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1 Theories and Models

Galois connection between syntax and semantics

o M ={peSes)|. s p},
o E*={Me [MoD(Z)|| M =5 E}.

General properties
1. E CE impliesE™ C E*,
2. # C .« implies.#’™ C .4*,
3. XX,
4. X =X,

Definition 1 (Theory) (Z,E) such thaE C Ser{Z) closed under semantic consequenceH.e: E**.

The categoryPres.¥) of .#-presentations for an institution .
Presentation(Z, E):
e signaturex,
e E C Serf).
Presentation morphism : (Z,E) — (¥',E'):
e ¢: T — % suchthat
o E | Serf$)(E).

Proposition 2. .#-presentation morphisms form a category under the comipasifiven by the composition of
the underlying signature morphisms.



Institutions of presentations
A general and simple yet very useful technical constru¢especially for doing ‘logic by translation’, but not
only.

| Institution of .7 -presentations?P = (SigP, Se, MoDpP, =P) over a given institution? = (Sig, SenMob, =
e SigP =Preq.¥),
e Se(Z,E) = Senz),
e [MODP(Z,E)| ={M € [MoD(Z)| |M EE}
~ MoDP(¢)(M') = MoD(9)(M) (MOD($)(M') = E becaus&’ = Seri¢)(E)),
* M=z g) pifandonly ifM =5 p.

Lifting signature co-limits to presentations
Many properties of a base institutiasi can be lifted to the institutionP (of .#-presentations) in a fully
general way.

The following is such an example (very useful for specifimattheory, but also for pure model theoretic
purposes).

Proposition 3. If the category of.#-signatures has J-co-limits then the category.6P-signatures (i.e. .7-
presentations) has J-co-limits too.
du
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2 Model amalgamation
2.1 Definition

Model amalgamation

e A property pervading the development of most model theosylts. So fundamental that it is one of the
causes of the Satisfaction Condition in institutions witkaqtifiers (e.gFOL).

e Holds implicitly in the conventional concrete institutgrtherefore its (crucial) role quite hidden. It be-
comes explicit at the level of doing model theory in abstnastitutions.

e Widely spread among logical systems, rather easy to eshabli
¢ Not to be confused with much harder amalgamation from catweal FOL model theory that is something
completely different (local to signatures, about elemgnéanbeddings).
Model amalgamation: definition
# has model amalgamatiomhen for each pushout of signature morphisms

M M1

Z%Zl



for anyZ; modelsM; such that MoD(¢)(M1) = MoD(8)(M3)
there exists an unigu€-modelM’ such that
MoD(8')(M’) = Mz and Mob(¢’)(M') = Ma.
How to establish model amalgamation in concrete institutias
Can be done directly, however requires some straightfahiat rather tedious work (pushouts of signature
morphisms).
Here is a ‘clever’ general solution (can be applied to mamcoete institutions too):
1. Define a ‘super’ signatui@ such that
e eachX-model appears as a signature morphsm Q, and
e eachg-reduct MoD(¢)(M’) appears as a composition of signature morphEm%A s M a.
2. Use the pushout property: 21 M

How to establish model amalgamation the definition ofd in MSA
Now let us turn our attention t@ = (S?,F®) which is defined as follows:

o S2 =|Setl, i.e., the class of all sets, and

e forany setsy,...,s,S,
EQ
S$1...5h—S
i.e., the set of all functions; x --- x s, — S.

=Set(sy X -+ X %,9)

Other useful forms of model amalgamation
Each of the following has its own applications.

e Weak amalgmatianrequires only the existence of amalgamatidf) not uniqueness. Quite often this is
sufficient (such as for establising the Satisfaction Caonlitor quantifiers).

e Semi-exactnesamalgamation of model homomorphisms too.

¢ J-amalgamationamalgamation frond-co-limits rather than just pushuts.

Model amalgamation from a more categorical perspective
For examplesemi-exactnegast means that

Mobp: Sig — Cat®? preserves pushouts.
>——21

i.e. for any pushout ifig gl lel
2 —=%

MoD(¢)
the following is a pullback irCat: MoD(Z) <—— MoD(2,)
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2.2 Examples

Examples of concrete model amalgamation properties
J-exact institutions

e the many-sorted forms of classical first order logic, itgyfreents (Horn clause logic, equational logic),
intuitionistic logic, many-valued logics, modal logic Wipossible worlds semantics, etc.

Semi-exact institutions

¢ all of the above in the single sorted form.

Weak model amalgamation

¢ higher order logic with Henkin semantics,

e ‘weak propositional logic’ of Beziau (only half negation),

e some other interesting examples from computer science.

Lifting model amalgamation to presentations

Proposition 4. If .# has model amalgamation theiP has model amalgamation too.

(5,E) — 2~ (51,E1) s 05,
Q\L \LG/ Ql lel
(22,E2) — (¥,E1UEy) 2 > 3/

The amalgamatioM’ of M; (X;-model) andM, (Z,-model) satisfie&; U E.

3 The method of diagrams

3.1 Definition
The method of diagrams

e Much used in (conventional concrete) model theory, pengdiany developments in

free constructions
axiomatizability theory
saturated model theory
interpolation and definability
— etc.

e At the abstract institutions level appears a categoriaa@rty that displays some fundamental coherence
between the syntax and the semantics of a given institution.

Conventional concrete diagrams (FOL)
LetM be an(S,F,P)-model.

1. We add the elements bf as new constants to the signature, tteigw, P),

2. The (positivediagram of M

Ev = {(S,Fu,P)-atoms p [ Mu |= p}.

whereMy is the expansion ol interpreting the new constants by themselves, My )m = m for each
me M.



Institution-independent diagrams
An institutionhas (elementary) diagranvghen for eactE-modelM there exists

1Lism: Z—2u, and
2. Em C Serizwm)

such that

MOD(Zy, Em) —>= (M/MoD(Z))

forgetful
Mm\ l

MobD(Z)

Other axioms about coherence wrt signature/model traostabmitted.

3.2 Examples

Some examples in FOL
Other concepts of diagrams may be obtained by changing teepb of model homomorphism:

homomorphisms* diagram By
ordinary | all atoms inMg,
injective | all atoms and neg. of atomic equationsMg,
closed | all atoms and neg. of atomic relationshfy,
closed and injectivg all atoms and neg. of atoms My,
elem. embeddings My,

Some examples in other institutions
Intuitionistic logic (PL):

e for P-modelM : P — A (A any Heyting algebra),

— the elementary extensionis— PWA, and
- Ev={p,p1= P2 €My | p,p1,p2 € PUA}.

Modal logic MFOL , first order, Kripke semantics)

e no diagrams!

Higher order logic HOL):
e for (S F)-modelM
— the elementary extension (S, Fv),
- Euw= {tzt/ | Mm l:t:t’}_
Lifting diagrams to presentations

Proposition 5. If .# has diagrams thet#P has diagrams too.

For any(Z, E)-modelM:
¢ the elementary extension :

©E) ™ (5B = (2, Sertis(M))(E))

e the diagram:
Em U Ser{is(M))(E).



3.3 Using diagrams

An example of use of inst.-indep. diagrams establishing climits of models
In concrete situations, usually a difficult problem, e.g-lictits of rings, etc. In essence, the result below
reduces the problem to co-limits of signatures, which inatete situations is much easier.

Theorem 6. In any institution(Sig, SenM oD, =) such that
1. it has diagrams,
2. each presentation has initial models,
3. Sig has J-co-limits,
4. it has J-model amalgamation,

then each category a-models has J-co-limits.

An application co-limits of models of Horn theories

Corollary 7. For any Horn theory (in a giveROL signature), the category of its models has (small) co-mit
The following is an instance of corollary above:

Corollary 8. The category of rings has (small) co-limits.

The proof
We set the institution to bECL P, where

e HCL is the sub-institution oFOL that restricts the sentences to the Horn sentences,

e HCLP is the institution of thedCL -presentations.

We can easily check the hypotheses of the general theoreve.abo

1. e HCL has the=OL diagrams, consisting of atomic sentences.
o We lift the diagrams frontHCL to HCLP.

2. Itis well known that Horn theories admit initial models.

3. e SighCt =sigFOL is (small) co-complete.
o We lift this from HCL -signatures t¢1CL P-signatures (i.eHCL -presentations).

4. e FOL/HCL is exact (we have already proved).
o We lift model amalgamation frorAlCL to HCLP.



