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Abstract. Computer Science has been long viewed as a consumer of
mathematics in general, and of logic in particular, with few and minor
contributions back. In this article we are challenging this view with the
case of the relationship between specification theory and the universal
trend in logic.

1 From Universal Logic...

Although universal logic has been clearly recognised as a trend in mathematical
logic since about one decade only, mainly due to the efforts of Jean-Yves Béziau
and his colleagues, it had a presence here and there since much longer. For
example the anthology [9] traces universal logic ideas back to the work of Paul
Herz in 1922. In fact there is a whole string of famous names in logic that have
been involved with universal logic in the last century, including Paul Bernays,
Kurt Gödel, Alfred Tarski, Haskell Curry, Jerzy  Loś, Roman Suszko, Saul Kripke,
Dana Scott, Dov Gabbay, etc.

Universal logic is not a new super-logic, but it is rather a body of general
theories of logical structures, in the same way universal algebra is a general
theory of algebraic structures (see [8] for a discussion about what universal logic
is and is not). Within the last century mathematical logic has witnessed the
birth of a multitude of unconventional logical systems, such as intuitionistic,
modal, multiple valued, paraconsistent, non-monotonic logics, etc. Moreover, a
big number of new logical systems have appeared in computer science, especially
in the area of formal methods. The universal logic trend constitutes a response
to this new multiplicity by the development of general concepts and methods
applicable to a great variety of logical systems. One of the aims of universal logic is
to determine the scope of important results (such as completeness, interpolation,
etc.) and to produce general formulations and proofs of such results. This is very
useful in the applications and helps with the distinction between what is and
what is not really essential for a certain particular logical system, thus leading
to a better understanding of that logical system. Universal logic may also be
regarded as a toolkit for defining specific logics for specific situations; for example,
temporal deontic paraconsistent logic. It also helps with the clarification of basic
concepts by explaining what is an extension, or what is a deviation, of a given
logic, what it means for a logic to be equivalent or translatable to another logic,



etc. Paramount researchers in mathematical logic consider universal logic as a
true renaissance of the study of logic, that is based on very modern principles
and methodologies and that responds to the new mathematical logic perspectives.
The dynamism of this area, its clear identity, and its high potential have been
materialized through a dedicated new book series (Studies in Universal Logic,
Springer Basel), a dedicated new journal (Logica Universalis, Springer Basel), a
dedicated corner of Journal of Logic and Computation (Oxford Univ. Press), and
through a dedicated series of world congresses and schools (UNILOG: Switzerland
2005, China 2007, Portugal 2010, Brazil 2013; see www.uni-log.org).

The analogy between universal algebra and universal logic however fails in
the area of the supporting mathematical structures. While the former is in fact
a mathematical theory based upon a relatively small set of core mathematical
definitions, this is not the case with the latter. There is not a single commonly
accepted mathematical base for universal logic. Instead the universal trend in
logic includes several theories each of them supported by adequate mathematical
structures that share a non-substantialist view on logic phenomena, free of com-
mitment to particular logical systems, and consequently a top-down development
methodology. One of the most famous such theories is Tarski’s general approach
to logical consequence via closure operators [60]. And perhaps now the single
most developed mathematical theory in universal logic is the institution theory
of Goguen and Burstall [39,40].

2 ...to Computer Science,...

2.1 Origins of institution theory

Around 1980’s there was already a population explosion of logical systems in use
computer science, especially in the logic-based areas such as specification theory
and practice. People felt that many of the theoretical developments (concepts,
results, etc.), and even aspects of implementations, are in fact independent of
the details of the actual logical systems. Especially in the area of structuring
of specifications or programs, it would be possible to develop the things in a
completely generic way. The benefit would be not only in uniformity, but also
in clarity since for many aspects of specification theory the concrete details of
actual logical systems may appear as irrelevant, with the only role being to
suffocate the understanding. The first step to achieve this was to come up with a
very general model oriented formal definition for the informal concept of logical
system. The model theoretic orientation is dictated by formal specification in
which semantics plays a primary role. Due to their generality, category theoretic
concepts appeared as ideal tools. However there is something else which makes
category theory so important for this aim: its deeply embedded non-substantialist
thinking which gives prominence to the relationships (morphisms) between objects
in the detriment of their internal structure. Moreover, category theory was at
that time, and continues even now to be so, the mathematical field of the upmost
importance for computer science. In fact, it was computer science that recovered
the status of category theory, at the time much diminished in conventional



mathematical areas. The article [37] that Joseph Goguen wrote remains one of
the most relevant and beautiful essays on the significance of category theory for
computer science and not only.

The categorical model theories existing at the time, although quite deep
theoretically, were however unsatisfactory from the perspective of a universal
logic approach to specification. Sketches of [35,44,62] had just developed another
language for expressing (possibly infinitary) first-order logic realities. The satis-
faction as cone injectivity [1,2,3,49,47,46], whilst considering models as objects
of abstract categories, lacks a multi-signature aspect given by the signature mor-
phisms and the model reducts, which leads to severe methodological limitations.
Moreover in both these categorical model theory frameworks, the satisfaction
of sentences by the models is defined rather than being axiomatized, which
give them a strong taste of concreteness in contradiction with universal logic
aims and ideals. On the other hand, the model theory trend known as ‘abstract
model theory’ [4,5] had an axiomatic approach to the satisfaction relation, it also
had a multi-signature aspect, but it was still only concerned with extensions of
conventional logic in that the signatures and the models are concrete, hence it
lacked a fully universal aspect.

2.2 The concept of institution

The definition of institution [14,40] can be seen as representing a full generalisation
of ‘abstract model theory’ of [4,5] in a true universal logic spirit by also considering
the signatures and models as abstract objects in categories.

Definition 1 (Institutions). An institution I = (SigI ,SenI ,ModI , |=I) con-
sists of

1. a category SigI , whose objects are called signatures,

2. a functor SenI : SigI → Set (to the category of sets), giving for each
signature a set whose elements are called sentences over that signature,

3. a functor ModI : (SigI)op → CAT (from the opposite of SigI to the category
of categories) giving for each signature Σ a category whose objects are called
Σ-models, and whose arrows are called Σ-( model) homomorphisms, and

4. a relation |=IΣ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI |, called Σ-satis-
faction,

such that for each morphism ϕ : Σ → Σ′ in SigI , the satisfaction condition

M ′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=IΣ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).
The functions SenI(ϕ) are called sentence translation functions and the

functors ModI(ϕ) are called model reduct functors.

The literature (e.g. [22,57]) shows myriads of logical systems from computing
or from mathematical logic captured as institutions. In fact, an informal thesis



underlying institution theory is that any logic may be captured by the above
definition. While this should be taken with a grain of salt, it certainly applies
to any logical system based on satisfaction between sentences and models of
any kind. However the very process of formalising logical systems as institutions
is not a trivial one as it has to provide precise and consistent mathematical
definitions for basic concepts that are commonly considered in a rather naive
style. Moreover these definitions have to obey the axioms of institution. For
example we will see below how the template given by Def. 1 shapes a drastically
reformed understanding of logical languages (signatures) and variables.

The following example may convey an understanding about the process of
capturing of a logical system as institution.

Example 1 (Many sorted algebra as institution). This is a very common logical
system in computer science, and constitutes the logical basis of traditional
algebraic specification. It is also used frequently in the literature as an example
of the definition of institution; however there are some slight differences between
various formalisations of many sorted algebra as institution. Here we sketch this
institution in accordance with [22] and other papers of the author in the recent
years.

The signatures (S, F ) consist of a set of sorts (types) S and a family F of func-
tions typed by arities (finite strings of sorts) and sorts, i.e. F = (Fw→s)w∈S∗,s∈s.
Signature morphisms map symbols such that arities are preserved; they can
be presented as families of functions between corresponding sets of function
symbols. Given a signature, its models M are many-sorted algebras inter-
preting sorts s as sets Ms, and function symbols σ ∈ Fs1...sn→s as functions
Mσ : Ms1 × · · · ×Msn → Ms. Model homomorphisms are many-sorted alge-
bra homomorphisms. Model reduct means reassembling the models compo-
nents according to the signature morphism, i.e. for any signature morphism
ϕ : (S, F )→ (S′, F ′) and any (S′, F ′)-model M ′ we have Mod(ϕ)(M ′)x = M ′ϕ(x)
for each x sort in S or function symbol in F . The sentences are first-order formulæ
formed from atomic equations (i.e. equalities between well formed terms having
the same sort) by iteration of logical connectives (∧,¬) and (first-order) quanti-
fiers ∀X (where X is a finite block of S-sorted variables). Sentence translation
means replacement of the translated symbols, for example for variables the sort
is changed accordingly.

Satisfaction is the usual Tarskian satisfaction of a first-order sentence in a
many-sorted algebra that is defined by induction on the structure of the sentences.

When working out the details of this definition, the Sig , Mod and |= compo-
nents are straightforward. Less so is Sen that requires a careful management of
the concept of variable, an issue that will be discussed below in some detail. The
proof of the Satisfaction Condition is done by induction on the structure of the
sentences, the only non-trivial step corresponding to the quantifications. This
involves some mild form of model amalgamation (see [22]).



2.3 The expanse of institution theory

Def. 1 constitutes the starting concept of institution theory. Institution theory
currently comprises a rather wide (both in terms of internal developments and
applications) and constitutes a dynamic research area. The relationship between
the concept of institution and institution theory is somehow similar to that
between the concept of group and group theory in algebra. The definition of
group is very simple and abstract and it does not convey the depth and expanse
of group theory; the same holds for institutions and institution theory. The theory
of institutions has gradually emerged as the most fundamental mathematical
tool underlying algebraic specification theory (in its wider meaning) [57], also
being increasingly used in other areas of computer science. And a lot of model
theory has been gradually developed at the level of abstract institutions (see [22]),
with manyfold consequences including a systematic supply of model theories to
(sometimes sophisticated) non-conventional logical systems, but also new deep
results in conventional model theory.

We refrain here from discussing in some details the rather long list of achieve-
ments of institution theory, instead we refer to the survey [26] that gives a brief
account of the development of institution theory both in computer science and
in mathematical logic (model theory).

3 ...and back

The wide body of abstract model theory results developed within institution
theory (many of them collected in [22]) can be regarded as an important contri-
bution of computer science to logic and model theory in general, and to universal
logic in particular. However here we will set this aside and instead will focus
on something else, which is more basic and subtle in the same time, namely on
the reformed understanding of some important basic concepts in logic. Through
our analysis we will see that this has been made possible not only because of
the universal logic aspect of institution theory, but especially because of its
computer science origins. Computer science in general, and formal methods in
particular, cannot afford a naive informal treatment of logical entities for the
simple reason that often these have to be realised directly in implementations. It
is thus no surprise that in many situation issues arising from implementation of
formal specification languages can be very consonant with issues regarding the
mathematical rigor imposed by the definition of institution and the corresponding
solutions are highly convergent.

In this section we will discuss the new understanding of the concepts of logical
language, variables, quantifiers, interpolation brought in by institution theory.
We conclude with a brief discussion challenging the common view on many sorted
logics.

3.1 On logical languages

Logical languages are the primary syntactic concept in mathematical logic.
Informally they represent structured collections of symbols that, on the one



hand are used as extra-logical symbols1 in the composition of the sentences or
formulæ, and on the other hand are interpreted, often in set theory, in order
to get semantics. In institution theory the logical languages correspond to the
objects of Sig and are called signatures, a terminology that owes to computer
science. Institution theory leads to a more refined understanding of two aspects
of logical languages, namely mappings between languages and variables.

Signature morphisms and language extensions. In Def. 1, Sig is a category
rather than a class; this means that morphisms between signatures play a primary
role. In fact the category theoretic thinking leans towards morphisms rather
than towards objects, objects are somehow secondary to morphisms. Some early
and courageous presentations of category theory [34] even do it without the
concept of object since objects can be assimilated to identity morphisms. In
concrete situations the fact that Sig is only required to be category gives a
lot of freedom with respect to the choice for an actual concept of signature
morphism. One extreme choice is not to have proper signature morphisms at
all or even that Sig has only one object. The latter situation is common to
logical studies in which no variation in the language is necessary. A less extreme
choice is made in the traditional model theory practice, namely to have only
language (signature) extensions as morphisms. However, mathematically this may
be quite an unconventional choice since usually, in concrete situations, morphisms
are structure preserving mappings between objects and from this perspective
signature extensions represent a rather strong restriction.

With respect to signature morphisms the practice of formal specification
is quite different than that of mathematical logic in that it considers more
sophisticated concepts of mappings between languages. The example of the
many-sorted algebra institution given above is quite illustrative in this respect.
The practice of algebraic specification (especially in the area of parameterised
specifications) requires much more than signature extensions, it requires at
least the fully general structure-preserving morphisms as in the aforementioned
example. Moreover the literature (e.g. [57]) considers also an even more complex
concept of signature morphism, the so-called derived signature morphisms that
are in fact second-order substitutions replacing function symbols by terms. These
of course are also immediately accommodated by the Sig part of Def. 1. This
widening of the concept of language extension to various forms of signature
morphisms has manyfold implications in all areas that involve the use of language
extensions. For example paramount logical concepts such as interpolation and
definability get a much more general formulation (see [22,59,20,51] etc.) with
important consequences in the applications.

The case of the derived signature morphisms shows that in some situations the
simple criterion of preserving the mathematical structure is not enough for defining
a fully usable concept of signature morphism. There is also another famous case
that comes from the behavioural specification trend [52,53,41,42,10,45,29,54].

1 Logical symbols are connectors such as ∧, ¬,..., or quantifiers ∀, ∃, or modalities 2,3,
etc. Sorts (types), function, relations symbols, etc. are extra-logical symbols.



When defining the corresponding institution(s), the use of the mere structure-
preserving mappings for the signature morphisms leads to the failure of the
Satisfaction Condition of Def. 1. In order to get that holding, an additional
condition has to be imposed on the signature morphisms known in the literature as
the ‘encapsulation condition’ and which in the concrete applications corresponds
clearly to an object-orientation aspect. In both [38] and [41] the authors remark
that the derivation of the encapsulation condition on the morphisms of signatures
from the meta-principle of invariance of truth under change of notation (the
Satisfaction Condition of institutions) seems to confirm the naturalness of each
of the principles. We may add here that this shows an inter-dependency between
the abstract logic level and pragmatical computer science aspects.

Variables and quantifiers. The concept of variable is primary when having
to deal with quantifications. Mathematical logic has a common way to treat
variables which has a global aspect to it. A typical example is the following
quotation from [15] that refers to the language of first-order logic.

“To formalize a language L, we need the following logical symbols
parentheses ), (;
variables v0, v1, . . . , vn, . . . ;
connectives ∧ (and), ¬ (not);
quantifier ∀ (for all);

and one binary relation symbol ≡ (identity). We assume, of course, that no

symbol in L occurs in the above list.”

Upon analysis of this text we can easily understand that variables are considered
as logical rather than extra-logical symbols which also implies that, as a collection,
they are invariant with respect to the change of the signature. Moreover they
have to be disjoint from the signatures. And of course, this collection of variables
ought to be infinite.

While such treatment of variables may work well when having to deal only
with ad-hoc signature extensions, as it is the case with conventional model theory.
However it rises a series of technical difficulties with the institution theoretic
approach.

1. Having a set of variables χ as logical symbols means that the respective
institution has χ as a parameter. Therefore, strictly speaking, it is improper
to talk, for example, about the institution of first-order logic.

2. In the concrete situations the category Sig is usually defined in the style of
Ex. 1, which means that the individual signatures are set theoretic structures
that are not restricted in any way on the basis of the fixed set of variables.
This of course cannot guarantee the principle of disjointness between the
signatures and the variables. For example it is possible that some signatures
may contain some of the variables as constants.

3. Moreover, the institution-theoretic approach to quantifiers [22,59,19] etc.
abstracts blocks of variables just to signature morphisms ϕ : Σ → Σ′, where
in the concrete situations ϕ stands for the extension of Σ with a respective



block of variables. This means that while the variables have to be disjoint
from the signature Σ, they are actually part of Σ′.

Unfortunately much of the institution theory literature is quite sloppy about
these issues and adopts the common logic view of variables. However starting
with [32] a series of works in institution theory adopts a view on variables that
responds adequately to the aforementioned issues and therefore is mathematically
rigorous. This is based on a local rather than the common global view of variable,
drawing inspiration from the actual implementations of specification languages.
For many sorted algebra (Ex. 1) it goes like this. Given a signature (S, F ), a
block of variables for (S, F ) consists of a finite set of triples (x, s, (S, F )) where
x is the name of the variable and s ∈ S is its sort. It is also required that in
any block of variables different variables have different names. Because of the
qualification by the signature (the third component), by axiomatic set theory
arguments we get that a variable for a signature is disjoint from the respective
signature. On the other hand, they can be adjoined to the signature. So, given a
block X of variables for a many sorted signature (S, F ) let (S, F +X) denote the
new signature obtained by adding the variables of sort s as new constants of sorts
s. Then for any (S, F +X)-sentence ρ we have that (∀X)ρ is a (S, F )-sentence. In
this way satisfaction of quantified sentences can be defined only in terms of model
reducts, without having to resort to traditional concepts such as valuations of
variables that have a strong concrete aspect. An (S, F )-model M satisfies (∀X)ρ
if and only if for each (S, F +X)-model M ′ such that Mod(ϕ)(M ′) = M we have
that M ′ satisfies ρ, where ϕ denotes the signature expansion (S, F )→ (S, F +X).
Note that this definition is institution theoretic since it does not depend on
the many sorted algebra case, it can be formulated in exactly the same way
in abstract institutions. Moreover, our local concept of variable also behaves
well with respect to the sentence translations induced by signature morphisms.
Given a signature morphism χ : (S, F )→ (S′, F ′), any block of variables X for
(S, F ) translates to a block of variables X ′ for (S′, F ′) by mapping each variable
(x, s, (S, F )) to (x, χ(s), (S′, F ′)). “Behaves well” here means two things: (1) that
we get a block of variables as required, and (2) that the translation is functorial.
Then latter aspect is crucial for the functor axioms for Sen.

It is very interesting to note that this local view on variables, necessary to
meet the mathematical rigor of the definition of institution, fits the way logical
variables are treated in actual implementations of specification languages (e.g.
CafeOBJ [28], etc.). There variables are declared explicitly and their scope is
restricted to the module in which they are declared. The way this fits exactly
the aforementioned approach to logical variables is explained by the fact that,
according to works such as [24] the institutions underlying specification languages
have structured specifications or modules as their signatures, so in this case
the qualification by the signature of the institution means qualification by a
corresponding module.

The mathematical properties underlying our local approach to logical variables
are axiomatised by the following abstract notion which has been used in a series
of works (e.g. [23,48,27,31], etc.) for building explicit quantifications in abstract



institutions in a way that it yields another sentence functor (and consequently
another institution that shares the signatures and the models with the original
institution).

Definition 2 (Quantification space). For any category Sig a subclass of ar-
rows D ⊆ Sig is called a quantification space if, for any (χ : Σ → Σ′) ∈ D and
ϕ : Σ → Σ1, there is a designated pushout

Σ
ϕ //

χ

��

Σ1

χ(ϕ)

��
Σ′

ϕ[χ]
// Σ′1

with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated
pushouts is again a designated pushout, i.e. for the pushouts in the following
diagram

Σ
ϕ //

χ

��

Σ1

χ(ϕ)

��

θ // Σ2

χ(ϕ)(θ)

��
Σ′

ϕ[χ]
// Σ′1 θ[χ(ϕ)]

// Σ′2

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that χ(1Σ) = χ and
1Σ [χ] = 1Σ′ .

The use of designated pushouts is required by the fact that quantified sentences
ought to have a unique translation along a given signature morphism. The
coherence property of the composition is required by the functoriality of the
translations. For example, in the aforementioned concrete case of many sorted
algebra, D consists of the signature extensions ϕ : (S, F )→ (S, F +X) where X
is a finite block of variables for (S, F ). For any signature morphism χ : (S, F )→
(S′, F ′) we define X ′ = {(x, χ(s), (S′, F ′)) | (x, s, (S, F )) ∈ X}, ϕ[χ] to be
signature extension (S′, F ′)→ (S′, F ′+X ′) and χ(ϕ) : (S, F+X)→ (S′, F ′+X ′)
to be the canonical extension of χ that maps each variable (x, x, (S, F )) to
(x, χ(s), (S′, F ′)).

3.2 On interpolation

Because of its many applications in logic and computer science, interpolation is
one of the most desired and studied properties of logical systems. Although it
has a strikingly simple and elementary formulation as follows,

given sentences ρ1 and ρ2, if ρ2 is a consequence of ρ1 (written ρ1 ` ρ2)
then there exists a sentence ρ (called interpolant) in the common language
of ρ1 and ρ2 such that ρ1 ` ρ and ρ ` ρ2,



in general it is very difficult to establish. The famous result of Craig [16] marks
perhaps the birth of the study of interpolation, proving it for (single sorted)
first-order logic. The actual scope of Craig’s result has been gradually extended
to many other logical systems (for example in the world of modal logics, see [36]),
a situation that meets the universal character of interpolation that can be easily
detected from its formulation that does not seem to commit inherently to any
particular logical system.

The institution theoretic approach to interpolation has lead to a multi di-
mensional reformation of this important concept that will be discussed below.
However, before that, we note that within institution theory the consequence rela-
tion ` from the above formulation of interpolation is interpreted as the semantic
consequence |=, i.e. for a given signature Σ and sets E,Γ of Σ-sentences, E |= Γ
when for each Σ-model M if M satisfies each sentence in E then it satisfies each
sentence in Γ too.

From single sentences to sets of sentences. It has been widely believed that
equational logic, the logical system underlying traditional algebraic specification,
lacks interpolation; likewise for Horn-clause logic and other such fragments
of first-order logic. As far as we know, Piet Rodenburg [55,56] was the first
to point out that this is a misconception due to a basic misunderstanding of
interpolation, rooted in the heavy dependency of logic culture on classical first-
order logic with all its distinctive features taken for granted. Then it follows the
grave general fault of exporting a coarse understanding of concepts dependent
on details of a particular logical system to other logical systems of a possibly
very different nature, where some detailed features may not be available. In
the case of interpolation, the gross confusion has to do with looking for an
interpolant as a single sentence. In first-order logic, which has conjunction,
looking for interpolants as finite sets of sentences ({ρ1, . . . , ρn}) is just the same
as looking for interpolants as single sentences (ρ1 ∧ · · · ∧ ρn). Hence, the common
formulation of interpolation requires single sentences as interpolants. However,
this is not an adequate formulation for equational logic which lacks conjunction,
i.e., conjunction ρ1 ∧ ρ2 of universally quantified equations ρ1 and ρ2 cannot be
captured as a universally quantified equation in general. Rodenburg [55,56] proved
that equational logic has interpolation with the interpolant being a finite set of
sentences, and this apparently weaker interpolation property is quite sufficient in
both computer science and logic applications.

From language extensions to signature morphisms. The relationship
between signatures Σ1 (of ρ1), Σ2 (of ρ2) and their union Σ1 ∪Σ2 (where the
consequence ρ1 ` ρ2 happens) and intersection Σ1 ∩ Σ2 (the signature of the
interpolant), is depicted by the following diagram where arrows indicate the



obvious inclusions:

Σ1 ∩Σ2
⊆ //

⊆
��

Σ1

⊆
��

Σ2 ⊆
// Σ1 ∪Σ2

While intersections ∩ and unions ∪ are more or less obvious for signatures as used
in first-order logic and in many other standard logics, they are not so in some
other logical systems, and certainly not at the level of abstract institutions where
signatures are just objects of an arbitrary category. One immediate response to this
problem would be to add an infrastructure to the abstract category of signatures
that would support concepts of ∩ and ∪; in fact this is already available in the
institution theoretic literature and is called inclusion system [30,22]. Another
solution would be, at the abstract level to use arbitrary signature morphisms
and in the applications to restrict the signature morphisms only to those that
are required to be, for example, inclusions (i.e. language extensions). Due to the
abstraction involved, this means a lot of flexibility. For instance, in many computer
science applications it is very meaningful to consider non-inclusive signature
morphisms in the role of inclusions in the square above. An example comes
from the practice of parameterised specifications (e.g. [57]) where instantiation
of the parameters may involve signature morphisms that collapse syntactic
entities. A generalised form of interpolation involving such non-injective signature
morphisms is needed in order to get the completeness of formal verification for
structured specifications (e.g. [12,11]). This generalisation of interpolation that
relaxes language extensions to arbitrary signature morphisms has been introduced
in [59]. The category-theoretic property of the above intersection-union square
that makes things work is that it is a pushout. These considerations lead to the
following abstract formulation of the interpolation property [22].

Definition 3 (Institution-theoretic Craig interpolation [22]). 2 Given
L,R ⊆ Sig, the institution has Craig (L,R)-interpolation when for each pushout
square of signatures

Σ
ϕ1∈L //

ϕ2∈R
��

Σ1

θ1
��

Σ2
θ2

// Σ′

and any finite sets of sentences E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2), if θ1(E1) |=
θ2(E2) then there exists a finite set E of Σ-sentences such that E1 |= ϕ1(E) and
ϕ2(E) |= E2.

The (abstract) restriction to pre-defined classes of signature morphisms, L for ϕ1

and R for ϕ2, constitutes an essential parameter in the above definition. In its

2 Given a signature morphism ϕ : Σ → Σ′, we abbreviate Sen(ϕ) as ϕ, and so for a
set of sentences E ⊆ Sen(Σ), ϕ(E) is the image of E under Sen(ϕ).



absence the interpolation concept would be unrealistically too rigid and strong
(for example many-sorted first-order logic would not support it [43,13,22]).

A couple of typical examples of institution-theoretic Craig (L,R)-interpolation
are as follows:

– many-sorted first-order logic for either L or R consisting of the signature
morphisms that are injective on the sorts [43,22]; and

– many-sorted Horn clause logic for R consisting of the signature morphisms
that are injective [20,22].

From Craig to Craig-Robinson interpolation. There is a variety of situa-
tions in model theory (e.g. Beth definability [7,15]) and in computer science (e.g.
complete calculi for structured specifications [12]) when Craig interpolation is
used together with implication. The latter property is so obvious in some logics –
such as first-order logic – that it is hardly ever mentioned explicitly in concrete
contexts. Its definition at the level of abstract institutions is straightforward [59]:
an institution has implication when for every signature Σ and Σ-sentences ρ1,
ρ2, there exists a Σ-sentence ρ such that for each Σ-model M ,

M |= ρ if and only if M |= ρ2 whenever M |= ρ1.

However, in many contexts we may render implication unnecessary by reformu-
lating the interpolation property. Important applications are definability [51] in
model theory and the completeness of calculus for structured specifications [22]
in computer science. The trick is to ‘parameterise’ each instance of interpolation
by a set of ‘secondary’ premises. In [33,58,61] this is called Craig-Robinson inter-
polation; it also plays an important role in specification theory, e.g. [6,30,33,22].
Let us recall here explicitly its institution-theoretic formulation.

Definition 4 (Institution-theoretic Craig-Robinson interpolation). An
institution has Craig-Robinson (L,R)-interpolation when for each pushout square
of signatures with ϕ1 ∈ L and ϕ2 ∈ R

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and finite sets of sentences E1 ⊆ Sen(Σ1) and E2, Γ2 ⊆ Sen(Σ2), if θ1(E1) ∪
θ2(Γ2) |= θ2(E2) then there exists a finite set E of Σ-sentences such that E1 |=
ϕ1(E) and ϕ2(E) ∪ Γ2 |= E2.

Clearly, Craig-Robinson interpolation implies Craig interpolation. In any
compact institution with implication, Craig-Robinson interpolation and Craig
interpolation are equivalent [25,22] (so for instance within first-order logic, the
two properties coincide). This means that Craig-Robinson interpolation alone in



principle is weaker than Craig interpolation and implication. But is it properly
so? Is there a significant example of an institution lacking implication but having
Craig-Robinson interpolation? Through a rather sophisticated technique of so-
called Grothendieck institutions [18,21], a result in [22] gives a general method
to lift Craig interpolation to Craig-Robinson interpolation in institutions that
may not have implication but are embedded in a certain way into institutions
having implication. A concrete consequence of this result based on the Craig
interpolation property of many-sorted first-order logic that was mentioned above,
is as follows.

Corollary 1 (Craig-Robinson interpolation in many-sorted Horn-clause
logic). Many-sorted Horn-clause logic (with equality) has (L,R)-Craig-Robinson
interpolation when L consists only of signature morphisms ϕ that are injective
on sorts and ‘encapsulate’ the operations.3

One of the important significance of this result can be seen in conjunction
with the upgrade in [22] of the completeness result for structured specifications
of [12], that replaces Craig interpolation and implication by Craig-Robinson
interpolation as one of the conditions. In the light of [12], the lack of implication
has been used in the formal specification community as an argument against the
adequacy of equational logic as a specification formalism. However we can see
that this was only due to a couple of misunderstandings (1) that implication
is not really needed for obtaining the completeness result of [12] and (2) that
equational logic does satisfy the kind of interpolation that is really needed there
and in a form that meets the requirements of the applications. In practice the
only restriction involved by the conditions of Cor. 1 is that all information hidings
have to be done with morphisms from L, something that seem to accord well
with practical intuitions underlying the concept of information hiding.

3.3 A short word on many-sortedness

Another significance of the aforementioned Craig-Robinson interpolation property
of many-sorted Horn-clause logic is that, if we reduce the context to conditional
equational logic by not considering predicate symbols – which is the logic un-
derlying the equational logic programming paradigm (e.g. [17]) – it makes sense
only in the many-sorted context. In a single sorted context it is clear that L
collapses to nothing. This is just one of the examples that sharply refutes an
idea that, in my opinion, is common among mathematical logicians, namely that
many-sorted logics are “inessential” variations of their single-sorted versions (e.g.
[50]). Another example is of course the case of generalised Craig interpolation
in first-order logic; while the single-sorted variant supports it for all pushout
squares of signature morphisms, we have seen that it is not so for the many-sorted
variant.

3 In the sense that no operation symbol outside the image of ϕ is allowed to have a
sort in the image of ϕ.
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3. Hajnal Andréka and István Németi. Generalization of the concept of variety and
quasivariety to partial algebras through category theory, volume 204 of Dissertationes
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25. Răzvan Diaconescu. Borrowing interpolation. Journal of Logic and Computation,
22(3):561–586, 2012.
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