Institution Theory

basic methods

Răzvan Diaconescu

Institutul de Matematică "Simion Stoilow", Romania

UNILOG 2010, Lisbon

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

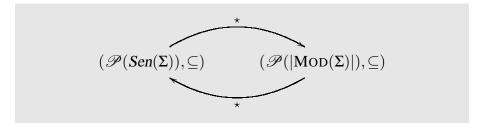
Outline

1 Theories and Models

2 Model amalgamation

- Definition
- Examples
- 3 The method of diagrams
 - Definition
 - Examples
 - Using diagrams

Galois connection between syntax and semantics



▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへの

$$\mathcal{M}^{\star} = \{ \rho \in Sen(\Sigma) \mid \mathcal{M} \models_{\Sigma} \rho \},$$
$$\mathcal{E}^{\star} = \{ M \in |MOD(\Sigma)| \mid M \models_{\Sigma} E \}.$$

General properties

1
$$E \subseteq E'$$
 implies $E'^* \subseteq E^*$,
2 $\mathcal{M} \subseteq \mathcal{M}'$ implies $\mathcal{M}'^* \subseteq \mathcal{M}^*$,
3 $X \subseteq X^{**}$,

$$4 \quad X = X^{\star \star \star}.$$

Definition (Theory)

 (Σ, E) such that $E \subseteq Sen(\Sigma)$ closed under semantic consequence, i.e. $E = E^{\star\star}$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへの

The category $\mathbb{P}res(\mathscr{I})$ of \mathscr{I} -presentations for an institution \mathscr{I}

- **Presentation** (Σ, E) :
 - signature Σ ,
 - $\blacksquare E \subseteq Sen(\Sigma).$

Presentation morphism φ : $(\Sigma, E) \rightarrow (\Sigma', E')$:

- $\varphi: \Sigma \to \Sigma'$, such that
- $\blacksquare E' \models_{\Sigma'} Sen(\varphi)(E).$

Proposition

I -presentation morphisms form a category under the composition given by the composition of the underlying signature morphisms.

A general and simple yet very useful technical construction, especially for doing 'logic by translation', but not only.

Institution of \mathscr{I} -presentations $\mathscr{I}^{p} = (\mathbb{S}ig^{p}, Sen^{p}, MOD^{p}, \models^{p})$ over a given institution $\mathscr{I} = (\mathbb{S}ig, Sen, MOD, \models)$:

 $\blacksquare \ \mathbb{S}ig^{p} = \mathbb{P}res(\mathscr{I}),$

•
$$Sen^p(\Sigma, E) = Sen(\Sigma),$$

 $|\operatorname{MOD}^{p}(\Sigma, E)| = \{ M \in |\operatorname{MOD}(\Sigma)| \mid M \models E \}$

■
$$\operatorname{Mod}^{\operatorname{p}}(\varphi)(M') = \operatorname{Mod}(\varphi)(M')$$

 $(\operatorname{Mod}(\varphi)(M') \models E \text{ because } E' \models Sen(\varphi)(E)),$

•
$$M \models_{(\Sigma,E)} \rho$$
 if and only if $M \models_{\Sigma} \rho$.

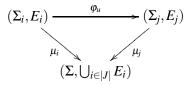
Lifting signature co-limits to presentations

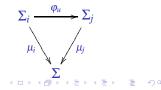
Many properties of a base institution \mathscr{I} can be lifted to the institution \mathscr{I}^p (of \mathscr{I} -presentations) in a fully general way.

The following is such an example (very useful for specification theory, but also for pure model theoretic purposes).

Proposition

If the category of \mathscr{I} -signatures has J-co-limits then the category of \mathscr{I}^{p} -signatures (i.e. \mathscr{I} -presentations) has J-co-limits too.



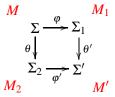


Model amalgamation

- A property pervading the development of most model theory results. So fundamental that it is one of the causes of the Satisfaction Condition in institutions with quantifiers (e.g. FOL).
- Holds implicitly in the conventional concrete institutions, therefore its (crucial) role quite hidden. It becomes explicit at the level of doing model theory in abstract institutions.
- Widely spread among logical systems, rather easy to establish.
- Not to be confused with much harder amalgamation from conventional FOL model theory that is something completely different (local to signatures, about elementary embeddings).

Model amalgamation: definition

I has model amalgamation when for each pushout of signature morphisms



for any Σ_i models M_i such that $MOD(\varphi)(M_1) = MOD(\theta)(M_2)$ there exists an unique Σ' -model M' such that $MOD(\theta')(M') = M_1$ and $MOD(\varphi')(M') = M_2$.

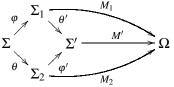
How to establish model amalgamation in concrete institutions

Can be done directly, however requires some straightforward but rather tedious work (pushouts of signature morphisms).

Here is a 'clever' general solution (can be applied to many concrete institutions too):

1 Define a 'super' signature Ω such that

- each Σ -model appears as a signature morphism $\Sigma \to \Omega$, and
- each φ -reduct MOD $(\varphi)(M')$ appears as a composition of signature morphisms $\Sigma \xrightarrow{\varphi} \Sigma' \xrightarrow{M'} \Omega$.
- **2** Use the pushout property:



白天云御天云臣天云臣天

How to establish model amalgamation the definition of Ω in MSA

Now let us turn our attention to $\Omega = (S^{\Omega}, F^{\Omega})$ which is defined as follows:

- $S^{\Omega} = |\mathbb{S}et|$, i.e., the class of all sets, and
- for any sets s_1, \ldots, s_n, s ,

$$F_{s_1\ldots s_n\to s}^{\mathbf{\Omega}} = \mathbb{S}et(s_1\times\cdots\times s_n, s)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

i.e., the set of all functions $s_1 \times \cdots \times s_n \rightarrow s$.

Other useful forms of model amalgamation

Each of the following has its own applications.

- *Weak amalgmation*: requires only the existence of amalgamation *M'*, not uniqueness. Quite often this is sufficient (such as for establising the Satisfaction Condition for quantifiers).
- Semi-exactness: amalgamation of model homomorphisms too.
- *J-amalgamation*: amalgamation from *J*-co-limits rather than just pushuts.

Model amalgamation from a more categorical perspective

For example, semi-exactness just means that

MOD : $\mathbb{S}ig \to \mathbb{C}at^{op}$ preserves pushouts.

 $\begin{array}{c} \Sigma \xrightarrow{\varphi} \Sigma_1 \\ \theta \downarrow & \downarrow \theta' \\ \Sigma_2 \xrightarrow{\varphi'} \Sigma' \end{array}$ i.e. for any pushout in Sig $MOD(\Sigma) \stackrel{MOD(\varphi)}{\longleftarrow} MOD(\Sigma_1)$ the following is a pullback in $\mathbb{C}at$: $MOD(\theta)$ $MOD(\theta')$ $\operatorname{MOD}(\Sigma_2)_{\operatorname{MOD}(\sigma')} \operatorname{MOD}(\Sigma')$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シのへの

Examples of concrete model amalgamation properties

J-exact institutions:

the many-sorted forms of classical first order logic, its fragments (Horn clause logic, equational logic), intuitionistic logic, many-valued logics, modal logic with possible worlds semantics, etc.

Semi-exact institutions:

■ all of the above in the single sorted form.

Weak model amalgamation:

- higher order logic with Henkin semantics,
- 'weak propositional logic' of Beziau (only half negation),
- some other interesting examples from computer science.

Lifting model amalgamation to presentations

Proposition

If \mathscr{I} has model amalgamation then \mathscr{I}^p has model amalgamation too.

$$\begin{array}{ccc} (\Sigma, E) & \xrightarrow{\varphi} (\Sigma_1, E_1) & \Sigma \xrightarrow{\varphi} \Sigma_1 \\ \theta \downarrow & \downarrow \theta' & \theta \downarrow & \downarrow \theta' \\ (\Sigma_2, E_2) & \xrightarrow{\varphi'} (\Sigma', E_1 \cup E_2) & \Sigma_2 & \xrightarrow{\varphi'} \Sigma' \end{array}$$

The amalgamation M' of M_1 (Σ_1 -model) and M_2 (Σ_2 -model) satisfies $E_1 \cup E_2$.

The method of diagrams

- Much used in (conventional concrete) model theory, pervading many developments in
 - free constructions
 - axiomatizability theory
 - saturated model theory
 - interpolation and definability
 - etc.
- At the abstract institutions level appears a categorical property that displays some fundamental coherence between the syntax and the semantics of a given institution.

Conventional concrete diagrams (FOL)

Let M be an (S, F, P)-model.

- We add the elements of M as new constants to the signature, thus (S, F_M, P) ,
- **2** The (positive) *diagram of M*:

$$E_M = \{(S, F_M, P) \text{-atoms } \rho \mid M_M \models \rho\}.$$

where M_M is the expansion of M interpreting the new constants by themselves, i.e. $(M_M)_m = m$ for each $m \in M$.

Institution-independent diagrams

An institution *has (elementary) diagrams* when for each Σ -model *M* there exists

- **1** $\iota_{\Sigma,M}$: $\Sigma \to \Sigma_M$, and
- $E_M \subseteq Sen(\Sigma_M)$

such that

Other axioms about coherence wrt signature/model translations omitted.

Some examples in FOL

Other concepts of diagrams may be obtained by changing the concept of model homomorphism:

homomorphisms	diagram E_M
ordinary	all atoms in M_M^*
injective	
closed	all atoms and neg. of atomic relations in M_M^*
closed and injective	all atoms and neg. of atoms in M_M^*
elem. embeddings	M_M^*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Some examples in other institutions

Intuitionistic logic (IPL):

- for *P*-model $M: P \rightarrow A$ (*A* any Heyting algebra),
 - the elementary extension is $P \rightarrow P \uplus A$, and
 - $\blacksquare E_M = \{\rho, \rho_1 \Rightarrow \rho_2 \in M_M^* \mid \rho, \rho_1, \rho_2 \in P \uplus A\}.$

Modal logic (MFOL, first order, Kripke semantics): no diagrams!

Higher order logic (HOL):

- for (S, F)-model M
 - the elementary extension is (S, F_M) ,

 $\blacksquare E_M = \{t = t' \mid M_M \models t = t'\}.$

Lifting diagrams to presentations

Proposition

If \mathscr{I} has diagrams then \mathscr{I}^p has diagrams too.

For any (Σ, E) -model *M*:

• the elementary extension :

$$(\Sigma, E) \xrightarrow{\iota_{\Sigma}(M)} (\Sigma, E)_M = (\Sigma_M, Sen(\iota_{\Sigma}(M))(E))$$

• the diagram:

 $E_M \cup Sen(\iota_{\Sigma}(M))(E).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

An example of use of inst.-indep. diagrams establishing co-limits of models

In concrete situations, usually a difficult problem, e.g. co-limits of rings, etc.

In essence, the result below reduces the problem to co-limits of signatures, which in concrete situations is much easier.

Theorem

In any institution (Sig, Sen, MOD, \models) such that

- 1 it has diagrams,
- 2 each presentation has initial models,
- **3** Sig has J-co-limits,
- 4 it has J-model amalgamation,

then each category of Σ -models has J-co-limits.

An application co-limits of models of Horn theories

Corollary

For any Horn theory (in a given **FOL** signature), the category of its models has (small) co-limits.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The following is an instance of corollary above:

Corollary

The category of rings has (small) co-limits.

We set the institution to be **HCL**^p, where

• HCL is the sub-institution of FOL that restricts the sentences to the Horn sentences,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HCL^p is the institution of the **HCL**-presentations.

The proof II

We can easily check the hypotheses of the general theorem above.

- HCL has the FOL diagrams, consisting of atomic sentences.
 - We lift the diagrams from **HCL** to **HCL**^p.
- 2 It is well known that Horn theories admit initial models.
- 3 $\mathbb{S}ig^{\mathbf{HCL}} = \mathbb{S}ig^{\mathbf{FOL}}$ is (small) co-complete.
 - We lift this from HCL-signatures to HCL^p-signatures (i.e. HCL-presentations).
- FOL/HCL is exact (we have already proved).
 We lift model amalgamation from HCL to HCL^p.