
Borrowing Interpolation
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Abstract

We present a generic method for establishing interpolation properties by ‘borrowing’ across logical sys-
tems. The framework used is that of the so-caled ‘institution theory’ which is a categorical abstract model
theory providing a formal definition for the informal concept of ‘logical system’ and a mathematical con-
cept of ‘homomorphism’ between logical systems. We develop three different styles or patterns to apply the
proposed borrowing interpolation method. These three ways are illustrated by the development of a series
of concrete interpolation results for logical systems that are used in mathematical logic or in computing
science, most of these interpolation properties apparently being new results. These logical systems include
fragments of (classical many sorted) first order logic with equality, preordered algebra and its Horn frag-
ment, partial algebra, higher order logic. Applications are also expected for many other logical systems,
including membership algebra, various types of order sorted algebra, the logic of predefined types, etc., and
various combinations of the logical systems discussed here.

1. Introduction

The concept of institution arose within computing science (algebraic specification) in response to the
population explosion among logics in use there, with the ambition of doing as much as possible at a level
of abstraction independent of commitment to any particular logic [27, 34, 61]. Besides its extensive use in
specification theory (it has become the most fundamental mathematical structure in algebraic specification
theory), there have been several substantial developments towards an ‘institution-independent’ (abstract)
model theory, [15, 18–20, 38, 39, 56, 57, 65, 66] being just few examples from a growing list of papers
on institution-independent model theory. A monography [23] dedicated to this topic has been recently
published. Recently institutions have also been extended towards proof theory [22, 53] in the spirit of
categorical logic [43].

One of the most important methods in institution-independent model theory is that of ‘borrowing’ log-
ical structure or properties across logical systems formalized as institutions. This method owes to the
existence of a concept of homomorphism between institutions, in the literature called ‘comorphism’ [37].
Institution comorphisms are mappings which preserve the mathematical structure of institutions, but from a
logic and model theoretic perspective their significance is that of either embeddings or encodings between
institutions. An important feature of comorphisms is that they relate between institutions both at the syn-
tactic and at the semantic level, and both the syntactic and the semantic components of comorphisms are
coherent to each other. One of the early contributions in the area of borrowing of logical structure along
institution comorphisms is [10].
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Our work extends the borrowing idea to interpolation. Interpolation is one of the most studied properties
in mathematical logic [11, 63], a recent monography dedicated to interpolation in modal and intuitionistic
being [33]. One of the reasons for the great interest in interpolation is perhaps the fact that it is the source for
many other logical results and properties, a rather notorius case being that of definability. Interpolation has
numerous applications in computing science especially in formal specification theory [5, 8, 27, 29, 30, 69].
but also in data bases (ontologies) [42], automated reasoning [54, 55], type checking [41], model checking
[47], and structured theorem proving [1, 46]. Consequently it has also received special attention within
institution-independent model theory [20, 21, 39]. In spite of its naturalness and simplicity, just saying that
any deduction ρ1 ` ρ2 can be split as ρ1 ` ρ ` ρ2 such that ρ contains only symbols ‘common’ to both ρ1
and ρ2, interpolation is notoriously difficult to obtain.

Here we develop a generic theorem for borrowing interpolation along institution comorphisms I →
I′. In brief, this means that if I′ has a certain interpolation property and the institution comorphism
‘behaves well’ with respect to interpolation, then I can be established to have a corresponding interpolation
property. This generic result can be applied to various situations, requiring different styles of applying
it. One situation is when I and I′ have essentially the same expressive power, such as (first order) partial
algebra and first order logic. Although partial algebra is more refined than first order logic, it can be encoded
into first order logic in a rather strong way which makes possible a quite straightforward transfer of first
order logic interpolation to partial algebra. The second situation we study is when I has significantly less
expressive power than I′, which means that their interpolation properties are rather different and moreover
are obtained in different ways. This second situation is well illustrated by the logic of universal sentences
versus first order logic, which is an embedding rather than an encoding. In this case the application of the
main borrowing theorem requires more subtlety. Finally, a third situation is when I has more expressive
power than I′ but an encoding of I into I′ by means of a comorphism exists. This is well illustrated by
higher order logic in the role of I and first order logic in the role of I′.

Our general borrowing interpolation result, together with its above mentioned associated styles or pat-
terns for applying it, constitute a new method within the rather large spectrum of methods to obtain inter-
polation. Taking into account the great difficulty of the problem, the existing methods are never enough.
The strength of our borrowing method has at least several aspects to be mentioned. One aspect is that it has
enabled us to obtain new (at least up to our knowledge) interpolation results (e.g. Corollaries 4.2, 4.3, 6.1)
in a rather smooth way. For many of the applications the alternatives seem to be much more difficult. For
example, in partial or preordered algebra, based on some similarity with classical many-sorted first order
logic, we may expect certain interpolation properties. We either have to replicate the whole complicated
conceptual infrastructure of the classical framework to these new frameworks (which is very complex and
even problematic task) or else to lift such infrastructure to a higher abstraction level as in [20, 39] (which
is also a difficult task but in a different way). Our method saves such efforts. Moreover in other situations
(such as higher order logic) perhaps none of the above mentioned alternatives would work. Our borrowing
method applies not only for obtaining new results but also for a better understanding of already know re-
sults (e.g. Corollaries 4.1, 5.1, 5.2). All these are related to a deeper aspect, that of offering a rather clear,
although unavoidably partial, insight into the interdependent nature of interpolation properties in various
logical systems.

The paper is structured as follows:

1. We recall the institution theoretic concepts necessary for the work developed in this paper.
2. We develop the main result of this paper represented by the generic borrowing interpolation theorem.
3. We develop three styles or patterns of applications of the main theorem, which have been mentioned

above. We devote one section to each of these.
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2. Institutions

This is a rather preliminary section which is structured as follows:

1. Since institution theory makes a rather intensive use of categorical concepts, we briefly recall the
category theory necessary for our work.

2. We recall the definition of institution and introduce in some detail the examples of institutions which
we will use in the development of the applications.

3. We recall the definition of institution comorphism.
4. We recall the general construction of the ‘institution of the presentations’ over a given (base) institu-

tion, construction which is used for the encodings between the institutions.

2.1. Categories

We assume the reader is familiar with basic notions and standard notations from category theory; e.g.,
see [45] for an introduction to this subject. The categorical notions required for this paper are rather basic,
the reader is expected to have knowledge only of the concepts of category, functor, natural transformation,
and pushout.

With respect to notational conventions, |C| denotes the class of objects of a category C, C(A, B) the
set of arrows (morphisms) with domain A and codomain B, and composition is denoted by “;” and in
diagrammatic order. The category of sets (as objects) and functions (as arrows) is denoted by Set, and CAT
is the category of all categories.1

2.2. Institutions

Institutions have been defined by Goguen and Burstall in [9], the seminal paper [34] being printed after
a delay of many years. Below we recall the concept of institution which formalises the intuitive notion of
logical system, including syntax, semantics, and the satisfaction between them.

Definition 2.1 (Institutions). An institution I = (SigI,SenI,ModI, |=I) consists of

1. a category SigI, whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called sentences

over that signature,
3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects are called
Σ-models, and whose arrows are called Σ-(model) morphisms, and

4. a relation |=I
Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SigI, the satisfaction condition

M′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=I

Σ
ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). We denote the reduct functor ModI(ϕ) by �ϕ and the
sentence translation SenI(ϕ) by ϕ( ). When M = M′�ϕ we say that M is a ϕ-reduct of M′, and that M′ is a
ϕ-expansion of M. When there is no danger of ambiguity, we may skip the superscripts from the notations
of the entities of the institution; for example SigI may be simply denoted Sig.

1Strictly speaking, this is only a quasi-category living in a higher set-theoretic universe.
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General assumption: We assume that all our abstract institutions are such that satisfaction is invariant
under model isomorphism, i.e. if Σ-models M,M′ are isomorphic, denoted M � M′, then M |=Σ ρ if and
only if M′ |=Σ ρ for all Σ-sentences ρ. It will be easy to see that this assumption holds in all the concrete
examples of institutions which appear in our paper.

In the following we give several examples of logics captured as institutions, which will be used in our
applications.

Example 2.1. (Classical logic).
Let FOL be the institution of first order logic with equality in its many sorted form.

Its signatures are triples (S , F, P) consisting of

– a set of sort symbols S ,

– a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets of function symbols indexed by arities (for the arguments)
and sorts (for the results), and

– a family P = {Pw | w ∈ S ∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphisms map the three components in a compatible way. This means that a signature morphism
ϕ : (S , F, P)→ (S ′, F′, P′) consists of

– a function ϕst : S → S ′,

– a family of functions ϕop = {ϕop
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S }, and

– a family of functions ϕrl = {ϕrl
w→s : Pw → P′

ϕst(w) | w ∈ S ∗, s ∈ S }.

Models M for a signature (S , F, P) are first order structures interpreting each sort symbol s as a set
Ms, each function symbol σ as a function Mσ from the product of the interpretations of the argument
sorts to the interpretation of the result sort, and each relation symbol π as a subset Mπ of the product of
the interpretations of the argument sorts. In order to avoid the existence of empty interpretations of the
sorts, which may complicate unnecessarily our presentation, we assume that each signature has at least one
constant (i.e. function symbol with empty arity) for each sort. A model homomorphism h : M → M′ is an
indexed family of functions {hs : Ms → M′s}s∈S such that

– h is an F-algebra homomorphism M → M′, i.e., hs(Mσ(m)) = M′σ(hw(m)) for each σ ∈ Fw→s and
each m ∈ Mw, and

– hw(m) ∈ M′π if m ∈ Mπ (i.e. hw(Mπ) ⊆ M′π) for each relation π ∈ Pw and each m ∈ Mw.

where hw : Mw → M′w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) = (hs1(m1), . . . , hsn(mn))
for w = s1 . . . sn and mi ∈ Msi . A model homomorphism is closed when Mπ = h−1

w (M′π) for each relation
symbol π ∈ Pw.

For each signature morphism ϕ, the reduct M′�ϕ of a model M′ is defined by (M′�ϕ)x = M′ϕ(x) for each
sort, function, or relation symbol x from the domain signature of ϕ.

Sentences are the usual first order sentences built from equational and relational atoms by iterative appli-
cation of Boolean connectives and quantifiers. Sentence translations along signature morphisms just rename
the sorts, function, and relation symbols according to the respective signature morphisms. They can be for-
mally defined by induction on the structure of the sentences. While the induction step is straightforward
for the case of the Boolean connectives it needs a bit of attention for the case of the quantifiers. For any
signature morphism ϕ : (S , F, P)→ (S ′, F′, P′),

SenFOL(ϕ)((∀X)ρ) = (∀Xϕ)SenFOL(ϕ′)(ρ)
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for each finite set X of variables for (S , F, P). The variables need to be disjoint from the constants of
the signature, also we have to ensure that SenFOL thus defined is functorial indeed and that there is
no overloading of variables (which in certain situations would cause a failure of the Satisfaction Condi-
tion). These may be formally achieved by considering that a variable for (S , F, P) is a triple of the form
(x, s, (S , F, P)) where x is the name of the variable and s ∈ S is the sort of the variable and that two dif-
ferent variables in X have different names. Then we let (S , F + X, P) be the extension of (S , F, P) such that
(F + X)w→s = Fw→s when w is non-empty and (F + X)→s = F→s ∪ {(x, s, (S , F, P)) | (x, s, (S , F, P)) ∈ X}
and we let ϕ′ : (S , F + X, P) → (S ′, F′ + Xϕ, P′) be the canonical extension of ϕ that maps each variable
(x, s, (S , F, P)) to (x, ϕ(s), (S ′, F′, P′)).

The satisfaction of sentences by models is the usual Tarskian satisfaction defined inductively on the
structure of the sentences.

Example 2.2. (Universal sentences).
A universal sentence for a FOL signature (S , F, P) is a sentence of the form (∀X)ρ, where X is a set of
(first order) variables and ρ is a quantifier-free (S , F + X, P)-sentence, i.e. a sentence formed only from
atoms by iterative applications of Boolean connectives only. Thus, the institution UNIV of the universal
sentences has the same signatures and models as FOL but only the universal sentences as sentences. The
institution UNIV can be obviously regarded as a ‘sub-institution’ of FOL, as we will see later this situation
is an example of an institution comorphism.

Example 2.3. (Horn clauses).
A Horn clause is an universal sentence of the form (∀X)H ⇒ C where H is a finite conjunctions of atoms
and C is a single atom. Let HCL denotes the sub-institution of UNIV determined by the Horn clauses.

Example 2.4. (Partial algebra).
Here we consider the institution PA of partial algebra as employed by the specification language CASL [4].

A partial algebraic signature is a tuple (S ,TF, PF), where TF is a family of sets of total function symbols
and PF is a family of sets of partial function symbols such that TFw→s ∩ PFw→s = ∅ for each arity w and
each sort s. In order to avoid empty carriers, like in the case of FOL, we assume there exists at least one
total constant for each sort. Signature morphisms map the three components in a compatible way.

A partial algebra is just like an ordinary algebra (i.e. a FOL model without relations) but interpreting the
function symbols of PF as partial rather than total functions. A partial algebra homomorphism h : A → B
is a family of (total) functions {hs : As → Bs}s∈S indexed by the set of sorts S of the signature such that
hs(Aσ(a)) = Bσ(hw(a)) for each function symbol σ ∈ TFw→s ∪ PFw→s and each string of arguments a ∈ Aw

for which Aσ(a) is defined.
The sentences have three kinds of atoms: definedness def(t), strong equality t s

= t′, and existence
equality t e

= t′. The definedness def(t) of a term t holds in a partial algebra A when the interpretation At of t
is defined. The strong equality t s

= t′ holds when both terms are undefined or both of them are defined and
are equal. The existence equality t e

= t′ holds when both terms are defined and are equal.2 The sentences
are formed from these atoms by Boolean connectives and quantifications over total variables (i.e variables
that are always defined).

Example 2.5. (Preordered algebra).
Preordered algebras are used for formal specification and verifications of algorithms [25], for automatic

2Notice that def(t) is equivalent to t e
= t and that t s

= t′ is equivalent to (t e
= t′) ∨ (¬def(t) ∧ ¬def(t′)).
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generation of case analysis [25], and in general about reasoning about transitions between states of systems.
They constitute an unlabeled form of rewriting logic of [49]. Let POA denote the institution of preordered
algebras.

The signatures are just ordinary algebraic signatures (S , F), i.e. FOL signatures without the relation
component. The POA models are preordered algebras which are interpretations of the signatures into the
category of preorders Pre rather than the category of sets Set. This means that each sort gets interpreted as
a preorder, and each function symbol as a monotonic function. A preordered algebra homomorphism is just
a family of monotonic functions which is an algebra homomorphism.

The sentences have two kinds of atoms: (ordinary) equations t = t′ and preorder atoms t ≤ t′. A
preorder atom t ≤ t′ is satisfied by a preordered model M when the interpretations of the terms are in the
preorder relation of the carrier, i.e. Mt ≤ Mt′ . The sentences are formed from these atoms by Boolean
connectives and quantifications over variables.

Example 2.6. (Horn preordered algebra).
This institution, denoted HPOA, is the Horn fragment of POA, i.e. the sub-institution of POA determined
by the POA sentences of the form (∀X)H ⇒ C where H is a finite conjunction of atoms and C is a single
atom. The CafeOBJ [25, 26] realization of preordered algebra is based upon this institution.

Example 2.7. (Higher order logic with Henkin semantics).
Higher order logic with Henkin semantics has been introduced and studied in [12, 40], a recent book on
the topic being [3]. Here, in order to simplify the presentation and the illustration of our interpolation
borrowing method, we consider an simplified variant close to the ‘higher order algebra’ of [51] which does
not consider λ-abstraction and choice functions. Let us first define an institution of ‘plain’ higher order
logic, denoted HOL.

For any set S of sorts, let −→S be the set of S -types defined as the least set such that S ⊆ −→S and s1 → s2 ∈−→S when s1, s2 ∈ −→S . A HOL signature (S , F) consists of a set S of sorts and a family of sets of constants
F = {Fs}

s∈
−→S . A morphism of HOL signatures ϕ : (S , F) → (S ′, F′) consists of a function ϕst : S → S ′

and a family of functions between operation symbols {ϕop
s : Fs → F′

ϕtype(s)}s∈−→S where ϕtype : −→S → −→S ′ is the

extension of ϕst such that ϕtype(s1 → s2) = ϕtype(s1)→ ϕtype(s2).
Given a signature (S , F), an (S , F)-model interprets each sort s ∈ S as a set Ms and each operation sym-

bol σ ∈ Fs as an element Mσ ∈ Ms, where for each types s1, s2, Ms1→s2 = [Ms1 → Ms2] = { f function |
f : Ms1 → Ms2}. An (S , F)-model homomorphism h : M → N interprets each S -type s as a function
hs : Ms → Ns such that h(Mσ) = Nσ for each σ ∈ F and such that the diagram below

Ms
f //

hs
��

Ms′

hs′
��

Ns hs→s′ ( f )
// Ns′

commutes for all types s and s′ and each f ∈ Ms→s′ .
For any HOL signature (S , F), each operation symbol σ of type s is a term of type s, and (tt′) is a term

of type s2 whenever t is a term of type s1 → s2 and t′ is a term of type s1. A HOL (S , F)-equation consists
of a pair t1 = t2 of terms of the same type. A HOL (S , F)-sentence is obtained from equations by iteration of
the usual Boolean connectives and of higher order (universal or existential) quantification which is defined
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similarly to the quantification in FOL. Note however that because of the ‘higher order’ types, the constants
in HOL denote higher order rather than first order entities.

The interpretation of operation symbols by models can be extended to terms by defining M(tt′) = Mt(Mt′)
for each term t of of type s1 → s2 and each term t′ of type s1. A model M satisfies the equation t = t′ when
Mt = Mt′ . This satisfaction relation can be extended in an obvious manner, similar to FOL or PA, from
equations to any sentences.

The institution of higher order logic with Henkin semantics, denoted HNK, extends the classical models
of a HOL signature by relaxing the condition Ms→s′ = [Ms → Ms′] to Ms→s′ ⊆ [Ms → Ms′].

Computing science abounds of examples of institutions, some being rather conventional, but most of
them being rather unconventional from the viewpoint of the logic tradition. Some important institutions in
use in computing science (other than those mentioned above) include membership [50], polymorphic [62],
various modal logics such as temporal [32], process [32], behavioural [6], coalgebraic [13], object-oriented
[36], multi-algebraic (non-determinism) [44], and pre-defined types [17] logics.

The following definitions introduce some very basic model theoretic concepts at the level of abstract
institutions.

Definition 2.2. For any signature Σ in an institution I:

– For each set E of Σ-sentences, let E∗ = {M ∈ Mod(Σ) | M |=Σ e for each e ∈ E}, and

– For each class M of Σ-models, let M∗ = {e ∈ Sen(Σ) | M |=Σ e for each M ∈M}.

If E and E′ are sets of sentences of the same signature, then E′ ⊆ E∗∗ is denoted by E |= E′. Two
sentences, ρ1 and ρ2 of the same signature are semantically equivalent, denoted |=| when ρ1 |= ρ2 and
ρ2 |= ρ1.

Definition 2.3 (Semantic Boolean connectives). An institution has (semantic) conjunctions when for each
signature Σ and any Σ-sentences e1 and e2 there exists a Σ-sentence e such that e∗ = e∗1 ∩ e∗2. Usually e is
denoted by e1 ∧ e2.

It has (semantic) implications when for each e1 and e2 as above there exists e such that e∗ = (Mod(Σ)−
e∗1) ∪ e∗2. Usually e is denoted e1 ⇒ e2.

Definition 2.4 (Compactness). An institution is compact when for each signature Σ, any set of Σ-sentences
E and each Σ-sentence e, if E |=Σ e then there exists a finite set E0 of Σ-sentences such that E0 |=Σ e.

An institution is quasi-compact when it is compact or when it has infinite conjunctions.

Definition 2.5 (Conservative signature morphisms). A signature morphism ϕ : Σ → Σ′ is conservative
when each Σ-model has a ϕ-expansion.

For example a FOL signature morphism is conservative when all its components are injective

2.3. Comorphisms
In the literature there are several concepts of structure preserving mappings between institutions. The

original one, introduced by [34], is adequate for expressing a ‘forgetful’ operation from a ‘more complex’
institution to a structurally ‘simpler’ one. Howvever, the institution mapping which is appropriate for our
task here of borrowing interpolation is that of institution comorphisms [37], previously know as ‘plain
map’ in [48] or ‘representation’ in [67, 68]. Institution comorphisms realize the intuition of ‘embedding’
a ‘simpler’ institution into a ‘more complex’ one, which is dual to the intuition realized by the institution
morphisms.
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Definition 2.6 (Comorphisms). An institution comorphism (Φ, α, β) : I → I′ consists of

1. a functor Φ : Sig→ Sig′,
2. a natural transformation α : Sen⇒ Φ; Sen′, and
3. a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds

M′ |=′Φ(Σ) αΣ(e) iff βΣ(M′) |=Σ e

for each signature Σ ∈ |Sig|, for each Φ(Σ)-model M′, and each Σ-sentence e.

The reader is invited to develop and check all details of the following three examples of comorphisms.

Example 2.8. The canonical embedding of UNIV into FOL can be expressed as a comorphism (Φ, α, β) : UNIV→
FOL such that Φ is the identity functor, α regards any universal sentence as a FOL sentence, and β(S ,F,P)
are also identities for each signature (S , F, P). Similarly we have the embeddings HCL → UNIV and
HCL→ FOL as institution comorphisms.

Example 2.9. Let the institution of first order equational logic, denoted FOEQL, be the sub-institution of
FOL determined by the algebraic signatures. This can be expressed as a comorphism (Φ, α, β) : FOEQL→
FOL such that Φ(S , F) = (S , F, ∅) for each algebraic signature (S , F), α(S ,F) are identities, and β(S ,F) are the
obvious isomorphisms ModFOL(S , F, ∅) � ModFOEQL(S , F).

Example 2.10. This example giving an embedding of first order equational logic into higher order logic is
rather more sophisticated than the couple of examples above. We define a comorphism (Φ, α, β) : FOEQL→
HNK such that

– Φ(S , F) = (S , F) where F s1→(s2→...(sn→s)...) = Fs1...sn→s for any sorts s, s1, . . . , sn ∈ S , and Fx = ∅
otherwise.

– The sentence translation α is determined by the following mapping, also denoted α, on terms: each
term t = σ(t1, . . . , tn) is assigned the Polish prefix translation of the term σ(α(t1))(α(t2)) . . . (α(tn)).

– For any FOEQL signature (S , F) we define β(S ,F) : ModHNK(S , F) → ModFOEQL(S , F) by β(M)s =

Ms for any each sort s ∈ S , and β(M)σ(x1, . . . , xn) = Mσ(x1)(x2) . . . (xn) for each σ ∈ Fs1 s2...sn→s.
Note that β(S ,F) are isomorphisms.

Definition 2.7. A comorphism (Φ, α, β) : I → I′ is conservative when for each signature Σ of I, for each
Σ-model M there exists a Φ(Σ)-model M′ such that M = βΣ(M′).

Note that all examples of comorphisms presented above are trivially conservative.

2.4. Presentations
Although comorphisms generally express an embedding relationship between institutions, they can also

be used for ‘encoding’ a ‘more complex’ institution I into a ‘simpler’ one I′. The latter are especially
useful for the borrowing methods, including our interpolation borrowing method developed here. In fact,
the two of the applications of our main result will use ‘encoding’ comorphisms. In such encodings the
structural complexity cost is shifted to the mapping Φ on the signatures, thus Φ maps signatures of I to
theories of I′ rather than signatures. In the following we give a general construction which facilitates the
definition of ‘encoding’ comorphisms.
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Definition 2.8 (Presentations). In any institution, a presentation is a pair (Σ, E) consisting of a signature
Σ and a set E of Σ-sentences. A presentation morphism ϕ : (Σ, E) → (Σ′, E′) is a signature morphism
ϕ : Σ→ Σ′ such that E′ |= ϕ(E).

Fact 2.1. Presentation morphisms are closed under the composition given by the composition of the signa-
ture morphisms.

This fact opens the door for the general construction given by the following definition.

Definition 2.9 (The institution of the presentations). Let I = (Sig,Sen,Mod, |=) be any institution. The
institution of the presentations of I, denoted by Ipres = (Sigpres,Senpres,Modpres, |=pres), is defined by

– Sigpres is the category Pres of presentations of I,

– Senpres(Σ, E) = Sen(Σ),

– Modpres(Σ, E) is the full subcategory of Mod(Σ) of those models which satisfy E, and

– for each (Σ, E)-model M and Σ-sentence e, M |=pres
(Σ,E) e if and only if M |=Σ e .

Fact 2.2. Ipres is indeed an institution for any institution I.

3. Borrowing interpolation: main theorem

This section is devoted to the main result of this paper. It is structured as follows:

1. We recall the concept of Craig interpolation at the level of abstract institutions.
2. We formulate and prove the generic borrowing interpolation theorem.

3.1. Craig interpolation

In the algebraic specification literature there are several institution independent formulations of Craig
interpolation (which we abbreviate by CI). For example [64] is one of the first work introducing the concept
of interpolation at the level of abstract institutions. The common feature of these formulations is that they
generalise the conventional intersection-union (of signatures) framework to commuting squares of signature
morphisms. In most cases these are required to be pushouts (like in [7, 8, 31, 65]) and when this is not the
case the signature morphisms are required to be (abstract) inclusions [27].

It has been noticed in [20] that the mere formulation of CI does not require any extra technical assump-
tions besides a commuting square of signature morphisms, the role of such additional assumptions having
more to do with the proof of CI rather than with its formulation.

Definition 3.1. A commuting square of signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

is a Craig interpolation square if and only if for each set E1 of Σ1-sentences and set E2 of Σ2-sentences such
that θ1(E1) |= θ2(E2) there exists a set E of Σ-sentences such that E1 |= ϕ1(E) and ϕ2(E) |= E2. The set E is
called the interpolant of E1 and E2.
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The works [60] and [27] argue succesfully that the above formulation of CI in terms of sets of sentences
is more natural than the more traditional formulations of CI in terms of single sentences. First, the applica-
tions of interpolation do not require the single sentence formulation. Secondly, in the traditional works on
or using interpolation these two formulations are equivalent as shown by the following simple result.

Fact 3.1. In a compact institution, if E2 of Definition 3.1 is finite, then the interpolant E can be chosen to
be finite too. Consequently, in compact institutions with finite conjunctions, the sets of sentence formulation
of CI implies the single sentences formulation.

Finally, perhaps the most important argument is that some institutions, not having conjunctions, lack CI
in the single sentences version, but have it in the sets of sentences formulation. Typical examples for
this situation are equational logic [20, 58–60] and Horn clause logic (HCL) [20, 58]. Moreover, a more
careful look into this situation would reveal that in general the applications of interpolation require the set
of sentences formulation. For example, this is clearly the case in the formal specification applications of
interpolation.

Proposition 3.1. For any CI square of signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′′

and any conservative signature morphism ψ : Σ′′ → Σ′, the commuting square

Σ
ϕ1 //

ϕ2
��

Σ1

θ1;ψ
��

Σ2 θ2;ψ
// Σ′

is still a CI square.

Proof. Let E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2) such that (θ1;ψ)(E1) |= (θ2;ψ)(E2). Let us show that

θ1(E1) |= θ2(E2). (1)

For this we consider any Σ′′-model M′′ such that M′′ |= θ1(E1). By the conservativeness of ψ there exists a
Σ′-model M′ such that M′�ψ = M′′. By the Satisfaction Condition M′ |= ψ(θ1(E1)), hence M′ |= ψ(θ2(E2)).
By the Satisfaction Condition again it follows that M′′ = M′�ψ |= θ2(E2). Now by the CI square assumption,
from (1) we obtain that there exists E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and ϕ2(E) |= E2. 2

In principle, in the actual examples, CI is expected for pushout squares of signature morphisms, however
in many situations only some pushout squares satisfy it. This intuition has been formulated first time in [8].
The interpolation concept below was introduced in [21] and is slightly simpler and more general than the
so-called (D,T )-interpolation of [8].
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Definition 3.2 ((L,R)-interpolation). For any classes of signature morphisms L,R ⊆ Sig in any insti-
tution, we say that the institution has the Craig (L,R)-interpolation if each pushout square of signature
morphisms of the form

• L //

R
��

•

��
• // •

is a CI square.

Example 3.1. According to [39], FOL has Craig ((i ∗ ∗), SigFOL) and (SigFOL, (i ∗ ∗))-interpolation where
(i ∗ ∗) is the class of all sort injective signature morphisms.

Example 3.2. According to [39], PA has Craig ((i ∗ ∗), SigPA) and (SigPA, (i ∗ ∗))-interpolation. This result
will also be obtained in the Corollary 4.1 below.

Example 3.3. According to Corollary 4.2 below, POA has Craig ((i∗), SigPA) and (SigPA, (i∗))-interpolation.

Example 3.4.

1. According to [20, 58], UNIV and HCL have Craig (SigFOL, (iii))-interpolation where (iii) is the class
of injective signature morphisms (for UNIV this result is also obtained via Corollary 5.2 below), and

2. according to [58], UNIV and HCL have Craig ((ie∗), SigFOL)-interpolation where (ie∗) is the class
of the signature morphisms ϕ which are injective on the sorts and no ‘new’ operation symbol, i.e.
outside the image of ϕ, is allowed to have the sort in the image of ϕ (i.e. if ϕ : (S , F, P)→ (S ′, F′, P′)
and σ′ ∈ F′w′→s′ with s′ ∈ ϕ(s) then there exists σ ∈ Fw→s such that ϕ(σ) = σ′.) (For UNIV this
result is also obtained via Corollary 5.1 below.)

The paper [58] gives a big list of such interpolation properties for various axiomatizable fragments of FOL.
In [20] and [23] there are general interpolation theorems for abstract ‘Birkhoff’ institutions, i.e. institutions
satisfying Birkhoff-style axiomatizability properties.

Example 3.5. According to Corollary 4.3 below, HPOA has Craig ((ie), SigFOL)-interpolation.

Example 3.6. According to Corollary 6.1 below, HNK has Craig ((i∗), SigHNK) and (SigHNK, (i∗))-interpolation.

3.2. The borrowing theorem
The method of borrowing interpolation properties along institution comorphisms requires some special

interpolation properties of the comorphism. These have been introduced in [21] and are recalled by the
Definitions 3.3 and 3.4 below.

Definition 3.3 (Left interpolation property for comorphisms). For a fixed class S ⊆ Sig of signature
morphisms, we say that an institution comorphism (Φ, α, β) : I → I′ has the Craig S-left Interpolation
property when for each (ϕ1 : Σ → Σ1) ∈ S, for each set E1 of Σ1-sentences and each set E2 of Φ(Σ1)-
sentences such that αΣ1(E1) |=′ Φ(ϕ1)(E2), there exists a set of Σ-sentences E such that E1 |= ϕ1(E) and
αΣ(E) |=′ E2.

Sen(Σ)
Sen(ϕ1) //

αΣ
��

Sen(Σ1)

αΣ1
��

Sen′(Φ(Σ))
Sen′(Φ(ϕ1))

// Sen′(Φ(Σ1))

11



The following is the reflection in the mirror of the left property.

Definition 3.4 (Right interpolation property for comorphisms). For a fixed class S ⊆ Sig of signature
morphisms, we say that an institution comorphism (Φ, α, β) : I → I′ has the Craig S-right Interpolation
property when for each (ϕ2 : Σ → Σ2) ∈ S, for each set E1 of Φ(Σ)-sentences and each set E2 of Σ2-
sentences such that (Φ(ϕ2)(E1) |=′ αΣ2(E2), there exists a set of Σ-sentences E such that E1 |= αΣ(E) and
ϕ(E) |=′ E2.

Sen(Σ)

Sen(ϕ2)
��

αΣ // Sen′(Φ(Σ))

Sen′(Φ(ϕ2))
��

Sen(Σ2) αΣ2

// Sen′(Φ(Σ2))

We also need the following relaxed variant of the pushout concept.

Definition 3.5 (Quasi-pushouts). In any institution with pushouts of signatures, a commuting square of
signatures

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

is a quasi-pushout when the (unique) signature morphism ψ : Σ′′ → Σ′ from the vertex Σ′′ of the pushout of
ϕ1 and ϕ2 to Σ′ is conservative.

Theorem 3.1 (Borrowing interpolation). Let (Φ, α, β) : I → I′ be a conservative institution comorphism
such that Φ maps pushouts to quasi-pushouts, and let L,R ⊆ Sig be classes of signature morphisms such
that I′ has the Craig (Φ(L),Φ(R))-interpolation. Then I has Craig (L,R)-interpolation.

Proof. Consider a pushout of signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

such that ϕ1 ∈ L and ϕ2 ∈ R and E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2) such that θ1(E1) |= θ2(E2).
The latter relation leads to αΣ′(θ1(E1)) |=′ αΣ′(θ2(E2)) which by the naturality of α further leads us

to the interpolation problem Φ(θ1)(αΣ1(E1)) |=′ Φ(θ2)(αΣ2(E2)) for the following quasi-pushout square of
signature morphisms in I′

Φ(Σ)
Φ(ϕ1)//

Φ(ϕ2)
��

Φ(Σ1)

Φ(θ1)
��

Φ(Σ2)
Φ(θ2)

// Φ(Σ′)

By considering the pushout of Φ(ϕ1) and Φ(ϕ1), by Proposition 3.1, and by the Craig (Φ(L),Φ(R))-
interpolation property of I′, we find E0 ⊆ Sen′(Φ(Σ)) such that

αΣ1(E1) |= Φ(ϕ1)(E0) and Φ(ϕ2)(E0) |= αΣ2(E2).
12



Let us assume the Craig L-left interpolation for the institution comorphism. Then we can find E ⊆ Sen(Σ)
such that

E1 |= ϕ1(E) and αΣ(E) |= E0.

By applyingΦ(ϕ2) to this we get thatΦ(ϕ2)(αΣ(E)) |= Φ(ϕ2)(E0). By the naturality of αwe get αΣ2(ϕ2(E)) |=
Φ(ϕ2)(E0) |= αΣ2(E2). Finally, by the conservativeness of the institution comorphism this can be simplified
to ϕ2(E) |= E2.

The case when the institution comorphism has R-right interpolation is handled similarly to the L-left
interpolation case by getting E ⊆ Sen(Σ) such that

E0 |= αΣ(E) and ϕ2(E) |= E2.

2

In all our applications but one, namely interpolation in higher order logic, the comorphisms involved
preserve pushouts of signatures, therefore they involve the corresponding slightly less general variant of
Theorem 3.1.

4. Interpolation in partial and preordered algebra

The main condition to be solved in the applications of Theorem 3.1 is that of the interpolation property
for the institution comorphism. The following immediate result gives an easy sufficient solution for this
condition and in principle can be applied to situations when the two institutions involved have the same
expressive power.

Fact 4.1. Any conservative institution comorphism (Φ, α, β) : I → I′ for which each αΣ is surjective
modulo semantical equivalence |=|, has both the Craig SigI-left and right interpolation properties.

For using the situation described by the Fact 4.1 to interpolation results from FOL to PA, we need to
find an adequate comorphism PA → FOL. But this is not possible because PA is too refined to be directly
embedded into FOL. However a comorphism fulfilling the conditions required by Theorem 3.1 and by
Fact 4.1 can be defined from PA to FOLpres. And now we have run into another problem: we have to lift
the interpolation property from FOL to FOLpres. Fortunately this can be done uniformly at the level of
abstract institutions but for a stronger form of interpolation, the so-called Craig-Robinson interpolation. In
this section we will implement the ideas sketched above, in the following order.

1. We define the concept of Craig-Robinson interpolation.
2. We give a general result for lifting interpolation from a base institution I to the institution of its

presentation Ipres.
3. We define a comorphism PA → FOLpres and will apply the general borrowing interpolation result

given by Theorem 3.1 for this comorphism.
4. We replicate 3. above to the case of comorphisms POA→ FOLpres and HPOA→ HCLpres in order

to derive interpolation results in POA and HPOA.
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4.1. Craig-Robinson interpolation

The Craig interpolation property can be strengthened by adding to the ‘primary’ premises E1 a set
Γ2 (of Σ2-sentences) as ‘secondary’ premises. Craig-Robinson interpolation plays an important role in
specification language theory, see [5, 27, 31]. The name ‘Craig-Robinson’ interpolation has been used for
instances of this property in [31, 63, 69] and ‘strong Craig interpolation’ has been used in [27].

Definition 4.1 (Craig-Robinson interpolation). In any institution we say that a commuting square of sig-
nature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

is a Craig-Robinson Interpolation square (abbreviated CRI square) when for each set E1 of Σ1-sentences
and each sets E2 and Γ2 of Σ2-sentences, if θ1(E1) ∪ θ2(Γ2) |=Σ′ θ2(E2), then there exists a set E of Σ-
sentences such that E1 |=Σ1 ϕ1(E) and Γ2 ∪ ϕ2(E) |=Σ2 E2.

Also the (L,R)-interpolation concept of Definition 3.2 can be extended in a straightforward way from
Craig interpolation to Craig-Robinson interpolation.

By taking Γ2 to be the empty set ∅ we can see that

Fact 4.2. Any CRI square is also a CI square.

The opposite implication does not hold in general. The following gives a sufficient condition when CI and
CRI are equivalent interpolation concepts.

Proposition 4.1. In any compact institution that has implications, a commuting square of signature mor-
phisms is a CRI square if and only if it is a CI square.

Proof. We focus only on the non-trivial part, that CI implies CRI. Consider E1 ⊆ Sen(Σ1) and E2, Γ2 ⊆
Sen(Σ2) such that θ1(E1) ∪ θ2(Γ2) |= θ2(E2).

First we notice that without loss of generality we may assume that E2 consists of only one sentence e,
i.e. E2 = {e}. Indeed, if we assumed that CRI property holds for each e ∈ E2, let Ee be the interpolant
corresponding to each e ∈ E2. Then

∪
e∈E2 Ee is an interpolant corresponding to E2.

Because we may assume that E2 = {e}, then by the quasi-compactness assumption, we may assume
without loss of generality that E1 and Γ2 are finite.

Let Γ2 ⇒ e denote γ1 ⇒ (. . . ⇒ (γn ⇒ e)) where Γ2 = {γ1, . . . , γn}. Then we have that θ1(E1) |=
θ2(Γ2 ⇒ e). By CI there exists E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and ϕ2(E) |= Γ2 ⇒ e. But the latter is
equivalent to ϕ2(E) ∪ Γ2 |= e. 2

Although one may get the feeling that CRI codes a form of implication and therefore it is expected
only in institutions having semantic implications, it is not so. In [23] one can find examples of institutions
without semantic implications having CRI for a wide class of pushout squares of signature morphisms.
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4.2. Lifting interpolation to presentations

Proposition 4.2. For any institution I and a class S ⊆ Sig of signature morphisms let Spres be the class
of presentation morphisms ϕ such that ϕ ∈ S (as signature morphism). The institution Ipres of the pre-
sentations of I has the Craig-Robinson (Lpres,Rpres)-interpolation if I has the Craig-Robinson (L,R)-
interpolation.

Proof. Consider a pushout of presentations

(Σ, Γ)
ϕ1 //

ϕ2
��

(Σ1, Γ1)

θ1
��

(Σ2, Γ2)
θ2

// (Σ′, Γ′)

such that ϕ1 ∈ L, ϕ2 ∈ R and let E1 ⊆ Sen(Σ1) and E2,K2 ∈ Sen(Σ2) such that θ1(E1) ∪ θ2(E2) |=(Σ′,Γ′)
θ2(E2).

By the general construction of colimits of presentations (see [34]) Γ′ |=| θ1(Γ1)∪θ2(Γ2) and (ϕ1, ϕ2, θ1, θ2)
form a pushout square in Sig. Therefore θ1(E1 ∪ Γ1) ∪ θ2(K2 ∪ Γ2) |=Σ′ θ2(E2). By the CRI property for the
base institution I, there exists an interpolant E ⊆ Sen(Σ) such that

E1 ∪ Γ1 |=Σ1 ϕ1(E) and ϕ2(E) ∪ K2 ∪ Γ2 |=Σ2 E2

But these just mean

E1 |=(Σ1,Γ1) ϕ1(E) and ϕ2(E) ∪ K2 |=(Σ2,Γ2) E2

which shows the CRI property for presentations. 2

4.3. Interpolation in PA
In the algebraic specification literature (see [52] for example) there are two major comorphisms PA →

FOLpres. A third one has been recently developed in [24]. Two of them encodes the partial operations as
total operations, and only one encodes them as relations. This latter comorphism, also used for borrowing
definability in [57] is the one which is appropriate for our task here. We recall its definition below:

• Each PA-signature (S ,TF, PF) gets mapped to the FOL presentation ((S , TF, PF), Γ(S ,TF,PF)) such that
PFws = PFw→s for each w ∈ S ∗ and s ∈ S , and

Γ(S ,TF,PF) = {(∀X ] {y, z})σ(X, y) ∧ σ(X, z)⇒ (y = z) | σ ∈ PF}

• Each (S , TF, PF)-model M gets mapped to the partial (S ,TF, PF)-algebra β(M) such that

– β(M)x = Mx for each x ∈ S or x ∈ TF,

– for each σ ∈ PF, if (m,m0) ∈ Mσ then β(M)σ(m) = m0.

• α commutes with the quantifiers and the Boolean connectives, and

α(t e
= t′) = (∃X ] {x0})bind(t, x0) ∧ bind(t′, x0)
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where for each (S ,TF, PF)-term t and variable x, bind(t, x) is a (finite) conjunction of atoms defined
by

bind(σ(t1 . . . tn), x) =
∧

1≤i≤n

bind(ti, xi) ∧
{
σ(x1, . . . , xn) = x when σ ∈ TF
σ(x1, . . . , xn, x) when σ ∈ PF

and X is the set of the new constants introduced by bind(t, x0) and bind(t′, x0).

Corollary 4.1. PA has Craig ((i ∗ ∗), SigPA) and (SigPA, (i ∗ ∗))-interpolation.

Proof. We apply Theorem 3.1 for the comorphism above and for the FOL interpolation properties presented
in Section 3. We do this by means of Propositions 4.1 and 4.2 and of Fact 4.1. The conditions required are
fulfilled as follows:

– That Φ maps pushouts of PA signatures to pushouts of FOL presentations can be seen immediately
from the general result about colimits of presentations in abstract institutions [34].

– The comorphism is conservative because the βs are isomorphisms.

– α is surjective modulo |=| because it preserves the quantifications and the Boolean connectives, and
because it is surjective on the atoms (α(t e

= t′) |=| (t = t′) for each equational (S , TF, PF)-atom and
α(σ(t1, . . . , tn) e

= t) |=| σ(t1, . . . , tn, t) for each relational (S , TF, PF)-atom.)

2

4.4. Interpolation in POA
There exists a comorphism (Φ, α, β) : POA→ FOLpres such that

• each algebraic signature (S , F) gets mapped to the FOL-presentation ((S , F, {≤s}s∈S ), pre(S ,F)) such
that

– for each sort symbol s ∈ S the arity of ≤s is ss, and
– pre(S ,F) contains the preorder axioms for each ≤s and all axioms stating the preorder functori-

ality of the operations of F.

• α extends canonically the mapping α(t ≤ t′) = (t ≤s t′) (for s being the sort of t and t′), and

• βs are identities.

By using this comorphism we have a proof of the following which is similar to the proof of Corollary 4.1.

Corollary 4.2. POA has Craig ((i∗), SigPOA) and (SigPOA, (i∗))-interpolation.
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4.5. Interpolation in HPOA
The comorphism POA→ FOLpres above when restricted to HPOA appears as a comorphism HPOA→

HCLpres. This is because the axioms pre(S ,F) are all Horn clauses and moreover α trivially maps POA Horn
clauses to FOL Horn clauses. This enables the following result.

Corollary 4.3. HPOA has Craig ((ie), SigPOA)-interpolation.

Proof. According to [23], HCL has Craig-Robinson ((ie∗),SigFOL)-interpolation. By Proposition 4.2 this
lifts to HCLpres. As CI is less general la CRI, it follows that HCLpres has Craig ((ie∗),SigFOL)-interpolation.
Since the comorphism HPOA → HCLpres maps (ie)-morphisms of signatures to (ie∗)-morphisms of sig-
natures, and it is bijective both on α and β components, the conclusion follows by virtue of Theorem 3.1
through Fact 4.1. 2

Note that the kind of argument as in Corollary 4.3 cannot be applied to the Horn clause fragment of
PA because the comorphism PA → FOLpres above does not allow a restriction and co-restriction to the
corresponding Horn clause fragments, this unfortunate situation being due to α rather than to Φ. Moreover,
none of the other two comorphisms PA→ FOLpres of the literature would do it.

5. Interpolation for universal sentences

In this section we derive the interpolation properties for UNIV, the sub-institution of FOL of the uni-
versal sentences, which have been mentioned in Section 3. This example falls into the category of the
applications of Theorem 3.1 in which the institution I has less expressive power than I′. In this example
the institutions UNIV and FOL share the same signatures and models but the sentences of UNIV are much
less than the sentences of FOL. Obviously, in such situations there is no hope to use the method employed
in the previous Section 4 since α’s are inclusions rather than surjections. This means that establishing the
left/right interpolation properties for the comorphism requires more refined work. In fact this will be the
main technical task to be solved in this section. For this section we assume familiarity with the concept of
ultraproduct of models in FOL (see [11] for the classic approach to ultraproducts and [18, 23, 28] for an
institution-independent approach).

Proposition 5.1. The institution (embedding) comorphism UNIV→ FOL has the Craig (ie∗)-left interpo-
lation property.

Proof. Consider ϕ1 : Σ→ Σ1 be a (ie∗) morphism of signatures and let E1 be a set of universal Σ1-sentences
and E2 be set of FOL Σ-sentences such that E1 |= ϕ1(E2). In the following the operators (−)∗ on classes
of models are those of the institution UNIV. We define the interpolant E = ϕ−1

1 (E∗∗1 ). Since E1 |= ϕ1(E) is
immediate we have only to prove that E |= E2.

Let M2 be a model such that M2 |= E. We have that M2 |= ϕ−1
1 (E∗∗1 ) which means M2 ∈ (ϕ−1

1 (E∗∗1 ))∗.
By the satisfaction condition (ϕ−1

1 (E∗∗1 ))∗ = (E∗1�ϕ1)∗∗, hence M2 ∈ (E∗1�ϕ1)∗∗. By the well known axioma-
tizability property for universal sentences (see [2]) we have that there exists an ultraproduct M of models
from E∗1�ϕ1 and a closed injective model homomorphism h : M2 → M. Because in FOL all model reducts
preserve filtered products,3 we may find a ϕ1-expansion N of M which is an ultraproduct of models from
E∗1. By the Fundamental Ultraproducts Theorem (see [11, 23]), N |= E1. Because ϕ1 is an (ie∗) morphism
of signatures, there exists a ϕ1-expansion h′ : N2 → N of h (which also implies that N2 is a ϕ1-expansion
of M2) which is defined as follows:

3A proof of this rather basic fact can be found for example in [23].
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– (N2)ϕ1(s) = (M2)s and h′ϕ1(s) = hs for each sort s of Σ,

– (N2)s′ = Ns′ and h′s′ = 1Ns′ for each sort s′ in Σ1 outside the image of ϕ1,

– (N2)σ′(x) = h′−1(Nσ′(h′(x))) for each operation symbol σ′ in Σ1 and for each appropriate list x of
arguments. This is correctly defined because of the encapsulation condition e on the operations,
because of the injectivity of h′, and furthermore it makes h′ a homomorphism for the operations, and

– for each relation π′ in Σ1 we define (N2)π′ = h′−1(Nπ′).

Note that h′ is also closed. Because universal sentences are preserved by closed submodels and because
N |= E1 we have that N2 |= E1 too. Since E1 |= ϕ1(E2) we have that N2 |= ϕ1(E2). By the satisfaction
condition this means M2 |= E2. 2

By Theorem 3.1 we may now ‘borrow’ one of the interpolation properties of FOL presented in Section
3, namely that FOL has Craig ((i ∗ ∗), SigFOL)-interpolation.

Corollary 5.1. UNIV has Craig ((ie∗),Sig)-interpolation.

Proposition 5.2. The institution (embedding) comorphism UNIV → FOL has the Craig (iii)-right inter-
polation property.

Proof. Let ϕ2 : Σ → Σ2 be an (iii) morphism of signatures and let E1 be a set of FOL Σ-sentences and
E2 be a set of universal Σ2-sentences such that ϕ2(E1) |= E2. Like in the proof of Proposition 5.1, in the
following the operators (−)∗ on classes of models are those of the institution UNIV. The interpolant is
defined as E = E∗∗1 . Obviously E1 |= E. We have to prove that ϕ2(E) |= E2.

Consider a model M2 such that M2 |= ϕ2(E). By the satisfaction condition this means that M2�ϕ2 |= E
which can be written as M2�ϕ2 ∈ (E∗∗1 )∗ = (E∗1)∗∗. By the same axiomatizability result invoked in the proof
of Proposition 5.1, there exists a closed injective model homomorphism h : M2�ϕ2 → N where N is an
ultraproduct of models from E∗1. By the Fundamental Ultraproducts Theorem we have that N ∈ E∗1 too.
Because ϕ2 is an (iii) morphism of signatures, there exists a ϕ2-expansion h′ : M2 → N2 of h defined as
follows:

– (N2)ϕ2(z) = Nz for each z sort, or operation symbol, or relation symbol, of Σ, and h′ϕ2(s) = hs for each
sort s of Σ; this is correctly defined because ϕ2 is injective,

– (N2)s′ = (M2)s′ and h′s′ = 1(N2)s′ for each sort s′ in Σ2 outside the image of ϕ2,

– for each operation symbol σ′ ∈ Σ2 outside the image of ϕ2, with arity w and sort s

– (N2)σ′(h′w(x)) = h′s((M2)σ′(x)) if x ∈ (M2)w,

– otherwise let (M2)σ′(x) be any element of (N2)s.

– for each relation symbol π′ ∈ Σ2, outside the image of ϕ2, with arity w, (N2)π′ = h′w((M2)π′).

Note that h′ is closed too. By the satisfaction condition N2 |= ϕ2(E1). Because ϕ2(E1) |= E2 we have that
N2 |= E2. But E2 are universal, thus they are preserved by closed submodels, hence M2 |= E2. 2

By Theorem 3.1 we may now ‘borrow’ the other interpolation property of FOL presented in Section 3,
namely that FOL has Craig (SigFOL, (i ∗ ∗))-interpolation.

Corollary 5.2. UNIV has Craig (Sig, (iii))-interpolation.
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6. Interpolation in higher order logic

Because of its higher order type structure, higher order logic with Henkin semantics HNK is signifi-
cantly more refined in terms of expressive power than FOL . This claim is also supported by the example
of the embedding of FOEQL into HNK presented in Section 2. In this section we ‘borrow’ interpolation
properties from FOL to HNK in a manner similar to that of Section 4, by addressing some special problems
raised by this example. For this we have to do the following:

1. We define an institution comorphism HNK→ FOEQLpres.
2. We apply the borrowing Theorem 3.1.

6.1. Encoding higher order logic into first order logic

The following comorphism (Φ, α, β) : HNK→ FOEQLpres is based upon ideas from [51]:

• Each HNK-signature (S , F) gets mapped to the presentation ((−→S ,−→F ), Γ(S ,F)) where

– −→S is the set of all S -types,

– −→F s = Fs for each s ∈ −→S , −→F [(s→s′)s]→s′ = {apps,s′} for all s, s′ ∈ −→S and −→F w→s = ∅ otherwise.

– Γ(S ,F) = {(∀ f )(∀g)((∀x)apps,s′( f , x) = apps,s′(g, x))⇒ ( f = g) | s, s′ ∈ −→S }

• β(S ,F)(M) = M where M is the following inductively (on the structure of the types) defined HNK-
model:

– For each s ∈ S , Ms = Ms; let us denote this identity by funM
s .

– For each type s → s′ ∈ −→S , assuming that funM
s and funM

s′ have been defined and are bijective,
let us denote by funM

s→s′ the canonical bijection [Ms → Ms′]→ [Ms → Ms′] defined by

funM
s→s′( f )(x) = funM

s′ ( f ((funM
s )−1(x))).

We define Ms→s′ = funM
s→s′(M2

s→s′) where M2
s→s′ is the image of Ms→s′ through the canonical

injection Ms→s′ → [Ms → Ms′].

Note that all these determine also an isomorphism funM : M → M (here M is canonically regarded
as a FOEQL ((−→S ,−→F ), Γ(S ,F))-model with app interpreted as ordinary functional application).

• α is defined as the canonical extension of the mapping on the terms αtm defined by αtm(tt′) =
app(αtm(t), αtm(t′)).

The reader may complete the details of this definition (such as the definitions of Φ on the signature mor-
phisms and of the β(S ,F) on the model homomorphisms) by herself/himself.

Fact 6.1. β(S ,F) is an equivalence of categories with an ‘inverse’ β(S ,F) such that β(S ,F); β(S ,F) = 1 and

fun : 1
�→ β(S ,F); β(S ,F) is isomorphism.

We also leave to the reader the task to check that (Φ, α, β) is indeed a comorphism HNK→ FOEQLpres.
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6.2. Borrowing interpolation along comorphism HNK→ FOEQLpres

This example has the following interesting feature that distiguishes it from the other examples and which
calls for an application of Theorem 3.1 in its full generality: the signature component Φ of the comorphism
HNK → FOEQLpres defined above does not preserve pushouts in general, but rather maps pushouts to
quasi-pushouts. This is due to the way pushouts of HNK signature morphisms do exist, as shown in the
following.

Proposition 6.1. [14] For any HNK signature morphisms ϕ1 : (S , F) → (S 1, F1) and ϕ2 : (S , F) →
(S 2, F2) their pushout exists and is constructed as follows:

1. We consider the following pushout in Set:

S
ϕst

1 //

ϕst
2 ��

S 1

θst
1��

S 2
θst

2

// S ′

2. We extend the above pushout to a commuting diagram of sets of types:

−→S
ϕ

type
1 //

ϕ
type
2 ��

−→S 1

θ
type
1��

−→S 2
θ

type
2

// −→S ′

Note that this is not the pushout of ϕtype
1 and ϕtype

2 , their pushout being given by the subset S ′′ of
−→
S ′

defined by S ′′ = θtype
1 (−→S 1) ∪ θtype

2 (−→S 2).

3. For each type s′ ∈ −→S ′, if s′ < S ′′ then we let F′s′ = ∅, otherwise F′s′ is defined by the following pushout
of sets of operation symbols:

]θ(ϕ(s))Fs //

��

]θ1(s1)=s′(F1)s1

��
]θ2(s2)=s′(F2)s2

// F′s′

Then
(S , F)

ϕ1 //

ϕ2
��

(S 1, F1)

θ1
��

(S 2, F2)
θ2

// (S ′, F′)

is a pushout of HNK signature morphisms.

That Φ does not map HNK signature pushouts to pushouts of presentations in FOEQL can be seen
easily from the remark in the second item of Proposition 6.1. However Φ does map pushouts to quasi-
pushouts.
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Proposition 6.2. The signature translation functorΦ of the comorphism HNK→ FOEQLpres maps pushouts
to quasi-pushouts.

Proof. Consider a pushout (θ1, θ2) of a span (ϕ1, ϕ2) of HNK signature morphisms and let (χ1, χ2) be the
pushout of (Φ(ϕ1),Φ(ϕ2)).

(S , F)
ϕ1 //

ϕ2
��

(S 1, F1)

θ1
��

((−→S ,−→F ),Γ(S ,F))
Φ(ϕ1)//

Φ(ϕ2) ��

((−→S 1,
−→F1),Γ(S 1,F1))

χ1
�� Φ(θ1)

��

(S 2, F2)
θ2

// (S ′, F′) ((−→S 2,
−→F2), Γ(S 2,F2)) χ2

//

Φ(θ2) --

((S ′′, F′′),Γ′′)
ψ

))SSSSSSSSSS

((
−→
S ′,
−→
F′), Γ(S ′,F′))

Let ψ : ((S ′′, F′′), Γ′′)→ ((
−→
S ′,
−→
F′), Γ(S ′,F′)) be the unique FOEQL presentation morphism such that χk;ψ =

Φ(θk) for k ∈ {1, 2}. By Proposition 6.1 we have that ψ is an inclusion since S ′′ ⊆ −→S ′ and
−→
F′ just adds to

F′′ the set {apps,s′ | s → s′ < S ′′}. Therefore any model M′′ of ((S ′′, F′′), Γ′′) has a ψ-expansion which

interprets any s ∈ −→S ′ \ S ′′ and any apps,s′ for s→ s′ < S ′′ as empty. 2

Let us note the following:

Fact 6.2. For each HNK signature (S , F), the sentence translation α(S ,F) is a bijection.

Now we have established all the necessary conditions for the application of Theorem 3.1 for the co-
morphism HNK → FOEQLpres and for the interpolation properties of FOEQL (which are those of FOL
simplified for the situation given by the absence of the relation symbols). Doing this by means of Proposi-
tions 4.1 and 4.2 and of Fact 4.1 in the manner of the borrowing of interpolation properties from FOL to
PA done in Section 4 leads to the following interpolation properties in HNK:

Corollary 6.1. HNK has Craig ((i∗), Sig) and (Sig, (i∗))-interpolation.

Acknowledgement. I am greatful to Mihai Codescu for the idea to relax one of the conditions of Theorem
3.1 in order to capture also the interpolation for higher order logic, and to the anonymous referees for their
constructive criticism that have led to the improvement of the paper.

7. Conclusions

We have developed a general ‘borrowing’ interpolation result which transports (backwards) interpola-
tion properties along institution comorphisms together with several methods to use this general result either
within the context of an encoding or of an embedding comorphism. We have illustrated the applicability
power of our method(s) by deriving interpolation results for partial algebra, preordered algebra and its Horn
clause fragment, for universal sentences, and for higher order logic (with Henkin semantics), from interpo-
lation properties of many sorted first order logic with equality and its Horn clause fragment. Based on the
already existing encoding comorphisms in the literature, we strongly expect similar results in membership
algebra [50] and in some of the types of order sorted algebra surveyed in [35], as well as in their correspond-
ing Horn clause fragments. Due to lack of space we have not included the development of these result here,
but we encourage the interested reader to do this by herself or himself by following the method introduced
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in Section 4. The forthcoming paper [16] uses our borrowing interpolation method to derive interpolation
results in the logic of predefined types [17, 23]. Moreover we expect our method to be also applicable for
most of the multitude of combinations between some of the logics discussed here (such as partial preordered
algebra, etc.). Most of the results developed in this paper or just mentioned now appear as new meaningful
interpolation results in logics that play a significant role in computing science.

Based upon the methods of applying our general borrowing result that have been presented in this paper,
we foresee the possibility to derive new interpolation results in many other logical systems. This would be
an interesting topic for further work.
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[24] Răzvan Diaconescu. An encoding of partial algebras as total algebras. Information Processing Letters, 109(23–24):1245–

1251, 2009.
[25] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and Methodologies for

Object-Oriented Algebraic Specification, volume 6 of AMAST Series in Computing. World Scientific, 1998.
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[57] Marius Petria and Răzvan Diaconescu. Abstract Beth definability in institutions. Journal of Symbolic Logic, 71(3):1002–

1028, 2006.
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