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1 Internal Logic

1.1 Boolean and other connectives

Conjunction
A Z-sentencep is aconjunction(p; A p2) of Z-sentencep; andp, when

pr=pinp;

Theinstitution has conjunctionshen any>-sentencep; andp, have a conjunction.

Disjunction
A Z-sentence is adisjunction(p; V p2) of Z-sentencep; andp, when

P =prup;

Theinstitution has disjunction&hen any>-sentencep; andp, have a disjunction.

Implication
A Z-sentence is animplication(p; = po) of Z-sentencep; andp, when

p*=p1up;
Theinstitution has implicationsvhen any>-sentencep; andp, have a implication.

Negation
A Z-sentence is anegation(—p’) of aZ-sentence’ when

pr=p*

Theinstitution has negationwhen anyz-sentence’ has a negation.



Abstract connectives
A (semantic logical) connective c of arityaonsists of a familycs)scsig of functions

cs: Z(IMop(2)|)" — Z(IMob(2))).
e A connective iBooleanwhen it is a (derived) operation of the Boolean algel#& |MoD()]),N,U, =, 0).

e pisac-connection ofi, 1 <i<n,(p=c(p1,...,Pn)) Whenp* =cs(p7,...,0n)-

Examples

]

institution

FOL, PL, HOL, HNK
WPL (Béziau)

FOL™

EQL, HCL, MVL
EQLN v
MFOL , MPL
IPL

<!
<< ?

<>
<

<

1.2 Quantifiers

Quantifiers
Given signature morphispp: = — %', p € Ser{X) andp’ € Ser(Y’),

e pis auniversaly-quantificationof p’ when

p* = MoD(x)(p")
e p is aexistentialy-quantificationof p’ when

p* = Mob(x)(p"™)

Theinstitution has universal/existentig?-quantifierswhen for eachx : £ — %) € 2, any%’-sentence’
has a universal/existentigtquantification.

Examples
institution 9 v 3
FOL, MVL fin. inj. sign. ext. with constants N RV
SOL fin. inj. sign. ext. N
PA fin. inj. sign. ext. with total constanty / | +/
EQL, HCL fin. inj. sign. ext. with constants v
MFOL fin. inj. sign. ext. with rigid constanty +/
HOL,HNK | fin. inj. sign. ext. N RV

fin. inj. sign. ext. = finitary injective signature extension

Representable signature morphisms
Many results depend on the quantification befirgt order.

At the level of abstract institutions this is captured by doadition that the signature morphisis repre-
sentable

s/ Mobp(2) ————— My /MoD(Z) (My m)
)& MOD\\ / /
2z MobD(Z M

X isfinitary representablevhenMy, is finitely presented.



A concrete example: MSA first order quantifiers

(SFUX) MOD(S,FUX) —— > Tis¢)(X)/MOD(S F)
X M(N /
(SF) MOD(SF)  (Tigp)(X) - M)
(X 22 M)

/

Quasi-representable signature morphisms
A weaker very useful version of representability:

X : X — % isquasi-representabliéand only if
M'/MoD(Z) = (M'[y)/MoD(Z)

Proposition 1. A signature morphisny : = — 2’ is representable if and only if it is quasi-representable an
MobD(Y') has initial models.

Examples

institution | x

FOL (fin.) inj. sign. ext. with const. (fin.) rep.
MVL (fin.) inj. sign. ext. with const. (fin.) rep.
PA (fin.) inj. sign. ext. with total const. (fin.) rep.
E(FOL) (fin.) inj. sign. ext. with const. (fin.) quasi-rep.
MFOL (fin.) inj. sign. ext. with rigid const.| (fin.) quasi-rep.
HOL (fin.) inj. sign. ext. (fin.) quasi-rep.

1.3 General substitutions
Substitution ¢ : x1 — X2

X/’ 5 Ser(ss) MoD(Z4) Mob(¢)(Mz) 5, p1
s \ [Semw |MOD<w> T
X
‘5 Sens,) MoD(55) Mz =5, Ser{y)(p1)
such that
Ser{zi) —> Ser{zy) MobD(x MoD(%3)
Ser;)(\ Ajaxz Mom ;%OD O2)
Serz) MobD(Z



Examples
e First order substitutiongy : X — Tgg)(Y):

- ¢: ((§F) = (SFUX)) = ((SF) = (SFUY))
— Serfy) : SefSFUX) — Ser{S FUY),
— Mobp(y): Mob(SFUY)— MoD(SFuUX)

MoD(¢)(M)x = Myx)
e Second order substitutions mapping operations to terneh thiat arity preserved).
e In HOL ,HNK, higher order substitutions.
Representable substitutions
Capture abstractly the concept ‘first order’ substitutions
Y : X1 — X2 with x1 andx» representable.

Proposition 2. Any substitutiony: x1 — X2 between representable signature morphisyps ~ — >3 and
X2: Z — 2 determines canonically 2-model homomorphism g My, — My,. Moreover, the mapping —
My is functorial and faithful [modulo substitution equivatss].

Example:

((SF) = (SFUX)) % ((SF) = (SFUY))

|

M
Tisr)(X) —2 Tise)(Y)

|

(X = Tisp(Y))

1.4 Basic sentences

Abstract capture of atomic sentences
In MSA, categorical characterization of satisfaction of atomghia style of ‘satisfaction by injectivity
(Nemeti, Andreka, ...):

Proposition 3. M |=(gr) t =t’ if and only if there exists a homomorphisgad) /- , M.

{t=t/

Basic sentences
In any institution, a2-sentence is (finitary) basicwhen there exists a (finitely presentedjnodelM, such
that for any2z-modelM

M = p if and only if there exists homomorphisi, — M

In actual institutions atoms are finitary basic, but also:

Proposition 4. Basic sentences are closed under existential quasi-reptable quantification.

A tighter approximation of atoms
The following rules out some ‘non-atomic’ basic senteneeg.(3x)p, for atomicp):

In any institution with initial models of signatures (deedtG;), a basic sentenge is epic basicwhen the
unigue homomorphisms0— My, is epi.

Epic basic are a tighter capture of ‘atomic’ sentences, gearperfect one.



2 Ultraproducts
The method of ultraproducts

One of the most powerful model theory methods, much modelrtheay be developed through this method
(see Bell and Slomson classic book).

Applications include:

(semantic) compactness,

preservation and axiomatizability,

Keisler-Shelah Isomorphism Theorem,

e interpolation and definability,

applications to algebra (fields, algebraic geometry, etc.)

2.1 Categorical ultraproducts

Filters and Ultrafilters
F C 2(1) isfilter over Iwhen

o |l cF,
e XNYecFifXeFandYeF,
e YEFifXCYandX eF.

Ultrafilter when in addition, for alX C I, we have that

XeF ifandonlyif I\X&F

If F filter overl, andl’ C I, then thereduction of F to {:

Flv={I'NX| X F}

Concrete filtered products
In MSA: givenF filter overl, and(M; )i family of (S F)-algebras, th& -filtered product of M; )i¢ is defined
as[1e Mi = ([iel Mi)/~¢ Where

1. Mier Mi is direct product of M )i, and
2. ~f is the congruence defined by

m~gm ifandonlyif {iel|m~gm}eF.

Categorical filtered products
Co-limit of the diagram of projectiong(J’ C I):

[Micy M; —> [Tiea M;

\/

|_|F M;

Idea much exploited by approaches to categorical modetyh{&temeti, Andreka, Makkai, etc.)



Some examples

institution | direct prod.| directed co-lim.| filt.prod. | ultraprod.
FOL i v v i
PA v v v v
IPL i v v i
MFOL v v v v
MVL N ? v i
HNK v v
MA

2.2 Fundamental Ultraproducts Theorem

Preservation of sentences by filtered factors/products
For a signatur& in an institution, for each filteF € . over a set and for each family{A; }ic| of Z-models,
aX-sentenceis

e preserved by#-filtered factors: £ (e)
if |'|A4- Eseimplies {iel|A =se} €F,
F

e preserved by# -filtered products: g-(e)

if {iel|A Ese}eF implies |_|Ai Ese
F

Preservation by ultrafactors/ultraproductghen.# is the class of ultrafilters.

Fundamental Ultraproducts Theorem (Los)
In any institution:

o~

preservation property condition

p (basig

f z (finitary basig
pz(p) = pz((3x)P) MobD(x) pres.#-filtered prod.
fz(p)= f2z((3x)p) Mob(x) lifts .#-filtered prod.
((Pl) ,P7(P2) = Pz (P1AP2)

fj p1), fz(p2) = fz(P1AP2)
(pz(pi))iel = pz(Aicipi)
fz(p) = pJ(ﬁp)

pz(p) = fz(-p) Z C Ultrafilters

Corollary
Corollary 5. In any institution, any sentence which is accessible froafittitary basic sentences by

— Boolean connectives,

— finitary representable quantification, and

— projectively representable quantification (assuming tha institution has epi model projections)
is preserved by ultraproducts and ultrafactors.

Examples includeBOL, PA, IPL, etc. INMFOL , FOL ., sentences preserved only by ultraproducts.



2.3 Compactness by ultraproducts

(Semantic) compactness
An institution is

1. m-compactvhen each set of sentences has a model if and only if any fafiits subsets has a model.
2. compactwhenE = p implies that there exisfinite By C E such thaEg = p.
Proposition 6.  — Each compact institution having false is m-compact.

— Each m-compact institution having negations is compact.

Compactness by ultraproducts
Corollary 7. Any institution in which each sentence is preserved by pitrducts is m-compact.

Examples includ&OL, PA, IPL, etc. but alstMFOL .

Corollary 8. Let E be a set of sentences preserved by ultraproducts, aedde a sentence preserved by ultra-
factors such that E= e. Then there exists a finite subséEE such that E=e.



