Outline

Contents

1 Introduction

Institution theory (INS) and universal logic
INS is a major current trend of universal logic since it hasghirit of universal logic and also fullfills its aims.

In short this means:
Non-substantialist abstract approach to logic phenomenon

It is major trend in the sense of currently being rather silpleveloped, both mathematically and in terms of
volume of activity.

Origins of institution theory

e Mathematical logic, esp. (abstract) model theory.
e Category theory.

e Computer science, esp. algebraic specification.

INS started from within algebraic specification around 1980 the seminal paper of Goguen and Burstall,
— inresponse to the explosion in the population of logicslusdormal specification,
— achieved uniform abstract development of concepts andtses
Since then it has become the most foundational mathematicaiture of formal specification, and also with

important applications to other CS areas.

What is institution theory?
This can be answered on three different levels.

1. A fully abstract categorical model theoretic orientedhialization for the (informal) concept of logical
system, including syntax, semantics, and satisfactiowdset them.

2. A (well developed) body of methods, concepts, resultslfdng logic and model theory independently of
any concrete logical or model theoretic structure.

3. A ‘top-down’ non-substantialist way of thinking abougio and model theory.

Contributions of INS to logic
¢ (Meta-)mathematical clarification of the concept of logic.

Thesis
Each “logic” can be formalized as institution!

e Top-down development methodology, at thest appropriatéevel of abstraction.

— Conceptzome naturally as presumptive features that a “logic” magitibit or not.
— Hypothesesre kept as general as possible and introduced on a by-nsisd ba
— Resultsandproofsare modular and easy to track down, despite sometimes vepyamtent.



e Deeper understanding of phenomena not suffocated by tken(ohimportant) details of the actual logic,
but guided by structurally clean causality.

e Uniform general abstract development of logic and modebtheproviding substantial model theory for
many old or new logics that did not have one.

e Clarification of scope of important concepts and resulg. (@xiomatizability, interpolation, completeness,
etc.),

e Redesign of important fundamental logic concepts (e.grpatlation, definability, etc.),

¢ Clarification of some causality relationships between ntdmretic phenomena including the demounting
of some deep theoretical preconceptions (e.g. some logidsaving interpolation, etc.).

e New results even in well studied concrete frameworks (@tgrpolation, definability, completeness, etc.),
e Easier access to highly non-trivial well established rss{d.g. Keisler-Shelah isomorphism Thm.).

e A clear and solid mathematical framework for doing logic ‘trgnslation’ via the so-called ‘institution
co-morphisms’. It allows for rigorous exporting of concgphethods, tools, etc. between logics.

e Approach to logic combination by internalizing logical capts to abstract institutions.

e Mathematical elegance.

Contributions of INS to computer science

e Foundations of algebraic/formal specification theory arattice.

— It has become standard to base the definition of specificiitguages upon logic systems captured
as institutions such that all the language constructs #lexted rigorously as mathematical entities in
the respective institutions (e.g. CASL, CafeOBJ, etc.).

— Foundations foheterogeneouspecifications via the so-call€&tothendieck institutiomonstruction.

e Uniform general development of concepts and results thpkcale to a wide range of systems based upon
various logics (formalized as institutions).

— This is especially the case of structured (in-the-largegsjzation/programming.
e General approach to the semantics of declarative progragparadigms,
— Esp. logic programming (with constraints also).
e Foundational role in other CS areas that involve logic irgaigicant way, e.g. ontologies, cognitive seman-

tics, concu rrency, etc.

Comparison to other abstract model theoretic approaches

Conventional ‘abstract’ model theory (Barwise, Fefermanetc.)
Concerned with extensions of conventional logic, abstranty sentences and satisfaction, leaving signatures and
models conventional.

Categorical model theories (Makkai, Andreka-Nemeti, etq.
Models are abstract categorical objects, however satigfagot axiomatized, but rather defined as cone injectivity
Also single-signature framework, aspect leading to sexwerthodological limitations.



Current status of development

Myriad of logics formalized as institutions.

Large body of specification theory concepts and resultsedetiel of abstract institutions.

The most important model theory methods lifted to abstrastitutions:

method of diagrams,

method of ultraproducts,
saturated models,

forcing.

Internal logic, capture in abstract institutions

— atomic sentences, via so-calledsicsentences,

— (Boolean) connectives,

— general quantifiers, including first-order via so-callegresentablsignature morphism,
— general substitutions.

Large body of model theory results at the level of abstrastititions:

— fundamental ultraproducts theorem (Los),
x compactness theorem,

Birkhoff-style axiomatizability (Birkhoff institution)

existence and uniqueness of saturated models,
x general version of Keisler-Shelah isomorphism theorem,

omitting types,

interpolation

* Via axiomatizability
x Vvia Robinson consistency (solved long standing conjedtungany-sorted classical logic)

definability
* Via axiomatizability
x Via interpolation
— (layered) completeness, Birkhoff-style, Godel-style

Internal possible worlds (Kripke) semantics.

Grothendieck construction on institutions (for heteragmus specification).

Proof theoretic developments.

Systematic theory of logic (institution) translations rtwaving of logical properties along institution co-
morphisms.

Other developments, e.g. ‘stratified’ institutions, etc.



2 Definition

Institution
7 = (Sig, SenMoD, =) :
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Notes on the Satisfaction Condition
Similar to the main axiom of ‘abstract model theory’ (Bareji&eferman, etc.)

Some CS logics (e.g. behavioural logic, rewriting logicpaared to satisfy only half of the Satisfaction Condition.

e Butin fact in all cases it was a structural mismatch in thegpeesive definition, such as improper models,
improper signature morphisms, etc.

e Moreover the fixing of these logics as institutions have techtich more realistic formalizations even from
very application oriented viewpoint (e.g. behaviouraitdg

Moreover, most of the results (99% or so) depend techincglgn the Satisfaction Condition.

The categorySig
Signatures, resp. signatures morphisms, are consideltgaghstractly as objects, resp. arrows, of an abstract
category
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Example: MSA signatures
S-sorted signaturgS, F)

e S—set of sort symbols,
e F={Ryv_s|weS", se S} —indexed family of operation symbols.
Signature morphisnp : (SF) — (S,F’)

e ¢5': S— S —mapping on the sort symbols,



N Fd',(w)ﬂd,(s) — mapping on the operation symbols.
Compositionp: 6 = (S,F) -~ (3,F") -2 (8", F"):

° (¢, e)st = @Sto ¢st,

o ($;0)s= eg?w)ﬂrp(s) o Pl

The sentence functorSen

b2 Senz)
¢ Seny)
Y ;6 SerfY’) Seng;o)
6 Seno)
b3 Sen(z")

Example: MSA sentences
The set of(S F)-sentencess the least set such that:

e Each(S F)-equatiort =t is an(S F)-sentence.
e If p; andp, are(S F)-sentences then

— p1A p2 (conjunctior),
— p1V p2 (disjunction,
— p1 = p2 (implication) and
— —p1 (negation
are alsd(S, F)-sentences.

e If X is a finite set ofvariablesfor (S F), then(vX)p and (3X)p are(S,F)-sentences wheneveris an
(S FUX)-sentence.

Example: Ser(¢): Ser(SF)— Ser(S,F’)
Defined by induction of the structure of tli§ F)-sentences:

e Term translation ™ (o (ty,...,tn)) = §°P(0)(¢'™(t1),..., oM (tn)).
o Serfg)(t=t") = (¢'™(t) = $""(t")),
o Ser¢)(—p) =—Ser¢)(p),
o Ser¢)(p1xp2) = Serld)(p1) > Seri¢p)(p2) for x € {A,V, =},
Seri$)((VX)p) = (VX?)Ser($1)(p) (SF) —=(SFUX)

4| |#

(S,F') — (S,F'Ux®)

The functoriality ofSenneeds careful definition of for the variables, a variablerigea triple (x,s, (S,F)).



The model functor MoD

b2 MoD(%)
) MoD(¢)

3! ;0 MobD(Z')
0 MoD(6)

)3l MobD(Z")

Example: MSA models
(S, F)-algebra Aconsists of

e asetAsforeachse S and

e afunctionAgw—s: Aw — Asfor eacho € Fy_.s (WhereAy = Ag x -+ x Ag,, forw=sg; ..

(S F)-homomorphism h A — B consists of

e hs: As— Bsforeachse S
such that the followindgnomomorphism condition

hs(As(@)) = Bo (hw(a)).

for eacha € Ay,.
Example: MoD(¢) : MoD(S,F’) — MOD(SF)
This is calledmodel reduct
For any(S,F’)-algebraA’:

. Moo(da)(A’)s:A:p,St , and

(s)
o MoD(¢)(A)o = Ajyop(g)-
For any(S,F’)-homomorphisnfi’ : A" — B’

e MoDp(¢)(W)s=H

osi(s) foreachse S

The MSA satisfaction relation
Tarskian, defined recursively on the structure of the see®n
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Ak piAp2ifand only if A= p; andA = pa,
AEp1Vvprifandonly if A= pr or A= po,
A= p1= poifand only if A~ pg or A = po,
A= —p1 if and only if At~ py,

A= (3X)p if and only if A = (YX)—p.

Al k) (WX)pifand only if A" f=gpux) o for each(S,F UX)-expansiod’ of A, and
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Proof of MSA Satisfaction Condition

MOD((P)(A/) ):(SF) P if and only if A ):(S,F’) Sefﬁd))(p)

By induction on the structure a@f:

%tm(t) - A’thm(t/) |f and Only |f MOD(¢)(A’)t - MOD(¢)(A’)t/
by proving thatA:ptm(t) = MoD(¢)(A ).

P=p1AP2| PV P2 | P1L= P2|—p1
Straightforward!

Proof of MSA Satisfaction Condition (continued)

p=(VX)p"

Not so easy... It boils down to the equivalence between
1. Al (s pruxey $1(p’) for all (S,F'UX?)-expansiong\; of A'.
2. A1 F(sFux) P for all (S FUX)-exp. Ay of A= MoD(¢)(A').

A A
(SF) ——— (SFUX)

¢ ¢1
(S,F) ——— (S,F'Ux?)

A A

by noting the canonical bijectiofA] | expansion of A’} ~ {A; | expansion ofA}.

3 Logics as Institutions

First order (classical) logic (FOL)
Extension oMSA.

Signatures (S F,P) with P = {Ry}wes -
Sentencedormed also with relational atonm(ty, ... ,tn), € Ry.
Models interpret also eaclr € Ry, asM; C My,.

Satisfaction extenddVISA satisfaction to relational atoms

M E m(ty,...,tn) ifand only if (My,...,M,) € My



Horn clause (HCL), equational (EQL), propositional logics(PL)
Obtained as ‘sub-institution’ &fOL .

Horn clause logiaestricts the sentences to Horn claugés)H =- C.
Equational logicrestricts the signatures MSA ones (i.e(S F)) and sentences to equatigiva)t =t'.

Propositional logicrestricts the signatures to those wiBh= 0, hence a signature is just a $&&nd a model
M: P—{0,1}.

Intuitionistic logic (IPL)
In the propositional case, the sasignaturedike propositional logic (i.e. set).

P-sentencethe same as in propositional logic.

P-models Mare functiond — A into Heyting algebrag&. M extends toSer{P) by using the operations of the
Heyting algebra.

SatisfactionM [=p p if and only if M(p) = 1.

All these extend also to the first order case.

First order Modal Logic (MFOL)
Signaturestuples(S, S, F, Fo, P, Po) where

e (SF,P)isaFOL signature, and
o (S,Fo,P) is a sub-signature S, F, P) of rigid symbols.

Sentenceare the usual first order modal sentences that include als@lonnectives, i.eo1 A p2, (VX)p, but alsodp.

(S S, F, Fo, P, Pp)-models(W, R) are familiesW of ‘possible worlds’ (i.e.FOL (S F,P)-models that share the interpretations
of the ‘rigid’ symbols), with an accesiblity relatidR

Satisfactioris given byKripke semantics

o first (W,P) = p and _
e then(W,R) = p if and only if (W,P) ="' p for each ‘possible worldi.

Higher order logics (HOL, HNK)
Signaturestuples(S F) with Sset ofsortsandF = {Fs}sctypegs)-

(S,F)-sentencebuilt from equationsg =t’ and quantifications and Boolean connectives,

e where termg are built by functional applications, i.e. tifis a term of types — " andt’ of type sthen(tt’) is term of
types.

(S F)-modelsinterpret

e sort symbols as setdVs,
e typess— s asMg g = {f | f : Ms— My}, and
o Mg € Mg for eacho € F.

Henkin semanticw/e relaxes models thlg .¢ C {f | f: Ms— Mg}.

Tarskian satisfaction.



Many-valued logics (MVL)
We fix a residuated latticf, <, ®).

Signatures(S,C, P) with Ssort,C constantP relation symbols.
Sentencegairs(p, k) betweerp, usual first order but also with the residual connectiveandk € L.
(S.C,P)-models Minterpret sorts as sets aMj};: My, — L for eachrr € Ry.

Satisfaction Tarskian,
o first evaluatiorM|[p] in L of sentence by modelM, and

e thenM = (p,k) if and only ifk < M[p].

Partial algebra (PA)
Signatures (S TF, PF) with Sset of sort symbols an@iF/PF families of total/partial operation symbols.

Sentencedike in MSA, constructed with both total and partial operations ang with total quantifiers.
(S, TF, PF)-modelsnterpret operations frorRF aspartial functions.

Satisfactionis defined Tarskian starting frod =t =t’ if and only if bothA; and A are defined and they are
equal.

Preordered algebra (POA)
Like MSA but

¢ besides equality we have alsansitionatomst — t’,

e models interpret sort symbols as preordered sets rathestimple sets, such that operations are monotone,
and

e At —t'ifand only if Ay < Ay.

Other logics
e Order sorted logics, membership algebra
e multi-algebrasiA),
e other modal, e.g. temporal logics
e Linear logic
e Polymorphic logics
e Process, behavioural, coalgebraic, object-orientea $ogi
e fuzzy logics
e various combinations of the above

...and many many more ...



