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1 Introduction

Institution theory (INS) and universal logic
INS is a major current trend of universal logic since it has the spirit of universal logic and also fullfills its aims.

In short this means:

Non-substantialist abstract approach to logic phenomenon.

It is major trend in the sense of currently being rather strongly developed, both mathematically and in terms of
volume of activity.

Origins of institution theory

• Mathematical logic, esp. (abstract) model theory.

• Category theory.

• Computer science, esp. algebraic specification.

INS started from within algebraic specification around 1980with the seminal paper of Goguen and Burstall,

– in response to the explosion in the population of logics used in formal specification,

– achieved uniform abstract development of concepts and results.

Since then it has become the most foundational mathematicalstructure of formal specification, and also with
important applications to other CS areas.

What is institution theory?
This can be answered on three different levels.

1. A fully abstract categorical model theoretic oriented formalization for the (informal) concept of logical
system, including syntax, semantics, and satisfaction between them.

2. A (well developed) body of methods, concepts, results fordoing logic and model theory independently of
any concrete logical or model theoretic structure.

3. A ‘top-down’ non-substantialist way of thinking about logic and model theory.

Contributions of INS to logic

• (Meta-)mathematical clarification of the concept of logic.

Thesis

Each “logic” can be formalized as institution!

• Top-down development methodology, at themost appropriatelevel of abstraction.

– Conceptscome naturally as presumptive features that a “logic” mightexhibit or not.

– Hypothesesare kept as general as possible and introduced on a by-need basis.

– Resultsandproofsare modular and easy to track down, despite sometimes very deep content.



• Deeper understanding of phenomena not suffocated by the (often unimportant) details of the actual logic,
but guided by structurally clean causality.

• Uniform general abstract development of logic and model theory, providing substantial model theory for
many old or new logics that did not have one.

• Clarification of scope of important concepts and results (e.g. axiomatizability, interpolation, completeness,
etc.),

• Redesign of important fundamental logic concepts (e.g. interpolation, definability, etc.),

• Clarification of some causality relationships between model theoretic phenomena including the demounting
of some deep theoretical preconceptions (e.g. some logics not having interpolation, etc.).

• New results even in well studied concrete frameworks (e.g. interpolation, definability, completeness, etc.),

• Easier access to highly non-trivial well established results (e.g. Keisler-Shelah isomorphism Thm.).

• A clear and solid mathematical framework for doing logic ‘bytranslation’ via the so-called ‘institution
co-morphisms’. It allows for rigorous exporting of concepts, methods, tools, etc. between logics.

• Approach to logic combination by internalizing logical concepts to abstract institutions.

• Mathematical elegance.

Contributions of INS to computer science

• Foundations of algebraic/formal specification theory and practice.

– It has become standard to base the definition of specificationlanguages upon logic systems captured
as institutions such that all the language constructs are reflected rigorously as mathematical entities in
the respective institutions (e.g. CASL, CafeOBJ, etc.).

– Foundations forheterogeneousspecifications via the so-calledGrothendieck institutionconstruction.

• Uniform general development of concepts and results thus applicable to a wide range of systems based upon
various logics (formalized as institutions).

– This is especially the case of structured (in-the-large) specification/programming.

• General approach to the semantics of declarative programming paradigms,

– Esp. logic programming (with constraints also).

• Foundational role in other CS areas that involve logic in a significant way, e.g. ontologies, cognitive seman-
tics, concurrency, etc.

Comparison to other abstract model theoretic approaches

Conventional ‘abstract’ model theory (Barwise, Feferman,etc.)
Concerned with extensions of conventional logic, abstracts only sentences and satisfaction, leaving signatures and
models conventional.

Categorical model theories (Makkai, Andreka-Nemeti, etc.)
Models are abstract categorical objects, however satisfaction not axiomatized, but rather defined as cone injectivity.
Also single-signature framework, aspect leading to severemethodological limitations.
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Current status of development

• Myriad of logics formalized as institutions.

• Large body of specification theory concepts and results at the level of abstract institutions.

• The most important model theory methods lifted to abstract institutions:

– method of diagrams,

– method of ultraproducts,

– saturated models,

– forcing.

• Internal logic, capture in abstract institutions

– atomic sentences, via so-calledbasicsentences,

– (Boolean) connectives,

– general quantifiers, including first-order via so-calledrepresentablesignature morphism,

– general substitutions.

• Large body of model theory results at the level of abstract institutions:

– fundamental ultraproducts theorem (Łos),

∗ compactness theorem,

– Birkhoff-style axiomatizability (Birkhoff institution),

– existence and uniqueness of saturated models,

∗ general version of Keisler-Shelah isomorphism theorem,

– omitting types,

– interpolation

∗ via axiomatizability

∗ via Robinson consistency (solved long standing conjecturein many-sorted classical logic)

– definability

∗ via axiomatizability

∗ via interpolation

– (layered) completeness, Birkhoff-style, Godel-style

• Internal possible worlds (Kripke) semantics.

• Grothendieck construction on institutions (for heterogeneous specification).

• Proof theoretic developments.

• Systematic theory of logic (institution) translations, borrowing of logical properties along institution co-
morphisms.

• Other developments, e.g. ‘stratified’ institutions, etc.
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2 Definition

Institution
I = (Sig,Sen,MOD, |=) :

Set

Sig

MOD ,,

Sen
22

{|=Σ⊆ |MOD(Σ)|×Sen(Σ)}Σ∈|Sig|

Catop

Satisfaction Condition
Σ

ϕ

��

ρ ∈ Sen(Σ) MOD(ϕ)(M′) |=Σ ρ

m

Σ′ M′ ∈ |MOD(Σ′)| M′ |=Σ′ Sen(ϕ)(ρ)

Notes on the Satisfaction Condition
Similar to the main axiom of ‘abstract model theory’ (Barwise, Feferman, etc.)

Some CS logics (e.g. behavioural logic, rewriting logic) appeared to satisfy only half of the Satisfaction Condition.

• But in fact in all cases it was a structural mismatch in the respective definition, such as improper models,
improper signature morphisms, etc.

• Moreover the fixing of these logics as institutions have led to much more realistic formalizations even from
very application oriented viewpoint (e.g. behavioural logic).

Moreover, most of the results (99% or so) depend techincallyupon the Satisfaction Condition.

The categorySig
Signatures, resp. signatures morphisms, are considered fully abstractly as objects, resp. arrows, of an abstract
category.
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ϕ;θ
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?
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?
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?

?

Σ′

θ
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θ ;ψ

  B
B

B

B

B

B

B

B

B

Σ

ϕ

��

1Σ // Σ

ϕ

��
Σ′′

ψ
// Σ′′′ Σ′

1Σ′
// Σ′

Example: MSA signatures
S-sorted signature(S,F)

• S– set of sort symbols,

• F = {Fw→s | w∈ S∗, s∈ S} – indexed family of operation symbols.

Signature morphismϕ : (S,F) → (S′,F ′)

• ϕst : S→ S′ – mapping on the sort symbols,
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• ϕop
w→s : Fw→s → F ′

ϕ(w)→ϕ(s) – mapping on the operation symbols.

Compositionϕ ;θ = (S,F)
ϕ

−→ (S′,F ′)
θ

−→ (S′′,F ′′):

• (ϕ ;θ )st = θ st◦ϕst,

• (ϕ ;θ )
op
w→s = θ op

ϕ(w)→ϕ(s) ◦ϕop
w→s.

The sentence functorSen

Σ

ϕ

��
ϕ;θ

��

Sen(Σ)

Sen(ϕ)

��
Sen(ϕ;θ)

��

Σ′

θ

��

Sen(Σ′)

Sen(θ)

��
Σ′′ Sen(Σ′′)

Example: MSA sentences
The set of(S,F)-sentencesis the least set such that:

• Each(S,F)-equationt = t ′ is an(S,F)-sentence.

• If ρ1 andρ2 are(S,F)-sentences then

– ρ1∧ρ2 (conjunction),

– ρ1∨ρ2 (disjunction),

– ρ1 ⇒ ρ2 (implication) and

– ¬ρ1 (negation)

are also(S,F)-sentences.

• If X is a finite set ofvariablesfor (S,F), then(∀X)ρ and(∃X)ρ are(S,F)-sentences wheneverρ is an
(S,F ∪X)-sentence.

Example: Sen(ϕ) : Sen(S,F) → Sen(S′,F ′)
Defined by induction of the structure of the(S,F)-sentences:

• Term translation: ϕ tm(σ(t1, . . . ,tn)) = ϕop(σ)(ϕ tm(t1), . . . ,ϕ tm(tn)).

• Sen(ϕ)(t = t ′) = (ϕ tm(t) = ϕ tm(t ′)),

• Sen(ϕ)(¬ρ) = ¬Sen(ϕ)(ρ),

• Sen(ϕ)(ρ1 ⋆ ρ2) = Sen(ϕ)(ρ1)⋆Sen(ϕ)(ρ2) for ⋆ ∈ {∧,∨,⇒},

• Sen(ϕ)((∀X)ρ) = (∀Xϕ)Sen(ϕ1)(ρ) (S,F) //

ϕ
��

(S,F ∪X)

ϕ1��
(S′,F ′) // (S′,F ′∪Xϕ)

The functoriality ofSenneeds careful definition of for the variables, a variable being a triple(x,s,(S,F )).
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The model functor MOD

Σ

ϕ

��
ϕ;θ

��

MOD(Σ)

Σ′

θ

��

MOD(Σ′)

MOD(ϕ)

OO

Σ′′ MOD(Σ′′)

MOD(θ)

OO
MOD(ϕ;θ)

\\

Example: MSA models
(S,F)-algebra Aconsists of

• a setAs for eachs∈ S, and

• a functionAσ :w→s : Aw → As for eachσ ∈ Fw→s (whereAw = As1 ×·· ·×Asn, for w = s1 . . .sn).

(S,F)-homomorphism h: A→ B consists of

• hs : As → Bs for eachs∈ S,

such that the followinghomomorphism condition

hs(Aσ (a)) = Bσ (hw(a)).

for eacha∈ Aw.

Example: MOD(ϕ) : M OD(S′,F ′) → M OD(S,F)
This is calledmodel reduct.

For any(S′,F ′)-algebraA′:

• MOD(ϕ)(A′)s = A′
ϕst(s), and

• MOD(ϕ)(A′)σ = A′
ϕop(σ).

For any(S′,F ′)-homomorphismh′ : A′ → B′:

• MOD(ϕ)(h′)s = h′ϕst(s) for eachs∈ S.

The MSA satisfaction relation
Tarskian, defined recursively on the structure of the sentences.

• A |= t = t ′ if and only if At = At′ (whereAσ(t1,...,tn) = Aσ (At1, . . . ,Atn)),

• A |= ρ1∧ρ2 if and only if A |= ρ1 andA |= ρ2,

• A |= ρ1∨ρ2 if and only if A |= ρ1 or A |= ρ2,

• A |= ρ1 ⇒ ρ2 if and only if A 6|= ρ1 or A |= ρ2,

• A |= ¬ρ1 if and only if A 6|= ρ1,

• A |=(S,F) (∀X)ρ if and only if A′ |=(S,F∪X) ρ for each(S,F ∪X)-expansionA′ of A, and

• A |= (∃X)ρ if and only if A 6|= (∀X)¬ρ .
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Proof of MSA Satisfaction Condition

MOD(ϕ)(A′) |=(S,F) ρ if and only if A′ |=(S′,F ′) Sen(ϕ)(ρ).

By induction on the structure ofρ :

ρ = (t = t ′):

A′
ϕ tm(t) = A′

ϕ tm(t′) if and only if MOD(ϕ)(A′)t = MOD(ϕ)(A′)t′

by proving thatA′
ϕ tm(t) = MOD(ϕ)(A′)t .

ρ = ρ1∧ρ2 | ρ1∨ρ2 | ρ1 ⇒ ρ2 | ¬ρ1:

Straightforward!

Proof of MSA Satisfaction Condition (continued)

ρ = (∀X)ρ ′:

Not so easy... It boils down to the equivalence between

1. A′
1 |=(S′,F ′∪Xϕ) ϕ1(ρ ′) for all (S′,F ′ ∪Xϕ)-expansionsA′

1 of A′.

2. A1 |=(S,F∪X) ρ ′ for all (S,F ∪X)-exp.A1 of A = MOD(ϕ)(A′).

A A1

(S,F) //

ϕ

��

(S,F ∪X)

ϕ1

��
(S′,F ′) // (S′,F ′∪Xϕ )

A′ A′
1

by noting the canonical bijection{A′
1 | expansion ofA′} ≃ {A1 | expansion ofA}.

3 Logics as Institutions

First order (classical) logic (FOL)
Extension ofMSA.

Signatures: (S,F,P) with P = {Pw}w∈S∗ .

Sentences: formed also with relational atomsπ(t1, . . . ,tn), π ∈ Pw.

Models: interpret also eachπ ∈ Pw asMπ ⊆ Mw.

Satisfaction: extendsMSA satisfaction to relational atoms

M |= π(t1, . . . ,tn) if and only if (Mt1, . . . ,Mtn) ∈ Mπ
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Horn clause (HCL), equational (EQL), propositional logics(PL)
Obtained as ‘sub-institution’ ofFOL .

Horn clause logicrestricts the sentences to Horn clauses(∀X)H ⇒C.

Equational logicrestricts the signatures toMSA ones (i.e.(S,F)) and sentences to equations(∀X)t = t ′.

Propositional logicrestricts the signatures to those withS= /0, hence a signature is just a setP and a model
M : P→ {0,1}.

Intuitionistic logic (IPL)
In the propositional case, the samesignatureslike propositional logic (i.e. setsP).

P-sentencesthe same as in propositional logic.

P-models Mare functionsM → A into Heyting algebrasA. M extends toSen(P) by using the operations of the
Heyting algebra.

Satisfaction: M |=P ρ if and only if M(ρ) = 1.

All these extend also to the first order case.

First order Modal Logic (MFOL)
Signatures: tuples(S,S0,F,F0,P,P0) where

• (S,F,P) is aFOL signature, and
• (S0,F0,P0) is a sub-signature of(S,F,P) of rigid symbols.

Sentencesare the usual first order modal sentences that include also modal connectives, i.e.ρ1∧ρ2, (∀X)ρ, but also2ρ.

(S,S0,F,F0,P,P0)-models(W,R) are familiesW of ‘possible worlds’ (i.e.FOL (S,F,P)-models that share the interpretations
of the ‘rigid’ symbols), with an accesiblity relationR.

Satisfactionis given byKripke semantics,

• first (W,P) |=i ρ and
• then(W,R) |= ρ if and only if (W,P) |=i ρ for each ‘possible world’i.

Higher order logics (HOL, HNK)
Signatures: tuples(S,F) with Sset ofsortsandF = {Fs}s∈types(S).

(S,F)-sentencesbuilt from equationst = t ′ and quantifications and Boolean connectives,

• where termst are built by functional applications, i.e. ift is a term of types→ s′ andt ′ of types then(tt ′) is term of
types′.

(S,F)-modelsinterpret

• sort symbolss as setsMs,
• typess→ s′ asMs→s′ = { f | f : Ms → Ms′}, and
• Mσ ∈ Ms for eachσ ∈ Fs.

Henkin semanticswe relaxes models toMs→s′ ⊆ { f | f : Ms → Ms′}.

Tarskian satisfaction.
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Many-valued logics (MVL)
We fix a residuated lattice(L,≤,⊗).

Signatures: (S,C,P) with Ssort,C constant,P relation symbols.

Sentences: pairs(ρ ,k) betweenρ , usual first order but also with the residual connective⊗, andk∈ L.

(S,C,P)-models Minterpret sorts as sets andMπ : Mw → L for eachπ ∈ Pw.

Satisfaction: Tarskian,

• first evaluationM[ρ ] in L of sentenceρ by modelM, and

• thenM |= (ρ ,k) if and only if k≤ M[ρ ].

Partial algebra (PA)
Signatures: (S,TF,PF) with Sset of sort symbols andTF/PF families of total/partial operation symbols.

Sentences:like in MSA, constructed with both total and partial operations and only with total quantifiers.

(S,TF,PF)-modelsinterpret operations fromPF aspartial functions.

Satisfactionis defined Tarskian starting fromA |= t = t ′ if and only if bothAt andAt′ are defined and they are
equal.

Preordered algebra (POA)
Like MSA but

• besides equality we have alsotransitionatomst → t ′,

• models interpret sort symbols as preordered sets rather than simple sets, such that operations are monotone,
and

• A |= t → t ′ if and only if At ≤ At′ .

Other logics

• Order sorted logics, membership algebra

• multi-algebras (MA ),

• other modal, e.g. temporal logics

• Linear logic

• Polymorphic logics

• Process, behavioural, coalgebraic, object-oriented logics

• fuzzy logics

• various combinations of the above

. . . and many many more . . .
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