
Logical Foundations ofCafeOBJ

Răzvan Diaconescu1 and Kokichi Futatsugi

Japan Advanced Institute of Science and Technology2

Abstract

This paper surveys the logical and mathematical foundations ofCafeOBJ, which is a suc-
cessor of the famous algebraic specification language OBJ but adds to it several new prim-
itive paradigms such as behavioural concurrent specification and rewriting logic.

We first give a concise overview ofCafeOBJ. Then we focus on the actual logical foun-
dations of the language at two different levels: basic specification and structured specifi-
cation, including also the definition of theCafeOBJ institution. We survey some novel or
more classical theoretical concepts supporting the logical foundations ofCafeOBJ, point-
ing out the main results but without giving proofs and without discussing all mathematical
details. Novel theoretical concepts include thecoherent hidden algebraformalism and its
combination with rewriting logic, andGrothendieck(or fibred) institutions. However for
proofs and for some of the mathematical details not discussed here we give pointers to
relevant publications.

The logical foundations ofCafeOBJ are structured by the concept ofinstitution. More-
over, the design ofCafeOBJ emerged from its logical foundations, and institution concepts
played a crucial r̂ole in structuring the language design.

Key words: algebraic specification,CafeOBJ, institutions, behavioural specification

1 Introduction

CafeOBJ is anexecutableindustrial strength algebraic specification language which
is a modern successor of OBJ and incorporates several new algebraic specification
paradigms. Its definition is given in [13].CafeOBJ is intended to be mainly used
for system specification, formal verification of specifications, rapid prototyping, or
even programming. We give below a brief overview of its most important features.

1 On leave from the Institute of Mathematics of the Romanian Academy.
2 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, JAPAN

Preprint submitted to Elsevier Preprint 17 May 2002

Equational Specification and Programming.

Equational specification and programming is inherited from OBJ [29, 19] and con-
stitutes the basis of the language, the other features being somehow built on top of
it. As with OBJ,CafeOBJ is executable(by term rewriting), which gives an ele-
gant declarative way of functional programming, often referred asalgebraic pro-
gramming. 3 As with OBJ,CafeOBJ also permits equational specification modulo
several equational theories such as associativity, commutativity, identity, idempo-
tence, and combinations between all these. This feature is reflected at the execution
level by term rewritingmodulosuch equational theories.

Behavioural Specification.

Behavioural specification [23, 24, 14, 31] provides a novel generalisation of or-
dinary algebraic specification. Behavioural specification characterises how objects
(and systems)behave, not how they are implemented. This new form of abstraction
can be very powerful in the specification and verification of software systems since
it naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [24] for details). Behavioural abstraction is
achieved by using specification with hidden sorts and a behavioural concept of
satisfaction based on the idea of indistinguishability of states that are observation-
ally the same, which also generalises process algebra and transition systems (see
[24]). CafeOBJ behavioural specification paradigm is based oncoherent hidden
algebra(abbreviated ‘CHA’) of [14], which is both a simplification and extension
of classical hidden algebra of [24] in several directions, most notably by allowing
operations with multiple hidden sorts in the arity. Coherent hidden algebra comes
very close to the “observational logic” of Bidoit and Hennicker [31].

CafeOBJ directly supports behavioural specification and its proof theory through
special language constructs, such as

• hidden sorts (for states of systems),
• behavioural operations (for direct “actions” and “observations” on states of sys-

tems),
• behavioural coherence declarations for (non-behavioural) operations (which may

be either derived (indirect) “observations” or “constructors” on states of sys-
tems), and

• behavioural axioms (stating behavioural satisfaction).

The advanced coinduction proof method receives support inCafeOBJ via a de-
fault (candidate) coinduction relation (denoted=*=). In CafeOBJ, coinduction can
be used either in the classical hidden algebra sense [24] for proving behavioural

3 Although this paradigm may be used as programming, from the applications point of
view, this aspect is secondary to its specification side.

2

equivalence of states of objects, or for proving behavioural transitions (which ap-
pear when applying behavioural abstraction to rewriting logic). However, until the
time this paper was written, the latter has not been yet explored sufficiently, espe-
cially practically.

Besides language constructs,CafeOBJ supports behavioural specification and ver-
ification by several methodologies.4 CafeOBJ currently highlights a methodol-
ogy for concurrent object composition which features high reusability not only of
specification code but also of verifications [13, 33]. Behavioural specification in
CafeOBJ may also be effectively used as an object-oriented (state-oriented) alter-
native for classical data-oriented specifications. Experiments seem to indicate that
an object-oriented style of specification even of basic data types (such as sets, lists,
etc.) may lead to higher simplicity of code and drastic simplification of verification
process [13].

Behavioural specification is reflected at the execution level by the concept ofbe-
havioural rewriting[13, 14] which refines ordinary rewriting with a condition en-
suring the correctness of the use of behavioural equations in proving strict equali-
ties.

Rewriting Logic Specification.

Rewriting logic specification inCafeOBJ is based on a simplified version of Mese-
guer’srewriting logic(abbreviated as ‘RWL’) [36] specification framework for con-
current systems which gives a non-trivial extension of traditional algebraic speci-
fication towards concurrency. RWL incorporates many different models of concur-
rency in a natural, simple, and elegant way, thus givingCafeOBJ a wide range of
applications. Unlike Maude [3], the currentCafeOBJ design does not fully sup-
port labelledRWL which permits full reasoning about multiple transitions between
states (or system configurations), but provides proof support for reasoning about
the existenceof transitions between states (or configurations) of concurrent sys-
tems via a built-in predicate (denoted==>) with dynamic definition encoding into
equational logic both the proof theory of RWL and the user defined transitions
(rules). At the level of the semantics, this amounts to the fact that theCafeOBJ
RWL models are preorders rather than categories.

From a methodological perspective,CafeOBJ develops the use of RWL transitions
for specifying and verifying the properties ofdeclarative encoding of algorithms
(see [13]) as well as for specifying and verifying transition systems.

4 This is still an open research topic, the current methodologies may be developed further
and new methodologies may be added in the future.

3

Module System.

The principles of theCafeOBJ module system are inherited from OBJ which
builds on ideas first realized in the language Clear [1], most notably institutions
[21, 17].CafeOBJ module system features

• several kinds of imports,
• sharing for multiple imports,
• parameterised programming allowing
· multiple parameters,
· views for parameter instantiation,
· integration ofCafeOBJ specifications with executable code in a lower level

language
• module expressions.

However, the concrete design of the language revises the OBJ view on importation
modes and parameters [13].

Type System and Partiality.

CafeOBJ has a type system that allows subtypes based onorder sorted algebra
(abbreviated ‘OSA’) [27, 22]. This provides a mathematically rigorous form of
runtime type checking and error handling, givingCafeOBJ a syntactic flexibil-
ity comparable to that of untyped languages, while preserving all the advantages of
strong typing.

At this moment the concrete order sortedness formalism is still open at least at the
level of the language definition.CafeOBJ does not directly do partial operations
but rather handles them by using error sorts and a sort membership predicate in the
style ofmembership equational logic(abbreviated ‘MEL’) [37]. The semantics of
specifications with partial operations is given by MEL.

Logical semantics.

CafeOBJ is a declarative language with firm mathematical and logical foundations
in the same way as other OBJ-family languages (OBJ, Eqlog [25, 5],FOOPS[26],
Maude [36]) are. The mathematical semantics ofCafeOBJ is based on state-of-the-
art algebraic specification concepts and results, and is strongly based on category
theory and the theory of institutions [21, 12, 10, 17]. The following are the princi-
ples governing the logical and mathematical foundations ofCafeOBJ:

P1. there is an underlying logic 5 in which all basic constructs and features of

5 Here “logic” should be understood in the modern relativistic sense of “institution” which

4

the language can be rigorously explained.
P2. provide an integrated, cohesive, and unitary approach to the semantics

of specification in-the-small and in-the-large.
P3. develop all ingredients (concepts, results, etc.) at the highest appropriate

level of abstraction.

CafeOBJ is a multi-paradigm language. Each of the main paradigms implemented
in CafeOBJ is rigorously based on some underlying logic; the paradigms resulting
from various combinations are based on the combination of logics. The structure of
these logics is shown by the followingCafeOBJ cube, where the full arrows mean
embedding between the logics, which correspond to institution embeddings (i.e., a
strong form of institution morphisms of [21, 17]) (the orientation of arrows goes
from “more complex” to “less complex” logics in the style of the original definition
of institution homomorphism [21]).

The mathematical structure represented by this cube is that of anindexed institu-
tion [12]. TheCafeOBJ institution is aGrothendieck(or fibred) institution[12] ob-
tained by applying a Grothendieck construction to this cube (i.e., the indexed insti-
tution). The dotted arrows represent the institution homomorphism [21]. Note that
by employing other logical-based paradigms theCafeOBJ cube may be thought as
a hyper-cube (see [13] for details).

1.1 Summary of the paper

The first part of this paper is dedicated to the foundations of basic specifications.
The main topic of this part is the definition of HOSRWL, the hidden order sorted
rewriting logic institution, which embeds all other institutions of theCafeOBJ
cube. In this way, the HOSRWL institution contains the mathematical foundations
for all basic specificationCafeOBJ constructs.

provides a mathematical definition for a logic (see [21]) rather than in the more classical
sense.

5

The second part of the paper presents the novel concept of Grothendieck institution
(developed in [12]) which constructs theCafeOBJ institution from theCafeOBJ
cube.

The last section contains the definitions of the main mathematical concepts for
structuring specification inCafeOBJ.

The main concepts of the logical foundations ofCafeOBJ are illustrated with sev-
eral examples, includingCafeOBJ code. We assume familiarity withCafeOBJ
including its syntax and semantics (see [13] or several papers such as [15]).

Terminology and Notations

This work assumes some familiarity with basic general algebra (in its many-sorted
and order-sorted form) and category theory. Relevant background in general alge-
bra can be found in [20, 28, 38] for the many-sorted version, and in [27, 22] for
the order-sorted version. For category theory we generally use the same notations
and terminology as Mac Lane [34], except that composition is denoted by “;” and
written in the diagrammatic order. The application of functions (functors) to argu-
ments may be written either normally using parentheses, or else in diagrammatic
order without parentheses, or, more rarely, by using sub-scripts or super-scripts.
The category of sets is denoted asSet, and the category of categories6 asCat. The
opposite of a categoryC is denoted byCop. The class of objects of a categoryC is
denoted by|C|; also the set of arrows inC having the objecta as source and the
objectb as target is denoted asC(a,b). A preorderis a small category withat most
one arrow between each two objects. Apreorder functoris just a functor between
preorders. The category of preorders is denoted byPre.

Indexed categories [39] play an important rôle in this work. [40] constitutes a good
reference for indexed categories and their applications to algebraic specification.
An indexed category[40] is a functorB: Iop→ Cat; sometimes we denoteB(i) as
Bi (or Bi) for an indexi ∈ |I | andB(u) asBu for an index morphismu ∈ I . The
following ‘flattening’ construction providing the canonical fibration associated to
an indexed category is known under the name of theGrothendieck construction,
and plays an important rôle in mathematics and in particular in this paper. Given
an indexed categoryB: Iop→ Cat, let B] be theGrothendieck categoryhaving
〈i, Σ〉, with i ∈ |I | andΣ ∈ |Bi |, as objects and〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, with u ∈
I(i, i′) andϕ : Σ→ Σ′Bu, as arrows. The composition of arrows inB] is defined by
〈u, ϕ〉;〈u′, ϕ′〉= 〈u;u′, ϕ;(ϕ′Bu)〉.

6 We steer clear of any foundational problem related to the “category of all categories”;
several solutions can be found in the literature, see, for example [34].

6

2 Foundations of Basic Specifications

At the level of the basic specifications, semantics ofCafeOBJ is concerned with
the semantics of collections of specification statements.CafeOBJ modules can be
flattened to suchbasic specificationsby an obvious induction process on the module
composition structure. InCafeOBJ we can have several kinds of specifications,
the basic kinds corresponding to the basicCafeOBJ specification/programming
paradigms:

- equational specifications,
- rewriting specifications,
- behavioural specifications, and
- behavioural rewriting specifications.

The membership of a basic specification to a certain class is determined by the
CafeOBJ convention that each basic specification should be regarded as imple-
menting the simplest possible combination of paradigms resulting from its syntac-
tic content.

2.1 Loose and Tight Denotation

The key concept of specification in-the-small is thesatisfaction relationbetween
the models and the sentences of a given specification, which is also the key notion
of the abstract concept of institution. Each kind of specification has its own concept
of satisfaction, and Section 2.2 surveys them briefly.

Each class of basic specifications has an underlying logic in theCafeOBJ cube.
Specifications can be regarded as finite sets of sentences in the underlying logic.
This enables us to formulate the principle of semantics ofCafeOBJ specification
in-the-small:

(S) Each basic specification determines a theory in the corresponding
institution. The denotation [[SP]] of a basic specification SPis the class of
models MOD(TSP) of its corresponding theory TSP if loose , and it is the
initial model 0TSP of the theory, if tight .

A basic specification can have either loose or initial denotation, and this can be di-
rectly specified by the user.CafeOBJ does not directly implement final semantics,
however final models play an important rôle for the loose semantics of behavioural
specifications (see [14, 9]).

Initial model semantics applies only to non-behavioural specification, and is sup-
ported by the following result:

7

Theorem 1 Let T be a theory in either MSA, OSA, RWL, or OSRWL. Then the
initial model0T exists.

This very important result appears in various variants and can be regarded as a
classic of algebraic specification theory. The reader may wish to consult [28] for
MSA, [27, 22] for OSA, [36] for RWL, and although, up to our knowledge, the
result has not yet been published, it is also valid for OSRWL.

Because of the importance of the construction of the initial model we briefly recall
it here. LetΣ be the signature of the theory consisting of a setSof sorts (which is a
partial order in the order-sorted case) and a ranked (byS∗) set of operation symbols
(possibly overloaded). TheS-sorted setTΣ of Σ-terms is the leastS-sorted set closed
under:

- each constant is aΣ-term (that is,Σ[],s⊆ TΣ,s), and
- σ(t1 . . . tn) ∈ TΣ,s wheneverσ ∈ Σs1...sn,s andti ∈ TΣ,si for i ∈ {1, . . . ,n}.

The operations inΣ can be interpreted onTΣ in the obvious manner, thus making it
into aΣ-algebra 0Σ. If T is equational, then its ground part (i.e., the set of pairs of
terms without variables representing the set of the ground equations ofT) is a con-
gruence≡T on 0Σ. Then 0T is the quotient 0Σ/≡T , whose carriers are equivalence
classes ofΣ-terms under≡T . If T is a pure rewriting theory then 0T is a preorder
model7 whose carriers(0T)s are preorders ofΣ-terms with the preorder relation
given by the existence of a rewrite sequence (using the rules ofT). Finally, rewrite
theories including equations require the combination between the above two con-
structions.

Example 2 Consider the followingCafeOBJ specification of non-deterministic
natural numbers:

mod! NNAT {
protecting(NAT)
[Nat < NNat]
op _|_ : NNat NNat -> NNat {assoc}
trans M:Nat | N:Nat => M .
trans M:Nat | N:Nat => N .

}

The denotation ofNNATis initial and consists [of the isomorphism class] of one
model, 0NNAT, the initial model. The main carrier of 0NNAT is a preorder of non-
empty lists of natural numbers with the deletion sequences as the preorder relation.
| gets interpreted as a preorder functor which concatenates lists of numbers, and

composes in parallel (“horizontally”) deletion sequences.

7 A restricted form of rewriting model; see the subsection “Models” of Section 2.2 for the
definition.

8

2.2 Hidden Order Sorted Rewriting Logic Institution

We devote this section to the definition of the HOSRWL institution (defined for the
first time in [9] in the many sorted version HRWL) which embeds allCafeOBJ
cube institutions. We recall here that the behavioural specification part of HOS-
RWL is based on the ‘coherent hidden algebra’ of [14]. The deep understanding of
HOSRWL requires further reading on its main components ([36] for RWL and [14]
for CHA) as well as their integration [9].

Signatures

Definition 3 A HOSRWLsignatureis a tuple(H,V,≤,Σ,Σb), where

• (H,≤) and(V,≤) are disjoint partially ordered sets ofhiddensorts andvisible
sorts, respectively,

• Σ is a (H ∪V,≤)-order-sorted signature,
• Σb⊆ Σ is a subset ofbehavioural operationssuch thatσ ∈ Σb

w,s hasexactlyone
hidden sort in w.

Notice that we may simplify the notation(H,V,≤,Σ,Σb) to just (H,V,≤,Σ) , or
just Σ, when no confusion is possible.

Also notice that theCafeOBJ RWL signatures are just ordinary algebraic (MSA)
signatures; our approach is thus rather different from the original definition of RWL
signatures [36] adding structural equations in the definition of the signature.

From a methodological perspective, the operations inΣb have object-oriented mean-
ing, σ ∈ Σb

w,s is thought of as anaction (or “method” in a more classical jargon) on
the space (type) of states ifs is hidden, and thought of as andobservation(or “at-
tribute” in a more classical jargon) ifs is visible. The last condition says that the
actions and observations act on (states of) single objects.

Definition 4 A HOSRWLsignature morphismΦ : (H,V,≤,Σ,Σb)→ (H ′,V ′,≤′
,Σ′,Σ′b) is an order-sorted signature morphism(H ∪V,≤,Σ)→ (H ′ ∪V ′,≤′,Σ′)
such that

(M1) Φ(V)⊆V ′ andΦ(H)⊆ H ′,
(M2) Φ(Σb) = Σ′b andΦ−1(Σ′b)⊆ Σb,
(M3) if Φ(h)<Φ(h′) for any hidden sorts h,h′ ∈ H, then h< h′.

These conditions say that hidden sorted signature morphisms preserve visibility and
invisibility for both sorts and operations, and theΣ′b ⊆ Φ(Σb) inclusion together
with (M3) expresses the encapsulation of classes (in the sense that no new actions

9

(methods) or observations (attributes) can be defined on an imported class)8 . How-
ever, these conditions apply only to the case when signature morphisms are used as
module imports (the so-calledhorizontalsignature morphisms); when they model
specification refinement this condition might be dropped (this case is calledvertical
signature morphism).

Proposition 5 HOSRWL signatures and signature morphisms (with the obvious
composition) form a category denoted asSignHOSRWL.

Sentences

In HOSRWL there are several kinds of sentences inherited from the variousCafeOBJ
cube institutions.

Definition 6 Consider a HOSRWL signature(H,V,≤,Σ,Σb). Then a(strict) equa-
tion is a sentence of the form

(∀X) t = t ′ if C

where X is a(H∪V)-sorted set of variables, t, t ′ areΣ-terms with variables X, and
C is a Boolean9 (-sorted)Σ-term,
a behavioural equationis a sentence of the form

(∀X) t ∼ t ′ if C,

a (strict) transition is a sentence of the form

(∀X) t => t ′ if C,

and abehavioural transitionis a sentence of the form

(∀X) t ∼> t ′ if C

where X, t, t ′,C have the same meaning as for strict equations.

All these sentences are here defined in the conditional form. If the condition is
missing (which is equivalent to saying that it is always true), then we get the un-
conditional versions of sentences. Notice also that our approach to conditional sen-
tences is slightly different from other approaches in the literature in the sense that
the condition is a Boolean term rather than a finite conjunction of formulæ. Our

8 Without it the Satisfaction Condition fails; for more details on the logical and computa-
tional relevance of this condition see [23].
9 We implicitly assume the existence of a Boolean sortBool together with the ordinary
Boolean operations and equations specifying a Boolean data typeBOOL.

10

approach is more faithful to the concrete level ofCafeOBJ and is also more gen-
eral. This means that a finite conjunction of formulæ can be translated to a Boolean
term by using some special semantic predicates (such as== for semantic equality
and==> for the semantic transition relation, inCafeOBJ). We do not discuss here
the full details of this approach, we only mention that the full rigorous treatment of
such conditions can be achieved within the so-calledconstraint logic[11], which
can however be regarded as a special case of an abstract categorical form of plain
equational logic [6, 5, 11].

Equational attributes such as associativity (A), commutativity (C), identity (I), or
idempotence (Z) are just special cases of strict equations. However, the behavioural
part of HOSRWL has another special attribute calledbehavioural coherence[13,
14] which is regarded as a sentence:

Definition 7 Let (H,V,≤,Σ,Σb) be a signature. Then

σ coherent

is abehavioural coherencedeclaration forσ, whereσ is any operationΣ.

Definition 8 Given a signature morphismΦ : (H,V,≤,Σ,Σb)→ (H ′,V ′,≤′,Σ′,Σ′b)
the translation of sentences is defined by replacing all operation symbols fromΣ
with the corresponding symbols (viaΦ) fromΣ′ and by re-arranging the sort of the
variables involved accordingly to the sort mapping given byΦ.

Fact 9 If we denote the set of sentences of a signature(H,V,≤,Σ,Σb) by
SenHOSRWL(H,V,≤,Σ,Σb) and the sentence translation corresponding to a signa-
ture morphismΦ by SenHOSRWL(Φ), then we get a sentence functor
SenHOSRWL: SignHOSRWL→ Set.

Models

Models of HOSRWL arepreorder modelswhich are (algebraic) interpretations of
the signatures intoPre (the category of preorders) rather than inSet (the category
of sets) as in the case of ordinary algebras. Thus, ordinary algebras can be regarded
as a special case of preorder models with discrete carriers. On the other hand, if we
ignore the order sorted aspect, the HOSRWL preorder models are a special case of
Meseguer RWL models [36] which have at most one arrow between elements. In
the case of preorder models, the arrows between elements are calledtransitions.

Definition 10 Given a HOSRWL signature(H,V,≤,Σ,Σb), a HOSRWLmodelM
interprets:

• each sort s as a preorder Ms and each subsort relation s< s′ as a sub-category
relation Ms⊆Ms′, and

11

• each operationσ ∈ Σw,s as a preorder functor Mσ : Mw→Ms, where Mw stands
for Ms1× . . .×Msn for w = s1 . . .sn.

Notice that eachΣ-termt : w→ sgets an associated preorder functorMt : Mw→Ms

by evaluating it for each assignment of the variables occurring int with elements
from the corresponding carriers ofM.

Model homomorphisms in HOSRWL follow an idea of [31] by refining the ordinary
concept of model morphism and reforming the hidden algebra [23, 24] homomor-
phisms by taking adequate care of the behavioural structure of models. We need
first to define the concept ofbehavioural equivalence.

Definition 11 Recall that aΣ-contextc[z] is anyΣ-term c with a marked variable
z occurring only once in c. A context c[z] is behaviouraliff all operations above10

z are behavioural.

Given a model M, two elements (of the same sort s) a and a′ are calledbehaviourally
equivalent, denoted a∼s a′ (or just a∼ a′) iff 11

Mc(a) = Mc(a′)

for all visiblebehavioural contexts c.

Remark that the behavioural equivalence is a(H ∪V)-sorted equivalence relation,
and on the visible sorts the behavioural equivalence coincides with the (strict)
equality relation.

Now we are ready to give the definition of model homomorphism in HOSRWL.

Definition 12 A homomorphism h: M→M′ between models of a signature(H,V,≤
,Σ,Σb) is a (H ∪V)-sorted categorical relation12 between the preorder carriers
such that (for each sort s):

• for all a ∈Ms there exists a′ ∈M′s (where a and a′ can be either both transitions
or both elements) such that a hs a′,

• for all a ∈Ms, if a hs a′ then (a hs b′ if and only if a′ ∼s b′),
• for all a,b∈Ms and a′ ∈M′s, if a hs a′ and a∼s b then b hs a′, and
• for each operationσ ∈ Σw,s, for all a ∈ Mw and a′ ∈ M′w, a hw a′ (component-

wise) implies Mσ(a) hs M′σ(a′).

10 Meaning thatz is in the subterm determined by the operation.
11 Notice that this equality means an equality between functorsMw1w2 → Ms′ , where
c: w1sw2→ s′ with w1,w2 ∈ (H ∪V)∗ ands′ ∈V.
12 This is a relation between the sets of elements together with a relation between the sets of
transitions, such that this couple of relations commute with the domain functions, codomain
functions, and transition composition functions.

12

Notice that when there are no hidden sorts (i.e., we are in some non-behavioural part
of HOSRWL), this concept of model homomorphism coincides with the rewriting
model homomorphism.

For a given signature(H,V,≤,Σ), we denote its category of models by MODHOSRWL.
Notice that any signature morphismΦ : (H,V,≤,Σ,Σb)→ (H ′,V ′,≤′,Σ′,Σ′b) de-
termines amodel reduct functorMOD(Φ) : MOD(H ′,V ′,≤′,Σ′,Σ′b)→MOD(H,V,≤
,Σ,Σb) in the usual way (by renaming the sorts of the carriers and the interpreta-
tions of the operations accordingly to the mapping of sorts and operations given by
Φ). Therefore we have a contravariantmodel functor
MODHOSRWL: SignHOSRWL→ Catop.

Satisfaction

The satisfaction relation between sentences and models is the crucial concept of an
institution (see Definition 20).

Definition 13 Consider a model M of a signature(H,V,≤,Σ,Σb). Then Msatisfies
an equation, i.e., M |= (∀X) t = t ′ if C, if and only if

Mt(θ) = Mt ′(θ) whenever MC(θ) is true

for all valuationsθ : X→M. (Notice that we implicitly assume the standard (initial)
interpretation by M of the built-in data typeBOOL.)

M satisfies a behavioural equation, i.e.,M |= (∀X) t ∼ t ′ if C, if and only if

Mt(θ)∼Mt ′(θ) wheneverMC(θ) is true

for all valuationsθ : X→M.

M satisfies a transition, i.e., M |= (∀X) t => t ′ if C, if and only if for each
valuationθ : X→M there exists the transitionMt(θ)→Mt ′(θ) wheneverMC(θ) is
true.

M satisfies a behavioural transition, i.e.,M |= (∀X) t ∼> t ′ if C, if and only if
for each appropriate visible behavioural contextc and for each valuationθ : X→M
there exists the transitionMc(Mt(θ))→Mc(Mt ′(θ)) wheneverMC(θ) is true.

Finally,M satisfies a coherence declaration, i.e.,M |= (σ coherent), if and only
if σ preserves the behavioural equivalence onM, i.e.,

Mσ(a)∼Mσ(a′) if a∼ a′ (component-wise)

for all a,a′ ∈Mw.

13

Notice that the behavioural coherence of both the behavioural operations and of
operations of a visible rank is trivially satisfied.

Example 14 Consider the followingCafeOBJ behavioural specification of non-
deterministic natural numbers:

mod* NNAT-HSA {
protecting(NAT)
[NNat]
op [_] : Nat -> NNat
op _|_ : NNat NNat -> NNat
bop _->_ : NNat Nat -> Bool
vars S1 S2 : NNat
vars M N : Nat
eq [M] -> N = M == N .
eq S1 | S2 -> N = S1 -> N or S2 -> N .

}

The non-deterministic natural numberss1 ands2 are behaviourally equivalent if and
only if

s1→ n is true if and only if s2→ n is true

for all natural numbersn.

Notice that for all modelsM of NNAT-HSA,

M |= (| coherent)

This situation where the operations which are neither behavioural nor data type
operations (i.e. with visible rank) are automatically coherent is rather natural and
occurs very often in practice, and this corresponds to the so-calledcoherence con-
servative methodologyof [14].

The definition of the satisfaction relation between sentences and models completes
the construction of the HOSRWL institution:

Theorem 15 (SignHOSRWL,SenHOSRWL,MODHOSRWL, |=) is an institution.

For the definition of institution see Definition 20 given below. We omit here the
proof of this result which is rather long and tedious and follows the same pattern as
proofs of similar results, also reusing some of them.

At the end of the presentation of the HOSRWL institution we give a brief example
of aCafeOBJ specification in HOSRWL:

Example 16 Consider a behavioural specification of sets of non-deterministic nat-
ural numbers:

14

mod* SETS {
protecting(NNAT)
[Set]
op empty : -> Set
op add : NNat Set -> Set {coherent}
op _U_ : Set Set -> Set {coherent}
op _&_ : Set Set -> Set {coherent}
op not : Set -> Set {coherent}
bop _in_ : NNat Set -> Bool
vars E E’ : NNat
vars S S1 S2 : Set
eq E in empty = false .
eq E in add(E’, S) = (E == E’) or (E in S) .
eq E in S1 U S2 = (E in S1) or (E in S2) .
eq E in S1 & S2 = (E in S1) and (E in S2) .
eq E in not(S1) = not (E in S1) .

}

whereNNATis the RWL specification of non-deterministic natural numbers of Ex-
ample 2. Models ofSETS interpret the non-deterministic naturalsNNATby the
initial model 0NNAT and the hidden sortSet and its related operations in various
ways. One possible way is to interpretSet as sets of non-deterministic naturals.
Another way would be to interpretSet as a pair between a Boolean element and
a list of non-deterministic naturals, with the Booleanfalse playing the role of
negation and with a corresponding interpretation of the operations. There are also
many other ways to interpret the loose part ofSETS. Notice that each model of
SETSsatisfies the usual set theory rules (such as commutativity and associativity
of union and intersection, De Morgan laws, etc.) onlybehaviourally, not necessar-
ily in the strict sense. For example, the behavioural commutativity of the union

beq S1 U S2 = S2 U S1 .

is a consequence of the specificationSETS. While the former model satisfies it
strictly, the latter does not when interpreting the union as list concatenation.

Specifications in full HOSRWL naturally occur in the case of a behavioural speci-
fication using concurrent (RWL) data types. However the practical significance of
full HOSRWL is still little understood. The real importance of the HOSRWL insti-
tution is its initiality in theCafeOBJ cube. We will see below that the existence
of all possible combinations between the main logics/institutions ofCafeOBJ is
crucial for the good properties of theCafeOBJ institution.

15

2.3 Operational vs. Logical Semantics

The operational semantics underlies the execution of specifications or programs.
As with OBJ, theCafeOBJ operational semantics is based on rewriting, which in
the case of proofs is used without directly involving the user defined transitions
(rules) as rewrite rules but rather involving them via the built-in semantic transition
predicate==>. 13 For executions of concurrent systems specified in rewriting logic,
CafeOBJ uses both the user-defined transitions and equations.

Since rewriting is a very well known topic in algebraic specification, we do not
insist here on the standard aspects of rewriting. However, the operational semantics
of behavioural specification requires a more sophisticated notion of rewriting which
takes special care of the use of behavioural sentences during the rewriting process,
which we callbehavioural rewriting[13, 14]:

Definition 17 Given a HOSRWL signatureΣ and aΣ-algebra A, abehaviourally
coherent context forA is anyΣ-context c[z] such that all operations above the
marked variable z are either behavioural or behaviourally coherent for A.

Notice that any behavioural context is also behaviourally coherent.

Definition 18 Consider a HOSRWL signatureΣ, a set E ofΣ-sentences regarded
as a TRS (i.e. term rewriting system), and aΣ-algebra A satisfying the sentences
in E. If t0 is a ground term, then any rewrite step t0→ t1 which uses a behavioural
equation from E and for which the rewrite context has a behaviourally coherent
sub-context for A is called abehavioural rewriting step.

The following Proposition from [14] ensures the soundness of behavioural rewrit-
ing:

Proposition 19 Under the hypotheses of Definition 18, if t0→ t1 is a behavioural
rewrite step, then A|= (∀ /0) t0 ∼ t1. Moreover, if the rewrite context is visible, then
A |= (∀ /0) t0 = t1.

The completeness of the operational semantics with respect to the logical semantics
is a two-layer completeness going via the important intermediate level of the proof
calculi.

The completeness of the proof calculus is one of the most important class of results
in algebraic specification, for equational logic we refer to [27], and for rewriting

13 This means that theCafeOBJ proofs are equational and involve a built-in equation
(t==>t ′)= true for each user defined transitiont=>t ′. See [13] or [16] for more details.

16

logic to [36]. In the case of rewriting logic the relationship between the proof cal-
culus and rewriting is very intimate, but for equational logic the completeness of
rewriting can be found, among other many places, in [20, 8].

Notice that hidden logics of theCafeOBJ cube do not admit a complete (finitary)
proof calculus [2]. However, advanced proof techniques support the verification
process in the case of behavioural specifications, most notably thehidden coin-
ductionmethod (see [24] for the original definition, [13, 14] for its realization in
CafeOBJ, and [7] for the details for the case of proving behavioural transitions).

3 TheCafeOBJ Institution

In this section we define theCafeOBJ institution, which is a Grothendieck con-
struction on theCafeOBJ cube. The Grothendieck construction for institutions
was introduced and developed by Diaconescu in [12] and generalises the famous
Grothendieck construction for categories [30]. The essence of this Grothendieck
construction is that it constructs a ‘disjoint sum’ of all institutions of theCafeOBJ
cube, also introducing theory morphisms across the institution embeddings of the
CafeOBJ cube. Suchextra theory morphismswere first studied in [10]. However,
one advantage of the Grothendieck institutions is that they treat the extra theory
morphisms as ordinary theory morphisms, thus leading to a conceptual simplifica-
tion with respect to [10].

The reader might wonder why one cannot live with HOSRWL only (which em-
beds all theCafeOBJ cube institutions) and we still need a Grothendieck con-
struction on theCafeOBJ cube. The reason for this is that the combination of
logics/institutions realized by HOSRWL collapses crucial semantic information,
therefore a more refined construction which preserves the identity of each of the
CafeOBJ cube institutions, but yet allowing a concept of theory morphism across
the institution embeddings, is necessary. For example, in the case of specifications
with loose semantics without a RWL component, the carriers of the models of these
specifications should be sets rather than preorders, which is not possible in HOS-
RWL. Therefore, such specifications should be given semantics within the appro-
priate institution of theCafeOBJ cube rather than in HOSRWL. Example 39 illus-
trates this argument.

3.1 Institutions

We now recall from [21] the definitions of the main institution concepts:

Definition 20 An institution ℑ = (Sign,Sen,MOD, |=) consists of

17

(1) a categorySign, whose objects are calledsignatures,
(2) a functorSen : Sign→ Set, giving for each signature a set whose elements are

calledsentencesover that signature,
(3) a functorMOD : Signop→ Cat giving for each signatureΣ a category whose

objects are calledΣ-models, and whose arrows are calledΣ-(model) mor-
phisms, and

(4) a relation|=Σ⊆ |MOD(Σ)|×Sen(Σ) for eachΣ∈ |Sign|, calledΣ-satisfaction,

such that for each morphismϕ : Σ→ Σ′ in Sign, thesatisfaction condition

m′ |=Σ′ Sen(ϕ)(e) iff MOD(ϕ)(m′) |=Σ e

holds for each m′ ∈ |MOD(Σ′)| and e∈ Sen(Σ). We may denote the reduct functor
MOD(ϕ) by �ϕ and the sentence translationSen(ϕ) by ϕ().

Definition 21 Let ℑ = (Sign,Sen,MOD, |=) be an institution. For any signatureΣ
the closure of a set E ofΣ-sentences is E• = {e | E |=Σ e} 14 . (Σ,E) is a theory if
and only if E is closed, i.e., E= E•.

A theory morphismϕ : (Σ,E)→ (Σ′,E′) is a signature morphismϕ : Σ→ Σ′ such
that ϕ(E)⊆ E′. LetTh(ℑ) denote the category of all theories inℑ.

For any institutionℑ, the model functor MOD extends from the category of its
signaturesSign to the category of its theoriesTh(ℑ), by mapping a theory(Σ,E) to
the full subcategory MOD(Σ,E) of MOD(Σ) formed by theΣ-models which satisfy
E.

Definition 22 A theory morphismϕ : (Σ,E)→ (Σ′,E′) is liberal if and only if the
reduct functor �ϕ : MOD(Σ′,E′)→MOD(Σ,E) has a left-adjoint()ϕ.

The institutionℑ is liberal if and only if each theory morphism is liberal.

Definition 23 An institutionℑ = (Sign,Sen,MOD, |=) is exact if and only if the
model functorMOD : Signop→ Cat preserves finite limits.ℑ is semi-exactif and
only if MOD preserves pullbacks.

Definition 24 Let ℑ and ℑ′ be institutions. Then aninstitution homomorphism
ℑ′→ ℑ consists of

(1) a functorΦ : Sign′→ Sign,
(2) a natural transformationα : Φ;Sen⇒ Sen′, and
(3) a natural transformationβ : MOD′⇒Φop;MOD

14 E |=Σ emeans thatM |=Σ e for anyΣ-modelM that satisfies all sentences inE.

18

such that the followingsatisfaction conditionholds

m′ |=Σ′ αΣ′(e) iff βΣ′(m′) |=′Σ′Φ e

for anyΣ′-model m′ from ℑ′ and anyΣ′Φ-sentence e fromℑ.

Fact 25 Institutions and institution homomorphisms form a category denoted as
Ins.

The following properties of institution homomorphisms were defined in [12] and
play an important r̂ole for Grothendieck institutions:

Definition 26 An institution homomorphism(Φ,α,β) : ℑ′→ ℑ is

• an embeddingiff Φ admits a left-adjointΦ (with unit ζ); an institution embed-
ding is denoted as(Φ,Φ,ζ,α,β) : ℑ′→ ℑ, and is
• liberal iff βΣ′ has a left-adjointβΣ′ for eachΣ′ ∈ |Sign′|.

An institution embedding(Φ,Φ,ζ,α,β) : ℑ′→ ℑ is exactif and only if the square
below is a pullback

MOD(Σ) MOD(Σ1)MOD(ϕ)oo

MOD(ΣΦΦ)

MOD(Σζ)

OO

MOD(Σ1ΦΦ)

MOD(Σ1ζ)

OO

MOD′(ΣΦ)

βΣΦ

OO

MOD′(Σ1Φ)
MOD′(ϕΦ)
oo

βΣ1Φ

OO

whereϕ : Σ→ Σ1 is any signature morphism inℑ.

3.2 Indexed and Grothendieck Institutions

The following definition from [12] generalises the concept of indexed category [40]
to institutions.

Definition 27 An indexed institutionℑℑ is a functorℑℑ : Iop→ Ins.

The CafeOBJ cube is an indexed institution where the index categoryI is the
8-element lattice corresponding to the cube (i.e., the elements of the lattice corre-
spond to the nodes of the cube and the partial order is given by the arrows of the
cube).

Definition 28 TheGrothendieck institutionℑℑ] of an indexed institutionℑℑ : Iop→

19

Ins has

(1) the Grothendieck categorySign] as its category of signatures, whereSign: Iop→
Cat is theindexedcategory of signatures of the indexed institutionℑ,

(2) MOD] : (Sign])op→ Cat as its model functor, where
• MOD](〈i, Σ〉) = MODi(Σ) for each index i∈ |I | and signatureΣ ∈ |Signi |,

and
• MOD](〈u, ϕ〉) = βu

Σ′;MODi(ϕ) for each〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,
(3) Sen] : Sign]→ Set as its sentence functor, where
• Sen](〈i, Σ〉) = Seni(Σ) for each index i∈ |I | and signatureΣ ∈ |Signi |, and
• Sen](〈u, ϕ〉) = Seni(ϕ);αu

Σ′ for each〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,
(4) m|=]

〈i,Σ〉 e iff m|=i
Σ e for each index i∈ |I |, signatureΣ ∈ |Signi |, model m∈

|MOD](〈i, Σ〉)|, and sentence e∈ Sen](〈i, Σ〉).

whereℑi = (Signi ,MODi ,Seni , |=i) for each index i∈ |I | andℑu = (Φu,αu,βu) for
u∈ I index morphism.

For the category minded readers we mention that [12] gives a higher level charac-
terisation of the Grothendieck institution as a lax colimit in the 2-categoryIns(with
institutions as objects, institution homomorphisms as 1-cells, and institutionmod-
ificationsas 2-cells; see [12] for details) of the corresponding indexed institution.
This means that Grothendieck institutions are internalGrothendieck objects15 in
Ins in the same way as Grothendieck categories are Grothendieck objects inCat.
For the fibred category minded readers, [12] also introduces the alternative formu-
lation of fibred institutionand shows that there is a natural equivalence between
split fibred institutions and Grothendieck institutions.

We would also like to mention that the concept of extra theory morphism [10]
across an institution homomorphismℑ′→ ℑ (with all its subsequent concepts) is
recovered as an ordinary theory morphism in the Grothendieck institution of the
indexed institution given by the homomorphismℑ′→ ℑ (i.e., which has• → • as
its index category).

Now we are ready to define the institution ofCafeOBJ:

Definition 29 TheCafeOBJ institution is the Grothendieck institution of theCafeOBJ
cube.

15 From [12], a Grothendieck object in a 2-category is a lax colimit of a 1-functor to that
2-category.

20

3.3 Properties of theCafeOBJ Institution

In this section, we briefly study the most important institutional properties of the
CafeOBJ institution: existence of theory colimits, liberality (i.e. free construc-
tions), and exactness (i.e. model amalgamation).

Proposition 30 The institution homomorphisms of theCafeOBJ cube are all em-
beddings.

Sketch of Proof: The forgeful functors between the categories of the signatures
of theCafeOBJ institutions are as follows:

• The forgetful functors along the order sorted dimension forget the ordinary sorts,
i.e., a signature(S,≤,Σ) gets mapped to(S,Σ). The left-adjoints to these functors
map a signature(S,Σ) to the discrete order sorted signature(S,=,Σ).
• The forgetful functors along the RWL dimension are all identities, so they triv-

ially admit left-adjoints.
• The forgetful functors along the behavioural dimension forget the hidden sorts

and the operations involving the hidden sorts. Thus, a signature(H,V,Σ,Σb) gets
mapped to(V,ΣV) whereΣV is the set of operations inΣ having only visible
sorts in the rank (that is, involving only visible sorts). The left-adjoints to these
functors map a signature(S,Σ) to the behavioural signature(/0,S,Σ, /0).

This makes theCafeOBJ cube anembedding-indexed institution(cf. [12]). As we
will see below, this property of theCafeOBJ cube plays an important rôle for the
properties of theCafeOBJ institution.

Theory Colimits.

The existence of theory colimits is crucial for any module system in the Clear-OBJ
tradition. Let us recall the following result from [12]:

Theorem 31 Let ℑℑ : Iop→ Ins be an embedding-indexed institution such that I is
J-cocomplete for a small category J. Then the category of theoriesTh(ℑℑ]) of the
Grothendieck institutionℑℑ] has J-colimits if and only if the category of signatures
Signi is J-cocomplete for each index i∈ |I |.

Corollary 32 The category of theories of theCafeOBJ institution is small cocom-
plete.

Notice that the fact that the lattice of institutions of theCafeOBJ cube is com-
plete (as a lattice) means exactly that the index category of theCafeOBJ cube is
(small) cocomplete, which is a precondition for the existence of theory colimits in
theCafeOBJ institution. In the absence of the combinations of logics/institutions

21

of theCafeOBJ cube (such as HOSRWL), the possibility of theory colimits in the
CafeOBJ institution would have been lost.

Liberality.

Liberality is a desirable property in relation to initial denotations for structured
specifications. In the case of loose denotations liberality is not necessary. Since
the behavioural specification paradigm involves only loose denotations, in the case
of the CafeOBJ institution, we are therefore interested in liberality only for the
non-behavioural theories. Recall the following result from [12]:

Theorem 33 The Grothendieck institutionℑℑ] of an indexed institutionℑℑ : Iop→
Ins is liberal if and only ifℑℑi is liberal for each index i∈ |I | and each institution
homomorphismℑℑu is liberal for each index morphism u∈ I.

Corollary 34 In the CafeOBJ institution, each theory morphism between non-
behavioural theories is liberal.

This corollary is obtained from the theorem above by restricting the index category
to the non-behavioural square of theCafeOBJ cube, and from the corresponding
liberality results for equational and rewriting logics (see [32] for a general liberality
result which instantiate to theCafeOBJ equational and rewriting logics16).

Exactness.

Firstly, let us extend the well known exactness results for equational logic [17] to
theCafeOBJ cube:17

Proposition 35 All institutions of theCafeOBJ cube are semi-exact.

Notice that the exactness of the hidden (behavioural) logics can be deduced directly
from the exactness of the equational and rewriting logics because the models of the
hidden logics are essentially just ordinary algebras or preorder models.

As shown in [10] and [12], in practice exactness is a property hardly achieved at the
global level by the Grothendieck institutions. In [12] we give a necessary and suf-
ficient set of conditions for (semi-)exactness of Grothendieck institutions. One of
them is the exactness of the institution embeddings, which fails for the embeddings
from the non-RWL institutions into the RWL institutions of theCafeOBJ cube as
shown by the following:

16 For the liberality of Meseguer RWL the reader might look into [35].
17 For the exactness of rewriting logics we may refer to Hendrik Hilberdink coming Oxford
DPhil thesis; [32] is a condensed version of some parts of it.

22

Fact 36 The embedding of MSA into RWL isnotexact.

Proof: We do a proof by contradiction. Let us assume that the embedding of MSA
into RWL is exact. For the signature homomorphismϕ of Definition 26 we choose
the unique signature homomorphismϕ : /0→ Σ1 from the empty signature/0 to an
arbitrary but fixed signatureΣ1.

The pullback square of Definition 26 gets simplified to the fact that the category
MODRWL(Σ1) is the product of the categories MODRWL(/0) and MODMSA(Σ1).
But MODRWL(/0) is the terminal category, thus we deduce that MODRWL(Σ1) and
MODMSA(Σ1) are isomorphic, which is obviously wrong.

In the absence of a desired global exactness property for theCafeOBJ institution,
we need a set of sufficient conditions for exactness for practically significant partic-
ular cases. In [10] we formulate a set of such sufficient conditions, but this problem
is still open.

4 Foundations of Structured Specifications

In this section we survey the mathematical foundations of theCafeOBJ module
composition system, which follows the principles of the OBJ module system which
are inherited from earlier work on Clear [1]. Consequently, theCafeOBJ module
system is institution-independent (i.e., can be developed at the abstract level of
institutions) in the style of [17]. In the actual case ofCafeOBJ, the institution-
independent semantics is instantiated to theCafeOBJ institution. The following
principle governs the semantics of programming in-the-large inCafeOBJ:

(L) For each structured specification we consider the theory correspond-
ing to its flattening to a basic specification. The structuring constructs
are modelled as theory morphisms between appropriate theories. The
denotation [[SP]] of a structured specification is determined from the de-
notations of the components recursively via the structuring constructs in-
volved.

The general structuring mechanism is constituted bymodule expressions, which
are iterations of several basic structuring operations, such as (multiple) imports,
parameters, instantiation of parameters by views, translations, etc.

23

4.1 Module Imports

Module imports constitute the most primitive structuring construct in any module
composition system. The concept of module import in the institution-independent
semantics ofCafeOBJ is based on the mathematical notion ofinclusion system.

Module imports are modelled as inclusion theory morphisms between
the theories corresponding to flattening the imported and the importing
modules.

Inclusion systemswere first defined in [17] for the institution-independent study of
structuring specifications.Weak inclusion systemswere introduced in [4], and they
constitute a simplification of the original definition of inclusion systems of [17].
We recall the definition of inclusion systems:

Definition 37 〈I , E〉 is a weak inclusion systemfor a categoryC if I andE are
two sub-categories with|I |= |E |= |C| such that

(1) I is a partial order, and
(2) every arrow f inC can be factored uniquely as f= e; i with e∈ E and i∈ I .

The arrows ofI are called inclusions, and the arrows ofE are calledsurjec-
tions. 18 The domain (source) of the inclusion i in the factorisation of f is called
the image of f and denoted asIm(f). An injection is a composition between an
inclusion and an isomorphism.

A weak inclusion system〈I , E〉 is an inclusion systemiff I has finite least upper
bounds (denoted+) and all surjections are epics (see [17]).

The inclusion system for the category of theories of theCafeOBJ institution is ob-
tained by lifting the inclusion system for its category of signatures (see [17, 4]). The
weak inclusion system for the category of signatures is obtained from the canon-
ical inclusion systems of the categories of signatures19 of theCafeOBJ cube in-
stitutions by using the following result from [12] (which appeared previously in a
slightly different form in [10]):

Theorem 38 Let B: Iop→ Cat be an indexed category such that

18 Surjections of some weak inclusion systems need not necessarily be surjective in the
ordinary sense.
19 For example, in the simplest case of the MSA signatures, aninclusion(S,Σ) ↪→ (S′,Σ′) is
given byS↪→ S′ andΣw,s ↪→ Σ′w,s (as ordinary set-theoretic inclusions) for eachw∈ S∗ and
s∈ S. (f ,g) : (S,Σ)→ (S′,Σ′) is surjectioniff S′ = f (S) andΣ′w′,s′ =

⋃
{g(Σw,s) | f (w) =

w′ and f (s) = s′}, for eachw′,s′. This example is originally developed in [17] and can be
easily extended to the other more complexCafeOBJ cube institutions.

24

• I has a weak inclusion system〈I I , E I 〉,
• Bi has a weak inclusion system〈I i , E i〉 for each index i∈ |I |,
• Bu preserves inclusions for each inclusion index morphism u∈ I I , and
• Bu preserves inclusions and surjections and lifts inclusions uniquely for each

surjection index morphism u∈ E I .

Then, the Grothendieck category B] has an inclusion system〈I B], EB]〉where〈u, ϕ〉
is

• inclusioniff both u andϕ are inclusions, and
• surjectioniff both u andϕ are surjections.

In the case of theCafeOBJ institution, this result is applied for the indexed cat-
egory of signatures of theCafeOBJ cube (see Proposition 30 for details on the
structure of the indexed category of signatures of theCafeOBJ cube).

Example 39 Consider the following module import:

mod* TRIV { [Elt] }

mod* NTRIV {
protecting(TRIV)
op _|_ : Elt Elt -> Elt {assoc}
trans M:Elt | N:Elt => M .
trans M:Elt | N:Elt => N .

}

ModuleTRIV gets a MSA loose theory, which has all sets as its denotation. Mod-
ule NTRIV gets a RWL loose theory, which has as denotations preorders with an
interpretation of | as an associative binary preorder functor, and which satisfy the
couple of choice transitions ofNTRIV. The module importTRIV→ NTRIV corre-
sponds to an injective extra theory morphismTTRIV→ TNTRIV across the forgetful
institution morphism RWL→MSA.

More formally, the inclusion signature morphism underlyingTTRIV→ TNTRIV can
be represented as〈u, ϕ〉 whereu is the institution morphism RWL→MSA andϕ
is the signature inclusionΣTRIV → u(ΣNTRIV) (whereΣTRIV is the MSA signature
of TRIV , ΣNTRIV is the RWL signature ofNTRIV, andu(ΣNTRIV) is the reduct of
ΣNTRIV to an MSA signature). Notice thatu is an inclusion since theCafeOBJ cube
admits a trivial inclusion system in which all arrows are inclusions, that the reduct
from RWL signatures to MSA signatures is an identity, and thatΣTRIV→ ΣNTRIV is
an inclusion of MSA signatures.

An interesting aspect of this example is given by its model theory. The denotation
of this module import is the model reduct functor MOD(TNTRIV)→ MOD(TTRIV)
in theCafeOBJ institution. From Definition 28, this meansβu

ΣNTRIV ;MODMSA(ϕ),

25

which means a two level reduction. The first level,βu
ΣNTRIV , means getting rid of

the transitions of the carrier (i.e. making the carrier discrete) of the model and
regarding the interpretation of| as a function rather than a functor. The second
level, MODMSA(ϕ), is a reduction internal to MSA which forgets the interpretation
of | . It is very important to notice that the correct denotation for this module
import can be achieved only in the framework of theCafeOBJ institution, the fact
that this is a Grothendieck institution being crucial. None of the institutions of the
CafeOBJ cube (such as RWL for example) would have been appropriate to give
the denotation of this example.

We denote the partial order of module imports by�. By following the OBJ tradi-
tion, we can distinguish between three basic kinds of imports,protecting, extend-
ing, andusing. At the level of the language, these should be treated just as semantic
declarations which determine the denotation of the importing module from the de-
notation of the imported module.

Definition 40 Given a theory morphismϕ : T → T ′, and a model M of T , anex-
pansion ofM along ϕ is a model M′ of T′ satisfying the following properties:

• M′�ϕ = M iff the expansion isprotecting,
• there is aninjective20 model homomorphism M↪→ M′�ϕ iff the expansion is

extending,
• there is an arbitrary model homomorphism M→M′�ϕ iff the expansion isusing,

and
• M′ is free over M21 with respect toϕ iff the expansion isfree.

Definition 41 Fix an import SP�SP′ and let T and T′ be the theories correspond-
ing to SP and SP′, respectively. Then

[[SP′]] = {M′ | M′ |= T ′, M′ is an expansion of the same kind as the importation
mode involved of some model M∈ [[SP]] (and in addition free if SP′ is initial) }.

Multiple imports are handled by a lattice structure on imports. The existence of
(finite) least upper bounds (calledsumsin [17]) of module imports corresponds to
the weak inclusion system of theory morphisms being a proper inclusion system.
In [18] we lift sums from inclusion systems for ordinary theory morphisms to ex-
tra theory morphisms. The (finite) greatest lower bounds (calledintersections) are
defined as the pullback of the sums.

20 Under a suitable concept of ‘injectivity’.
21 Which means thatM′ is the free object overM with respect to the model reduct functor
�ϕ : MOD(T ′)→MOD(T).

26

T // T +T ′

T ∧T ′

OO

// T ′

OO

In practice, one of the important properties of the sum-intersection square is to be a
pushout besides being a pullback square. This result for the inclusion system of ex-
tra theory morphisms together with the details of its construction are given in [18].
All these can be easily translated to the conceptual famework of the Grothendieck
institutions.22

4.2 Parameterisation

Parameterization is an important feature of all module systems of modern specifi-
cation or programming languages. InCafeOBJ the mathematical concept of pa-
rameterised modules is based oninjections(in the sense of Definition 37) in the
category of theories of theCafeOBJ institution:

Parameterised specifications SP(X :: P) are modelled as injective the-
ory morphisms from the theory corresponding to the parameter P to the
theory corresponding to the body SP. Views are modelled as theory mor-
phisms.

The denotation[[SP]] of the body is determined from the denotation of the parameter
accordingly to the parameterisation mode involved as in the case of module imports
(Definition 41).

We distinguish two opposite approaches on parameters: asharedand anon-shared
one. In the ‘non-shared’ approach, the multiple parameters are mutually disjoint
(i.e., Im(X)∧ Im(X′) = /0 for X and X′ two different parameters, where Im(X)
means the image of the parameter into the body theory and we denote its intersec-
tions, or greatest lower bounds, by∧) and they are also disjoint from any module
importsT0 �T (i.e., Im(X)∧T0 = /0). In the ‘shared’ approach this principle is re-
laxed to being disjointoutside common imports, i.e., Im(X)∧ Im(X′) = ∑T1�X T1∧
∑T1�X′ T1 for X andX′ two different parameters and Im(X)∧T0 = ∑T1�X∧T0 for
all T0 � T. The ‘non-shared’ approach has the potentiality of a much more pow-
erful module system, while the ‘shared’ approach seems to be more convenient to

22 The construction of the inclusion system for Grothendieck institution relies on the con-
struction of finite limits in Grothendieck (fibred) categories.

27

implement (see [13] for details). TheCafeOBJ definition gives the possibility of
the whole range of situations between these two extremes by giving the user the
possibility to control the sharing.

Example 42 This is an example adapted from [13]. Consider the (double param-
eterised) specification of a ‘power’ operation on monoids, where powers are ele-
ments of another (abstract) monoid rather than natural numbers.

mod* MON {
protecting(TRIV)
op nil : -> Elt
op _;_ : Elt Elt -> Elt {assoc id: nil}

}
mod* MON-POW (POWER :: MON, M :: MON)
{

op _ˆ_ : Elt.M Elt.POWER -> Elt.M
vars m m’ : Elt.M
vars p p’ : Elt.POWER
eq (m ; m’)ˆ p = (m ˆ p) ; (m’ ˆ p) .
eq m ˆ (p ; p’) = (m ˆ p) ; (m ˆ p’) .
eq m ˆ nil = nil .

}

The diagram definingMON-POWis

TRIV
� // MON

M

&&LLLLLLLLLLLL

MON-POW

TRIV
�

// MON

POWER

88rrrrrrrrrrrr

whereMON-POWconsists of two copies ofMONlabelled byMandPOWERrespec-
tively, plus the power operation together with the 3 axioms defining its action. This
meansTRIV is not shared, since the power monoid and the base monoid are al-
lowed to have different carriers. The denotation[[MON-POW]] consists of all pro-
tecting expansions (with interpretations ofˆ) to MON-POWof non-shared amal-
gamations of monoids corresponding to the two parameters.

28

In the ‘shared’ approach, the parameterisation diagram is

MON

M

##HHHHHHHHHHHHHHHHHH

TRIV

�

==zzzzzzzzzzzzzzzz

�

!!DDDDDDDDDDDDDDDD
� //MON-POW

MON

POWER

;;vvvvvvvvvvvvvvvvvv

In this case, the denotation[[MON-POW]] consists of all two different monoid struc-
tures onthe same set, plus an interpretation of̂ satisfying the ‘power’ equations.

In CafeOBJ such sharing can be achieved by the user by means of the command
share which has the effect of enforcing that the modules declared as shared are
includedrather than ‘injected’ in the body specification. In this case we have just
to specify

share(TRIV)

The following defines parameter instantiation by means of the pushout technique
for the case of single parameters. This definition can be naturally extended to the
case of multiple parameters (for details about instantiation of multiple parameters
in CafeOBJ see [13]).

Definition 43 Let SP(X :: P) be a parameterised module and let TP X−→ TSPbe its
representation as theory morphism. Let v: TP→T be a view. Then the instantiation
TSP(v) is given by the following pushout of theory morphisms in theCafeOBJ
institution:

TP X //

v

��

TSP

v(X)

��
T X(v)

// TSP(v)

29

in the ‘non-shared’ approach, and by the following co-limit

T ∧TSP

�

&&

�

��

TP
X

//

v

��

TSP

v(X)

��
T

�
// TSP(v)

in the ‘shared’ approach.

Example 44 Consider the followingCafeOBJ view interpreting the monoid struc-
ture by the natural numbers with addition:

view nat-plus from MON to NAT {
sort Elt -> Nat,
op _;_ -> _+_,
op nil -> 0

}

We instantiateMON-POWby MON-POW(POWER <= nat-plus, M) for ob-
taining monoids with natural powers. The theory pushout corresponding to this
instantiation can be represented by:

TMON POWER //

nat−plus

��

TMON−POW(POWER,M)

nat−plus(POWER)

��
TNAT

POWER(nat−plus)
// TMON−POW(nat−plus,M)

The semantics of parameter instantiation relies on preservation properties of con-
servative extensions by pushouts of theory morphisms. Recall the concept of con-
servative theory morphism from [17]:

Definition 45 A theory morphismϕ : T → T ′ is conservativeif and only if any
model M of T has a protecting expansion alongϕ.

Example 46 In the case of Example 44,POWER(nat-plus) is conservative
because the theory morphismPOWERis conservative. The denotation ofMON-

30

POW(nat-plus,M) thus consists of all monoids with natural powers.

Preservation of conservative extensions in Grothendieck institutions is a signifi-
cantly harder problem than in ordinary institutions. Such technical results for Gro-
thendieck institutions have been obtained in [18] but within the conceptual frame-
work of extra theory morphisms.

5 Conclusions and Future Work

We surveyed the logical foundations ofCafeOBJ which constitute the origin of the
concrete definition of the language [13]. Some of its main features are:

• simplicity and effectiveness via appropriate abstractness,
• cohesiveness,
• flexibility,
• it provides support for multi-paradigm integration,
• it provides support for the development of specification methodologies, and
• it uses state-of-the-art methods in algebraic specification research.

We defined theCafeOBJ institution, overviewed its main properties, and presented
the main mathematical concepts and results underlying basic and structured speci-
fication inCafeOBJ.

Besides theoretical developments, future work onCafeOBJ will mainly concen-
trate on specification and verification methodologies, especially the object-oriented
ones emerging from the behavioural specification paradigm. This includes refin-
ing the existing object composition methodology based on projection operations
[33, 15, 13] but also the development of new methodologies and careful identifica-
tion of the application domains most suitable to certain specification and verifica-
tion methodologies.

The development ofCafeOBJ has been an interplay process among language de-
sign, language and system implementation, and methodology development. Al-
though the language design is based on solid and firm mathematical foundations, it
has been greatly helped by the existence of a running system, which gave the possi-
bility to run various relevant examples, thus giving important feedback at the level
of concrete language constructs and execution commands. The parallel develop-
ment of methodologies gave special insight on the relationship between the various
paradigms co-existing inCafeOBJ with consequences at the level of design of the
language constructs.

We think that the interplay among mathematical semantic design ofCafeOBJ, the
system implementation, and the methodology development has been the most im-

31

portant feature ofCafeOBJ design process. We believe this promises the sound
and reasonable development of a practical formal specification method around
CafeOBJ.

Acknowledgements

We thank the editors and both anonymous referees for their detailed and careful
suggestions and comments which helped improving the presentation of the paper.

References

[1] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language.
In Dines Bjorner, editor,Proceedings, 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292–332. Springer, 1980. Lecture Notes in Computer
Science, Volume 86; based on unpublished notes handed out at the Symposium on
Algebra and Applications, Stefan Banach Center, Warsaw, Poland, 1978.

[2] Samuel Buss and Grigore Roşu. Incompleteness of behavioural logics. In Horst
Reichel, editor,Coalgebraic Methods in Computer Science, volume 33 ofElectronic
Notes in Theoretical Computer Science, pages 61–79. Elsevier Science, 2000.

[3] Manuel Clavel, Steve Eker, Patrick Lincoln, and Jose Meseguer. Principles of Maude.
Electronic Notes in Theoretical Computer Science, 4, 1996. Proceedings, First
International Workshop on Rewriting Logic and its Applications. Asilomar, California,
September 1996.

[4] Virgil Emil C ăz̆anescu and Grigore Roşu. Weak inclusion systems.Mathematical
Structures in Computer Science, 7(2):195–206, 1997.

[5] Răzvan Diaconescu. Category-based semantics for equational and constraint logic
programming, 1994. DPhil thesis, University of Oxford.

[6] Răzvan Diaconescu. Completeness of category-based equational deduction.
Mathematical Structures in Computer Science, 5(1):9–41, 1995.

[7] Răzvan Diaconescu. Behavioural rewriting logic: semantic foundations and proof
theory, October 1996. Submitted to publication.

[8] Răzvan Diaconescu. Completeness of semantic paramodulation: a category-based
approach. Technical Report IS-RR-96-0006S, Japan Advanced Institute for Science
and Technology, 1996.

[9] Răzvan Diaconescu. Foundations of behavioural specification in rewriting logic.
Electronic Notes in Theoretical Computer Science, 4, 1996. Proceedings, First
International Workshop on Rewriting Logic and its Applications. Asilomar, California,
September 1996.

32

[10] Răzvan Diaconescu. Extra theory morphisms for institutions: logical semantics for
multi-paradigm languages.J. of Applied Categorical Structures, 6(4):427–453, 1998.
A preliminary version appeared as JAIST Technical Report IS-RR-97-0032F in 1997.

[11] Răzvan Diaconescu. Category-based constraint logic.J. Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

[12] Răzvan Diaconescu. Grothendieck institutions. IMAR Preprint 2-2000, Institute of
Mathematics of the Romanian Academy, February 2000. ISSN 250-3638.

[13] Răzvan Diaconescu and Kokichi Futatsugi.CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, volume 6
of AMAST Series in Computing. World Scientific, 1998.

[14] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented
algebraic specification.J. Universal Computer Science, 6(1):74–96, 2000. First
version appeared as JAIST Technical Report IS-RR-98-0017F, June 1998.

[15] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida. Component-based algebraic
specification and verification inCafeOBJ. In Jeannette M. Wing, Jim Woodcock,
and Jim Davies, editors,FM’99 – Formal Methods, volume 1709 ofLecture Notes in
Computer Science, pages 1644–1663. Springer, 1999.

[16] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida.CafeOBJ jewels. In
Kokichi Futatsugi, Ataru Nakagawa, and Tetsuo Tamai, editors,Cafe: An Industrial-
Strength Algebraic Formal Method. Elsevier, 2000.

[17] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularisation. In Gerard Huet and Gordon Plotkin, editors,Logical Environments,
pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh,
Scotland, May 1991.

[18] Răzvan Diaconescu and Petros Stefaneas. Categorical foundations of modularization
for multi-paradigm languages. Technical Report IS-RR-98-0014F, Japan Advanced
Institute for Science and Technology, 1998.

[19] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer.
Principles of OBJ2. InProceedings of the 12th ACM Symposium on Principles of
Programming Languages, pages 52–66. ACM, 1985.

[20] Joseph Goguen.Theorem Proving and Algebra. MIT, 2002. To appear.

[21] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification
and programming.Journal of the Association for Computing Machinery, 39(1):95–
146, January 1992.

[22] Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(4):363–392, 1994.

[23] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the object
paradigm. In Harmut Ehrig and Fernando Orejas, editors,Recent Trends in Data
Type Specification, volume 785 ofLecture Notes in Computer Science, pages 1–34.
Springer, 1994.

33

[24] Joseph Goguen and Grant Malcolm. A hidden agenda. Technical Report CS97-538,
University of California at San Diego, 1997.

[25] Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic modules
for logic programming. In Douglas DeGroot and Gary Lindstrom, editors,Logic
Programming: Functions, Relations and Equations, pages 295–363. Prentice-Hall,
1986. An earlier version appears inJournal of Logic Programming, Volume 1, Number
2, pages 179–210, September 1984.

[26] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational
programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors,
Research Directions in Object-Oriented Programming, pages 417–477. MIT, 1987.
Preliminary version inSIGPLAN Notices, Volume 21, Number 10, pages 153–162,
October 1986.

[27] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.Theoretical
Computer Science, 105(2):217–273, 1992. Also, Programming Research Group
Technical Monograph PRG–80, Oxford University, December 1989.

[28] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM T.J. Watson Research Center, October 1976. InCurrent Trends
in Programming Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages
80–149.

[29] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm, editors,Software
Engineering with OBJ: algebraic specification in action. Kluwer, 2000.

[30] Alexandre Grothendieck. Catégories fibŕees et descente. InRev̂etementśetales et
groupe fondamental, Séminaire de Ǵeoḿetrie Alǵebraique du Bois-Marie 1960/61,
Expośe VI. Institut des HauteśEtudes Scientifiques, 1963. Reprinted in Lecture Notes
in Mathematics, Volume 224, Springer, 1971, pages 145–94.

[31] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Haeberer, editor,
Algebraic Methodology and Software Technology, number 1584 in LNCS, pages 263–
277. Springer, 1999. Proc. AMAST’99.

[32] Hendrik Hilberdink. Foundations for rewriting logic. In Kokichi Futatsugi, editor,The
3rd International Workshop on Rewriting Logic and its Applications, 2000.

[33] Shusaku Iida, Kokichi Futatsugi, and Răzvan Diaconescu. Component-based algebraic
specification: - behavioural specification for component-based software engineering -.
In Behavioral specifications of businesses and systems, pages 103–119. Kluwer, 1999.

[34] Saunders MacLane.Categories for the Working Mathematician. Springer, second
edition, 1998.

[35] Jośe Meseguer. Rewriting as a unified model of concurrency. Technical Report
SRI-CSL-90-02R, SRI International, Computer Science Laboratory, February 1990.
Revised June 1990.

34

[36] Jośe Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[37] Jośe Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Pressice, editor,Proc. WADT’97, number 1376 in Lecture
Notes in Computer Science, pages 18–61. Springer, 1998.

[38] Jośe Meseguer and Joseph Goguen. Initiality, induction and computability. In Maurice
Nivat and John Reynolds, editors,Algebraic Methods in Semantics, pages 459–541.
Cambridge, 1985.

[39] R. Paŕe and D. Schumacher.Indexed Categories and their Applications, volume 661
of Lecture Notes in Mathematics, chapter Abstract Families and the Adjoint Functor
Theorems, pages 1–125. Springer, 1978.

[40] Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic tools
for the semantics of computation, part 3: Indexed categories.Theoretical Computer
Science, 91:239–264, 1991. Also, Monograph PRG–77, August 1989, Programming
Research Group, Oxford University.

35

