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This research exploits the view of constraint programmimganputation in a logical system,
namelyconstraint logic The basic ingredients of constraint logic azenstraint modelor the
semantics (they form a comma-category over a fixed modelw@ft“ims”), generalized polynomials
in the role of basic syntactic ingredient, andamstraint satisfactiomelation between semantics and
syntax.Category-basedonstraint logic means the development of the logic is abstrategorical
rather than concrete set theoretical.

We show that (category-based) constraint logic is an utgtit, and we internalize the study of
constraint logic to the abstract framework of categoryelblasquational logic, thus opening the door
for considering constraint logic programming over nomdtad structures (such as CPO'’s,
topologies, graphs, categories, etc.). By embedding oategased constraint logic into
category-based equational logic, we integrate the canstaic programming paradigm into
(category-based) equational logic programming. Resotiside completeness of constraint logic
deduction, a novel Herbrand theorem for constraint logogmmming characterizing Herbrand
models as initial models in constraint logic, and logicalrfdations for modular combination of
constraint solvers based on amalgamated sums of Herbradel$rin the constraint logic
institution.

1. Introduction
1.1. Extensible Constraint Logic Programming

Constraint logic programming has been recently emergirsgeasverful programming paradigm
and it has attracted much research interest over the pastieleConstraint logic programming
merges two declarative programming paradigms: constsiiving and logic programming.
Mathematical Programming, Symbolic Computation, Artéldintelligence, Program Verifica-
tion and Computational Geometry are examples of applicatieas for constraint solving. Con-
straint solving techniques have been incorporated in maogrpmming systems; CLP (Jaffar
and Lassez, 1987), Prologlll (Colmerauer, ), and Mathezaatie the best known examples. The
computational domains include linear arithmetic, boolelgebra, lists, finite sets. Conventional
logic programming (i.e., Prolog) can be regarded as canstsalving over term models (i.e.,
Herbrand universes). In this way, constraint logic prograng can be regarded as a generaliza-
tion of logic programming that replaces unification with straint solving over computational

T On leave from the Institute of Mathematics of the Romaniaad&my, PO Box 1-764, Bucharest 7070@NRNIA .
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domains. In general, the actual constraint logic programgrsiystems allow constraint solving
for a fixed collection of data types or computational domai@onstraint logic programming
allowing constraints ovesiny data type (possibly given with loose semantics) will beexdix-
tensible (abbreviatedECLP).

This paper presents an (abstract) model theoretic semsdoticECLP, without directly ad-
dressing the computational aspect. This is a rather noy@loaph on the area of constraints
where almost all efforts have been devoted to computatiandloperational issues; it is im-
portant the reader understands the model-theoretic anti&dional orientation of this paper.
However, we plan to gradually develop the computationat sfidsed on these foundations as
further research (Section 7.2 sketches some of the directid such further research). Some
computational aspects of this theory can already be foudiaconescu, 1996c¢).

This semantics is
— logical,

— abstract, and
— institution-independent.

The first aspect means that there is an underlying logic irthvhll main features of ECLP can
be rigorously explained. The second means that we devetoméin concepts and results at the
“highest appropriate level of abstraction”, leaving ouheoessary details whilst still addressing
the substance of ECLP. Finally, “institution-independewtdresses both former aspects within
the theory of institutions (Goguen and Burstall, 1992),echhiepresents now the modern level of
algebraic specification. This means that our semantics tdEgan be internalized to various in-
stitutions (i.e., logics), thus providing an uniform way fotegrating ECLP into various systems
with rigorous logical semantics, but also developing ECkBraovel structures.
The main results reported in this paper are:

— define a generic logic underlying ECLP (calleghstraint logic),

— embedding constraint logic into the category-based egpaltiogic of (Diaconescu, 1994;
Diaconescu, 1995; Goguen and Diaconescu, 1995; Diacont3@6b),

— a generic Herbrand Theorem for constraint logics providmgdations for the concept of
constraint solving in ECLP,

— a generic institution for ECLP providing foundations for dutar ECLP and for connecting
constraint logic to other computing logics via institutioppings (morphisms), and

— logical foundations for modular combination of constraialvers via amalgamation of Her-
brand models in constraint logic.

The embedding of constraint logics into category-basedapual logic constitute the engine
for most of the main results in this paper, but also a potestiarce for further developments.
Due to this embedding, the constraint logic institution pagperties close to algebraic spec-
ification institutions; also we are able to prove a Herbram@drem for ECLP by using the

1 From a model-theoretic perspective, a computational dommaiy be abstracted to a model (not necessarily the stan-
dard one) of a certain data type specification. There can \@aespecifications which have a certain domain as
their model, a typical example being the case of the real musnvhich can be regarded as monoid in two different
ways, as ring, as commutative ring, etc. Since in many casesot possible to find a finite specification which has
the respective domain as its initial model, one has to censite most appropriate specification of the domain with
respect to the intended application.
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corresponding result for category-based equational I¢gge (Diaconescu, 1995; Diaconescu,
1994)). On the more practical side, this means the poggilbdidirectly transfer software engi-
neering and implementation techniques and methodologieslaped for algebraic specification
to ECLP. Examples include advanced modularization teatesqfor modular combination of
constraint solvers, for example) and the operational séosnased oronstraint paramodula-
tion of (Diaconescu, 1996c¢). Finally, since the development@EE can be internalized to any
category-based equational logic, this means the posgibilisystematically developing ECLP
over non-set-theoretic structures (such as graphs oradsgfor example). This is an area of
great potential not yet explored, and is the subject of futasearch.

Our approach to ECLP (informalAs with the CLP approach of Jaffar and Lassez (Jaffar and
Lassez, 1987), both constraint relations and programssate ¢f) sentences in the same logi-
cal system. But our constraint logics are much more genkaal Horn clause logic. Also, the
computational domain plays a primary rble in our definitidiconstraint logic, rather than being
axiomatized in Horn clause logic, as in (Jaffar and Lass@&7L

When regarded as a model in constraint logic, the compuigtidomain is arinitial model.
This is mathematically linked to the semantics of OBJ-likedule systems, the fundamental
idea being to regard the models of ECLP as expansions of ao@gtebuilt-in model Aalong
asignature inclusion < — 3, whereX is the signature of built-in sorts, operations and relatjon
andX’ adds new “logical” symbols. In practice, the constrainatieins (i.e., the logical relations
one wishes to impose on potential solutions) are limitedtdonéc sentences involving both
symbols and elements of the built-in modelHowever, at the theory level there is no reason to
restrict constraint relations to be atomic formulae. Theleils for ECLP are expansions of the
built-in model to the larger signatud, and morphisms of constraint models must preserve the
built-ins. Thus the constraint models form a comma categotyi op(1).

Example 1.1. (The Euclidean planelConsider the example of a specification of the Euclidean
plane as a vector space over the real numbers.
obj R2is
pr FLOAT * (sort Float to Real)
sort Vect

op 0 : -> Vect
op <, >: Real Real -> Vect

op _+_ : Vect Vect -> Vect

op -_ : Vect -> Vect

op _*_: Real Vect -> Vect

vars a b a b k Real

e 0O=<0, 0>.

eq<a, b>+<a , b >=<a+a , b+b >.
eq k * <a, b>=<k=+~a, k*b>

eq-<a, b>=<-a, -b>

endo



Razvan Diaconescu 4

The signature of built-in sorts, operation and relation symbols containg sortReal 2 for
the real numbers together with the usual ring operation sysrdnd a relation symbok_. The
built-in model is just the usual ring of real numbers (dedadsR) with _<_ interpreted as the
usual ‘strictly less than’ predicate. The signathifef the moduleR2 introduces a new operation
symbol<_, _> for representing the points of the Euclidean plane as tugflesal numbers, and
overloads the ring operations by organizing the Eucliddangyas a vector space over the real
numbers. The axioms express the basic fact that the evatugitithe ring operations on vectors
is done component-wise.

A standard model for this specification, denoRd] is given by the Cartesian representation of
the points of the Euclidean plane, i.e., any point is represkas the tuple of its coordinates. An-
other model for (the corresponding 'theory” version, alilogloose models, ofR2 interprets the
sortVect as the set of real numbers, tRemodul€ operations oVect as ordinary operations
on numbers, but_, _> as addition of numbers. We denote this modeRby.

Example 1.2. (Equational logic with a built-in Boolean typg Very oftenly modern algebraic
specification systems provide some pre-defined data types as the Booleans. For example, in
both OBJ (Goguen et al., ) ai@hfeOBJ (Diaconescu and Futatsugi, 1998) each module imports
the data type of the Booleans by default. This has multipfessequences, for example, it supports
a more general form of conditional equations, where conwlitiare Boolean-sorted terms rather
than just finite conjunctions of identities (see (Gogueri.et Biaconescu and Futatsugi, 1998)).
This can be regarded as a special case of constraint logattiyd the signatur of built-ins to
consist of just one soBool and the modeA of built-institution consisting of just two elements
t rue andf al se. The other operations ddool (such asand, or) can be considered as part
of ¥’; however more sophisticated versions of this exampleitrgdlhe otheBool -operations
as part of the built-in signature would also work well.

This example can also be used for embeddibggc programming with negationinto ECLP by
interpreting the predicates (i.e, relational symbols) lofgac program a8ool -valued functions.

A positive literal will be written agp(x) = true rather thanp( x), and a negative literal
asp(x) = fal se rather than-p(x). The models are restricted to thdl subcategoryB of
A/MoD(1) with objects isomorphismA ~ BJ,; this means exactly the protection of tBeol -
valuest r ue andf al se. See also the discussion oonservativenodels in Section 5.2.
Consider the example ofraodus tollenprogram:

obj MODUS- TOLLENS i's

sort s .
ops p q : s -> Bool . *xx unary predicates on s
opa: ->s. *xx constant of s
var X : s .
cq q(X) = true if p(X)
eq g(a) = false .
j bo

2 Obtained here by renaming the s@itoat of the imported built-in OBJ modul&LOAT implementing the real
numbers as floating point reals.
3 In the sense of linear algebra.
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The initial (in B) modelH for this program interpretpy (a) asf al se. (Notice that this hap-
pens exactly because all modelsBmmust protect the Booleans. The classical proof-theoretic
Herbrand model for this program would introdyza) as a new value of soBool .)

As will be explained later in the paper, the initial modelydahe role of the (constraint) Herbrand
model, so a query such p§Y) = fal se must getthe answef = a.*

1.2. Constraint Logic, Constraint Institutions, and Categdrgsed Equational Logic

The main concept proposed by this research is thatooftraint logic The development of
constraint logic and of the main results involves intimateto other frameworkscategory-
based equational logiandconstraint institutions

Category-based equational logic (Diaconescu, 1994; biestu, 1995; Diaconescu, 1996b;
Goguen and Diaconescu, 1995; Diaconescu, 1996c¢) (abtd@BEL ) abstracts out the es-
sential ingredients of equational logic. Equations, déida¢ models (algebras), congruences,
satisfaction, etc. are treated in an arbitrary categoryadets satisfying certain mild conditions,
including a forgetful functor to a category dbmains This encodes the principle that a model
interprets a signature (often called a “vocabulary” in sleal logic) into a domain, usually (but
not necessarily) a set, or for typed systems, a collectigets. Category-based equational logic
programming (abbreviatedB andELP, respectively) extends this generalization to computa-
tion, including rewriting, paramodulation (Diaconesc894; Diaconescu, 1996c), modules (Di-
aconescu, 1994; Diaconescu, 1996b), and constraint go{(iiaconescu, 1994; Diaconescu,
1996a) and this paper). CBEL also involves another levekokgality by considering equalities
between elements of arbitrary models as sentences. Thasajizes classical equations by view-
ing the terms as elements of some free model (i.e., term mdeesults include completeness
of deduction, a Herbrand theorem, completeness of paralatimhy and generic modularization
techniques.

In Section 7 we introduceonstraint institutions as a special class of institutions internalizing
the model part of constraint logics to any institution araliag the sentence part and the satis-
faction between models and sentences abstract. This nppooNides a conceptual separation
between the model theory and the syntax of constraint lagiich is very beneficial for the eco-
nomical development of the semantics of modular combinatioconstraint solvers), but also
provides a formalization for the model theory of logics opeg-defined structures with possibly
very different concept of satisfaction between models amlences. A meaningful example is
given by the hidden sorted logics (Goguen and Diacones@4;350guen and Malcolm, 1997)
used in behavioural specification.

The following is a diagram illustrating a hierarchical t@aship between the various concepts
and frameworks used in this paper.

4 Notice that this is a semantics argument, the operatiosaksrelated to this example are also interesting and they
constitute an important research topic.
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Constraint
Institutions

/
/
Constraint Logic

The most abstract concept is that of institution. Constraistitutions and CBEL are both in-
stitutions. Constraint logic is a constraint institutiont lzan also be embedded into CBEL (in
this way ECLP can be regarded as a special case of [an alfsinacof] plain equational logic
programming). Finally, the dotted arrow shows that comsttagic can be developed abstractly
on top of CBEL.

1.3. Structure of this paper

This paper is structured as follows. After the Introductioml a section on Preliminaries, we de-
vote a section to Institutions, where we briefly review theibastitution concepts and introduce
several new concepts and prove some basic results whicleeessary for the development of
category-based constraint logic. The next section brieflyey's the main concepts and results of
CBEL; the material of this section can be found also in (Dieeszu, 1995; Diaconescu, 1996b;
Goguen and Diaconescu, 1995; Diaconescu, 1994; Diacon386c). This section also intro-
duces the so-callegimplifying Assumption on CBEL which simplifies the presentation of this
research but without restricting the real generality of approach (i.e., everything here can be
developed in the absence of tBanplifying Assumption). Section 5 develops category-based
constraint logic and introduces the core novel concept$isfresearch. The main result here
is the embedding of constraint logic into CBEL. Section 6ésated to the main result of this
paper, the Herbrand Theorem for category-based conskogiistwhich is obtained via the em-
bedding of constraint logic into CBEL and by instantiatifg tHerbrand Theorem for CBEL
to constraint logic. This instantiation requires an ingtirey categorical proof. The final section
introduces the more general concept of constraint ingiityishows how constraint logic fits
this generalization, and at the end sketches a categoeigarstics for modular combination of
constraint solvers by using both results for constrairitinsons and the Herbrand Theorem for
category-based constraint logic.

In this paper we formulate previously published result$wiit giving their proof and prove
only the new results or results which have not been proveaoreéh published form.



Constraint Logic 7

2. Preliminaries

Categories.This work assumes familiarity with the basics of univerdglelra and category
theory, and generally uses the same notation as Mac Lane (L& 1), except that composition
is denoted by “;” and written in the diagrammatic order. Thel&cation of functions (functors)
to arguments may be written either normally using paremthesr else in diagrammatic order
without parentheses. Categories usually have a name wsthditer in capital bbold font; for
example the category of setsSet, and the category of categories@st. The opposite of a
categoryC is denoted byC°P. Functors are usually (but not always!) denoted by caligiap
capital letters, particularly for ‘functor variables’ apgmsed to functors whose action is known.
The class of objects of a categatyis denoted by C|; also the set of arrows i€ having the
objecta as source and the objdeas target is denoted lfy(a, b).

Given two functorsC -5 E <2~ D, thecomma category(C/D) has arrowsC S dDas
objects and pairs of arrowd, g) as morphisms, such thag® = f C;t’. For functors collapsing
everything to a constant object (i.e., to an identity arrex@)use the object itself as notation.

We denotecoproductsby +, coequalisersby coeq andkernels by ker (i.e., a pullback of an
arrow with itself). An objectA in a categoryC is coequaliser projective(or justprojectivefor
short) iff for any coequalisdB -, Cand any arronA ', C there exists an arroW such that
h';c = h. Projectivity is very oftenly a more abstract alternati¥déreeness that does not require
an adjunctior?

A functor U: A — X has aleft-adjoint 7: X — A iff for each X € |X] there is an arrow
Xn: X — X U such that for eacti € X(X,AU) there exists an unique arrof¥ € A(XF,A)
such thaXn; f = f*7. Then is called aright-adjoint .

An indexed category(Tarlecki et al., 1991) is a functd: 1°P — Cat; sometime<C is also
denoted agC; }ic|. The following flattening constructidrplays an important réle in this paper.
Given an indexed categofy: 1°P — Cat, let FlafC) be the category having,a), with i € ||
anda < |G|, as objects anu, f): (i,a) — (j,b), withue I(i,]) andf: a— bC,, as arrows,
where the composition of arrows is defined(oyf);; (U, f') = (u;u', f;f'Cy).

This work needs the following categorical treatment of bjn@elations (Diaconescu, 1994;
Diaconescu, 1995):

Definition 2.1. Let A be an object of a categol. Then abinary relation representation on A

is a parallel pair of arrows t € X(I,A), denoted L1 Aorjust(s,t). Letl 59 Aandl’ il Abe

binary relation representations on the same objedthen(s, t) is included in (s, t’) (denoted
(s,t) Ca (s, t'), orjust(s,t) C (s, 1)) iff there isa maph: | — I’ between the objects of indices
such thats = h;s andt = h;t’. Two relation representatio andQ’ on the same obje® are
equivalent (denoted) = @/, or justQ = Q') iff Q C Q' andQ’ C Q. Then abinary relation on
Ais an equivalence class sfa.

Although binary relations are classes of equivalent regrgions, for simplicity we often use
representations instead of classes. The concept of incllmEtween binary relation representa-

5 However there are situations when projective objects areezessarily free.
6 Also known under the name of Grothendick construction.
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tions extends to binary relations proper without difficulys a matter of notation, bgQt we
mean(s,t) C Q.

3. Institutions

The theory of institutions (Goguen and Burstall, 1992) heently emerged as one of the im-
portant areas in theoretical computer science, with mapliGgtions to modern algebraic spec-
ification, declarative and logical programming, programgin the large, etc. Basic concepts
and results on institutions can be found in (Goguen and BIlrd®92). In this section we very
briefly review the main concepts and then develop some sesoiitcerning model amalgamation
in institutions; these results are needed later for the aéinsaof combining constraint solvers
and domains.

We denote an institutiofl by (Sign, MoD, Sen=), whereSign is the category of signatures,
Mob: Sign — Cat°P the model functorSen Sign — Cat the sentence functor, and is the
satisfaction relation. Aheory (Z,E) consists of a signatufeand a closed (undeéts) set ofz-
sentencek. A theory morphism (Z,E) — (X', E’) is just a signature morphisE— ' mapping
E to a subset of’. Let Th([) denote thecategory of all theoriesin O. A theory morphism
¢: (Z,E) — (¥,E') isliberal iff the reduct functor MoD(¢): MoD(Z,E) — MoD(Z',E’) (often
denoted as|y) has a left adjoint, and it ipersistentiff it is liberal and MoD(¢) has a left
inverse. An institutioril] is liberal iff every theory morphism irfTh(0O) is liberal. An institution
is exactiff the model functor MoD preserves all finite co-limits, arekmi-exactiff it preserves
only pushouts. Liberality and exactness are very impoudastrable properties for institutions,
especially in connection to modularization (Diaconescal €t1993).

3.1. Model Amalgamation

In this section we are concerned with the technicalitiesoftting together” models of different
signatures. We develop the related concepts and resulisliie general framework of institu-
tions.

Let O = (Sign,MoD, SenE) be an institution. Given a modél € |[MoD(%)|, we denote its
signaturex by A.

Definition 3.1. Let A and A’ be models, not necessarily in the same signaturgederalized
model morphismfrom h: A — A’ consists of a signature morphigmA — A’ and an ordinary
model morphismh: A — A'Ta. Notice that for simplicity we may use the same name for the
ordinary morphism component of a generalized morphismwmitalways make a notational
distinction at the level of composition of such morphismer(oted by ;; in the case of generalized
morphisms and by ; in the case of ordinary morphisms).

Remark 3.1.The category of models and generalized model morphismsistig»f-laf M oD).

The following definition generalizes Baader and Schultzversal algebra concept of “free
amalgamated product” (Baader and Schultz, 1994; BaadebSeimdz, 1994).

Definition 3.2. Let A; andA,; be models, not necessarily in the same signatureagefor A;
andA; consists of a modelg together with generalized model morphismsAy — A, i =1,2.
Given a base foA; andA, theamalgamated sumA;@a,Az is the pushout of this base.
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Notice that the pushout mentioned in this definition is cdestd inFlaf M oD).
The following result establishes the existence of amalgadsums of models for institutions.

Theorem 1.If Sign has pushouts, the institutidnis semi-exact, all signature morphismsin
are liberal’ and the categories of models for each signature have pusstioeih the amalgamated
sum of any two models exists.

Proof. One “high-level” way to prove this result is to make use ofthasic theorem (Theorem
2 of (Tarlecki et al., 1991)) on colimits in the flattened ofiadexed category. Then conclusion
follows directly from the hypotheses.
In the following we give a direct proof of this result. L&y S Ao e, A; be a base. The
signatureA of the modelA standing for the vertex of the pushout @, hy) is defined by the
pushout of(hy, hz) in Sign, as shown in the left part of the following diagram:

B Blq
% %
9 q
o
AL e A @ A T> A .
hy (Pz| (h})@ )
Ao 2 i@ A
- = T e 2

Let h?: A%aAi be the uniqué\;-morphism “extendingh; € MOD(Ag) (Ao, Ai [, ). Definefi: Aj —
Aby fi = @ andfi = n;; f{ [, wheref/ is defined by the pushout Q(h’jl)q’l, (hﬁz)‘PZ) in the cat-
egory of A-models (see the right hand side part of the above diagram)na A — Ai‘n [ -
Straightforward calculations show that; f1 = hy;; f2. Letgi: Ai — B such thahg;; g1 = ha;; go.
We have to show that there exists a uniqué\ — B such thatf;; g = gi. Notice thatg should be
the unique signature morphism such thiag = gi. q: A— BJqis the uniqueg-mor_phism such
that f/;q = ¢f, whereg!: A® — Bl is the unique “extension” ofi: Al — Blg = (Blq)[q to an
A-morphism. - B - O

We turn now to extending the existence of amalgamated sunodgfs to the case of theory
models. Given an institutiofll, we can regard the theories as primitive entities by bugdin
semantic institution with empty sentence functof!. So, for every institutiori], let O™" be
the institution(Th(O),M oD, 0,0), where, for each theoryy, MoD(T) is the full subcategory of
MoD(Z(T)) satisfying the theory .

Lemma 3.1.If the institutionO is liberal and the category of models of each signatureJhas
colimits, then Mob(T) hasJ-colimits for each theory .

7 When regarded as theory morphisms between the corresgpenipty theories.
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Proof. LetA: J— MoD(T) be aJ-diagram ofT-models. Leti be the colimit of this diagram
in MoD(Z), whereX is the signature of (also leti denote the inclusiol — T).

\/

C
Colim(A;MoD(1 B—> B
C

/ \f’

Let B be the “quotienting-morphism constructing the free-model over the vertex of the
colimit of u. Then we claim thaf; B is the colimit ofA.

Consider a co-cona: A — C in MoD(T). This a co-cone in MD(Z) too, so there exists a
unique

f: Colim(A;MoD(1)) — C such thayy; f = a. Therefore there exists a unigtie B — C such
that; f' = f. Thus,(; B); ' = a. The uniqueness df results from the uniqueness of [

Corollary 3.1. If the institutionO is semi-exact and liberakign has pushouts, and the category
of models for each signature has pushouts, then the amatgdsiam of any two theory models
(i.e., the amalgamated sum of any model&ibf) exists.

Proof. Liberality of 0 means the liberality of1™" on signature morphisms. Fundamental
results of institution theory (see (Goguen and BurstalB2tDiaconescu et al., 1993)) show
that in any institution colimits and exactness carry frognsitures to theories. The existence of
pushouts of models in this case follows by previous lemma. ]

This result together with the following one can be regardedeneralizations of results on ex-
istence of “free amalgamated products” of free models ivensial algebra varieties (Baader
and Schulz, 1994; Baader and Schultz, 1994). Also noticeRhaposition 3.1 uses a weaker
condition of liberality than Corollary 3.1.

Proposition 3.1.Let 0 be an institution with pushouts for signatures and whosertes admit
initial models. Then the amalgamated sum of initial modelSi" exists and is initial too.

Proof. Firstly, notice that given any theory morphispa T — T, there exists exactly one
generalized model morphisim Oy — Oy, with h = @ which is defined as the unique morphism
Or — O/[gin MOD(T).

Now, consider the theory morphisﬁﬁgﬂ To #, T, and letTy T L3 T, be their pushout.
In the virtue of the remark above, this pushout square géeeeacommutative square of initial
models for the corresponding theories. We have to prove that

Or = Oy, ®7,0r,

This is the same with proving that the commutative squareitfl models is a pushout square
in the category of generalized morphisms of theory models.
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g1

OTl f1 OT 92
hy fa
Or, or,

)

Assume two generalized model morphism§é’l—> A O, such thathy;; 01 = hp;; go. In the
virtue of the remark at the beginning of this proof, theresexa unique generalized model mor-
phismq: Oy — A, and moreoverfi; q=g; fori =1,2. ]

4. Category-based Equational Logic

This section surveys the basic concepts and results in CBElLare necessary for this paper.
A survey of CBEL is (Goguen and Diaconescu, 1995), and tHad&uelopment of this theory
can be found in (Diaconescu, 1994). Other relevant paperaconescu, 1995; Diaconescu,
1996¢; Diaconescu, 1996b; Diaconescu, 1996a).

4.1. Models and Domains

The semantics of a logical system is given bynitsdels In general, soundness of the inference
rules of a logical system is checked against its models usis@tisfaction relation, in the style
of Tarski (Tarski, 1944). We assume that models and theipiiems form a category. As in
institutions (Goguen and Burstall, 1992), CBELs are “latad” to signatures. A model is an
interpretation of a particular signature intd@amain Thus any model has an underlying domain,
and this correspondence is functorial. Moreover, any twalfd model morphisms identical
as maps between their domains should be the same. Theseptissisnare summed up in the
following:

[Basic Framework]: There is an (abstract) category of models A and a forgetful functor U: A — X
to a category of domains X that is faithful and preserves pullbacks.

The simplicity of these assumptions reflects the simplioftyequational logic. The condition
that U preserves pullbacks relates to congruences being equéeddsee (Diaconescu, 1994;
Diaconescu, 1995)).

In practice, the forgetful functot/ always has a left adjoinf, which means that for every
X € [X], thought as a domain of variables, there ife®e model X . Note that? preserves
pullbacks when it has a left adjoint (e.g., see (Lane, 1971))



Razvan Diaconescu 12

The signatures of computing science logics usually invalget of sorts. Then the categories
of domains are categories of many sorted sets,X e=, Set® for some seS of sorts. Although
CBEL was originally developed more abstractly (Diaconed4@95; Diaconescu, 1994), here we
sometimes simplify by assuming that domains are many seet] i.e., that the following

[Simplifying Assumption]: X = Set®

holds. This avoids the difficult technical details of finitess properties of categorical relations
found in (Diaconescu, 1994) and (Diaconescu, 1995).

4.2. Examples

This subsection briefly sketches several examples, asgdanriliarity with their basic concepts,
and showing how they fall under tlBasic Framework. A more detailed presentation of some of
these examples can be found in (Diaconescu, 1994; Gogudniaodnescu, 1995; Diaconescu,
1995; Diaconescu, 1996¢; Diaconescu, 1996b).

Many Sorted AlgebraGiven a many sorted signatuf® %), let Algs denote the category aF
algebras wittE-homomorphisms. There is a forgetful functs : Algs — Set® from Z-algebras
to S-sorted sets, forgetting the interpretations of the oji@matymbols inX. This functor has a
left adjoint. Given a seX of variable symbols, Itz (X) denote the$sorted}erm algebra with
operation symbols fror and variable symbols frorx.

Order Sorted AlgebraOrder sorted algebra (abbrevia®®&A) adds to MSA a partial ordering

on sorts, which is interpreted as inclusion among the cpaeding carriers; all approaches to
OSA share this essential idea. See (Goguen and Diacon&82Lg)ifor a recent survey, including
all basic OSA definitions (signature, algebra, homomorphiegularity, etc.).

Given an order sorted signatufg, <,%), the Z-algebras and their homomorphisms form a
categoryAlgs of models for OSA. The forgetful functotls : Algs — SetS forgets both the
algebraicandthe subsorting structure. We emphasize that the domair@3ér shoulchothave
a subsorting structure, as is supported by the way OSA iseimehted. Other approaches to
OSA mentioned in (Goguen and Diaconescu, 1994a) can bedrsamilarly.

Rewriting Logic. Algebraic signatures can be interpreted into non-coneeatistructures that
are more complex than the ordinary plain sets. Meseguewsiting logic (Meseguer, 1992)
(abbreviatedRWL ) provides an interesting and important example, since R&f_lme very ef-
fectively used as a unifying semantic framework for conency (see (Meseguer, 1992)).

Consider an algebraic signatyi® ). A >-systeminterprets each sogtc Sas a categorgs
and each operation € g _sns as a functoog: Gg x ... x Gsn — Gs. Z-Systems gives a nice
formalization fordistributed concurrent systentte arrows between the elements of the carriers
of a Z-system encoding the transitions in the local states of yiséem.2-systems and their
morphismgdefined ass-indexed functors commuting with the operationgpform a category
Syss. The category of domains is taken to $etS, and the forgetful functofils : Syss — SetS
forgets the interpretations of the algebraic operatiorsthe arrow composition, i.e., mapping
each category to its set of arrows.
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Horn Clause Logic.In (Diaconescu, 1990) we introduce an embedding of the oayeaf mod-
els Mods  of a first order signaturéS, >,IM) as a retract of the category of algebras of an
MSA signature(S, 5P UMP) obtained from the original first order signature by turnimgg-
cates into operations. Interpreting predicates as boaolaled operations is hardly new; it has
even been used to lift narrowing to an operational semafutidegic programming (Dershowitz,
1983). However, this approach (further exploited in (Dizescu, 1995; Diaconescu, 1996c¢; Di-
aconescu, 1996b; Diaconescu, 1994)) is somewhat diffdbentiuse it does not assume a full
boolean structure on the new sort of truth values. Moredkrennodel theoretic aspect is empha-
sized.

A consequence of this result is that given a first order sigediS %, M), the category of
models for Horn clause logic (abbreviatel€L ) can be taken a&lgss b instead ofVlods n,
and its sentences as conditional equations instead of Hauses. Notice that in HCL, unlike
MSA, the forgetful functor from models to domainslgss o — Sets, is notmonadic.

Equational Logic Modulo AxiomsEquational deduction modulo a set of axioms (abbreviated
ELM) is needed for rewriting when there are non-orientable &gps; detailed expositions are
given in many surveys or textbooks; we mention (Goguen, RO8IBhough in practice non-
orientable rules are mostly unconditional, there is no tégcal reason to exclude equational
deduction modulo a set of conditional equations. Idempr#éna non-orientable conditional ax-
iom, when givenintheforot + y = x if x = y. Equational deduction modube gener-
alizes the usual concepts of MSA to “concepts modiildncluding the inference rules (Goguen,
2000). A model theory for equational logic modiEaequires an adequate notion of model, and
it is natural to use\lgs g, which gives “algebras modulo axioms” (i.e., allalgebras satisfying
each axiom irE). The category of domains is the categ8et® of S-sorted sets and functions,
and the forgetful functotis g : Algs g — Set® forgets both the axioms and the MSA structure.

ELM includes the example of Mosses’s unified algebras (Mxsk889) whose logic can be
regarded as equational logic modulo a conditional theory.

Summary of Example&he following summarizes the examples discussed above:

A (category of models) U forgets:

MSA Algs algebraic structure

OSA Algs algebraic structure + subsorting

RWL Syss algebraic structure + arrow composition
HCL Algsb b algebraic structure + sot

ELM Algs e algebraic structure + axioms

Any combination of these logical systems is possible, @mler sorted Horn clause logic with
equality which is the logic underlying Eglog.

4.3. Category-based Equational Deduction

Equations are traditionally pairs of terms constructediftbe symbols of a signature plus some
variables. Goguen and Meseguer (Goguen and Meseguer, iI88&)ade quantifiers part of the
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concept of equation, for MSA. Although terms are syntactingtructs, from a model theoretic
perspective they are just elements of the free term model tbeeset of quantified variables.
Any valuation of the variables into a model extends uniquelg model morphism evaluating
both sides of the equation. Thus, a more semantic treatmeutmtification regards quantifiers
as models rather than sets of variables, and regards v@igais model morphisms rather than
functions; this was already done in (Cazanescu, 1993yi®8A. This non-trivial generalization
of equation and satisfaction extends naturally to equatidaduction, and in our opinion gives
a pleasing unity and generality to the whole area.

Definition 4.1.Let Abe any model. Then @-identity onAis a binary relatiork &Y AU onthe

underlying domain oA. An identity (s, t) in A is satisfiedin a modelB with respect to a model
morphismh: A — Biff sshd =t;hU. This is denoted |= (s, t)[h].

A U-equationis a universally quantified expressi¢nA) (s, t) whereA is a model representing
the quantifier ands, t) is an identity inA. A modelB satisfies(VA) (s, t) iff B satisfies the identity
(s, t) for all model morphisms$: A — B. This is writtenB |= (VA)(s, t). A conditional U-
equationis an expression having the forfiA) (s, t') if (s, t) whereA is a model representing
the quantifier(s, t’) is a U-identity onA, and(s, t) is a finite (i.e., the “index” object [i.e., the
source ofs andt] of the relation is finité (Diaconescu, 1994) or (Diaconescu, 1995)) binary
relation on the domain oA representing the hypotheses (i.e, the condition) of thaggu A
model B satisfies(VA)(s, t') if (s, t) iff for any morphismh: A — B, s;hU = t;hU implies
s;hu=t;hu.

A €U-query is an existentially quantified expressi@iA) (s, t) whereA is a model representing
the quantifier ands, t) is an identity inA. A solution of (3A)(s,t) in a modelB is any model
morphismh: A — B for which (s, t) is satisfied inB with respect tch.

Notice that the notion ofi-equation (query) deals witlamilies of equations (queriegather
than single equations (queries), as sentences.

Completeness of CB equational deduction is traditionalhiat the central concept is the
congruence determined by a $ebf (possibly conditional) equations on a mode(e.g., see
(Birkhoff, 1935)). The most abstract completeness resates the equivalence of two versions
of this congruence: all unconditional equations quantifigé that can besyntactically inferred
fromI; and all unconditional equations quantifiedAthat aresemantic consequencafd . This
semantic treatment of equation and satisfaction (see ¢D&sru, 1994; Diaconescu, 1995)) al-
lows the congruences determinedibgn free models and on other models to be treated the same
way. Despite the generality and abstraction, the rulesfefémce for CB equational deduction
can be made explicit for concrete examples, and can be rezambyaven in the most abstract
formulation.

The following technical assumption underlies the proobtlydor CBEL:

[Deduction Framework]: Basic Framework + the category A of models has pullbacks and co-
equalisers.

8 |t has been observed that in many important examples, thigiietnotion of an objech in a categoryC being “finite”
coincides with the technical condition of the set-valuedrtti functor C(A, —) preserving filtered colimits. Therefore
we adopt here this technical notion of finiteness. The boakafek and J.Rossicki, 1994) contains a good study of
this categorical notion of finiteness.
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Let Abe an arbitrary model. Then a binary relatiQron the domain oA is acongruenceiff it
is a kernel of a model morphism, i.e., iff there is a morphésin A such thaQ = U(kerd). The
quotient of A by Q is the coequaliser derd. Its target model is denote®)/Q and is also called
thequotient of A. Thecongruence closure o& binary relatiorQ on the domain oA is the least
congruence oA containingQ. Givenl be a set of conditional equations, a congruea@A is
closed underl -substitutivity iff for any (vVB)(s,t’) if (s,t)in " and any morphisrh: B — A,
s;hd =t;hu impliess;h? =t’;hU. The least congruence anclosed undeF -substitutivity
is denotedz’,f. In the usual concrete examples, a relation is closed undeibstitutivity iff it
contains all the pairs generated as substitution instaofdée equations i .

The completeness of the CBEL proof theory depends on a festenondition fortZ which
in the usual concrete cases corresponds to the fact thapathtion (and relational) symbols
take only a finite number of arguments. In (Diaconescu, 188d¢onescu, 1995; Goguen and
Diaconescu, 1995) this is calldiitarity of ¢ and comes under different formulations corre-
sponding to various abstraction levels.

Theorem 2.Completeness Theorefi the forgetful functor is finitary and all equations in
have projective quantifiers, then:

1 the least congruence closed unBesubstitutivity, denotee:?, exists;

2 A/=pis the freel -model overA; and

3 T E(VA)(st)iff s=Pt.

The proof (which may be found in (Diaconescu, 1994; Diacong$995)) brings out the syn-
tactic character o2, showing it is the closure under the syntactic consequeotEsusing
congruence andsubstitutivity as inference rules. Under

[Adjointness Framework]: Deduction Framework + the forgetful functor U has a left adjoint F.

thecongruence rule can be explicitated asflexivity + symmetry + transitivity + operations,
and by adding th&implifying Assumption, 21 is finitary if it preserves filtered colimit$Recall
that a filtered colimit is the colimit of a filtered diagram athéht a filtered diagram is a diagram
for which any two nodes have and “upper bound” in the diagiRmaservation of filtered colimits
by forgetful functors is a categorical concept of finitenesi established in categorical algebra.
For example, it is well-known (Gabriel and Ulmer, 1971) thma& varietyAlgs g, an algebra

is finitely presented if and only if its representable homefior Algs g (A, —) preserves filtered
colimits.

4.4. A Herbrand Theorem

An important consequence of the most abstract version afdhmpleteness result (Theorem 2) is
a Herbrand theorem for CBEL. Our approach uses the categatiaracterisation of Herbrand
universes as initial models suggested in (Goguen and Meseb®@87). Herbrand theorem for
CBEL admits various formulations corresponding to différabstraction levels. The one that
fits best the level of presentation of this paper is the faithgy

9 See (Diaconescu, 1995; Diaconescu, 1994) for a more geresabn of this result using a finiteness condition on the
category of domains instead of tBémplifying Assumption.
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Corollary 4.1. Herbrand TheoremAssume theAdjointness Framework and theSimplifying
Assumption. If A has an initial model , U preserves filtered colimits, and all quantifiers of
equations il are projective, then:

1 the initial model of” exists; let us denote itrQ

2 T E(3A)q iff Or = (3A)q, for any U-query(3A)q and any modeh; and

3 if in addition U hasnon-empty sort¢i.e., for each domaiyg there exists a map — 04 U)
andA is projective,l = (3A)q iff T = (V¥ )g;hU for some domairy and some model
morphismh: A— y¥.

In the usual concrete examples the non-empty sorts conditoresponds to the fact that the
domain of the initial model has all carriers non-empty. Tha+@mpty sorts version of Herbrand
theorem provides foundations for solving queries usingnapies like resolution and paramod-
ulation. The proof of this result in a more general settinghout theSimplifying Assumption,
can be found in (Diaconescu, 1994; Diaconescu, 1995).

4.5. The Category-based Equational Logic Institution

In (Diaconescu, 1996b) the CBEL institution plays the caintole for the study of equational
logic programming modularisation in the general catedmaged equational logic programming
setting; in this paper we use it for defining the constraigtdanternally to any CBEL.

To get an institution for CBEL, we need to define signatureph@ms for CBEL, and de-
fine how models and sentences translate along signaturenimorg; in particular, we need to
know how quantifiers translate along signature morphisrhenTwe must check that the satis-
faction relation between CBEL models and the sentencesfiniben 4.1 satisfies the so-called
Satisfaction Condition for institutions (Goguen and BallstL992).

Definition 4.2. A CB equational signatureis a functord: A — X, and amorphism of CB
equational signaturesis a pair of functorg (A’ 2, A), (X 2, X)): (A R X) — (A’ N X
such thatM; U = U'; D andD has a left adjoint.

Notice that a morphism of CB equational signatures is likiffra\ has a left adjoint.
The following shows the analogy of concepts in MSA and CBEL:

MSA CBEL
signatureg(S X) functord: A — X
S X

> A
d=(f,0):(S2)—(8,Y) M, D). U—U
f:S—8 DX —-X

g: 7% M: A — A

Set': SetS — SetS D

Alg(¢): Algsr — Algs M: A — A
>-equation U-equation

Before defining translations of equations along CB equatisignature morphisms, we look
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again at the many sorted case. A functibnS — S translates ars-sorted seiX into the S-
sorted seK™ by taking the (pointwise) left Kan extension balongX. Given a MSA signature
morphism¢ = (f, g): (S,2) — (S,%’), the term algebrds, (X~) is exactly the free expansion
of Tz (X) along¢. From this, we conclude that:

Translations of quantifiers are free extensions along signature morphisms.

This also covers quantifiers that are not free models. Tinslation of equations along signature
morphisms in MSA is a particular case of the following:

Definition 4.3. Let (M, D) be a liberal morphism of CB equational signatu(és&X) —
(A’LX’). Then thet-equation(YA) (s, t) translates to th@l’-equationVA™M ) (s*, t*),

| 10 1D

t|s t"D|s'D

AU

M _AM
= AMM U= AU D

where_? denotes the left adjoint ab, _* denotes the left adjoint aM, a and® denote the
units of the adjunctions determined By andD, ands* andt* denote the unigue “extensions”
of s;Aa U andt; Aa U to maps inX'. Similarly, theU-query(3A)(s, t) translates to thé/’-query
(IAM) (s, t*).

The following result (from (Diaconescu, 1994; Diaconedd@96b)) is the Satisfaction Condi-
tion for equational logic systems; it extends to conditi@guations without difficulty. A proof
of institutionality for each example in Section 4.2 can béagied by specialising the proof of
the following.

Theorem 3. Let (M, D) be a liberal morphism of CB equational signatu(é\sﬂ X) —
(A , X"). Then for any modeB € |A’| and any sentend@A)(s, t) with A € {V, 3},

B g AAM)(s*, t*) iff BM o (AA)(S,t) .

5. (Category-based Equational) Constraint Logic

Constraint logic is central to our approach to constraigidgprogramming in that it is the logic
underlying this programming paradigm. This matches theqggle oflogical programmingn-
troduced by Goguen and Meseguer in (Goguen and Meseguéi). I98s section does actually
more than setting up the logic underlying ECLP; it also shbew constraint logic is a CBEL,
which means ECLP is semantically integrated to the equaltiogic programming paradigm.
On the other hand, we develop constraint logic internallCREL (we might thus call this
“category-based equational constraint logic”, but for@ieity of terminology we will stick with
“constraint logic”); in this way ECLP is accommodated by dogyical system that is a CBEL.
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5.1. Generalized Polynomials

Generalized polynomials constitute the basic syntacticedient in constraint logic; the role
played by the terms in ordinary logic is played ggneralized polynomial8in constraint logic.
In particular cases, generalized polynomials are termdtkuctures involving operator symbols,
variables, and elements of a fixed model referred as thet“iouihodel”.

Generalized polynomials can be regarded as elements oflsnadee same way as ordinary
terms are regarded as elements of [free] models as a basis@nantic approach to sentences
and satisfaction in CBEL. The universal property of the medé generalized polynomials al-
lows a more general definition that extends the concept afigdired polynomial to the semantic
case when models play the réle of the collections of vagisbhd model morphisms play the role
of the valuation maps.

Definition 5.1. Let (A&X) be a CB equational signature of built-ils ¢ |A| be a model of
built-ins, and
(M, D)y: U— U be a morphism of CB equational signatures fr@hto any CB equational

signature(A’gx’). For anyW’-modelB € |A'|, themodel of generalized polynomials over
B is the coproducA™ + B, and it is denoted a&[B].

In practice,B is a free model over a collectioX of variables (i.e., a domaiX € |X'| in the
abstract case of CBEL). More preciselyfif: X’ — A’ is a left-adjoint tot/’, then the model of
generalized polynomials i&[X 7'], usually denoted a&[X]. This generalizes universal algebra
polynomials whentl = 7’ is a forgetful functor from a category of (unsorted) algastiESet.
However, the best known example still comes from linearlaige

Example 5.1.Let )? be a set of variabIeR[)?] is the ring of polynomials ove)? and with real
numbers as coefficients. In this example, the signatiie built-ins is a ring signaturé! and
U = U'. The model of the built-ins i&, the usual ring of real numbers.

5.2. Internal Constraint Satisfaction

The following provides a formal definition for constraintngences, constraint models, and a
satisfaction relation between them, by following the pigites of the preservation of the built-ins.

Definition 5.2. Let (M, D): (Aﬂx) — (A’ix’) be any liberal morphism of CB equational
signatures, and consider a modet |A| for the built-ins.

A constraint model is an interpretation oA into the reduct of a model id/, i.e., an arrow
c: A— CM with C € |A'|. A model morphismh: ¢ — ¢’ is a mapC — C’ in A’ such that
¢;hf =c'. A constraint modet: A — CM is conservativeiff ¢is an isomorphism.

A constraint identity onB € |A/| is a binary relation(s, t) on (A[B]) ¢’. An identity (s, t) in B

is satisfied in a modeA->CM with respect to a model morphisiit B — C iff s;[f,c!] U =
t;[f,cf] U, wherec! is the unique ‘extension’ af to a model morphism™ — C.

10 The ordinary polynomials from linear algebra are an inggion of this notion. The wordeneralizedlays here the
same role as the wogkneralplays in the so-called “general algebra.”
1 More precisely, the forgetful functor from the category iafys toSet.
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I i
AM g A — > AB <" B
[f.¢]
f

LN

A

CM C

A constraint equation is a universally quantified expressigvB)(s, t) whereB € |A’| is the
model representing the quantifier afglt) is a constraint identity oB. A constraint modet
satisfies(VB)(s, t) iff c satisfies the identitys, t) for all model morphismg : B — C. This is
written ¢ |= (VB)(s, t). This definition extends teonstraint conditional equations queries
and their satisfaction by constraint models in the same erann

Example 5.2.An example of a constraint equation within the context offagpée 1.1 is
<314+ X, ¥Y>+- <Y, 314 X>=0
Notice that although this equationnstsatisfied by the standard mod#, the constraint model
R+ does satisfy it.
An example of a constraint query within the same context is
3*x <X, Y>=<Y, Z>;
2.79 » X+ Y<Z =true.
Finding a solution to this query in the standard md@&reduces by the application of a rewrite
step followed by a simplification step to finding a solutiontiee system of linear inequalities
3 X=VY;
3 Y =2Z;
2.79 » X+ Y<Z=true .
A stronger version (and of higher practical relevance) ofd@Bstraint logic can be obtained
by restricting the semantics only to conservative models.

Definition 5.3. A constraint sentencp is a conservativeconsequence of a set of constraint
sentence§ iff M = p wheneveM =T for all conservativenodelsM. This is denoted als £p.

Example 5.3.Consider the OBJ3 atafeOBJ conditional equations. They are expression of the
form

(WXt =t if C
whereC can be anyBool -sorted term. The usual MSA (or OSA) equations appear as@aspe
case by using the built-in semantic equdiftfor the identities in the condition.

However, in the context of Example 1.2 if we view the conditidas an identity between gen-
eralized polynomials

C = true

12 |mplemented in both languages and denoted=y.. Its implementation realizes the true semantic equalitjenthe
confluence and termination of the specification regardedrewidte system.
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then the sentences of equational logic with a built-in typ8aoleans are just constraint sen-
tences. In this case the constraint models correspond telsiofireal OBJ oCafeOBJ mod-
ules, and the constraint satisfaction of OBJ&feOBJ conditional equations is the expected
one.

Also notice that the background CBEL can be realized as thialtconstraint logic for the
case when the model of built-ins is just the initial modehin

5.3. Constraint Logic is a CBEL

The crucial technical idea underlying our semantics of E@Lf® fit constraint logic to CBEL.
Whilst such an integration of constraint logic into equaéiblogic cannot be achieved within
the usual concrete algebraic or model theoretic approagtesotion of algebraic signature
being abstract enough for this purpose), it works at ourl le¥@bstraction. We consider this
a good example of the benefits the use of abstract model tieorethodology® can bring to
Computing Science. This idea is summarized in the followstagan, and formalized by the
subsequent definition:

Constraint logic = equational logic in a special CB equational signature.
!
Definition 5.4. Let (M, D): (A&X) — (A’LX’) be a liberal morphism of CB equational

signatures. Then any modele |A| determines a forgetful functait, : (A/M) — X/, such that
= Mp; U, whereMy is the forgetful functofA/ M) — A'.

M;
A<—2 A (A/M)
u 74 Uy
X2 X ———

Proposition 5.1.1f /' is faithful and preserves pullbacks, thé, is faithful and preserves
pullbacks.

Proof. M preserves pullbacks because it is a right adjoint. By ugiigfact, it is straight-
forward to show that the forgetful functaa: (A/M) — A’ creates pullbacks, thus it preserves
them t0o.7, preserves pullbacks as a composite of two pullback presgfunctors.

U, is faithful as a composite of two faithful functors, since forgetful functorMa: (A/M) —
A is faithful. [
Proposition 5.2.Let (M, D): (Aﬂx) — (A’ix’) be a liberal morphism of CB equational
signatures. Then for any modele |A|:

1 there is an isomorphism of categor{gg M) = (AM /A');

2 if A’ has binary coproducts, theWx has a left adjoint; and

3 the forgetful functotMx creates filtered colimits.

13 |In the sense of CBEL and institutions.
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Proof.

1. This isomorphism is given by the adjunction isomorphis(, Ba1) = A’(AM | B) mapping
anyb: A— BM tob?: AY — B.
2. The forgetful functofC/A’) — A’ has a left adjoint for an¢ € |A’| mapping each objed’
toC %S C+A'. Then we apply 1.
3. We first show that for any mod€l e |A’|, the forgetful functofC/A") — A’ creates filtered
colimits. Then we tak€ = A™ and apply 1.
Let{a;}ic| be afiltered diagramitC/A’). The forgetful functofC/A’) — A’ maps this diagram
to a filtered diagramiA; }ic) in A’. Considet: A — D a colimit of this diagram i\’. We define
g: C— Dasa; |y fori € |1 |; the correctness of this definition is given by the fact that = aj; 4
foralli, j € ||| because of the filterednesslof

3

c A

Now, we show thaftis a colimiting co-cona— gin (C/A’). Consider another co-coyea — k
in (C/A’), wherek: C — E. yis also a co-cond — E in A’. By the universal property qf as
a colimiting co-cone i/, there exists a unique arrdv D — E such thay;6 = yin A’. All it
remains to be shown is th@tis a mapg — k. Butg; 8 = &;; ;6 for somei € |I|. Sincel;;0 =i
we deducey; 0 = k. ]

Corollary 5.1. The constraint logic determined B/, D) : (A&X) — (A’ﬂ»X’) and a built-
in modelA € |A| is the CBEL (satisfying thd&asic Framework) determined by the forgetful
functor Uy : (A/M) — X'.

Proof. By noticing that constraint models, sentences, and setisfaare respectively/,-
models, sentences, and satisfaction. [

This result plays a crucial rdle for the development of thguits in this paper, such as the Her-
brand Theorem (Theorem 4) and the complete proof theory ofi@®e6.1 for CB constraint
logic.

6. A Herbrand Theorem for ECLP

Herbrand theorem for constraint logic provides matherabficundations for the concept of
constraint solving in the same way the original Herbrandtém provides foundations for tradi-
tional logic programming, and Herbrand theorem for ordetezsbHorn clause logic with equality
provides foundations for equational logic programming gidg (Goguen and Meseguer, 1987).
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Our approach is to instantiate the CBEL version of Herbralneofem 4.1 to the particular case
of constraint logic viewed as the CBEL determined by theddfig functor ¥, of Definition 5.2.

Theorem 4.Let (M, D): (A&Sets) — (A’iSetg) be a liberal morphism of CB equational
signatures. Fix any modd € |A|. Assume theAdjointness Framework for 7/, that A’ has
binary coproducts, and that’ preserves filtered colimits.

Consider a collectiori of conditional constraint equations with projective quiéens, and a
U'-constraint query3B)q with B € |A’| projective. Then,

1 there exists the initidl-constraint model g,

2 T = (3B)qiff Or = (IB)g; and

3 if ¢ has non-empty sorts, thénl= (3B)q iff I |= (Vy)q; [h, j ] for some domaity € |X|
and some model morphisim B — Aly].

Proof. The basis of this proofis to regard the constraint sentefgig®r equations or queries)
as ordinarytl,-sentences (in the sense of Definition 4.1). Any quantief a constraint sen-
tence appears a8); j .o M in the role of the quantifier of the correspondifiy-sentence.

A Y
A—3 A gp —22 (B4 AM) A

The category of constraint models (8/) and the satisfaction relation between constraint
models and constraint sentences reduces to CB equatidisédstion (cf. Corollary 5.1), so we
have only to check the hypotheses of Theorem 4.1 for the fiuidanctor 7, and to explicitate

the instantiation of its conclusions to the CBEL determihgcz,.

Deduction Framework for 21,: (A/M) has pullbacks because of 1. of Proposition 5.2, because
Mp creates limits, and becauéehas pullbacks. SimilarlyA/M ) has coequalisersWa creates
coequalisers by 3. of Proposition 5.2).

Adjointness Framework for 2,: U, has a left-adjoint which is the composite of two left ad-

joints Set® ANy (A/M) (cf. 2. of Proposition 5.2 for the existence of the left-anfo
A — (A/M)).

(A/A) has the initial model A~ AM a7

U, preserves filtered colimitss a composite of two filtered preserving functors (see 3rapé
sition 5.2 for the preservation of filtered colimits by thedetful functor(A/M ) — A).
Projectivity of quantifiersWe have to show that 8 is projective inA’ thenAn; j,a M is pro-
jective in (A/M). Notice thatAn; j,a M is free overB with respect to the forgetful functor
Ma. ThereforeAn; jac M is projective because left-adjoint to coequalisers présgifunctors
preserve projectivity (this rather simple categoricalteacan be easily checked by the reader).
Non-empty sorts fofl,: Becausel!’ has non-empty sorts, for any domair |X'|, there exists
at least one arrow — 0,/ U’, where Q. is the initial model inA’. Therefore, there exists at least
one arrowy — AM ¢/, which isy — 0, U — AM U’ = (An) U, O

The following is a proof-theoretic corollary of the consdtion of Theorem 4, giving a complete
set of inference rules for CB constraint logic deduction:
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Corollary 6.1. Under the hypotheses of Theoremli4i= (vB) p = p' iff (VB) p = p’ can be
deduced by the following inference rules:

[reflexivity]

(VB)p=p
[symmetry] E:E% g/:: pF;
[transitivity] (¥B) p :(Vg) 5 iv?/ p=p
[congruence] (VB)p = p

(VB) pU = pr

(VB) (r;Alh) ¢ = (r;Alh)

(VB) (Alh) " = (P A W

whereB is any model inA’, p, p/, p” are generalized polynomials iB], p, p’* the (unique)
extensions ofp, p': | — A[B]U’ to arrowsl ¥’ — AB], (VvB') p = p’ if r = r’ is any condi-
tional constraint equation iR, h: B’ — B is any model morphism, anilh] is the unique arrow
between the models of generalized polynomials such thdotlwsving diagram commutes:

[substitutivity]

Ha .
JAM J,B/

AM AB'] B’
Alh] h
it
AB B

In practice, it rarely happens that the sentencel involve the built-in modelA. Usually,
the sentences i don’t involve any elements of the built-in model (i.€.,contains only?/’-
sentences, if we were to use the notation from the discussitire Introduction) and only the
queries appear as full constraint sentences involving etésnfrom the built-in model. In this
case, the initial constraint modet @as a simpler representation as a quotient of the free expan-
sion of the built-in model.

Notice that?’-sentences can be canonically viewed as constraint sexstére 7, -sentences)
via the translation along the morphism of CB equational aigres(Ma, 1x/): U — U, (see
Definition 4.3).

Proposition 6.1. Assuming the hypotheses of Theorem 4, suppose thatntains only?/’-

equations. Then the initial constraint modeli® isomorphic to the canonical map + A A,

AM g L, (AM /=r)M , where=r is the least congruence &% closed undeF-substitutivity.
Proof. We shovy thatp siatisfies the initiality property in the full subcategory(8f M) of all

models satisfying, wherel is the translation ol‘Aanng<MA, Ixr).

Letc: A— CM be any constraint model satisfyifigBy the Satisfaction Condition (Theorem 3),

this is equivalentt€ = I'. All we have to prove is that there exists a unique ard)y\AM/zr —
Csuch that}; M =c.
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¢ ctv

CM

By the universal property of the free extensiamalong/, there exists a unique map A —
C such thatAn;c M = c. By the universal property af (Theorem 2), there exists a uniqgue map
¢: AM /= — Csuch thagc’ =C. O

In the case of order sorted Horn clause logic with equaliyg®n and Meseguer proved the
existence of initial constraint models for the particulase ofl” containing onlyX’-sentences
(Goguen and Meseguer, 1987). This crucial result for theasetics of Eqlog can obtained as an
instantiation of our previous results.

6.1. The conservative case

For the rest of this section we investigate practically imgot sufficient conditions for which
Herbrand Theorem can be lifted to the conservative case.oikgqu out by Example 1.2, the
Herbrand model for a constraint specificatioshould be the initiatonservativenodel; let us
denote is byor.
Corollary 6.2. Under the hypotheses of Theorem 4,[lelbe any constraint logic specification,
and suppose it has an initial conservative md@xgelThen for any query3B)q
1 [ (3B)qiff Or = (3B)qif O |= (IB)qiff I = (3B)qg, and
2 if the (unique) arrow P — Or is a coequalizer and!’ has non-empty sorts, thén=(3B)q

iff [ E=2(Vy)q; [h, j pac] for some domaity € [X’| and some model morphisim B — Aly].

Corollary 6.3. Assume the hypotheses of Theorem 4.dfif conservative, then

FE(3B)q iff Or = (3B)q

Proof. By noticing that in this caserQis the initial conservative constraint model satisfying
r. [

The following gives an important sufficient condition for iwh Or is conservative:

Proposition 6.2.Assuming the hypotheses of Theorem 4, further supposedhatlfprojective
modelsB, the corresponding modef§B] of generalized polynomials are conservative. Then 0
is conservative.

Proof. The proof of this result repeats the steps of the proof of Témmat for the CBEL deter-
mined by the forgetful functofA| M) — (A/M) ", % rather than justiy, where(A|M) is the
full subcategory of A/ M) of conservative constraint models. Notice that the fullcaibgory
embeddindA|M ) — (A/M) creates limits and filtered colimits, a conservative modéN M)

is projective if and only if it is projective as a model {A/M), and that because all models of
generalized polynomials are conservative, the forgetfotfor (A|M) — A’ has a left adjoint
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which is the same as the left adjoint to the forgeti)f /) — A’ (constructing the models of
generalized polynomials). This means that all argumeata the proof of Theorem 4 carry from

the CBEL determined by, to the CBEL determined byA| M) — (A/M) T, %/, Therefore
Or exists.

Because the initial model ¢A/ M) is the same with the initial model ¢A|) and since the
construction of the least congruence closed umdeubstitutivity is obtained by using only free
extensions, pullbacks, and coequalizer@ijiV), which are the same with doing them(iy/ M)

in the virtue of the above arguments, this means®hat Or. ]

This situation corresponds to Example 1.1 and occurs vaéenah practice. Related in goal
to the above result, we mention the Goguen and Meseguetsé&@adguen and Meseguer, 1987)
giving, in the context of order sorted Horn clause logic watjuality and of containing only
sentences without built-ins, a set of conditions that gut@ethat 9 is conservative by imposing
some restrictior’$ on the sentences il

There are however interesting practical examples (suctkxample 1.2) when ©is not con-
servative. In general, in such cases, even the existenbe ofitial conservative constraint model
cannot be guaranteed. Finding out sufficient conditionstferexistence of the initial conserva-
tive modelOr when this is different from @is an important topic of future research.

7. Constraint Institutions

In this section we study constraint logic from the point odwiof institutions. This brings us
to the concept otonstraint institutionwhich internalizes the concept of constraint models to
any institution. In particular, constraint logic can beaibed as a constraint institution on top
of the CBEL institution, on the other hand, we show how thest@int logic institution can
be regarded as a CBEL sub-institution. One consequenceasofetult is that ECLP supports
modularization in the style of OBJ and Clear; the mathemétisults on modularization based
on institutions can be directly applied to any ECLP systegonously based on some version of
constraint logic. Finally, we show how constraint insiibais serve as as a semantic framework
for combining constraint solvers over different data types

Definition 7.1. Let O = (Sign,MoD, Sen=) be any institution. Aconstraint institution over
Ois an institutiond¢ = (Sign®,Mob€, Sert, |=C) such that

1 asignature ifSign¢ is a pair(A,1) consisting of a signature morphismz — 3’ in Sign and
a “built-in” Z-modelA (X is called thesignature of built-ins),
2 amorphisn(h,@ @): (A1,11) — (Az,12) in Sign consists of

— a morphism between the signatures of builtqns, — 35,

— aliberal “extensiony : ¥} — %) of @, i.e., the diagram

14 However, these restrictions are almost always met in mecti
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commutes and MD(¢) has a left-adjoint, and

— amodel morphisnh: Ay — Azl interpreting the model of built-ind, into the model of
built-ins A;.

Composition of sighature morphisms is the obvious “poisglicomposition,
3 Mob€(A1) is a full subcategory ofA/MoD(1)) (on signatures), and

MoD€ (h, g, (;{)(AZLC[IZ) = AlLAz rq,ﬂ(c l¢) 1, (On signature morphisms).

Example 7.1.Consider a modul€VPLX specifying the complex numbers by adding a supersort
CtoReal ,theconstant : -> C, extendingthe usual ring operators from reals to the coxple
numbers, etc. We may consider the signature of this spetdiiicas the signature of built-irs,
andi2 to be just adding an operatien, > : Real Real -> C . The built-in model for
this specification is the ring of complex numbepsmaps the sorReal to Real , andVect

to C and also maps the ring operations in the obvious way,<and> to <_, >. h is just the
ordinary inclusion of the reals into the complex numbergidéothat by adding a new equation

<a, b>=a+bx*i

12 gets the translation from the Euclidean plane to the commlembers.

7.1. The Constraint Logic Institution

When instantiating Definition 7.1 to the CBEL institutioneogets the signatures and models
of constraint logic (see Definition 5.2). In order to fullyfate the institution of constraint logic
we still need to define the translation of constraint serdgsraf Definition 5.2 along signature
morphisms and prove the Satisfaction Condition.

The Sentence Translation. Given a morphism of constragit kignatures

(h,@.¢0): (Ar, (M, D)) — (Ao, (M, Do), where(, D) (Ai o Xi) — (A 25 X0, i =
1,2, are morphisms of CB equational signatukess A1, A> € |Az|, and giverB € |A]|, then
we have to define a translation mapping “generalized polyalsfifrom A;[X] to “generalized
polynomials” inAz[X~], whereB™ € |Aj%| is the free expansion & alongg.1® This translation
is given by the unique arro@: A;[B] — A2[B™][y making the following diagram commute:

15 Here we apply the principle that translation of the quanifiare just free expansions along signature morphisms; see
Section 4.5.
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A J At
A —" gy A AR~ B
hl % \ l an
A A B B~
2l g M Iy iy I
(A2n) F(pl/ ‘
A2 ab1, : Ao[B|Malq

JMMZT(p
A22

In the particular case wheB is the free model over some “variables’ thenB™ appears also
as a free model over the “variablex™, whereX™ is the free expansion of along the domain
translation component gf. More concretely, if the domains are many sorted sets,shiei same
as the Kan-extension translation defined in Section 4.5.

Proposition 7.1.When regarding constraint logic signatures as CBEL sigrat(see Definition
5.4), the translation of generalized polynomials previpdsfined is the same as the translation
of sentences (Definition 4.3) along the morphism of CB equatiisignatures

(Mop(h,¢,¢), Dom(9)): Uy, — Up,, where Dom(¢) is the domain functor component @f

-lhog)

(Ar/My) (A2/ M)
up, ay,
X< X

1™ Dom 2

Proof. From the construction ofi: A;[B] — A2[B™] (in the above paragraph) it is easy to
check that

A1n;j M h; A, ']

T plBI) — (A p |l — AclB )
is a universal arrow. Thereforéo[B™] is free overA,[B] with respect to the forgetful functor
(A2/Mz) — (Aa/ M)
In this way, the rdle of Aa” of Definition 4.3 is played here bw, and the rble of A” by
A1N; j poq M. Since any polynomial i\ [B] (or in A2[B™]) can be regarded as an arrew-
(A1N; j pae Ma) Up, (OF respectivelye — (Aon g, 410 [¢) Ua,), We can conclude the translation
of constraint sentences previously defined is the same amthimtroduced by Definition 4.8

a: (Al

Corollary 7.1. Constraint logic is a CBEL sub-institution, i.e.,

C (g, ) (N, @.@)p iff Dl =(ay 9, my)) P

for any morphism of constraint logic signaturfes®, @) : (A1, (M1, D1)) — (Az, (Ma, D)), any
constraint modet: Ay — CM>, and any constraint senteng@ver (A, (M1, D1)).
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7.2. Combining Constraint Solvers

In this section we sketch some logical foundations of madtganbination of constraint solvers
over different data types by using the constraint logidingon. By aconstraint solvewe mean
a decision procedure for solving constraint queries forvemispecification or program. The
topic of this section constitutes subject for further depehent, therefore the results presented
here should be considered as a starting point for furtheares.

Firstly, we need to formulate the problem within our framekvo

Definition 7.2. Given two constraint logic theorids andlm; sharing a common paf (repre-
sented as a pair of constraint logic theory morphiﬁmgl— lNo ¥ 1), theshared combination
of 'y andl, is denoted by 1 4+, "> and is defined as the following pushout

Y1

flo— I
Y2 Vl

Mp—=T1+4r,MM2
2

The pushout definition of the shared combination of constiagic theories follows the Clear-
OBJ modularization tradition (Goguen et al., ; Burstall &auen, 1980) of “putting together”
theories via co-limits. For example, the sum (+) and thepatar instantiations for modules are
realized as pushouts of theories (see (Diaconescu et 8B; D8aconescu, 1996b)).

The following result shows that under normal technical ¢towls the shared combination of
theories exists in any constraint institution:

Theorem 5.Assume the institutiodl = (Sign, MoD, Sen |=) has pushouts of signatures, is semi-
exact, its signature morphisms are liberal, and the cayeglbmodels for each signature has
pushouts. Then any constraint institutiof overd has pushouts of theories.

Proof. By the fundamental result on the existence of co-limits afotties in institutions
(Goguen and Burstall, 1992), it is enough to prove fiathas pushouts of signatures.
Notice that the following square

Sign¢ & Sign™
Q Py
FlatMoD) 5 Sign

is a pullback, wher8ign— is the functor categor{Zat((e — e) — Sign), Py is the projection on
the source, anB, is the projection on the signhature component.

In virtue of Theorem 1 we have th&lafMoD) has pushouts. We also have tis&n— has
pushouts because colimits in functor categories are Gdkilpointwise from co-limits in the
base category. Moreove®, andP, create pushouts.
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Consider a bask: (e < e — o) — Signin Sign® and letu: bQP, — X be its pushout iSign.
BecauseP, create pushouts, there are pushqutsf bQ with ;P = p. From the structure of
pullbacks inCat, we get a co-cong overb such that/Q; = ;. We show that! is a pushout
of b. Let 3 be another co-cone ovbr Then,Q; is a co-cone ovay;, so we have unique such
that ;g = BQ;. Again by the structure of pullbacks ifdat, this gives the uniqug such that
H;q=B. O
The problem of combining constraint solvers over differdgtia types can then be formulated
as:
Solve a query for the shared combination I'1 4, '> when given constraint solvers for the compo-
nents My and Iy.

One very elegant algebraic approach to the problem of camdpaonstraint solvers was given
by Baader and Schultz (Baader and Schultz, 1994; Baader@ndz$1994). Their idea is es-
sentially based on studying algorithms that decomposerttiggm of finding solutions foq to
problems at the level of the components for which constshters already exist.

Definition 7.3. Any algorithm such that given a quegyn some shared combination of signatures
and assuming some fixed modéls and A, for the signatures, outputs querigsi = 1,2, for
each component such that

(ArE=Equ and As =) if Asda,Ao =

is called adecomposition algorithm

Then a constraint solver finding solutions tpwould alternate applications of constraint solvers
for g1 andqg, with steps of the decomposition algorithm. We refer to theknaf Baader and
Schultz (Baader and Schultz, 1994; Baader and Schulz, ¥88dxamples of such decomposi-
tion algorithms, for the purpose of this section the genewakept suffices. Notice also that the
component queries generated by the decomposition algmsitire expected to have solutions
only if the original (composed) problem admits a solutiohisTone-way implication reflects the
intuition that the decomposition algorithms are irrevielesiprocesses in the sense that they do
not necessarily admit inverse composition algorithms.

Although their approach is developed only for the case obrtes universal algebté and
it lacks a conceptual framework such as constraint logiwslding full constraint sentences,
a Herbrand theorem and a concept of morphism of constrajgit kheories), we feel that its
essence fits very well our constraint logic approach.

The following result provides logical foundations for comdition of constraint solving tech-
niques within the framewaork of the constraint logic indiiba.

Corollary 7.2. Assume a CBEL institution satisfying the following:

— theAdjointness Framework,

— the categories of models have finite colimits,

— the reducts between the categories of models have leftrasljo

— the forgetful functors from models to domains preserveréitecolimits,
— has pushouts for signatures, and

16 Though easily extendible to MSA.
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— is semi-exact.
Then for any constraint logic (over the assumed CBEL) theesdr{ andl™, sharingl o, and any
queryqfor I'1 4+, 2, there exists querieg for I';, i = 1,2, such that

M+r,M2=q impliesTif=q1 and M =0

provided there is a decomposition algorithm for queriebatével of the Herbrand models.

Proof. The shared combination of constraint logic theofigsi-r, "> exists by Theorem 5.
Then

Fi+rl2k=q
(Herbrand Theorem for constraint logic 4) i rQrr, Eq
(Proposition 3.1) iff 0,%r,0r, =1 U

(decomposition algorithm) implies rQ=aq1 and G, =
(Herbrand Theorem for constraint logic 4) iff TiEq andlMEq

The technical conditions in the hypotheses of the previesslt represent the joining of the
hypotheses of Theorem 4 and of Theorem 5. At a first glance ithigit look quite heavy,
however they are just very basic and describe a normal teehinamework. In fact, all examples
of Section 4.2 satisfy these conditions, all of them beinigegatensively used logics nowadays
in algebraic specification.

The meaning of Corollary 7.2 is the reduction of the problamadlving queries in combina-
tion of constraint logic theories which already have caxistrsolvers to that of decomposition
algorithms at the level of Herbrand models.

8. Conclusions and Future Work

We developed a category-based semantics for constraiitt poggramming rigorously based
on logic, the corresponding logical system being catledstraint logic We showed that mod-
els of constraint logic form a comma category over a modeluiif-ns and that the so-called
“generalised polynomials” play the rdle of terms. We shdwat constraint logic is an institu-
tion, and proved that constraint logic is a special case t&gmay-based equational logic. One
of the consequences of integrating constraint logic intdggory-based) equational logic is a
novel Herbrand theorem for constraint logic programming;aiso proved that in practice the
Herbrand model of a program is the quotient determined bythgram on the free extension
of the built-in model. Finally, we sketched some logicalridations for modular combination of
constraint solvers based on the amalgamated sum of theaherlbmnodels of the corresponding
constraint theories.

One of the most important research directions is to furtlkptage the computational conse-
guences of this semantics, especially in the context of lavdombination of constraint solving
techniques. “Constraint paramodulation” of (Diacone4@86c¢) can be usédas a basis for de-
velopingextensible modulaconstraint languages, i.e., languages combining conssalvers
over different data types in truly modular fashion a la ¢ié®J tradition. This needs further

7In a remotely similar way to the ‘theory resolution’ of (S, 1985). Also, recent advances in making
paramodulation-based techniques more effcient (see (Baictet al., 1995), for example) have to be incorporated
in any system implementing constraint paramodulation.



Constraint Logic 31

development of the topic of Section 7.2 in conjunction witimstraint paramodulation as opera-
tional semantics.

Another important research direction is the study of ECLBravon-conventional structures
which are not based on sets, which might result in intergstiew applications. This should
technically be based on the abstract development of camistogics over any category-based
equational logic.

Finally, more theoretical research directions would bexg@e new sufficient conditions for
the existence of the initial conservative constraint mpeatl to investigate the mathematical
and logical properties of constraint logic, including axiatisability results specific to constraint
logic.
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