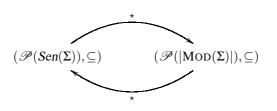
Outline

Contents

1 Theories and Models

Galois connection between syntax and semantics



- $\mathcal{M}^{\star} = \{ \rho \in Sen(\Sigma) \mid \mathcal{M} \models_{\Sigma} \rho \},\$
- $E^{\star} = \{ M \in |\operatorname{MOD}(\Sigma)| \mid M \models_{\Sigma} E \}.$

General properties

- 1. $E \subseteq E'$ implies $E'^* \subseteq E^*$,
- 2. $\mathcal{M} \subseteq \mathcal{M}'$ implies $\mathcal{M}'^{\star} \subseteq \mathcal{M}^{*}$,
- 3. $X \subseteq X^{\star\star}$,
- 4. $X = X^{\star\star\star}$.

Definition 1 (Theory). (Σ, E) such that $E \subseteq Sen(\Sigma)$ closed under semantic consequence, i.e. $E = E^{\star\star}$.

The category $\mathbb{P}res(\mathscr{I})$ of \mathscr{I} -presentations for an institution \mathscr{I} *Presentation* (Σ, E) :

- signature Σ ,
- $E \subseteq Sen(\Sigma)$.

Presentation morphism φ : $(\Sigma, E) \rightarrow (\Sigma', E')$:

- $\varphi: \Sigma \to \Sigma'$, such that
- $E' \models_{\Sigma'} Sen(\varphi)(E)$.

Proposition 2. *I*-presentation morphisms form a category under the composition given by the composition of the underlying signature morphisms.

Institutions of presentations

A general and simple yet very useful technical construction, especially for doing 'logic by translation', but not only.

Institution of \mathscr{I} -presentations $\mathscr{I}^{p} = (\mathbb{S}ig^{p}, Sen^{p}, MOD^{p}, \models^{p})$ over a given institution $\mathscr{I} = (\mathbb{S}ig, Sen, MOD, \models)$:

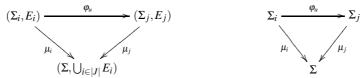
- $\mathbb{S}ig^{p} = \mathbb{P}res(\mathscr{I}),$
- $Sen^{p}(\Sigma, E) = Sen(\Sigma),$
- $|\operatorname{Mod}^{p}(\Sigma, E)| = \{M \in |\operatorname{Mod}(\Sigma)| \mid M \models E\}$
 - $\operatorname{MOD}^{p}(\varphi)(M') = \operatorname{MOD}(\varphi)(M') (\operatorname{MOD}(\varphi)(M') \models E \text{ because } E' \models Sen(\varphi)(E)),$
- $M \models_{(\Sigma,E)} \rho$ if and only if $M \models_{\Sigma} \rho$.

Lifting signature co-limits to presentations

Many properties of a base institution \mathscr{I} can be lifted to the institution \mathscr{I}^p (of \mathscr{I} -presentations) in a fully general way.

The following is such an example (very useful for specification theory, but also for pure model theoretic purposes).

Proposition 3. If the category of \mathcal{I} -signatures has J-co-limits then the category of \mathcal{I}^{p} -signatures (i.e. \mathcal{I} -presentations) has J-co-limits too.



2 Model amalgamation

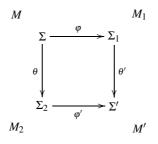
2.1 Definition

Model amalgamation

- A property pervading the development of most model theory results. So fundamental that it is one of the causes of the Satisfaction Condition in institutions with quantifiers (e.g. FOL).
- Holds implicitly in the conventional concrete institutions, therefore its (crucial) role quite hidden. It becomes explicit at the level of doing model theory in abstract institutions.
- Widely spread among logical systems, rather easy to establish.
- Not to be confused with much harder amalgamation from conventional **FOL** model theory that is something completely different (local to signatures, about elementary embeddings).

Model amalgamation: definition

I has model amalgamation when for each pushout of signature morphisms



for any Σ_i models M_i such that $MOD(\varphi)(M_1) = MOD(\theta)(M_2)$

there exists an unique Σ' -model M' such that

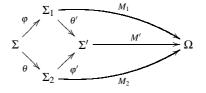
 $\operatorname{MOD}(\theta')(M') = M_1$ and $\operatorname{MOD}(\varphi')(M') = M_2$.

How to establish model amalgamation in concrete institutions

Can be done directly, however requires some straightforward but rather tedious work (pushouts of signature morphisms).

Here is a 'clever' general solution (can be applied to many concrete institutions too):

- 1. Define a 'super' signature Ω such that
 - each Σ -model appears as a signature morphism $\Sigma \rightarrow \Omega$, and
 - each φ -reduct $MOD(\varphi)(M')$ appears as a composition of signature morphisms $\Sigma \xrightarrow{\varphi} \Sigma' \xrightarrow{M'} \Omega$.
- 2. Use the pushout property:



How to establish model amalgamation the definition of $\boldsymbol{\Omega}$ in MSA

Now let us turn our attention to $\Omega = (S^{\Omega}, F^{\Omega})$ which is defined as follows:

- $S^{\Omega} = |\mathbb{S}et|$, i.e., the class of all sets, and
- for any sets s_1, \ldots, s_n, s ,

$$F^{\Omega}_{s_1...s_n\to s} = \mathbb{S}et(s_1\times\cdots\times s_n,s)$$

i.e., the set of all functions $s_1 \times \cdots \times s_n \rightarrow s$.

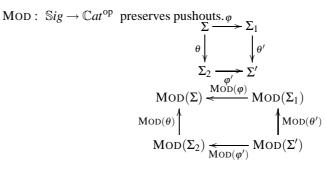
Other useful forms of model amalgamation

Each of the following has its own applications.

- Weak amalgmation: requires only the existence of amalgamation M', not uniqueness. Quite often this is sufficient (such as for establising the Satisfaction Condition for quantifiers).
- Semi-exactness: amalgamation of model homomorphisms too.
- J-amalgamation: amalgamation from J-co-limits rather than just pushuts.

Model amalgamation from a more categorical perspective

For example, semi-exactness just means that



i.e. for any pushout in $\mathbb{S}ig$

the following is a pullback in $\mathbb{C}at$:

2.2 Examples

Examples of concrete model amalgamation properties

J-exact institutions:

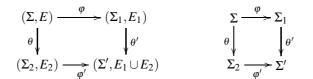
• the many-sorted forms of classical first order logic, its fragments (Horn clause logic, equational logic), intuitionistic logic, many-valued logics, modal logic with possible worlds semantics, etc.

Semi-exact institutions:

- all of the above in the single sorted form.
- Weak model amalgamation:
- higher order logic with Henkin semantics,
- 'weak propositional logic' of Beziau (only half negation),
- some other interesting examples from computer science.

Lifting model amalgamation to presentations

Proposition 4. If \mathscr{I} has model amalgamation then \mathscr{I}^{p} has model amalgamation too.



The amalgamation M' of M_1 (Σ_1 -model) and M_2 (Σ_2 -model) satisfies $E_1 \cup E_2$.

3 The method of diagrams

3.1 Definition

The method of diagrams

- Much used in (conventional concrete) model theory, pervading many developments in
 - free constructions
 - axiomatizability theory
 - saturated model theory
 - interpolation and definability
 - etc.
- At the abstract institutions level appears a categorical property that displays some fundamental coherence between the syntax and the semantics of a given institution.

Conventional concrete diagrams (FOL)

Let M be an (S, F, P)-model.

- 1. We add the elements of *M* as new constants to the signature, thus (S, F_M, P) ,
- 2. The (positive) diagram of M:

$$E_M = \{ (S, F_M, P) \text{-atoms } \rho \mid M_M \models \rho \}.$$

where M_M is the expansion of M interpreting the new constants by themselves, i.e. $(M_M)_m = m$ for each $m \in M$.

Institution-independent diagrams

An institution has (elementary) diagrams when for each Σ -model M there exists

1. $\iota_{\Sigma,M}$: $\Sigma \to \Sigma_M$, and

2. $E_M \subseteq Sen(\Sigma_M)$

such that

Other axioms about coherence wrt signature/model translations omitted.

3.2 Examples

Some examples in FOL

Other concepts of diagrams may be obtained by changing the concept of model homomorphism:

homomorphisms	diagram E_M
ordinary	all atoms in M_M^*
injective	all atoms and neg. of atomic equations in M_M^*
closed	all atoms and neg. of atomic relations in M_M^*
closed and injective	all atoms and neg. of atoms in M_M^*
elem. embeddings	M_M^*

Some examples in other institutions

Intuitionistic logic (IPL):

- for *P*-model $M: P \rightarrow A$ (*A* any Heyting algebra),
 - the elementary extension is $P \rightarrow P \uplus A$, and
 - $E_M = \{\rho, \rho_1 \Rightarrow \rho_2 \in M_M^* \mid \rho, \rho_1, \rho_2 \in P \uplus A\}.$

Modal logic (MFOL, first order, Kripke semantics):

• no diagrams!

Higher order logic (HOL):

- for (S, F)-model M
 - the elementary extension is (S, F_M) ,
 - $E_M = \{t = t' \mid M_M \models t = t'\}.$

Lifting diagrams to presentations

Proposition 5. If \mathscr{I} has diagrams then \mathscr{I}^{p} has diagrams too.

For any (Σ, E) -model *M*:

• the elementary extension :

$$(\Sigma, E) \xrightarrow{\iota_{\Sigma}(M)} (\Sigma, E)_M = (\Sigma_M, Sen(\iota_{\Sigma}(M))(E))$$

• the diagram:

$$E_M \cup Sen(\iota_{\Sigma}(M))(E).$$

3.3 Using diagrams

An example of use of inst.-indep. diagrams establishing co-limits of models

In concrete situations, usually a difficult problem, e.g. co-limits of rings, etc. In essence, the result below reduces the problem to co-limits of signatures, which in concrete situations is much easier.

Theorem 6. In any institution (Sig, Sen, MOD, \models) such that

- 1. it has diagrams,
- 2. each presentation has initial models,
- 3. Sig has J-co-limits,
- 4. it has J-model amalgamation,

then each category of Σ -models has J-co-limits.

An application co-limits of models of Horn theories

Corollary 7. For any Horn theory (in a given FOL signature), the category of its models has (small) co-limits.

The following is an instance of corollary above:

Corollary 8. The category of rings has (small) co-limits.

The proof

We set the institution to be $\boldsymbol{H}\boldsymbol{C}\boldsymbol{L}^p,$ where

• HCL is the sub-institution of FOL that restricts the sentences to the Horn sentences,

• HCL^p is the institution of the HCL-presentations.

We can easily check the hypotheses of the general theorem above.

- 1. HCL has the FOL diagrams, consisting of atomic sentences.
 - We lift the diagrams from **HCL** to **HCL**^p.
- 2. It is well known that Horn theories admit initial models.
- 3. $\mathbb{S}ig^{\text{HCL}} = \mathbb{S}ig^{\text{FOL}}$ is (small) co-complete.
 - We lift this from HCL-signatures to HCL^p-signatures (i.e. HCL-presentations).
- 4. FOL/HCL is exact (we have already proved).
 - We lift model amalgamation from **HCL** to **HCL**^p.