Outline

Contents

1		rnal Logic	1
	1.1	Boolean and other connectives	1
	1.2	Quantifiers	2
		General substitutions	
	1.4	Basic sentences	4
2	2 Ultraproducts		
	2.1	Categorical ultraproducts	5
	2.2	Fundamental Ultraproducts Theorem	6
	2.3	Compactness by ultraproducts	7

1 Internal Logic

1.1 Boolean and other connectives

Conjunction

A Σ -sentence ρ is a *conjunction* ($\rho_1 \land \rho_2$) of Σ -sentences ρ_1 and ρ_2 when

$$ho^\star =
ho_1^\star \cap
ho_2^\star$$

The *institution has conjunctions* when any Σ -sentences ρ_1 and ρ_2 have a conjunction.

Disjunction

A Σ -sentence ρ is a *disjunction* ($\rho_1 \lor \rho_2$) of Σ -sentences ρ_1 and ρ_2 when

$$\rho^{\star} =
ho_1^{\star} \cup
ho_2^{\star}$$

The *institution has disjunctions* when any Σ -sentences ρ_1 and ρ_2 have a disjunction.

Implication

A Σ-sentence ρ is an *implication* ($\rho_1 \Rightarrow \rho_2$) of Σ-sentences ρ_1 and ρ_2 when

$$\rho^{\star} = \overline{\rho_1^{\star}} \cup \rho_2^{\star}$$

The *institution has implications* when any Σ -sentences ρ_1 and ρ_2 have a implication.

Negation

A Σ -sentence ρ is a *negation* $(\neg \rho')$ of a Σ -sentence ρ' when

 $ho^{\star} = \overline{
ho^{\prime\star}}$

The *institution has negations* when any Σ -sentence ρ' has a negation.

Abstract connectives

A (semantic logical) connective c of arity n consists of a family $(c_{\Sigma})_{\Sigma \in Sig}$ of functions

$$c_{\Sigma}: \mathscr{P}(|\mathrm{MOD}(\Sigma)|)^n \to \mathscr{P}(|\mathrm{MOD}(\Sigma)|).$$

- A connective is *Boolean* when it is a (derived) operation of the Boolean algebra $(\mathscr{P}(|MOD(\Sigma)|), \cap, \cup, \neg, \emptyset)$.
- ρ is a *c*-connection of ρ_i , $1 \le i \le n$, $(\rho = c(\rho_1, \dots, \rho_n))$ when $\rho^* = c_{\Sigma}(\rho_1^*, \dots, \rho_n^*)$.

Examples

amples				
institution	\wedge	\vee	\Rightarrow	\Leftrightarrow
FOL, PL, HOL, HNK		 		
WPL(Béziau)				
\mathbf{FOL}^+				
EQL, HCL, MVL				
EQLN				
MFOL, MPL				
IPL	\checkmark			

1.2 Quantifiers

Quantifiers

Given signature morphism χ : $\Sigma \rightarrow \Sigma'$, $\rho \in Sen(\Sigma)$ and $\rho' \in Sen(\Sigma')$,

• ρ is a *universal* χ *-quantification* of ρ' when

$$\rho^{\star} = \operatorname{MOD}(\chi)(\overline{\rho'^{\star}})$$

• ρ is a *existential* χ *-quantification* of ρ' when

$$\rho^{\star} = \operatorname{MOD}(\chi)(\rho^{\prime \star})$$

The *institution has universal/existential* \mathscr{D} -quantifiers when for each $(\chi : \Sigma \to \Sigma') \in \mathscr{D}$, any Σ' -sentence ρ' has a universal/existential χ -quantification.

Exam	ples
------	------

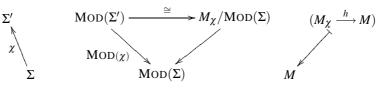
institution	D	\forall	Ξ
FOL, MVL	fin. inj. sign. ext. with constants		\checkmark
SOL	fin. inj. sign. ext.		\checkmark
PA	fin. inj. sign. ext. with total constants		\checkmark
EQL, HCL	fin. inj. sign. ext. with constants		
MFOL	fin. inj. sign. ext. with rigid constants		
HOL, HNK	fin. inj. sign. ext.	\checkmark	

fin. inj. sign. ext. = finitary injective signature extension

Representable signature morphisms

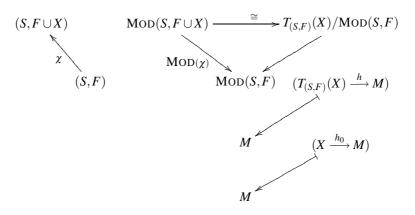
Many results depend on the quantification being *first order*.

At the level of abstract institutions this is captured by the condition that the signature morphism χ is *representable*:



 χ is *finitary representable* when M_{χ} is finitely presented.

A concrete example: MSA first order quantifiers



Quasi-representable signature morphisms

A weaker very useful version of representability:

 $\chi: \Sigma \to \Sigma'$ is *quasi-representable* if and only if

$$M'/\operatorname{Mod}(\Sigma') \cong (M' \restriction_{\chi})/\operatorname{Mod}(\Sigma)$$

Proposition 1. A signature morphism $\chi : \Sigma \to \Sigma'$ is representable if and only if it is quasi-representable and $MOD(\Sigma')$ has initial models.

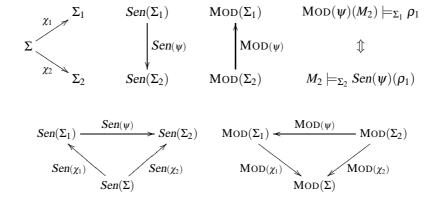
Examples

institution	χ	
FOL	(fin.) inj. sign. ext. with const.	(fin.) rep.
MVL	(fin.) inj. sign. ext. with const.	(fin.) rep.
PA	(fin.) inj. sign. ext. with total const.	(fin.) rep.
$E(\mathbf{FOL})$	(fin.) inj. sign. ext. with const.	(fin.) quasi-rep.
MFOL	(fin.) inj. sign. ext. with rigid const.	(fin.) quasi-rep.
HOL	(fin.) inj. sign. ext.	(fin.) quasi-rep.

1.3 General substitutions

Substitution ψ : $\chi_1 \rightarrow \chi_2$

such that



Examples

• First order substitutions ψ : $X \to T_{(S,F)}(Y)$:

$$- \psi: ((S,F) \to (S,F \cup X)) \to ((S,F) \to (S,F \cup Y))$$

- $Sen(\psi)$: $Sen(S, F \cup X) \rightarrow Sen(S, F \cup Y)$,
- $\operatorname{MOD}(\psi)$: $\operatorname{MOD}(S, F \cup Y) \to \operatorname{MOD}(S, F \cup X)$

$$MOD(\psi)(M)_x = M_{\psi(x)}$$

- Second order substitutions mapping operations to terms (such that arity preserved).
- In HOL, HNK, higher order substitutions.

Representable substitutions

Capture abstractly the concept 'first order' substitutions.

 $\psi: \chi_1 \rightarrow \chi_2$ with χ_1 and χ_2 representable.

Proposition 2. Any substitution $\psi : \chi_1 \to \chi_2$ between representable signature morphisms $\chi_1 : \Sigma \to \Sigma_1$ and $\chi_2 : \Sigma \to \Sigma_2$ determines canonically a Σ -model homomorphism $M_{\psi} : M_{\chi_1} \to M_{\chi_2}$. Moreover, the mapping $\psi \mapsto M_{\psi}$ is functorial and faithful [modulo substitution equivalence].

Example:

$$\begin{split} ((S,F) & \to (S,F \cup X)) \xrightarrow{\psi} ((S,F) \to (S,F \cup Y)) \\ & \downarrow \\ T_{(S,F)}(X) \xrightarrow{M_{\psi}} T_{(S,F)}(Y) \\ & \downarrow \\ (X \to T_{(S,F)}(Y)) \end{split}$$

1.4 Basic sentences

Abstract capture of atomic sentences

In **MSA**, categorical characterization of satisfaction of atoms in the style of 'satisfaction by injectivity' (Nemeti, Andreka, ...):

Proposition 3. $M \models_{(S,F)} t = t'$ if and only if there exists a homomorphism $T_{(S,F)}/_{=_{\{t=t'\}}} \to M$.

Basic sentences

In any institution, a Σ -sentence ρ is *(finitary)* basic when there exists a (finitely presented) Σ -model M_{ρ} such that for any Σ -model M

 $M \models \rho$ if and only if there exists homomorphism $M_{\rho} \rightarrow M$

In actual institutions atoms are finitary basic, but also:

Proposition 4. Basic sentences are closed under existential quasi-representable quantification.

A tighter approximation of atoms

The following rules out some 'non-atomic' basic sentences (e.g. $(\exists \chi)\rho$, for atomic ρ):

In any institution with initial models of signatures (denoted 0_{Σ}), a basic sentence ρ is *epic basic* when the unique homomorphism $0_{\Sigma} \rightarrow M_{\rho}$ is epi.

Epic basic are a tighter capture of 'atomic' sentences, yet not a perfect one.

2 Ultraproducts

The method of ultraproducts

One of the most powerful model theory methods, much model theory may be developed through this method (see Bell and Slomson classic book).

Applications include:

- (semantic) compactness,
- preservation and axiomatizability,
- Keisler-Shelah Isomorphism Theorem,
- interpolation and definability,
- applications to algebra (fields, algebraic geometry, etc.).

2.1 Categorical ultraproducts

Filters and Ultrafilters

 $F \subseteq \mathscr{P}(I)$ is *filter over* I when

- $I \in F$,
- $X \cap Y \in F$ if $X \in F$ and $Y \in F$,
- $Y \in F$ if $X \subseteq Y$ and $X \in F$.

Ultrafilter when in addition, for all $X \subseteq I$, we have that

 $X \in F$ if and only if $I \setminus X \notin F$

If *F* filter over *I*, and $I' \subseteq I$, then the *reduction of F to I'*:

$$F|_{I'} = \{I' \cap X \mid X \in F\}$$

Concrete filtered products

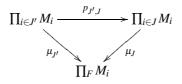
In **MSA**: given *F* filter over *I*, and $(M_i)_{i \in I}$ family of (S, F)-algebras, the *F*-filtered product of $(M_i)_{i \in I}$ is defined as $\prod_F M_i = (\prod_{i \in I} M_i)/_{\sim_F}$ where

- 1. $\prod_{i \in I} M_i$ is direct product of $(M_i)_{i \in I}$, and
- 2. \sim_F is the congruence defined by

$$m \sim_F m'$$
 if and only if $\{i \in I \mid m_i \sim_F m'_i\} \in F$.

Categorical filtered products

Co-limit of the diagram of projections $(J, J' \subseteq I)$:



Idea much exploited by approaches to categorical model theory (Nemeti, Andreka, Makkai, etc.)

institution	direct prod.	directed co-lim.	filt.prod.	ultraprod.
FOL	\checkmark	\checkmark		\checkmark
PA	\checkmark	\checkmark		\checkmark
IPL	\checkmark	\checkmark		\checkmark
MFOL	\checkmark	\checkmark		\checkmark
MVL	\checkmark	?		\checkmark
HNK	\checkmark			\checkmark
MA				

Some examples

2.2 Fundamental Ultraproducts Theorem

Preservation of sentences by filtered factors/products

For a signature Σ in an institution, for each filter $F \in \mathscr{F}$ over a set I and for each family $\{A_i\}_{i \in I}$ of Σ -models, a Σ -sentence e is

• preserved by \mathscr{F} -filtered factors: $f_{\mathscr{F}}(e)$

if
$$\prod_{F} A_i \models_{\Sigma} e$$
 implies $\{i \in I \mid A_i \models_{\Sigma} e\} \in F$,

• preserved by \mathscr{F} -filtered products: $p_{\mathscr{F}}(e)$

if
$$\{i \in I \mid A_i \models_{\Sigma} e\} \in F$$
 implies $\prod_F A_i \models_{\Sigma} e$.

Preservation by ultrafactors/ultraproducts when \mathscr{F} is the class of ultrafilters.

Fundamental Ultraproducts Theorem (Los)

In any institution:

preservation property	condition
$p_{\mathscr{F}}(\text{basic})$	
$f_{\mathscr{F}}(\text{finitary basic})$	
$p_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow p_{\mathscr{F}}((\exists \boldsymbol{\chi})\boldsymbol{\rho})$	MOD(χ) pres. \mathscr{F} -filtered prod.
$f_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow f_{\mathscr{F}}((\exists \boldsymbol{\chi})\boldsymbol{\rho})$	$MOD(\chi)$ lifts \mathscr{F} -filtered prod.
$p_{\mathscr{F}}(\rho_1), p_{\mathscr{F}}(\rho_2) \Rightarrow p_{\mathscr{F}}(\rho_1 \wedge \rho_2)$	
$f_{\mathscr{F}}(\rho_1), f_{\mathscr{F}}(\rho_2) \Rightarrow f_{\mathscr{F}}(\rho_1 \land \rho_2)$	
$(p_{\mathscr{F}}(\boldsymbol{\rho}_i))_{i\in I} \Rightarrow p_{\mathscr{F}}(\wedge_{i\in I}\boldsymbol{\rho}_i)$	
$f_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow p_{\mathscr{F}}(\neg \boldsymbol{\rho})$	
$p_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow f_{\mathscr{F}}(\neg \boldsymbol{\rho})$	$\mathscr{F} \subseteq Ultrafilters$

Corollary

Corollary 5. In any institution, any sentence which is accessible from the finitary basic sentences by

- Boolean connectives,
- finitary representable quantification, and
- projectively representable quantification (assuming that the institution has epi model projections)

is preserved by ultraproducts and ultrafactors.

Examples includes FOL, PA, IPL, etc. In MFOL, FOL_∞ sentences preserved only by ultraproducts.

2.3 Compactness by ultraproducts

(Semantic) compactness

An institution is

- 1. *m-compact* when each set of sentences has a model if and only if any of its *finite* subsets has a model.
- 2. *compact* when $E \models \rho$ implies that there exists *finite* $E_0 \subseteq E$ such that $E_0 \models \rho$.

Proposition 6. – *Each compact institution having false is m-compact.*

- Each m-compact institution having negations is compact.

Compactness by ultraproducts

Corollary 7. Any institution in which each sentence is preserved by ultraproducts is m-compact.

Examples include FOL, PA, IPL, etc. but also MFOL.

Corollary 8. Let *E* be a set of sentences preserved by ultraproducts, and let *e* be a sentence preserved by ultrafactors such that $E \models e$. Then there exists a finite subset $E' \subseteq E$ such that $E' \models e$.