booleans by default. This has multiple consequences, for example, it supports
a more general form of conditional equations, where conditions are Boolean-sorted terms rather
than just finite conjunctions of identities (see (Goguen et al., ; Diaconescu and Futatsugi, 1998)).
This can be regarded as a special case of constraint logic by letting the signatureΣ of built-ins to
consist of just one sortBool and the modelA of built-institution consisting of just two elements
true andfalse. The other operations onBool (such asand, or) can be considered as part
of Σ′; however more sophisticated versions of this example treating the otherBool-operations
as part of the built-in signature would also work well.
This example can also be used for embeddinglogic programming with negation into ECLP by
interpreting the predicates (i.e, relational symbols) of alogic program asBool-valued functions.
A positive literal will be written asp(x) = true rather thanp(x), and a negative literal
asp(x) = false rather than¬p(x). The models are restricted to thefull subcategoryB of
A/MOD(ι) with objects isomorphismsA∼ B↾ι; this means exactly the protection of theBool-
valuestrue andfalse. See also the discussion onconservativemodels in Section 5.2.
Consider the example of amodus tollensprogram:

obj MODUS-TOLLENS is
sort s .
ops p q : s -> Bool . *** unary predicates on s
op a : -> s . *** constant of s
var X : s .
cq q(X) = true if p(X) .
eq q(a) = false .

jbo

2 Obtained here by renaming the sortFloat of the imported built-in OBJ moduleFLOAT implementing the real
numbers as floating point reals.

3 In the sense of linear algebra.
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The initial (in B) modelH for this program interpretspH(a) asfalse. (Notice that this hap-
pens exactly because all models inB must protect the Booleans. The classical proof-theoretic
Herbrand model for this program would introducep(a) as a new value of sortBool.)
As will be explained later in the paper, the initial model plays the role of the (constraint) Herbrand
model, so a query such asp(Y) = false must get the answerY = a.4

1.2. Constraint Logic, Constraint Institutions, and Category-based Equational Logic

The main concept proposed by this research is that ofconstraint logic. The development of
constraint logic and of the main results involves intimately two other frameworks:category-
based equational logicandconstraint institutions.

Category-based equational logic (Diaconescu, 1994; Diaconescu, 1995; Diaconescu, 1996b;
Goguen and Diaconescu, 1995; Diaconescu, 1996c) (abbreviatedCBEL ) abstracts out the es-
sential ingredients of equational logic. Equations, deduction, models (algebras), congruences,
satisfaction, etc. are treated in an arbitrary category of models satisfying certain mild conditions,
including a forgetful functor to a category ofdomains. This encodes the principle that a model
interprets a signature (often called a “vocabulary” in classical logic) into a domain, usually (but
not necessarily) a set, or for typed systems, a collection ofsets. Category-based equational logic
programming (abbreviatedCB andELP, respectively) extends this generalization to computa-
tion, including rewriting, paramodulation (Diaconescu, 1994; Diaconescu, 1996c), modules (Di-
aconescu, 1994; Diaconescu, 1996b), and constraint solving ((Diaconescu, 1994; Diaconescu,
1996a) and this paper). CBEL also involves another level of generality by considering equalities
between elements of arbitrary models as sentences. This generalizes classical equations by view-
ing the terms as elements of some free model (i.e., term model). Results include completeness
of deduction, a Herbrand theorem, completeness of paramodulation, and generic modularization
techniques.

In Section 7 we introduceconstraint institutions as a special class of institutions internalizing
the model part of constraint logics to any institution and leaving the sentence part and the satis-
faction between models and sentences abstract. This not only provides a conceptual separation
between the model theory and the syntax of constraint logic (which is very beneficial for the eco-
nomical development of the semantics of modular combination of constraint solvers), but also
provides a formalization for the model theory of logics overpre-defined structures with possibly
very different concept of satisfaction between models and sentences. A meaningful example is
given by the hidden sorted logics (Goguen and Diaconescu, 1994b; Goguen and Malcolm, 1997)
used in behavioural specification.

The following is a diagram illustrating a hierarchical relationship between the various concepts
and frameworks used in this paper.

4 Notice that this is a semantics argument, the operational issues related to this example are also interesting and they
constitute an important research topic.
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Institutions

Constraint
Institutions

CBEL

Constraint Logic

The most abstract concept is that of institution. Constraint institutions and CBEL are both in-
stitutions. Constraint logic is a constraint institution but can also be embedded into CBEL (in
this way ECLP can be regarded as a special case of [an abstractform of] plain equational logic
programming). Finally, the dotted arrow shows that constraint logic can be developed abstractly
on top of CBEL.

1.3. Structure of this paper

This paper is structured as follows. After the Introductionand a section on Preliminaries, we de-
vote a section to Institutions, where we briefly review the basic institution concepts and introduce
several new concepts and prove some basic results which are necessary for the development of
category-based constraint logic. The next section briefly surveys the main concepts and results of
CBEL; the material of this section can be found also in (Diaconescu, 1995; Diaconescu, 1996b;
Goguen and Diaconescu, 1995; Diaconescu, 1994; Diaconescu, 1996c). This section also intro-
duces the so-calledSimplifying Assumption on CBEL which simplifies the presentation of this
research but without restricting the real generality of ourapproach (i.e., everything here can be
developed in the absence of theSimplifying Assumption). Section 5 develops category-based
constraint logic and introduces the core novel concepts of this research. The main result here
is the embedding of constraint logic into CBEL. Section 6 is devoted to the main result of this
paper, the Herbrand Theorem for category-based constraintlogic which is obtained via the em-
bedding of constraint logic into CBEL and by instantiating the Herbrand Theorem for CBEL
to constraint logic. This instantiation requires an interesting categorical proof. The final section
introduces the more general concept of constraint institution, shows how constraint logic fits
this generalization, and at the end sketches a categorical semantics for modular combination of
constraint solvers by using both results for constraint institutions and the Herbrand Theorem for
category-based constraint logic.

In this paper we formulate previously published results without giving their proof and prove
only the new results or results which have not been proved before in published form.
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2. Preliminaries

Categories.This work assumes familiarity with the basics of universal algebra and category
theory, and generally uses the same notation as Mac Lane (Lane, 1971), except that composition
is denoted by “;” and written in the diagrammatic order. The application of functions (functors)
to arguments may be written either normally using parentheses, or else in diagrammatic order
without parentheses. Categories usually have a name with first letter in capital bbold font; for
example the category of sets isSet, and the category of categories isCat. The opposite of a
categoryC is denoted byCop. Functors are usually (but not always!) denoted by caligraphic
capital letters, particularly for ‘functor variables’ as opposed to functors whose action is known.
The class of objects of a categoryC is denoted by|C|; also the set of arrows inC having the
objecta as source and the objectb as target is denoted byC(a,b).

Given two functorsC
C
−→ E

D
←− D, thecomma category(C/D) has arrowscC

t
−→ dD as

objects and pairs of arrows〈 f , g〉 as morphisms, such thatt;gD = f C ; t ′. For functors collapsing
everything to a constant object (i.e., to an identity arrow)we use the object itself as notation.

We denotecoproductsby +, coequalisersby coeq, andkernelsby ker (i.e., a pullback of an
arrow with itself). An objectA in a categoryC is coequaliser projective(or justprojectivefor

short) iff for any coequaliserB
c
−→C and any arrowA

h
−→C there exists an arrowh′ such that

h′;c = h. Projectivity is very oftenly a more abstract alternative of freeness that does not require
an adjunction.5

A functor U : A→ X has aleft-adjoint F : X→ A iff for each X ∈ |X| there is an arrow
Xη : X→ XF U such that for eachf ∈ X(X,AU) there exists an unique arrowf ♯ ∈ A(XF ,A)

such thatXη; f = f ♯U. ThenU is called aright-adjoint .
An indexed category(Tarlecki et al., 1991) is a functorC : Iop→ Cat; sometimesC is also

denoted as{Ci}i∈I . The following flattening construction6 plays an important rôle in this paper.
Given an indexed categoryC : Iop→ Cat, let Flat(C) be the category having(i,a), with i ∈ |I |
anda∈ |Ci |, as objects and(u, f ) : (i,a)→ ( j,b), with u∈ I(i, j) and f : a→ bCu, as arrows,
where the composition of arrows is defined by(u, f );;(u′, f ′) = (u;u′, f ; f ′Cu).

This work needs the following categorical treatment of binary relations (Diaconescu, 1994;
Diaconescu, 1995):

Definition 2.1.Let A be an object of a categoryX. Then abinary relation representation on A

is a parallel pair of arrowss,t ∈X(I ,A), denotedI
〈s,t〉
−→A or just〈s, t〉. Let I

〈s,t〉
−→A andI ′

〈s′,t′〉
−→ A be

binary relation representations on the same objectA. Then〈s, t〉 is included in 〈s′, t ′〉 (denoted
〈s, t〉 ⊆A 〈s′, t ′〉, or just〈s, t〉 ⊆ 〈s′, t ′〉) iff there is a maph: I → I ′ between the objects of indices
such thats= h;s′ andt = h; t ′. Two relation representationsQ andQ′ on the same objectA are
equivalent (denotedQ≡A Q′, or justQ≡Q′) iff Q⊆Q′ andQ′ ⊆Q. Then abinary relation on
A is an equivalence class of≡A.

Although binary relations are classes of equivalent representations, for simplicity we often use
representations instead of classes. The concept of inclusion between binary relation representa-

5 However there are situations when projective objects are not necessarily free.
6 Also known under the name of Grothendick construction.
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tions extends to binary relations proper without difficulty. As a matter of notation, bysQt we
mean〈s, t〉 ⊆Q.

3. Institutions

The theory of institutions (Goguen and Burstall, 1992) has recently emerged as one of the im-
portant areas in theoretical computer science, with many applications to modern algebraic spec-
ification, declarative and logical programming, programming in the large, etc. Basic concepts
and results on institutions can be found in (Goguen and Burstall, 1992). In this section we very
briefly review the main concepts and then develop some results concerning model amalgamation
in institutions; these results are needed later for the semantics of combining constraint solvers
and domains.

We denote an institutionℑ by (Sign,MOD,Sen, |=), whereSign is the category of signatures,
MOD : Sign→ Catop the model functor,Sen: Sign→ Cat the sentence functor, and|= is the
satisfaction relation. Atheory (Σ,E) consists of a signatureΣ and a closed (under|=Σ) set ofΣ-
sentencesE. A theory morphism (Σ,E)→ (Σ′,E′) is just a signature morphismΣ→ Σ′ mapping
E to a subset ofE′. Let Th(ℑ) denote thecategory of all theoriesin ℑ. A theory morphism
ϕ : (Σ,E)→ (Σ′,E′) is liberal iff the reduct functor MOD(ϕ) : MOD(Σ,E)→MOD(Σ′,E′) (often
denoted as↾ϕ) has a left adjoint, and it ispersistent iff it is liberal and MOD(ϕ) has a left
inverse. An institutionℑ is liberal iff every theory morphism inTh(ℑ) is liberal. An institution
is exact iff the model functor MOD preserves all finite co-limits, andsemi-exactiff it preserves
only pushouts. Liberality and exactness are very importantdesirable properties for institutions,
especially in connection to modularization (Diaconescu etal., 1993).

3.1. Model Amalgamation

In this section we are concerned with the technicalities of “putting together” models of different
signatures. We develop the related concepts and results within the general framework of institu-
tions.

Let ℑ = (Sign,MOD,Sen, |=) be an institution. Given a modelA ∈ |MOD(Σ)|, we denote its
signatureΣ by A.

Definition 3.1. Let A andA′ be models, not necessarily in the same signature. Ageneralized
model morphism from h: A→ A′ consists of a signature morphismh: A→ A′ and an ordinary
model morphismh: A→ A′↾A. Notice that for simplicity we may use the same name for the
ordinary morphism component of a generalized morphism; butwe always make a notational
distinction at the level of composition of such morphisms (denoted by ;; in the case of generalized
morphisms and by ; in the case of ordinary morphisms).

Remark 3.1.The category of models and generalized model morphisms is exactlyFlat(MOD).

The following definition generalizes Baader and Schultz universal algebra concept of “free
amalgamated product” (Baader and Schultz, 1994; Baader andSchulz, 1994).

Definition 3.2. Let A1 andA2 be models, not necessarily in the same signature. Abasefor A1

andA2 consists of a modelA0 together with generalized model morphismshi : A0→ Ai , i = 1,2.
Given a base forA1 andA2, theamalgamated sumA1⊕A0A2 is the pushout of this base.
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Notice that the pushout mentioned in this definition is considered inFlat(MOD).
The following result establishes the existence of amalgamated sums of models for institutions.

Theorem 1.If Sign has pushouts, the institutionℑ is semi-exact, all signature morphisms inℑ
are liberal,7 and the categories of models for each signature have pushouts, then the amalgamated
sum of any two models exists.

Proof. One “high-level” way to prove this result is to make use of thebasic theorem (Theorem
2 of (Tarlecki et al., 1991)) on colimits in the flattened of anindexed category. Then conclusion
follows directly from the hypotheses.

In the following we give a direct proof of this result. LetA1
h1←− A0

h2−→ A2 be a base. The
signatureA of the modelA standing for the vertex of the pushout of(h1,h2) is defined by the
pushout of(h1,h2) in Sign, as shown in the left part of the following diagram:

B B↾q

A1
φ1

//

g1

44

A

q

@@�������������
Aφ1

1 f ′1

//

g♯
1

44

A

q

??~~~~~~~~~~~~~~

A0

h1

OO

h2

// A2

φ2

OO g2

KK

A
hi ;φi
0

(h♯
1)

φ1

OO

(h♯
2)

φ2

// Aφ2
2

f ′2

OO g♯
2

JJ

Leth♯
i : A

hi
0 →Ai be the uniqueAi-morphism “extending”hi ∈MOD(A0)(A0,Ai↾hi ). Define fi : Ai→

A by fi = φi and fi = ηi ; f ′i ↾φi , where f ′i is defined by the pushout of((h♯
1)

φ1,(h♯
2)

φ2) in the cat-

egory of A-models (see the right hand side part of the above diagram), and ηi : Ai → Aφi
i ↾φi .

Straightforward calculations show thath1;; f1 = h2;; f2. Let gi : Ai → B such thath1;;g1 = h2;;g2.
We have to show that there exists a uniqueq: A→ B such thatfi ;;q = gi . Notice thatq should be
the unique signature morphism such thatfi ;q = gi . q: A→ B↾q is the uniqueA-morphism such

that f ′i ;q = g♯
i , whereg♯

i : Aφi
i → B↾q is the unique “extension” ofgi : Ai → B↾gi = (B↾q)↾φi to an

A-morphism.

We turn now to extending the existence of amalgamated sum of models to the case of theory
models. Given an institutionℑ, we can regard the theories as primitive entities by building a
semantic institution with empty sentence functor,ℑTh. So, for every institutionℑ, let ℑTh be
the institution(Th(ℑ),MOD, /0, /0), where, for each theoryT, MOD(T) is the full subcategory of
MOD(Σ(T)) satisfying the theoryT.

Lemma 3.1.If the institutionℑ is liberal and the category of models of each signature hasJ-
colimits, then MOD(T) hasJ-colimits for each theoryT.

7 When regarded as theory morphisms between the corresponding empty theories.
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Proof. Let A: J→MOD(T) be aJ-diagram ofT-models. Letµ be the colimit of this diagram
in MOD(Σ), whereΣ is the signature ofT (also letι denote the inclusionΣ→ T).

Ai
αi //

Au

��

µi

&&NNNNNNNNNNNN C

Colim(A;MOD(ι))

f

88qqqqqqqqqqqq

f
&&MMMMMMMMMMMM

β // B

f ′

��

f ′

OO

A j

µj

88qqqqqqqqqqqq

α j
// C

Let β be the “quotienting”Σ-morphism constructing the freeT-model over the vertex of the
colimit of µ. Then we claim thatµ;β is the colimit ofA.
Consider a co-coneα : A→ C in MOD(T). This a co-cone in MOD(Σ) too, so there exists a
unique
f : Colim(A;MOD(ι))→C such thatµ; f = α. Therefore there exists a uniquef ′ : B→C such
thatβ; f ′ = f . Thus,(µ;β); f ′ = α. The uniqueness off ′ results from the uniqueness off .

Corollary 3.1. If the institutionℑ is semi-exact and liberal,Sign has pushouts, and the category
of models for each signature has pushouts, then the amalgamated sum of any two theory models
(i.e., the amalgamated sum of any models ofℑTh) exists.

Proof. Liberality of ℑ means the liberality ofℑTh on signature morphisms. Fundamental
results of institution theory (see (Goguen and Burstall, 1992; Diaconescu et al., 1993)) show
that in any institution colimits and exactness carry from signatures to theories. The existence of
pushouts of models in this case follows by previous lemma.

This result together with the following one can be regarded as generalizations of results on ex-
istence of “free amalgamated products” of free models in universal algebra varieties (Baader
and Schulz, 1994; Baader and Schultz, 1994). Also notice that Proposition 3.1 uses a weaker
condition of liberality than Corollary 3.1.

Proposition 3.1.Let ℑ be an institution with pushouts for signatures and whose theories admit
initial models. Then the amalgamated sum of initial models in ℑTh exists and is initial too.

Proof. Firstly, notice that given any theory morphismφ : T → T ′, there exists exactly one
generalized model morphismh: 0T → 0T ′ with h = φ which is defined as the unique morphism
0T → 0T′↾φ in MOD(T).

Now, consider the theory morphismsT1
φ1←− T0

φ2−→ T2 and letT1
θ1−→ T

θ2←− T2 be their pushout.
In the virtue of the remark above, this pushout square generates a commutative square of initial
models for the corresponding theories. We have to prove that

0T = 0T1⊕T00T2

This is the same with proving that the commutative square of initial models is a pushout square
in the category of generalized morphisms of theory models.
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A

0T1 f1
//

g1

44

0T

q

??~~~~~~~~~~~~~~~~~

0T0

h1

OO

h2

// 0T2

f2

OO g2

JJ

Assume two generalized model morphisms 0T1

g1−→ A
g2←− 0T2 such thath1;;g1 = h2;;g2. In the

virtue of the remark at the beginning of this proof, there exists a unique generalized model mor-
phismq: 0T → A, and moreover,fi ;;q = gi for i = 1,2.

4. Category-based Equational Logic

This section surveys the basic concepts and results in CBEL that are necessary for this paper.
A survey of CBEL is (Goguen and Diaconescu, 1995), and the full development of this theory
can be found in (Diaconescu, 1994). Other relevant papers are (Diaconescu, 1995; Diaconescu,
1996c; Diaconescu, 1996b; Diaconescu, 1996a).

4.1. Models and Domains

The semantics of a logical system is given by itsmodels. In general, soundness of the inference
rules of a logical system is checked against its models usinga satisfaction relation, in the style
of Tarski (Tarski, 1944). We assume that models and their morphisms form a category. As in
institutions (Goguen and Burstall, 1992), CBELs are “localized” to signatures. A model is an
interpretation of a particular signature into adomain. Thus any model has an underlying domain,
and this correspondence is functorial. Moreover, any two parallel model morphisms identical
as maps between their domains should be the same. These assumptions are summed up in the
following:

[Basic Framework]: There is an (abstract) category of models A and a forgetful functor U : A→X

to a category of domains X that is faithful and preserves pullbacks.

The simplicity of these assumptions reflects the simplicityof equational logic. The condition
that U preserves pullbacks relates to congruences being equivalences (see (Diaconescu, 1994;
Diaconescu, 1995)).

In practice, the forgetful functorU always has a left adjointF , which means that for every
X ∈ |X|, thought as a domain of variables, there is afree modelXF . Note thatU preserves
pullbacks when it has a left adjoint (e.g., see (Lane, 1971)).
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The signatures of computing science logics usually involvea set of sorts. Then the categories
of domains are categories of many sorted sets, i.e.,X = SetS for some setS of sorts. Although
CBEL was originally developed more abstractly (Diaconescu, 1995; Diaconescu, 1994), here we
sometimes simplify by assuming that domains are many sortedsets, i.e., that the following

[Simplifying Assumption]: X = SetS

holds. This avoids the difficult technical details of finiteness properties of categorical relations
found in (Diaconescu, 1994) and (Diaconescu, 1995).

4.2. Examples

This subsection briefly sketches several examples, assuming familiarity with their basic concepts,
and showing how they fall under theBasic Framework. A more detailed presentation of some of
these examples can be found in (Diaconescu, 1994; Goguen andDiaconescu, 1995; Diaconescu,
1995; Diaconescu, 1996c; Diaconescu, 1996b).

Many Sorted Algebra.Given a many sorted signature(S,Σ), let AlgΣ denote the category ofΣ-
algebras withΣ-homomorphisms. There is a forgetful functorUΣ : AlgΣ→ SetS from Σ-algebras
to S-sorted sets, forgetting the interpretations of the operation symbols inΣ. This functor has a
left adjoint. Given a setX of variable symbols, letTΣ(X) denote the (S-sorted)term algebra with
operation symbols fromΣ and variable symbols fromX.

Order Sorted Algebra.Order sorted algebra (abbreviatedOSA) adds to MSA a partial ordering
on sorts, which is interpreted as inclusion among the corresponding carriers; all approaches to
OSA share this essential idea. See (Goguen and Diaconescu, 1994a) for a recent survey, including
all basic OSA definitions (signature, algebra, homomorphism, regularity, etc.).

Given an order sorted signature(S,≤,Σ), the Σ-algebras and their homomorphisms form a
categoryAlgΣ of models for OSA. The forgetful functorUΣ : AlgΣ → SetS forgets both the
algebraicand the subsorting structure. We emphasize that the domains forOSA shouldnot have
a subsorting structure, as is supported by the way OSA is implemented. Other approaches to
OSA mentioned in (Goguen and Diaconescu, 1994a) can be treated similarly.

Rewriting Logic.Algebraic signatures can be interpreted into non-conventional structures that
are more complex than the ordinary plain sets. Meseguer’srewriting logic (Meseguer, 1992)
(abbreviatedRWL ) provides an interesting and important example, since RWL can be very ef-
fectively used as a unifying semantic framework for concurrency (see (Meseguer, 1992)).

Consider an algebraic signature(S,Σ). A Σ-systeminterprets each sorts∈ Sas a categoryGs

and each operationσ ∈ Σs1...sn,s as a functorσG : Gs1× . . .×Gsn→ Gs. Σ-systems gives a nice
formalization fordistributed concurrent systems, the arrows between the elements of the carriers
of a Σ-system encoding the transitions in the local states of the system.Σ-systems and their
morphisms(defined asS-indexed functors commuting with the operations ofΣ) form a category
SysΣ. The category of domains is taken to beSetS, and the forgetful functorUΣ : SysΣ → SetS

forgets the interpretations of the algebraic operations and the arrow composition, i.e., mapping
each category to its set of arrows.
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Horn Clause Logic.In (Diaconescu, 1990) we introduce an embedding of the category of mod-
els ModΣ,Π of a first order signature(S,Σ,Π) as a retract of the category of algebras of an
MSA signature(Sb,Σb∪Πb) obtained from the original first order signature by turning predi-
cates into operations. Interpreting predicates as booleanvalued operations is hardly new; it has
even been used to lift narrowing to an operational semanticsfor logic programming (Dershowitz,
1983). However, this approach (further exploited in (Diaconescu, 1995; Diaconescu, 1996c; Di-
aconescu, 1996b; Diaconescu, 1994)) is somewhat different, because it does not assume a full
boolean structure on the new sort of truth values. Moreover,the model theoretic aspect is empha-
sized.

A consequence of this result is that given a first order signature (S,Σ,Π), the category of
models for Horn clause logic (abbreviatedHCL ) can be taken asAlgΣb∪Πb instead ofModΣ,Π,
and its sentences as conditional equations instead of Horn clauses. Notice that in HCL, unlike
MSA, the forgetful functor from models to domains,AlgΣb∪Πb → SetS, is not monadic.

Equational Logic Modulo Axioms.Equational deduction modulo a set of axioms (abbreviated
ELM ) is needed for rewriting when there are non-orientable equations; detailed expositions are
given in many surveys or textbooks; we mention (Goguen, 2000). Although in practice non-
orientable rules are mostly unconditional, there is no theoretical reason to exclude equational
deduction modulo a set of conditional equations. Idempotence is a non-orientable conditional ax-
iom, when given in the formx + y = x if x = y. Equational deduction moduloE gener-
alizes the usual concepts of MSA to “concepts moduloE”, including the inference rules (Goguen,
2000). A model theory for equational logic moduloE requires an adequate notion of model, and
it is natural to useAlgΣ,E, which gives “algebras modulo axioms” (i.e., allΣ-algebras satisfying
each axiom inE). The category of domains is the categorySetS of S-sorted sets and functions,
and the forgetful functorUΣ,E : AlgΣ,E→ SetS forgets both the axioms and the MSA structure.

ELM includes the example of Mosses’s unified algebras (Mosses, 1989) whose logic can be
regarded as equational logic modulo a conditional theory.

Summary of Examples.The following summarizes the examples discussed above:

A (category of models) U forgets:
MSA AlgΣ algebraic structure
OSA AlgΣ algebraic structure + subsorting
RWL SysΣ algebraic structure + arrow composition
HCL AlgΣb∪Πb algebraic structure + sortb
ELM AlgΣ,E algebraic structure + axioms

Any combination of these logical systems is possible, e.g.,order sorted Horn clause logic with
equality which is the logic underlying Eqlog.

4.3. Category-based Equational Deduction

Equations are traditionally pairs of terms constructed from the symbols of a signature plus some
variables. Goguen and Meseguer (Goguen and Meseguer, 1985)first made quantifiers part of the



Răzvan Diaconescu 14

concept of equation, for MSA. Although terms are syntactic constructs, from a model theoretic
perspective they are just elements of the free term model over the set of quantified variables.
Any valuation of the variables into a model extends uniquelyto a model morphism evaluating
both sides of the equation. Thus, a more semantic treatment of quantification regards quantifiers
as models rather than sets of variables, and regards valuations as model morphisms rather than
functions; this was already done in (Căzănescu, 1993) forMSA. This non-trivial generalization
of equation and satisfaction extends naturally to equational deduction, and in our opinion gives
a pleasing unity and generality to the whole area.

Definition 4.1.Let A be any model. Then aU-identity onA is a binary relationk
〈s,t〉
−→ AU on the

underlying domain ofA. An identity〈s, t〉 in A is satisfiedin a modelB with respect to a model
morphismh: A→ B iff s;hU = t;hU. This is denotedB |= 〈s, t〉[h].
A U-equation is a universally quantified expression(∀A)〈s, t〉 whereA is a model representing
the quantifier and〈s, t〉 is an identity inA. A modelB satisfies(∀A)〈s, t〉 iff B satisfies the identity
〈s, t〉 for all model morphismsh: A→ B. This is writtenB |= (∀A)〈s, t〉. A conditional U-
equation is an expression having the form(∀A) 〈s′, t ′〉 if 〈s, t〉 whereA is a model representing
the quantifier,〈s′, t ′〉 is aU-identity onA, and〈s, t〉 is a finite (i.e., the “index” object [i.e., the
source ofs and t] of the relation is finite8 (Diaconescu, 1994) or (Diaconescu, 1995)) binary
relation on the domain ofA representing the hypotheses (i.e, the condition) of the equation. A
modelB satisfies(∀A)〈s′, t ′〉 if 〈s, t〉 iff for any morphismh: A→ B, s;hU = t;hU implies
s′;hU = t ′;hU.
A U-query is an existentially quantified expression(∃A)〈s, t〉 whereA is a model representing
the quantifier and〈s, t〉 is an identity inA. A solution of (∃A)〈s, t〉 in a modelB is any model
morphismh: A→ B for which 〈s, t〉 is satisfied inB with respect toh.

Notice that the notion ofU-equation (query) deals withfamilies of equations (queries), rather
than single equations (queries), as sentences.

Completeness of CB equational deduction is traditional in that the central concept is the
congruence determined by a setΓ of (possibly conditional) equations on a modelA (e.g., see
(Birkhoff, 1935)). The most abstract completeness result states the equivalence of two versions
of this congruence: all unconditional equations quantifiedby A that can besyntactically inferred
fromΓ; and all unconditional equations quantified byA that aresemantic consequencesof Γ. This
semantic treatment of equation and satisfaction (see (Diaconescu, 1994; Diaconescu, 1995)) al-
lows the congruences determined byΓ on free models and on other models to be treated the same
way. Despite the generality and abstraction, the rules of inference for CB equational deduction
can be made explicit for concrete examples, and can be recognized even in the most abstract
formulation.

The following technical assumption underlies the proof theory for CBEL:

[Deduction Framework]: Basic Framework + the category A of models has pullbacks and co-
equalisers.

8 It has been observed that in many important examples, the intuitive notion of an objectA in a categoryC being “finite”
coincides with the technical condition of the set-valued ”hom” functorC(A,−) preserving filtered colimits. Therefore
we adopt here this technical notion of finiteness. The book (Adamek and J.Rossicki, 1994) contains a good study of
this categorical notion of finiteness.
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Let A be an arbitrary model. Then a binary relationQ on the domain ofA is acongruenceiff it
is a kernel of a model morphism, i.e., iff there is a morphismϕ in A such thatQ= U(kerϕ). The
quotient of A by Q is the coequaliser ofkerϕ. Its target model is denotedA/Q and is also called
thequotient of A. Thecongruence closure ofa binary relationQ on the domain ofA is the least
congruence onA containingQ. GivenΓ be a set of conditional equations, a congruence≡ onA is
closed underΓ-substitutivity iff for any (∀B)〈s′, t ′〉 if 〈s, t〉 in Γ and any morphismh: B→ A,
s;hU ≡ t;hU impliess′;hU ≡ t ′;hU. The least congruence onA closed underΓ-substitutivity
is denoted≡A

Γ. In the usual concrete examples, a relation is closed underΓ-substitutivity iff it
contains all the pairs generated as substitution instancesof the equations inΓ.

The completeness of the CBEL proof theory depends on a finiteness condition forU which
in the usual concrete cases corresponds to the fact that all operation (and relational) symbols
take only a finite number of arguments. In (Diaconescu, 1994;Diaconescu, 1995; Goguen and
Diaconescu, 1995) this is calledfinitarity of U and comes under different formulations corre-
sponding to various abstraction levels.

Theorem 2.Completeness TheoremIf the forgetful functorU is finitary and all equations inΓ
have projective quantifiers, then:

1 the least congruence closed underΓ-substitutivity, denoted≡A
Γ, exists;

2 A/≡A
Γ is the freeΓ-model overA; and

3 Γ |= (∀A)〈s, t〉 iff s≡A
Γ t.

The proof (which may be found in (Diaconescu, 1994; Diaconescu, 1995)) brings out the syn-
tactic character of≡A

Γ, showing it is the closure under the syntactic consequencesof Γ using
congruence andsubstitutivity as inference rules. Under

[Adjointness Framework]: Deduction Framework + the forgetful functor U has a left adjoint F .

thecongruence rule can be explicitated asreflexivity + symmetry + transitivity + operations,
and by adding theSimplifying Assumption, U is finitary if it preserves filtered colimits.9 Recall
that a filtered colimit is the colimit of a filtered diagram andthat a filtered diagram is a diagram
for which any two nodes have and “upper bound” in the diagram.Preservation of filtered colimits
by forgetful functors is a categorical concept of finitenesswell established in categorical algebra.
For example, it is well-known (Gabriel and Ulmer, 1971) thatin a varietyAlgΣ,E, an algebraA
is finitely presented if and only if its representable hom-functorAlgΣ,E(A,−) preserves filtered
colimits.

4.4. A Herbrand Theorem

An important consequence of the most abstract version of thecompleteness result (Theorem 2) is
a Herbrand theorem for CBEL. Our approach uses the categorical characterisation of Herbrand
universes as initial models suggested in (Goguen and Meseguer, 1987). Herbrand theorem for
CBEL admits various formulations corresponding to different abstraction levels. The one that
fits best the level of presentation of this paper is the following:

9 See (Diaconescu, 1995; Diaconescu, 1994) for a more generalversion of this result using a finiteness condition on the
category of domains instead of theSimplifying Assumption.
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Corollary 4.1. Herbrand TheoremAssume theAdjointness Framework and theSimplifying
Assumption. If A has an initial model 0A, U preserves filtered colimits, and all quantifiers of
equations inΓ are projective, then:

1 the initial model ofΓ exists; let us denote it 0Γ;
2 Γ |= (∃A)q iff 0 Γ |= (∃A)q, for anyU-query(∃A)q and any modelA; and
3 if in additionU hasnon-empty sorts(i.e., for each domainy there exists a mapy→ 0AU)

andA is projective,Γ |= (∃A)q iff Γ |= (∀yF )q;hU for some domainy and some model
morphismh: A→ yF .

In the usual concrete examples the non-empty sorts condition corresponds to the fact that the
domain of the initial model has all carriers non-empty. The non-empty sorts version of Herbrand
theorem provides foundations for solving queries using techniques like resolution and paramod-
ulation. The proof of this result in a more general setting, without theSimplifying Assumption,
can be found in (Diaconescu, 1994; Diaconescu, 1995).

4.5. The Category-based Equational Logic Institution

In (Diaconescu, 1996b) the CBEL institution plays the central role for the study of equational
logic programming modularisation in the general category-based equational logic programming
setting; in this paper we use it for defining the constraint logic internally to any CBEL.

To get an institution for CBEL, we need to define signature morphisms for CBEL, and de-
fine how models and sentences translate along signature morphisms; in particular, we need to
know how quantifiers translate along signature morphisms. Then we must check that the satis-
faction relation between CBEL models and the sentences in Definition 4.1 satisfies the so-called
Satisfaction Condition for institutions (Goguen and Burstall, 1992).

Definition 4.2. A CB equational signature is a functorU : A→ X, and amorphism of CB

equational signaturesis a pair of functors〈(A′
M
−→ A), (X′

D
−→X)〉 : (A

U
−→X)→ (A′

U′

−→X′)

such thatM ;U = U′;D andD has a left adjoint.

Notice that a morphism of CB equational signatures is liberal iff M has a left adjoint.
The following shows the analogy of concepts in MSA and CBEL:

MSA CBEL
signature(S,Σ) functorU : A→X

S X

Σ A

ϕ = 〈 f , g〉 : (S,Σ)→ (S′,Σ′) 〈M , D〉 : U→U′

f : S→ S′ D : X′→X

g: Σ→ Σ′ M : A′→ A

Set f : SetS
′
→ SetS D

Alg(ϕ) : AlgΣ′ → AlgΣ M : A′→ A

Σ-equation U-equation

Before defining translations of equations along CB equational signature morphisms, we look



Constraint Logic 17

again at the many sorted case. A functionf : S→ S′ translates anS-sorted setX into theS′-
sorted setX∼ by taking the (pointwise) left Kan extension off alongX. Given a MSA signature
morphismϕ = 〈 f , g〉 : (S,Σ)→ (S′,Σ′), the term algebraTΣ′(X

∼) is exactly the free expansion
of TΣ(X) alongϕ. From this, we conclude that:

Translations of quantifiers are free extensions along signature morphisms.

This also covers quantifiers that are not free models. The translation of equations along signature
morphisms in MSA is a particular case of the following:

Definition 4.3. Let 〈M , D〉 be a liberal morphism of CB equational signatures(A
U
−→X)→

(A′
U′

−→X′). Then theU-equation(∀A)〈s, t〉 translates to theU′-equation(∀AM )〈s∗, t∗〉,

I
Iθ //

t s

��

IDD

t∗D s∗D

��
AU

AαU
// AM M U = AM U′D

where D denotes the left adjoint ofD, M denotes the left adjoint ofM , α andθ denote the
units of the adjunctions determined byM andD, ands∗ andt∗ denote the unique “extensions”
of s;AαU andt;AαU to maps inX′. Similarly, theU-query(∃A)〈s, t〉 translates to theU′-query
(∃AM )〈s∗, t∗〉.

The following result (from (Diaconescu, 1994; Diaconescu,1996b)) is the Satisfaction Condi-
tion for equational logic systems; it extends to conditional equations without difficulty. A proof
of institutionality for each example in Section 4.2 can be obtained by specialising the proof of
the following.

Theorem 3. Let 〈M , D〉 be a liberal morphism of CB equational signatures(A
U
−→ X) →

(A′
U′

−→X′). Then for any modelB∈ |A′| and any sentence(λA)〈s, t〉 with λ ∈ {∀,∃},

B |=U′ (λAM )〈s∗, t∗〉 iff BM |=U (λA)〈s, t〉 .

5. (Category-based Equational) Constraint Logic

Constraint logic is central to our approach to constraint logic programming in that it is the logic
underlying this programming paradigm. This matches the principle of logical programmingin-
troduced by Goguen and Meseguer in (Goguen and Meseguer, 1987). This section does actually
more than setting up the logic underlying ECLP; it also showshow constraint logic is a CBEL,
which means ECLP is semantically integrated to the equational logic programming paradigm.

On the other hand, we develop constraint logic internally toCBEL (we might thus call this
“category-based equational constraint logic”, but for simplicity of terminology we will stick with
“constraint logic”); in this way ECLP is accommodated by anylogical system that is a CBEL.
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5.1. Generalized Polynomials

Generalized polynomials constitute the basic syntactic ingredient in constraint logic; the rôle
played by the terms in ordinary logic is played bygeneralized polynomials10 in constraint logic.
In particular cases, generalized polynomials are term-like structures involving operator symbols,
variables, and elements of a fixed model referred as the “built-in model”.

Generalized polynomials can be regarded as elements of models in the same way as ordinary
terms are regarded as elements of [free] models as a basis fora semantic approach to sentences
and satisfaction in CBEL. The universal property of the models of generalized polynomials al-
lows a more general definition that extends the concept of generalized polynomial to the semantic
case when models play the rôle of the collections of variables and model morphisms play the rôle
of the valuation maps.

Definition 5.1. Let (A
U
−→X) be a CB equational signature of built-ins,A ∈ |A| be a model of

built-ins, and
〈M , D〉 : U → U′ be a morphism of CB equational signatures fromU to any CB equational

signature(A′
U′

−→X
′). For anyU′-modelB∈ |A′|, themodel of generalized polynomials over

B is the coproductAM +B, and it is denoted asA[B].

In practice,B is a free model over a collectionX of variables (i.e., a domainX ∈ |X′| in the
abstract case of CBEL). More precisely, ifF ′ : X′→A′ is a left-adjoint toU′, then the model of
generalized polynomials isA[XF ′], usually denoted asA[X]. This generalizes universal algebra
polynomials whenU = U′ is a forgetful functor from a category of (unsorted) algebras toSet.
However, the best known example still comes from linear algebra:

Example 5.1.Let
→
X be a set of variables.R[

→
X] is the ring of polynomials over

→
X and with real

numbers as coefficients. In this example, the signatureU of built-ins is a ring signature,11 and
U = U′. The model of the built-ins isR, the usual ring of real numbers.

5.2. Internal Constraint Satisfaction

The following provides a formal definition for constraint sentences, constraint models, and a
satisfaction relation between them, by following the principle of the preservation of the built-ins.

Definition 5.2.Let 〈M , D〉 : (A
U
−→X)→ (A′

U′

−→X′) be any liberal morphism of CB equational
signatures, and consider a modelA∈ |A| for the built-ins.
A constraint model is an interpretation ofA into the reduct of a model inA′, i.e., an arrow
c: A→ CM with C ∈ |A′|. A model morphismh: c→ c′ is a mapC→ C′ in A′ such that
c;hM = c′. A constraint modelc: A→CM is conservativeiff c is an isomorphism.
A constraint identity on B∈ |A′| is a binary relation〈s, t〉 on (A[B])U′. An identity 〈s, t〉 in B
is satisfied in a modelA

c
→CM with respect to a model morphismf : B→ C iff s; [ f ,c♯]U′ =

t; [ f ,c♯]U′, wherec♯ is the unique ‘extension’ ofc to a model morphismAM →C.

10 The ordinary polynomials from linear algebra are an instantiation of this notion. The wordgeneralizedplays here the
same rôle as the wordgeneralplays in the so-called “general algebra.”

11 More precisely, the forgetful functor from the category of rings toSet.
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AM //
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&&

A[B]

[ f ,c♯]

��

B
jBoo

f

xx
A
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c
// CM C

A constraint equation is a universally quantified expression(∀B)〈s, t〉 whereB ∈ |A′| is the
model representing the quantifier and〈s, t〉 is a constraint identity onB. A constraint modelc
satisfies(∀B)〈s, t〉 iff c satisfies the identity〈s, t〉 for all model morphismsf : B→C. This is
written c |= (∀B)〈s, t〉. This definition extends toconstraint conditional equations, queries,
and their satisfaction by constraint models in the same manner.

Example 5.2.An example of a constraint equation within the context of Example 1.1 is

< 3.14 * X , Y > + - < Y , 3.14 * X > = 0

Notice that although this equation isnotsatisfied by the standard modelR2, the constraint model
R+ does satisfy it.
An example of a constraint query within the same context is

3 * < X , Y > = < Y , Z > ;
2.79 * X + Y < Z = true .

Finding a solution to this query in the standard modelR2 reduces by the application of a rewrite
step followed by a simplification step to finding a solution for the system of linear inequalities

3 * X = Y ;
3 * Y = Z ;
2.79 * X + Y < Z = true .

A stronger version (and of higher practical relevance) of CBconstraint logic can be obtained
by restricting the semantics only to conservative models.

Definition 5.3. A constraint sentenceρ is a conservativeconsequence of a set of constraint
sentencesΓ iff M |= ρ wheneverM |= Γ for all conservativemodelsM. This is denoted asΓ |∼=ρ.

Example 5.3.Consider the OBJ3 orCafeOBJ conditional equations. They are expression of the
form

(∀X)t = t ′ if C

whereC can be anyBool-sorted term. The usual MSA (or OSA) equations appear as a special
case by using the built-in semantic equality12 for the identities in the condition.
However, in the context of Example 1.2 if we view the condition C as an identity between gen-
eralized polynomials

C = true

12 Implemented in both languages and denoted by== . Its implementation realizes the true semantic equality under the
confluence and termination of the specification regarded as arewrite system.
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then the sentences of equational logic with a built-in type of Booleans are just constraint sen-
tences. In this case the constraint models correspond to models of real OBJ orCafeOBJ mod-
ules, and the constraint satisfaction of OBJ orCafeOBJ conditional equations is the expected
one.

Also notice that the background CBEL can be realized as the trivial constraint logic for the
case when the model of built-ins is just the initial model inA.

5.3. Constraint Logic is a CBEL

The crucial technical idea underlying our semantics of ECLPis to fit constraint logic to CBEL.
Whilst such an integration of constraint logic into equational logic cannot be achieved within
the usual concrete algebraic or model theoretic approaches(no notion of algebraic signature
being abstract enough for this purpose), it works at our level of abstraction. We consider this
a good example of the benefits the use of abstract model theoretic methodology13 can bring to
Computing Science. This idea is summarized in the followingslogan, and formalized by the
subsequent definition:

Constraint logic = equational logic in a special CB equational signature.

Definition 5.4. Let 〈M , D〉 : (A
U
−→X)→ (A′

U′

−→X′) be a liberal morphism of CB equational
signatures. Then any modelA∈ |A| determines a forgetful functorU′A : (A/M )→X′, such that
U′A = MA;U′, whereMA is the forgetful functor(A/M )→ A′.

A

U

��

A′
Moo

U′

��

(A/M )
MAoo

U′A

��
X X

′Doo
X
′

Proposition 5.1. If U′ is faithful and preserves pullbacks, thenU′A is faithful and preserves
pullbacks.

Proof. M preserves pullbacks because it is a right adjoint. By using this fact, it is straight-
forward to show that the forgetful functorMA : (A/M )→A′ creates pullbacks, thus it preserves
them too.U′A preserves pullbacks as a composite of two pullback preserving functors.
U′A is faithful as a composite of two faithful functors, since the forgetful functorMA : (A/M )→

A′ is faithful.

Proposition 5.2.Let 〈M , D〉 : (A
U
−→X)→ (A′

U′

−→X′) be a liberal morphism of CB equational
signatures. Then for any modelA∈ |A|:

1 there is an isomorphism of categories(A/M )∼= (AM /A′);
2 if A′ has binary coproducts, thenMA has a left adjoint; and
3 the forgetful functorMA creates filtered colimits.

13 In the sense of CBEL and institutions.
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Proof.
1. This isomorphism is given by the adjunction isomorphismA(A,BM ) ∼= A

′(AM ,B) mapping
anyb: A→ BM to b♯ : AM → B.
2. The forgetful functor(C/A′)→ A′ has a left adjoint for anyC∈ |A′| mapping each objectA′

to C
jC→C+A′. Then we apply 1.

3. We first show that for any modelC ∈ |A′|, the forgetful functor(C/A′)→ A′ creates filtered
colimits. Then we takeC = AM and apply 1.
Let{ai}i∈I be a filtered diagram in(C/A′). The forgetful functor(C/A′)→A′ maps this diagram
to a filtered diagram{Ai}i∈I in A′. Considerµ: A→D a colimit of this diagram inA′. We define
g: C→D asai ;µi for i ∈ |I |; the correctness of this definition is given by the fact thatai;µi = a j ;µj

for all i, j ∈ |I | because of the filteredness ofI .

C
ai //

g

��?
??

??
??

??
??

??
?

k

��

Ai

µi

����
��

��
��

��
��

��

γi

��

D

θ

��
E

Now, we show thatµ is a colimiting co-conea→ g in (C/A′). Consider another co-coneγ : a→ k
in (C/A′), wherek: C→ E. γ is also a co-coneA→ E in A′. By the universal property ofµ as
a colimiting co-cone inA′, there exists a unique arrowθ : D→ E such thatµ;θ = γ in A′. All it
remains to be shown is thatθ is a mapg→ k. But g;θ = ai ;µi ;θ for somei ∈ |I |. Sinceµi ;θ = γi

we deduceg;θ = k.

Corollary 5.1. The constraint logic determined by〈M , D〉 : (A
U
−→X)→ (A′

U′

−→X′) and a built-
in modelA ∈ |A| is the CBEL (satisfying theBasic Framework) determined by the forgetful
functorU′A : (A/M )→X′.

Proof. By noticing that constraint models, sentences, and satisfaction are respectivelyU′A-
models, sentences, and satisfaction.

This result plays a crucial rôle for the development of the results in this paper, such as the Her-
brand Theorem (Theorem 4) and the complete proof theory of Section 6.1 for CB constraint
logic.

6. A Herbrand Theorem for ECLP

Herbrand theorem for constraint logic provides mathematical foundations for the concept of
constraint solving in the same way the original Herbrand theorem provides foundations for tradi-
tional logic programming, and Herbrand theorem for order sorted Horn clause logic with equality
provides foundations for equational logic programming in Eqlog (Goguen and Meseguer, 1987).
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Our approach is to instantiate the CBEL version of Herbrand Theorem 4.1 to the particular case
of constraint logic viewed as the CBEL determined by the forgetful functorU′A of Definition 5.2.

Theorem 4.Let 〈M , D〉 : (A
U
−→SetS)→ (A′

U′

−→SetS
′
) be a liberal morphism of CB equational

signatures. Fix any modelA ∈ |A|. Assume theAdjointness Framework for U′, thatA′ has
binary coproducts, and thatU′ preserves filtered colimits.
Consider a collectionΓ of conditional constraint equations with projective quantifiers, and a
U′-constraint query(∃B)q with B∈ |A′| projective. Then,

1 there exists the initialΓ-constraint model 0Γ;
2 Γ |= (∃B)q iff 0 Γ |= (∃B)q; and
3 if U′ has non-empty sorts, thenΓ |= (∃B)q iff Γ |= (∀y)q; [h, jAM ] for some domainy∈ |X′|

and some model morphismh: B→ A[y].

Proof. The basis of this proof is to regard the constraint sentences(either equations or queries)
as ordinaryU′A-sentences (in the sense of Definition 4.1). Any quantifierB of a constraint sen-
tence appears asAη; jAM M in the rôle of the quantifier of the correspondingU′A-sentence.

A
Aη // AM M

j
AM // (B+AM )M

The category of constraint models is(A/M ) and the satisfaction relation between constraint
models and constraint sentences reduces to CB equational satisfaction (cf. Corollary 5.1), so we
have only to check the hypotheses of Theorem 4.1 for the forgetful functorU′A and to explicitate
the instantiation of its conclusions to the CBEL determinedby U′A.
Deduction Framework for U′A: (A/M ) has pullbacks because of 1. of Proposition 5.2, because
MA creates limits, and becauseA′ has pullbacks. Similarly,(A/M ) has coequalisers (MA creates
coequalisers by 3. of Proposition 5.2).
Adjointness Framework for U′A: U′A has a left-adjoint which is the composite of two left ad-

joints SetS
′ F ′

−→ A′ −→ (A/M ) (cf. 2. of Proposition 5.2 for the existence of the left-adjoint
A′→ (A/M )).

(A/M ) has the initial model A
Aη
−→ AM M .

U′A preserves filtered colimitsas a composite of two filtered preserving functors (see 3. of Propo-
sition 5.2 for the preservation of filtered colimits by the forgetful functor(A/M )→A′).
Projectivity of quantifiers: We have to show that ifB is projective inA′ thenAη; jAM M is pro-
jective in (A/M ). Notice thatAη; jAM M is free overB with respect to the forgetful functor
MA. ThereforeAη; jAM M is projective because left-adjoint to coequalisers preserving functors
preserve projectivity (this rather simple categorical lemma can be easily checked by the reader).
Non-empty sorts forU′A: BecauseU′ has non-empty sorts, for any domainy∈ |X′|, there exists
at least one arrowy→ 0A′U

′, where 0A′ is the initial model inA′. Therefore, there exists at least
one arrowy→ AM U′, which isy→ 0A′U

′→ AM U′ = (Aη)U′A.

The following is a proof-theoretic corollary of the construction of Theorem 4, giving a complete
set of inference rules for CB constraint logic deduction:



Constraint Logic 23

Corollary 6.1. Under the hypotheses of Theorem 4,Γ |= (∀B) p = p′ iff (∀B) p = p′ can be
deduced by the following inference rules:

[reflexivity]
(∀B) p = p

[symmetry]
(∀B) p = p′

(∀B) p′ = p

[transitivity]
(∀B) p = p′ (∀B) p′ = p′′

(∀B) p = p′′

[congruence]
(∀B) p = p′

(∀B) p♯U′ = p′♯U′

[substitutivity]
(∀B) (r;A[h])U′ = (r ′;A[h])U′

(∀B) (p;A[h])U′ = (p′;A[h])U′

whereB is any model inA′, p, p′, p′′ are generalized polynomials inA[B], p♯, p′♯ the (unique)
extensions ofp, p′ : I → A[B]U′ to arrowsIF ′ → A[B], (∀B′) p = p′ if r = r ′ is any condi-
tional constraint equation inΓ, h: B′→ B is any model morphism, andA[h] is the unique arrow
between the models of generalized polynomials such that thefollowing diagram commutes:

AM

j ′
AM //

j
AM

%%

A[B′]

A[h]

��

B′
j ′
B′oo

h

��
A[B] B

jB
oo

In practice, it rarely happens that the sentences inΓ involve the built-in modelA. Usually,
the sentences inΓ don’t involve any elements of the built-in model (i.e.,Γ contains onlyU′-
sentences, if we were to use the notation from the discussionin the Introduction) and only the
queries appear as full constraint sentences involving elements from the built-in model. In this
case, the initial constraint model 0Γ has a simpler representation as a quotient of the free expan-
sion of the built-in model.

Notice thatU′-sentences can be canonically viewed as constraint sentences (i.e.,U′A-sentences)
via the translation along the morphism of CB equational signatures〈MA, 1X′〉 : U′ → U′A (see
Definition 4.3).

Proposition 6.1. Assuming the hypotheses of Theorem 4, suppose thatΓ contains onlyU′-

equations. Then the initial constraint model 0Γ is isomorphic to the canonical map !Γ = A
Aη
−→

AM M
eM
−→ (AM /≡Γ)M , where≡Γ is the least congruence onAM closed underΓ-substitutivity.

Proof. We show that !Γ satisfies the initiality property in the full subcategory of(A/M ) of all
models satisfyinĝΓ, whereΓ̂ is the translation ofΓ along〈MA, 1X′〉.
Letc: A→CM be any constraint model satisfyingΓ̂. By the Satisfaction Condition (Theorem 3),
this is equivalent toC |= Γ. All we have to prove is that there exists a unique arrowc♯ : AM /≡Γ→

C such that !Γ;c♯M = c.
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A
Aη //

c

%%

AM M
eM //

c′M

��

(AM /≡Γ)M

c♯M

vv
CM

By the universal property of the free extensionAη alongM , there exists a unique mapc′ : AM →

C such thatAη;c′M = c. By the universal property ofe (Theorem 2), there exists a unique map
c♯ : AM /≡Γ→C such thate;c♯ = c′.

In the case of order sorted Horn clause logic with equality, Goguen and Meseguer proved the
existence of initial constraint models for the particular case ofΓ containing onlyΣ′-sentences
(Goguen and Meseguer, 1987). This crucial result for the semantics of Eqlog can obtained as an
instantiation of our previous results.

6.1. The conservative case

For the rest of this section we investigate practically important sufficient conditions for which
Herbrand Theorem can be lifted to the conservative case. As pointed out by Example 1.2, the
Herbrand model for a constraint specificationΓ should be the initialconservativemodel; let us
denote is bỹ0Γ.

Corollary 6.2. Under the hypotheses of Theorem 4, letΓ be any constraint logic specification,
and suppose it has an initial conservative model0̃Γ. Then for any query(∃B)q

1 Γ |∼=(∃B)q iff 0̃Γ |= (∃B)q if 0Γ |= (∃B)q iff Γ |= (∃B)q, and
2 if the (unique) arrow 0Γ→ 0̃Γ is a coequalizer andU′ has non-empty sorts, thenΓ |∼=(∃B)q

iff Γ |∼=(∀y)q; [h, jAM ] for some domainy∈ |X′| and some model morphismh: B→ A[y].

Corollary 6.3. Assume the hypotheses of Theorem 4. If 0Γ is conservative, then

Γ |∼=(∃B)q iff 0 Γ |= (∃B)q

Proof. By noticing that in this case 0Γ is the initial conservative constraint model satisfying
Γ.

The following gives an important sufficient condition for which 0Γ is conservative:

Proposition 6.2.Assuming the hypotheses of Theorem 4, further suppose that for all projective
modelsB, the corresponding modelsA[B] of generalized polynomials are conservative. Then 0Γ
is conservative.

Proof. The proof of this result repeats the steps of the proof of Theorem 4 for the CBEL deter-

mined by the forgetful functor(A|M )→ (A/M )
U′A−→X′ rather than justU′A, where(A|M ) is the

full subcategory of(A/M ) of conservative constraint models. Notice that the full subcategory
embedding(A|M )→ (A/M ) creates limits and filtered colimits, a conservative model in (A|M )

is projective if and only if it is projective as a model in(A/M ), and that because all models of
generalized polynomials are conservative, the forgetful functor(A|M )→ A

′ has a left adjoint
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which is the same as the left adjoint to the forgetful(A/M )→ A′ (constructing the models of
generalized polynomials). This means that all arguments from the proof of Theorem 4 carry from

the CBEL determined byU′A to the CBEL determined by(A|M )→ (A/M )
U′A−→ X′. Therefore

0̃Γ exists.
Because the initial model of(A/M ) is the same with the initial model of(A|M ) and since the
construction of the least congruence closed underΓ-substitutivity is obtained by using only free
extensions, pullbacks, and coequalizers in(A|M ), which are the same with doing them in(A/M )

in the virtue of the above arguments, this means that0̃Γ = 0Γ.

This situation corresponds to Example 1.1 and occurs very often in practice. Related in goal
to the above result, we mention the Goguen and Meseguer results (Goguen and Meseguer, 1987)
giving, in the context of order sorted Horn clause logic withequality and ofΓ containing only
sentences without built-ins, a set of conditions that guarantee that 0Γ is conservative by imposing
some restrictions14 on the sentences inΓ.

There are however interesting practical examples (such as Example 1.2) when 0Γ is not con-
servative. In general, in such cases, even the existence of the initial conservative constraint model
cannot be guaranteed. Finding out sufficient conditions forthe existence of the initial conserva-
tive model0̃Γ when this is different from 0Γ is an important topic of future research.

7. Constraint Institutions

In this section we study constraint logic from the point of view of institutions. This brings us
to the concept ofconstraint institutionwhich internalizes the concept of constraint models to
any institution. In particular, constraint logic can be obtained as a constraint institution on top
of the CBEL institution, on the other hand, we show how the constraint logic institution can
be regarded as a CBEL sub-institution. One consequence of this result is that ECLP supports
modularization in the style of OBJ and Clear; the mathematical results on modularization based
on institutions can be directly applied to any ECLP system rigorously based on some version of
constraint logic. Finally, we show how constraint institutions serve as as a semantic framework
for combining constraint solvers over different data types.

Definition 7.1. Let ℑ = (Sign,MOD,Sen, |=) be any institution. Aconstraint institution over
ℑ is an institutionℑC = (SignC ,MODC ,SenC , |=C ) such that

1 a signature inSignC is a pair(A, ι) consisting of a signature morphismι : Σ→ Σ′ in Sign and
a “built-in” Σ-modelA (Σ is called thesignature of built-ins),

2 a morphism(h,φ,φ′) : (A1, ι1)→ (A2, ι2) in SignC consists of

— a morphism between the signatures of built insφ : Σ1→ Σ2,

— a liberal “extension”φ′ : Σ′1→ Σ′2 of φ, i.e., the diagram

14 However, these restrictions are almost always met in practice.
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Σ1
ι1 //

φ

��

Σ′1

φ′

��
Σ2 ι2

// Σ′2

commutes and MOD(φ′) has a left-adjoint, and

— a model morphismh: A1→ A2↾φ interpreting the model of built-insA1 into the model of
built-insA2.

Composition of signature morphisms is the obvious “pointwise” composition,
3 MODC (A, ι) is a full subcategory of(A/MOD(ι)) (on signatures), and

MODC (h,φ,φ′)(A2
c
−→C↾ι2) = A1

h
−→A2↾φ

c↾φ
−→(C↾φ′)↾ι1 (on signature morphisms).

Example 7.1.Consider a moduleCMPLX specifying the complex numbers by adding a supersort
C toReal, the constanti : -> C, extending the usual ring operators from reals to the complex
numbers, etc. We may consider the signature of this specification as the signature of built-insΣ2

andι2 to be just adding an operation< , > : Real Real -> C . The built-in model for
this specification is the ring of complex numbers.φ′ maps the sortReal to Real, andVect
to C and also maps the ring operations in the obvious way, and< , > to < , >. h is just the
ordinary inclusion of the reals into the complex numbers. Notice that by adding a new equation

< a , b > = a + b * i

ι2 gets the translation from the Euclidean plane to the complexnumbers.

7.1. The Constraint Logic Institution

When instantiating Definition 7.1 to the CBEL institution one gets the signatures and models
of constraint logic (see Definition 5.2). In order to fully define the institution of constraint logic
we still need to define the translation of constraint sentences of Definition 5.2 along signature
morphisms and prove the Satisfaction Condition.

The Sentence Translation. Given a morphism of constraint logic signatures

(h,φ,φ′) : (A1,〈M1, D1〉)→ (A2,〈M2, D2〉), where〈Mi , Di〉 : (Ai
Ui−→ Xi)→ (A′i

U′i−→ X′i), i =

1,2, are morphisms of CB equational signatures,A1 ∈ |A1|, A2 ∈ |A2|, and givenB∈ |A′1|, then
we have to define a translation mapping “generalized polynomials” from A1[X] to “generalized
polynomials” inA2[X∼], whereB∼ ∈ |A′2| is the free expansion ofB alongφ′.15 This translation
is given by the unique arrowα : A1[B]→ A2[B∼]↾φ′ making the following diagram commute:

15 Here we apply the principle that translation of the quantifiers are just free expansions along signature morphisms; see
Section 4.5.
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A1

h

��

A1η // AM1
1 M1

hBM1

%%LLLLLLLLLL
AM1

1

j
A

M1
1 //

hB &&MMMMMMMMMMMM
A1[B]

α
��

B
jBoo

Bη
��

A2↾φ

(A2η)↾φ
��

A2[B∼]↾φ′M1 A2[B∼]↾φ′ B∼↾φ′
jB∼ ↾φ′

oo

AM2
2 M2↾φ j

A
M2
2

M2↾φ

// A2[B∼]M2↾φ

In the particular case whenB is the free model over some “variables”X, thenB∼ appears also
as a free model over the “variables”X∼, whereX∼ is the free expansion ofX along the domain
translation component ofφ. More concretely, if the domains are many sorted sets, this is the same
as the Kan-extension translation defined in Section 4.5.

Proposition 7.1.When regarding constraint logic signatures as CBEL signatures (see Definition
5.4), the translation of generalized polynomials previously defined is the same as the translation
of sentences (Definition 4.3) along the morphism of CB equational signatures
〈MOD(h,φ,φ′), DOM(φ)〉 : U′A1

→U′A2
, where DOM(φ) is the domain functor component ofφ.

(A1/M1)

U′A1

��

(A2/M2)

U′A2

��

↾(h,φ,φ′)oo

X′1 X′2DOM(φ)

oo

Proof. From the construction ofα : A1[B]→ A2[B∼] (in the above paragraph) it is easy to
check that

α : (A1

A1η; j
AM1

M1
// A1[B]M1) // (A1

h;A2η↾φ; j
AM2

↾φ
// A2[B∼]M2↾φ = A2[B∼]↾φ′M1)

is a universal arrow. Therefore,A2[B∼] is free overA1[B] with respect to the forgetful functor
(A2/M2)→ (A1/M1).
In this way, the rôle of “Aα” of Definition 4.3 is played here byα, and the rôle of “A” by
A1η; jAM1 M1. Since any polynomial inA1[B] (or in A2[B∼]) can be regarded as an arrow• →
(A1η; jAM1 M1)U

′
A1

(or respectively• → (A2η↾φ; jAM2↾φ)U
′
A2

), we can conclude the translation
of constraint sentences previously defined is the same as theone introduced by Definition 4.3.

Corollary 7.1. Constraint logic is a CBEL sub-institution, i.e.,

c |=(A2,〈M2,D2〉)
(h,φ,φ′)ρ iff h;c↾φ |=(A1,〈M1,D1〉)

ρ

for any morphism of constraint logic signatures(h,φ,φ′) : (A1,〈M1, D1〉)→ (A2,〈M2, D2〉), any
constraint modelc: A2→CM2, and any constraint sentenceρ over(A1,〈M1, D1〉).
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7.2. Combining Constraint Solvers

In this section we sketch some logical foundations of modular combination of constraint solvers
over different data types by using the constraint logic institution. By aconstraint solverwe mean
a decision procedure for solving constraint queries for a given specification or program. The
topic of this section constitutes subject for further development, therefore the results presented
here should be considered as a starting point for further research.

Firstly, we need to formulate the problem within our framework.

Definition 7.2. Given two constraint logic theoriesΓ1 andΓ2 sharing a common partΓ0 (repre-

sented as a pair of constraint logic theory morphismsΓ1
γ1
← Γ0

γ2
→ Γ2), theshared combination

of Γ1 andΓ2 is denoted byΓ1 +Γ0 Γ2 and is defined as the following pushout

Γ0
γ1 //

γ2

��

Γ1

γ′1

��
Γ2

γ′2
// Γ1 +Γ0 Γ2

The pushout definition of the shared combination of constraint logic theories follows the Clear-
OBJ modularization tradition (Goguen et al., ; Burstall andGoguen, 1980) of “putting together”
theories via co-limits. For example, the sum (+) and the parameter instantiations for modules are
realized as pushouts of theories (see (Diaconescu et al., 1993; Diaconescu, 1996b)).

The following result shows that under normal technical conditions the shared combination of
theories exists in any constraint institution:

Theorem 5.Assume the institutionℑ = (Sign,MOD,Sen, |=) has pushouts of signatures, is semi-
exact, its signature morphisms are liberal, and the category of models for each signature has
pushouts. Then any constraint institutionℑC overℑ has pushouts of theories.

Proof. By the fundamental result on the existence of co-limits of theories in institutions
(Goguen and Burstall, 1992), it is enough to prove thatℑC has pushouts of signatures.
Notice that the following square

SignC
Q1 //

Q2

��

Sign→

P1

��
Flat(MOD)

P2

// Sign

is a pullback, whereSign→ is the functor categoryCat((•→ •)→ Sign), P1 is the projection on
the source, andP2 is the projection on the signature component.
In virtue of Theorem 1 we have thatFlat(MOD) has pushouts. We also have thatSign→ has
pushouts because colimits in functor categories are calculated pointwise from co-limits in the
base category. Moreover,P1 andP2 create pushouts.
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Consider a baseb: (•← •→ •)−→ Sign in SignC and letµ: bQiPi → Σ be its pushout inSign.
BecausePi create pushouts, there are pushoutsµi of bQi with µiPi = µ. From the structure of
pullbacks inCat, we get a co-coneµ′ overb such thatµ′Qi = µi. We show thatµ′ is a pushout
of b. Let β be another co-cone overb. Then,βQi is a co-cone overµi , so we have uniqueqi such
that µi ;qi = βQi . Again by the structure of pullbacks inCat, this gives the uniqueq such that
µ′;q = β.

The problem of combining constraint solvers over differentdata types can then be formulated
as:

Solve a query for the shared combination Γ1 +Γ0 Γ2 when given constraint solvers for the compo-
nents Γ1 and Γ2.

One very elegant algebraic approach to the problem of combining constraint solvers was given
by Baader and Schultz (Baader and Schultz, 1994; Baader and Schulz, 1994). Their idea is es-
sentially based on studying algorithms that decompose the problem of finding solutions forq to
problems at the level of the components for which constraintsolvers already exist.

Definition 7.3.Any algorithm such that given a queryq in some shared combination of signatures
and assuming some fixed modelsA1 andA2 for the signatures, outputs queriesqi , i = 1,2, for
each component such that

(A1 |= q1 and A2 |= q2) if A1⊕A0A2 |= q.

is called adecomposition algorithm.

Then a constraint solver finding solutions forq would alternate applications of constraint solvers
for q1 andq2 with steps of the decomposition algorithm. We refer to the work of Baader and
Schultz (Baader and Schultz, 1994; Baader and Schulz, 1994)for examples of such decomposi-
tion algorithms, for the purpose of this section the generalconcept suffices. Notice also that the
component queries generated by the decomposition algorithms are expected to have solutions
only if the original (composed) problem admits a solution. This one-way implication reflects the
intuition that the decomposition algorithms are irreversible processes in the sense that they do
not necessarily admit inverse composition algorithms.

Although their approach is developed only for the case of unsorted universal algebra16 and
it lacks a conceptual framework such as constraint logics (including full constraint sentences,
a Herbrand theorem and a concept of morphism of constraint logic theories), we feel that its
essence fits very well our constraint logic approach.

The following result provides logical foundations for combination of constraint solving tech-
niques within the framework of the constraint logic institution.

Corollary 7.2. Assume a CBEL institution satisfying the following:

— theAdjointness Framework,
— the categories of models have finite colimits,
— the reducts between the categories of models have left-adjoints,
— the forgetful functors from models to domains preserve filtered colimits,
— has pushouts for signatures, and

16 Though easily extendible to MSA.
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— is semi-exact.

Then for any constraint logic (over the assumed CBEL) theoriesΓ1 andΓ2 sharingΓ0, and any
queryq for Γ1 +Γ0 Γ2, there exists queriesqi for Γi , i = 1,2, such that

Γ1 +Γ0 Γ2 |= q implies Γ1 |= q1 and Γ2 |= q2

provided there is a decomposition algorithm for queries at the level of the Herbrand models.

Proof. The shared combination of constraint logic theoriesΓ1 +Γ0 Γ2 exists by Theorem 5.
Then

Γ1 +Γ0 Γ2 |= q
(Herbrand Theorem for constraint logic 4) iff 0Γ1+Γ0

Γ2 |= q

(Proposition 3.1) iff 0Γ1⊕Γ00Γ2 |= q
(decomposition algorithm) implies 0Γ1 |= q1 and 0Γ2 |= q2

(Herbrand Theorem for constraint logic 4) iff Γ1 |= q1 and Γ2 |= q2

The technical conditions in the hypotheses of the previous result represent the joining of the
hypotheses of Theorem 4 and of Theorem 5. At a first glance theymight look quite heavy,
however they are just very basic and describe a normal technical framework. In fact, all examples
of Section 4.2 satisfy these conditions, all of them being quite intensively used logics nowadays
in algebraic specification.

The meaning of Corollary 7.2 is the reduction of the problem in solving queries in combina-
tion of constraint logic theories which already have constraint solvers to that of decomposition
algorithms at the level of Herbrand models.

8. Conclusions and Future Work

We developed a category-based semantics for constraint logic programming rigorously based
on logic, the corresponding logical system being calledconstraint logic. We showed that mod-
els of constraint logic form a comma category over a model of built-ins and that the so-called
“generalised polynomials” play the rôle of terms. We showed that constraint logic is an institu-
tion, and proved that constraint logic is a special case of category-based equational logic. One
of the consequences of integrating constraint logic into (category-based) equational logic is a
novel Herbrand theorem for constraint logic programming; we also proved that in practice the
Herbrand model of a program is the quotient determined by theprogram on the free extension
of the built-in model. Finally, we sketched some logical foundations for modular combination of
constraint solvers based on the amalgamated sum of the Herbrand models of the corresponding
constraint theories.

One of the most important research directions is to further explore the computational conse-
quences of this semantics, especially in the context of modular combination of constraint solving
techniques. “Constraint paramodulation” of (Diaconescu,1996c) can be used17 as a basis for de-
velopingextensible modularconstraint languages, i.e., languages combining constraint solvers
over different data types in truly modular fashion á la Clear-OBJ tradition. This needs further

17 In a remotely similar way to the ‘theory resolution’ of (Stickel, 1985). Also, recent advances in making
paramodulation-based techniques more effcient (see (Bachmair et al., 1995), for example) have to be incorporated
in any system implementing constraint paramodulation.
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development of the topic of Section 7.2 in conjunction with constraint paramodulation as opera-
tional semantics.

Another important research direction is the study of ECLP over non-conventional structures
which are not based on sets, which might result in interesting new applications. This should
technically be based on the abstract development of constraint logics over any category-based
equational logic.

Finally, more theoretical research directions would be to explore new sufficient conditions for
the existence of the initial conservative constraint model, and to investigate the mathematical
and logical properties of constraint logic, including axiomatisability results specific to constraint
logic.
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