Institution Theory internal logic

Răzvan Diaconescu

Institutul de Matematică "Simion Stoilow", Romania

UNILOG 2010, Lisbon

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

1 Internal Logic

- Boolean and other connectives
- Quantifiers
- General substitutions
- Basic sentences

2 Ultraproducts

- Categorical ultraproducts
- Fundamental Ultraproducts Theorem

Compactness by ultraproducts

Conjunction

A Σ -sentence ρ is a *conjunction* ($\rho_1 \land \rho_2$) of Σ -sentences ρ_1 and ρ_2 when

 $\rho^{\star} = \rho_1^{\star} \cap \rho_2^{\star}$

The *institution has conjunctions* when any Σ -sentences ρ_1 and ρ_2 have a conjunction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Disjunction

A Σ -sentence ρ is a *disjunction* ($\rho_1 \lor \rho_2$) of Σ -sentences ρ_1 and ρ_2 when

 $\rho^{\star} = \rho_1^{\star} \cup \rho_2^{\star}$

The *institution has disjunctions* when any Σ -sentences ρ_1 and ρ_2 have a disjunction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Implication

A Σ -sentence ρ is an *implication* ($\rho_1 \Rightarrow \rho_2$) of Σ -sentences ρ_1 and ρ_2 when

$$\rho^{\star} = \overline{\rho_1^{\star}} \cup \rho_2^{\star}$$

The *institution has implications* when any Σ -sentences ρ_1 and ρ_2 have a implication.

A Σ -sentence ρ is a *negation* $(\neg \rho')$ of a Σ -sentence ρ' when

$$ho^{\star} = \overline{
ho^{\prime\star}}$$

The *institution has negations* when any Σ -sentence ρ' has a negation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A (*semantic logical*) *connective c of arity n* consists of a family $(c_{\Sigma})_{\Sigma \in \mathbb{S}ig}$ of functions

$$c_{\Sigma}: \mathscr{P}(|\mathrm{MOD}(\Sigma)|)^n \to \mathscr{P}(|\mathrm{MOD}(\Sigma)|).$$

A connective is *Boolean* when it is a (derived) operation of the Boolean algebra (𝒫(|MOD(Σ)|), ∩, ∪, ¬, ∅).

• ρ is a *c*-connection of ρ_i , $1 \le i \le n$, $(\rho = c(\rho_1, \dots, \rho_n))$ when $\rho^* = c_{\Sigma}(\rho_1^*, \dots, \rho_n^*)$.

Examples

institution	\wedge		V	\Rightarrow	\Leftrightarrow
FOL, PL, HOL, HNK	\checkmark	\checkmark	\checkmark		
WPL(Béziau)					
\mathbf{FOL}^+	\checkmark		\checkmark		
EQL, HCL, MVL					
EQLN		\checkmark			
MFOL, MPL					
IPL					

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�?

Quantifiers

Given signature morphism $\chi : \Sigma \to \Sigma', \rho \in Sen(\Sigma)$ and $\rho' \in Sen(\Sigma')$,

• ρ is a *universal* χ -quantification of ρ' when

 $\rho^{\star} = \overline{\mathrm{MOD}(\chi)(\overline{\rho'^{\star}})}$

 \bullet *p* is a *existential* χ *-quantification* of ρ' when

 $\rho^{\star} = \operatorname{MOD}(\chi)(\rho^{\prime\star})$

The *institution has universal/existential* \mathcal{D} -quantifiers when for each $(\chi : \Sigma \to \Sigma') \in \mathcal{D}$, any Σ' -sentence ρ' has a universal/existential χ -quantification.

Examples

institution	D	\forall	Ξ
FOL, MVL	fin. inj. sign. ext. with constants		
SOL	fin. inj. sign. ext.		
PA	fin. inj. sign. ext. with total constants		
EQL, HCL	fin. inj. sign. ext. with constants		
MFOL	fin. inj. sign. ext. with rigid constants		
HOL, HNK	fin. inj. sign. ext.		

・ロ・・ (四・・ (日・・ 日・) への

fin. inj. sign. ext. = finitary injective signature extension

Representable signature morphisms

Many results depend on the quantification being first order.

At the level of abstract institutions this is captured by the condition that the signature morphism χ is *representable*:

 χ is *finitary representable* when M_{χ} is finitely presented.

A concrete example: MSA first order quantifiers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Quasi-representable signature morphisms

A weaker very useful version of representability:

 $\chi: \Sigma \to \Sigma'$ is *quasi-representable* if and only if $M'/MOD(\Sigma') \cong (M' \upharpoonright_{\chi})/MOD(\Sigma)$

Proposition

A signature morphism $\chi : \Sigma \to \Sigma'$ is representable if and only if it is quasi-representable and $MOD(\Sigma')$ has initial models.

Examples

institution	χ	
FOL	(fin.) inj. sign. ext. with const.	(fin.) rep.
MVL	(fin.) inj. sign. ext. with const.	(fin.) rep.
PA	(fin.) inj. sign. ext. with total const.	(fin.) rep.
$E(\mathbf{FOL})$	(fin.) inj. sign. ext. with const.	(fin.) quasi-rep.
MFOL	(fin.) inj. sign. ext. with rigid const.	(fin.) quasi-rep.
HOL	(fin.) inj. sign. ext.	(fin.) quasi-rep.

Substitution ψ : $\chi_1 \rightarrow \chi_2$

such that

Examples

First order substitutions ψ : $X \to T_{(S,F)}(Y)$: ψ : $((S,F) \to (S,F \cup X)) \to ((S,F) \to (S,F \cup Y))$ $\text{Sen}(\psi)$: $\text{Sen}(S,F \cup X) \to \text{Sen}(S,F \cup Y)$, $\text{MOD}(\psi)$: $\text{MOD}(S,F \cup Y) \to \text{MOD}(S,F \cup X)$

$$\mathrm{MOD}(\psi)(M)_x = M_{\psi(x)}$$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)<

- Second order substitutions mapping operations to terms (such that arity preserved).
- In **HOL**,**HNK**, higher order substitutions.

Representable substitutions I

Capture abstractly the concept 'first order' substitutions.

 $\psi: \chi_1 \rightarrow \chi_2$ with χ_1 and χ_2 representable.

Proposition

Any substitution $\psi : \chi_1 \to \chi_2$ between representable signature morphisms $\chi_1 : \Sigma \to \Sigma_1$ and $\chi_2 : \Sigma \to \Sigma_2$ determines canonically a Σ -model homomorphism $M_{\psi} : M_{\chi_1} \to M_{\chi_2}$. Moreover, the mapping $\psi \mapsto M_{\psi}$ is functorial and faithful [modulo substitution equivalence].

Representable substitutions II

Example:

$$((S,F) \to (S,F \cup X)) \xrightarrow{\psi} ((S,F) \to (S,F \cup Y))$$

$$\downarrow$$

$$T_{(S,F)}(X) \xrightarrow{M_{\psi}} T_{(S,F)}(Y)$$

$$\downarrow$$

$$(X \to T_{(S,F)}(Y))$$

◆ロト ◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○臣 ○ のへで

Abstract capture of atomic sentences

In **MSA**, categorical characterization of satisfaction of atoms in the style of 'satisfaction by injectivity' (Nemeti, Andreka, ...):

Proposition

 $M \models_{(S,F)} t = t'$ if and only if there exists a homomorphism $T_{(S,F)}/_{=_{\{t=t'\}}} \rightarrow M.$

In any institution, a Σ -sentence ρ is *(finitary) basic* when there exists a (finitely presented) Σ -model M_{ρ} such that for any Σ -model M

 $M \models \rho$ if and only if there exists homomorphism $M_{\rho} \rightarrow M$

In actual institutions atoms are finitary basic, but also:

Proposition

Basic sentences are closed under existential quasi-representable quantification.

A tighter approximation of atoms

The following rules out some 'non-atomic' basic sentences (e.g. $(\exists \chi)\rho$, for atomic ρ):

In any institution with initial models of signatures (denoted 0_{Σ}), a basic sentence ρ is *epic basic* when the unique homomorphism $0_{\Sigma} \rightarrow M_{\rho}$ is epi.

Epic basic are a tighter capture of 'atomic' sentences, yet not a perfect one.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The method of ultraproducts

One of the most powerful model theory methods, much model theory may be developed through this method (see Bell and Slomson classic book).

Applications include:

- (semantic) compactness,
- preservation and axiomatizability,
- Keisler-Shelah Isomorphism Theorem,
- interpolation and definability,
- applications to algebra (fields, algebraic geometry, etc.).

Filters and Ultrafilters

$$F \subseteq \mathscr{P}(I) \text{ is filter over I when}$$
$$I \in F,$$
$$X \cap Y \in F \text{ if } X \in F \text{ and } Y \in F,$$
$$Y \in F \text{ if } X \subseteq Y \text{ and } X \in F.$$

Ultrafilter when in addition, for all $X \subseteq I$, we have that

 $X \in F$ if and only if $I \setminus X \notin F$

If *F* filter over *I*, and $I' \subseteq I$, then the *reduction of F to I'*:

 $F|_{I'} = \{I' \cap X \mid X \in F\}$

Concrete filtered products

- In **MSA**: given *F* filter over *I*, and $(M_i)_{i \in I}$ family of (S, F)-algebras, the *F*-filtered product of $(M_i)_{i \in I}$ is defined as $\prod_F M_i = (\prod_{i \in I} M_i)/_{\sim_F}$ where
 - **1** $\prod_{i \in I} M_i$ is direct product of $(M_i)_{i \in I}$, and
 - **2** \sim_F is the congruence defined by

 $m \sim_F m'$ if and only if $\{i \in I \mid m_i \sim_F m'_i\} \in F$.

Categorical filtered products

Co-limit of the diagram of projections $(J, J' \subseteq I)$:

Idea much exploited by approaches to categorical model theory (Nemeti, Andreka, Makkai, etc.)

Some examples

institution	direct prod.	directed co-lim.	filt.prod.	ultraprod.
FOL	\checkmark	\checkmark		
PA	\checkmark	\checkmark		
IPL	\checkmark	\checkmark		
MFOL	\checkmark	\checkmark		
MVL	\checkmark	?		\checkmark
HNK				
MA				

Preservation of sentences by filtered factors/products

For a signature Σ in an institution, for each filter $F \in \mathscr{F}$ over a set *I* and for each family $\{A_i\}_{i \in I}$ of Σ -models, a Σ -sentence *e* is

■ preserved by \mathscr{F} -filtered factors: $f_{\mathscr{F}}(e)$

if
$$\prod_{F} A_i \models_{\Sigma} e$$
 implies $\{i \in I \mid A_i \models_{\Sigma} e\} \in F$,

■ preserved by \mathscr{F} -filtered products: $p_{\mathscr{F}}(e)$

if
$$\{i \in I \mid A_i \models_{\Sigma} e\} \in F$$
 implies $\prod_F A_i \models_{\Sigma} e$.

Preservation by ultrafactors/ultraproducts when \mathscr{F} is the class of ultrafilters.

Fundamental Ultraproducts Theorem (Łos)

In any institution:

preservation property	condition
$p_{\mathscr{F}}(\text{basic})$	
$f_{\mathscr{F}}(\text{finitary basic})$	
$p_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow p_{\mathscr{F}}((\exists \boldsymbol{\chi})\boldsymbol{\rho})$	MOD(χ) pres. \mathscr{F} -filtered prod.
$f_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow f_{\mathscr{F}}((\exists \boldsymbol{\chi})\boldsymbol{\rho})$	$MOD(\chi)$ lifts \mathscr{F} -filtered prod.
$p_{\mathscr{F}}(\rho_1), p_{\mathscr{F}}(\rho_2) \Rightarrow p_{\mathscr{F}}(\rho_1 \land \rho_2)$	
$f_{\mathscr{F}}(\rho_1), f_{\mathscr{F}}(\rho_2) \Rightarrow f_{\mathscr{F}}(\rho_1 \wedge \rho_2)$	
$(p_{\mathscr{F}}(\boldsymbol{\rho}_i))_{i\in I} \Rightarrow p_{\mathscr{F}}(\wedge_{i\in I}\boldsymbol{\rho}_i)$	
$f_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow p_{\mathscr{F}}(\neg \boldsymbol{\rho})$	
$p_{\mathscr{F}}(\boldsymbol{\rho}) \Rightarrow f_{\mathscr{F}}(\neg \boldsymbol{\rho})$	$\mathscr{F} \subseteq Ultrafilters$

Corollary

Corollary

In any institution, any sentence which is accessible from the finitary basic sentences by

- Boolean connectives,
- finitary representable quantification, and
- projectively representable quantification (assuming that the institution has epi model projections)

is preserved by ultraproducts and ultrafactors.

Examples includes FOL, PA, IPL, etc. In MFOL, FOL $_{\infty}$ sentences preserved only by ultraproducts.

(Semantic) compactness

An institution is

- *m-compact* when each set of sentences has a model if and only if any of its *finite* subsets has a model.
- 2 *compact* when $E \models \rho$ implies that there exists *finite* $E_0 \subseteq E$ such that $E_0 \models \rho$.

Proposition

- Each compact institution having false is m-compact.
- Each m-compact institution having negations is compact.

Compactness by ultraproducts

Corollary

Any institution in which each sentence is preserved by ultraproducts is m-compact.

Examples include FOL, PA, IPL, etc. but also MFOL.

Corollary

Let *E* be a set of sentences preserved by ultraproducts, and let *e* be a sentence preserved by ultrafactors such that $E \models e$. Then there exists a finite subset $E' \subseteq E$ such that $E' \models e$.