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Abstract

In this paper we develop an axiomatic approach to structured specifications in which both the underlying
logical system and corresponding institution of the structured specifications are treated as abstract institu-
tions, which means two levels of institution independence. This abstract axiomatic approach provides a
uniform framework for the study of structured specifications independently from any actual choice of spec-
ification building operators, and moreover it unifies the theory and the model oriented approaches. Within
this framework we develop concepts and results about ‘abstract structured specifications’ such as co-limits,
model amalgamation, compactness, interpolation, sound and complete proof theory, and pushout-style pa-
rameterization with sharing, all of them in a top down manner dictated by the upper level of institution
independence.

1. Introduction

The crucial role played by structuring or modularization in the software development, including speci-
fication development, is so well known that it does not need here any explanations. However, while there is
usually much emphasis on the role (without alternative) played for managing the problems generated by the
high complexity of software systems both at the development and at the maintenance or evolution stages,
there is less awareness about the superior specification power of structuring over specification in-the-small.
From the many examples from the literature or from the folklore of algebraic specification illustrating this
latter point let us recall here the example of fields (see [15]) and that of higher order programming (see
[21]).

Consequently the study of structuring or modularization has been an important research topic within the
formal specification community, the modern trend being that of theoretical developments that are indepen-
dent of the logical systems underlying actual specification languages, e.g. [17, 18, 20, 37]. This is achieved
through abstracting away the actual logical systems to abstract institutions (in the sense of [22]). That is
what we consider here to be the lower level of institution independence. We may distinguish two major
trends within the institution independent studies of structuring or modularization: the ‘theory oriented’ or
‘property oriented’ one (represented by [17, 23]) and the ‘model oriented’ one (represented by [37, 38]),
that have been ideologically quite irreconcilable. Given a base institution I, in the former approach the
semantics of specifications is given by I-theories, while in the latter approach it is given by classes of mod-
els indexed by corresponding signatures. In both cases specifications are freely built from the finite sets of
I-sentences by using fixed specific sets of specification building operators; the set of the building opera-
tors may vary according to the intended applications. In all above described situations one may consider
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an ‘upper’ institution whose signatures are either theories (in the theory oriented approach) or structured
specifications (in the model oriented approach) that has the following couple of properties:

– there is a ‘forgetful’ functor Φ to the signatures of the base institution,

– both the ‘upper’ and the base institution share the same sentences modulo Φ, and

– the models of the ‘upper’ institution are (modulo Φ) a sub-class of the models of the base institution.

The main idea underlying our approach is to consider an abstract institution in the role of this ‘upper’
institution together with some properties relating it to the base institution. This is what we call the upper
level of institution independence. Technically speaking, the whole situation can be condensed in a special
form of an institution morphism (in the sense of [22]), and this is taken as the axiomatic basis for developing
the theory of structured or modular specifications, without reference to theories or to specification building
operators. The benefits of this approach are as follows:

1. From the point of view of the model oriented approach to structured specifications, our axiomatic
approach achieves independence from the commitment to any specific set of specification building
operators, in other words we achieve a general uniform theory of structured specifications that can
be used for any particular set of specification building operators. This is very important when we
consider the richness of possible specification building operators (the book [38] gives a hint about
this) with new ones being proposed very recently (in [15] for dealing with non-protecting importation
modes). Moreover, one may want also to consider quotienting structured specifications under various
module algebra rules (in the sense of [2, 17, 38]), a situation which is also captured naturally by our
approach. Our approach may cover also structuring contexts that are beyond conventional formal
specification, such as the modular approach to the model expansion problems [44].

2. It unifies the theory and the model oriented approaches to modularization, many concepts or results
that seemed to bear high similarity can be now seen precisely as being both instances of the same
concept or result. A basic familiar example may be given by the lifting of co-limits from signatures
to specifications that can be found in [22] for the theory oriented approach and in [38] for the model
oriented approach. Moreover all the concepts or results developed here can be easily reflected down
to either the theory or the model oriented approach.

3. The theory is developed in a top down manner, with the hypotheses introduced on a by-need basis
with the benefit of understanding clearly the causality relationships between the various aspects of
specification structuring and modularization.

The structure and the contents of the paper.
1. The first section surveys briefly concepts from institution theory that are used in this work.
2. The second section is dedicated to the introduction of the main concept underlying our approach,

namely that of the ‘upper’ layer of institution independence in which the ‘structured specifications’
are treated abstractly as signatures of a an (abstract) institution I′ sitting above the base institution I
(that abstracts the underlying logical system). Inspired by the examples and the main motivation for
this work, the I′-signatures may also be called ‘abstract structured specifications’.

3. In the next section we study co-limits and model amalgamation for the ‘abstract structured specifi-
cations’, which are two properties that play a fundamental role in the modularization studies. The
examples discussed show that some of the concepts and results of this section may be seen as gen-
eralizing and unifying corresponding results from the theory and the model oriented approaches to
structuring of specifications.
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4. The section dedicated to normal forms introduces a semantic concept of ‘normal form’ for ‘abstract
structured specifications’ that reflects abstractly the substance of the result on existence of normal
forms for structured specifications developed in various forms in works such as [2, 5, 9]. We show
that the existence of ‘normal forms’ is the main sufficient condition for lifting a series of important
logical properties from the base institution to that of the ‘abstract structured specifications’, including
(semantic) compactness, interpolation, and a complete proof system, the other conditions being rather
technical and straightforward.

5. In the last technical section we define pushout-style parameterization with sharing within the frame-
work of our ‘abstract structured specifications’. This development relies crucially upon the category
theoretic concept of inclusion system introduced in [17] and represents an abstract upgrading of sim-
ilar ideas developed recently in [15] for (concretely) structured specifications.

2. Institution theoretic Preliminaries

2.1. Categories

Institution theory relies technically upon category theory. We assume the reader is familiar with basic
notions and standard notations from category theory. With few exceptions, in general we follow the termi-
nology and the notations of [27]. With respect to notational conventions, |C| denotes the class of objects of
a category C, C(A, B) the set of arrows (morphisms) with domain A and codomain B, and composition is
denoted by “;” and in diagrammatic order. A sub-category C′ of C is broad when |C′| = |C|. The category
of sets (as objects) and functions (as arrows) is denoted by Set, and CAT is the category of all categories.1

2.2. Institutions

Institutions have been defined by Goguen and Burstall in [8], the seminal paper [22] being printed after
a delay of many years. Below we recall the concept of institution which formalizes the intuitive notion of
logical system, including syntax, semantics, and the satisfaction between them.

Definition 2.1 (Institutions). An institution I = (SigI,SenI,ModI, |=I) consists of

1. a category SigI, whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called sentences

over that signature,
3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects are called

Σ-models, and whose arrows are called Σ-(model) morphisms, and
4. a relation |=I

Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SigI, the satisfaction condition

M′ |=I
Σ′

SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=I
Σ
ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). We denote the reduct functor ModI(ϕ) by �ϕ and the
sentence translation SenI(ϕ) by ϕ( ). When M = M′�ϕ we say that M is a ϕ-reduct of M′, and that M′ is a
ϕ-expansion of M. When there is no danger of ambiguity, we may skip the superscripts from the notations
of the entities of the institution; for example SigI may be simply denoted Sig.

1Strictly speaking, this is only a quasi-category living in a higher set-theoretic universe.
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General assumption: We assume that model isomorphisms preserve the satisfaction of all sentences of the
institutions, i.e. if M and N are isomorphic (denoted M � N) then for each sentence ρ we have that M |= ρ

if and only if N |= ρ. It is easy to see that this assumption holds in all the concrete examples of institutions
of interest for specification and programming.

There is a myriad of examples of logics captured as institutions, both from logic and computing. A
few of them can be found in [14, 38]. In fact the thesis underlying institution theory is that anything that
deserves to be called logic can be captured as institution. Due to lack of space here let us very briefly present
only the following one, of great relevance to computing science in general and to algebraic specification in
particular.

Example 2.1 (Many sorted algebra (MSA)). The MSA signatures are pairs (S , F) consisting of a set of
sort symbols S and of a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets of function symbols indexed by arities
(for the arguments) and sorts (for the results). Signature morphisms ϕ : (S , F) → (S ′, F′) consist of a
function ϕst : S → S ′ and a family of functions ϕop = {ϕ

op
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S }.
The (S , F)-models M, called algebras, interpret each sort symbol s as a set Ms and each function sym-

bol σ ∈ Fw→s as a function Mσ from the product Mw of the interpretations of the argument sorts to the
interpretation Ms of the result sort. A (S , F)-model homomorphism h : M → M′ is an indexed family
of functions {hs : Ms → M′s | s ∈ S } such that hs(Mσ(m)) = M′σ(hw(m)) for each σ ∈ Fw→s and each
m ∈ Mw where hw : Mw → M′w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) =

(hs1(m1), . . . , hsn(mn)) for w = s1 . . . sn and mi ∈ Msi .
For each signature morphism ϕ, the reduct M′�ϕ of a model M′ is defined by (M′�ϕ)x = M′ϕ(x) for each

sort or function symbol x from the domain signature of ϕ.
Sentences are the usual first order sentences built from equational and atoms t = t′, with t and t′ (well

formed) terms of the same sort, by iterative application of Boolean connectives (∧,⇒, ¬, ∨) and quantifiers
(∀X, ∃X). Sentence translations along signature morphisms just rename the sorts, function, and relation
symbols according to the respective signature morphisms. They can be formally defined by recursion on the
structure of the sentences. The satisfaction of sentences by models is the usual Tarskian satisfaction defined
recursively on the structure of the sentences.

Notation 2.1. In any institution, for any set E of Σ-sentences

– for any Σ-model M, M |= E denotes M |= e for each e ∈ E,

– for each signature Σ and set E of Σ-sentences Mod(Σ, E) denotes the full sub-category of Mod(Σ)
consisting of the models M such that M |= E,

– for any Σ-sentence ρ, E |= ρ denotes that for each Σ-model M we have that M |= E implies M |= ρ,
and

– E• denotes {ρ | E |= ρ}, i.e. the set of the semantic consequences of E.

Definition 2.2 (Compactness). An institution is compact when for each set E of Σ-sentences and each
Σ-sentence ρ if E |= ρ then E0 |= ρ for some finite subset E0 ⊆ E.
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2.3. Model amalgamation

The crucial role of model amalgamation for the semantics studies of formal specifications comes up in
very many works in the area, a few early examples being [17, 30, 37, 41]. The model amalgamation property
is a necessary condition in many institution-independent model theoretic results (see [14]), thus being one
of the most desirable properties for an institution. It can be considered even as more fundamental than the
satisfaction condition since in institutions with quantifications it is used in one of its weak forms in the proof
of the satisfaction condition at the induction step corresponding to quantifiers (see [14] for the details). Its
importance within the context of module algebra has been first emphasized in [17]. Model amalgamation
properties for institutions formalize the possibility of amalgamating models of different signatures when
they are consistent on some kind of generalized ‘intersection’ of signatures.

Definition 2.3 (Amalgamation square). A commutative square of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2 θ2

// Σ′

is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model M2 such that M1�ϕ1 = M2�ϕ2 ,
there exists an unique Σ′-model M′, denoted M1 ⊗ϕ1,ϕ2 M2, or M1 ⊗ M2 for short when there is no danger
of ambiguity, such that M′�θ1 = M1 and M′�θ2 = M2. When we drop off the uniqueness requirement we call
this a weak model amalgamation square.

In most of the institutions formalizing conventional or non-conventional logics, pushout squares of
signature morphisms are model amalgamation squares [14, 17]. These of course include our benchmark
MSA example.

Definition 2.4 (Model amalgamation; semi-exactness). An institution has (weak) model amalgamation
when each pushout square of signatures is a (weak) amalgamation square. A semi-exact institution is an
institution with the model amalgamation property extended also to model homomorphisms.

The literature considers also extensions of model amalgamation from pushouts to arbitrary co-limits, how-
ever for reasons of simplicity of presentation and because they are by far the most important case in the
applications, in this paper we consider model amalgamation only for pushouts.

2.4. Institution independent interpolation

In the algebraic specification literature there are several institution-independent formulations of interpo-
lation, all of them being strongly related. For example [40] is one of the first work introducing the concept
of interpolation at the level of abstract institutions. The common feature of these formulations is that they
generalize the conventional intersection-union (of signatures) framework to commutative squares of signa-
ture morphisms. In most cases these commutative squares are required to be pushouts (like in [4, 5, 18, 41]),
in other case the signature morphisms are required to be (abstract) inclusions (like in [17]). However in [12]
it has been noticed that the mere formulation of interpolation does not require any extra technical assump-
tions besides a commuting square of signature morphisms, the role of such additional assumptions having
more to do with the proof of interpolation properties rather than with its formulation.
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Definition 2.5 (Craig-Robinson interpolation). In any institution we say that a commutative square of
signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2 θ2

// Σ′

is a Craig-Robinson Interpolation square (abbreviated CRI square) when for each set E1 of Σ1-sentences
and each sets E2 and Γ2 of Σ2-sentences, if θ1(E1) ∪ θ2(Γ2) |=Σ′ θ2(E2), then there exists a set E of Σ-
sentences such that E1 |=Σ1 ϕ1(E) and Γ2 ∪ ϕ2(E) |=Σ2 E2.

The particular case of Craig-Robinson interpolation for Γ2 empty is called Craig interpolation.

In logic this case is usually more studied than Craig-Robinson interpolation. Craig-Robinson form of inter-
polation seems to have been first introduced in first order logic by [28]. Several works [2, 14, 17, 18] show
that Craig-Robinson rather than Craig may be the appropriate interpolation concept for formal specification
studies. Particular examples in this sense are the interdependency relationship between Craig-Robinson
interpolation and important modularization property [18] and Borzyszkowski’s complete calculus for struc-
tured specifications [5] which in reality relies upon the Craig-Robinson form of interpolation (this was
shown in [14] which corrects the rather restricted original result of [5] relying upon Craig interpolation plus
additional conditions for the base institutions, the latter narrowing significantly the range of the applications
of this important and beautiful result). Moreover even in model theory sometimes [34] Craig-Robinson
seems to be the appropriate form of interpolation. This is one of the reasons we adopt here this form of
interpolation, another one being just technical. The name ‘Craig-Robinson’ has been used for instances of
the corresponding interpolation property in [18, 39, 45], ‘Maehara interpolation’ in sentential logic stud-
ies, while ‘strong Craig interpolation’ has been used in [17]. We mention that Craig-Robinson and Craig
forms of interpolation can be shown equivalent under some additional conditions on the institution [14]. For
example this applies to classical first order logic (and to MSA as well) (which perhaps is the main reason
why in conventional logic Craig-Robinson formulation of interpolation is shadowed by the simpler Craig
formulation), but not for example to Horn clause or equational logic.

Another important aspect of Def. 2.5 is that it uses sets of sentences rather than single sentences, as
is common in conventional logic. The works [36] and [17] argue successfully that the formulation of
interpolation in terms of sets of sentences is more natural than the more traditional formulations in terms of
single sentences. First, on the one hand, the applications of interpolation do not require the single sentence
formulation, and on the other hand the single sentence formulation excludes important examples such as
equational or Horn logics. Then, in traditional works on or using interpolation, under the assumption of
compactness the two formulations can be shown equivalent [14].

The definition below formulates interpolation as a property of institutions. In its current form it has
been introduced in [13] as a simplified variant of the original definition of [5].

Definition 2.6 ((L,R)-interpolation). For any classes of signature morphisms L,R ⊆ Sig in any insti-
tution, we say that the institution has the Craig-Robinson (L,R)-interpolation if each pushout square of
signature morphisms of the form

•
L //

R
��

•

��
• // •

is a CRI square.
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Example 2.2. According to [6, 25], MSA has Craig-Robinson (L,R)-interpolation when L is the class of
all sort injective signature morphisms and R the class of all signature morphisms or the other way around.
Interestingly, this result which stayed as a conjecture for several years has received an elegant proof in [25]
using an institution independent method; in fact the result proved there is institution independent and thus
much more general than classical first order logic interpolation.

Example 2.3. According to [14], the Horn clause and the equational logic sub-institutions of MSA have
Craig (L,R)-interpolation for L the class of all signature morphisms and R the class of the injective signa-
ture morphisms, and it has Craig-Robinson (L,R)-interpolation for R the class of all signature morphisms
and L the class of the signature morphisms that are injective on the sorts and such that no operation symbol
outside the image of the signature morphism is allowed to have the sort in the image of the signature mor-
phism (in other words if ϕ : (S , F) → (S ′, F′) and σ′ ∈ F′w′→s′ with s′ ∈ ϕ(s) then there exists σ ∈ Fw→s

such that ϕ(σ) = σ′). The proof of this result given in [14] involves the interpolation result for Grothendieck
institutions of [13].

2.5. Proof theory for institutions
The enhancement of institution theory with a proof theoretic side is motivated by the important need to

address the verification aspect of formal specifications. In the following we recall from the literature the
standard way to do this, which is essentially an upgrading of Tarski’s notion of ‘consequence operator’ [43]
to the institution theoretic framework that is indexed by signatures. In the institution theory literature this is
called π-institution in [20, 29] or entailment system in [14, 26, 30, 32, 33].

Definition 2.7. An entailment system ` consists of

1. a functor Sen : Sig→ Set; the objects of Sig are called signatures and the elements of each Sen(Σ)
are called Σ-sentences, and

2. a relation2 `Σ ⊆ P(Sen(Σ)) × Sen(Σ) for each Σ ∈ |Sig|, called Σ-consequence,

such that the following conditions hold:

A. reflexivity: {e} `Σ e for each e ∈ Sen(Σ);

B. monotonicity: if E `Σ e and E ⊆ E′ then E′ `Σ e;

C. transitivity: if E `Σ e′ for each e′ ∈ E′ and if (E ∪ E′) `Σ e, then E `Σ e;

D. translation: if E `Σ e and if ϕ : Σ→ Σ′ in Sig, then Sen(ϕ)(E) `Σ′ Sen(ϕ)(e).

Note that each institution appears canonically as an entailment system by considering the semantic conse-
quence relations |=Σ in the role of the consequence relations `Σ. Conversely, each entailment system can be
given a rather artificial model theory by a comma category construction on theories [30].

Definition 2.8. Given an institutionI = (Sig,Sen,Mod, |=), an entailment system ` for I is just an entail-
ment system ` that shares with I the sentence functor (and implicitly the category of the signatures). Then
(I, `) is sound when E `Σ ρ implies E |=Σ ρ and it is complete when E |=Σ ρ implies E `Σ ρ (for any
signature Σ, any set of Σ-sentences E and any Σ-sentence ρ of the same signature).

The pair (I, `) of Dfn. 2.8 appears in the literature under various names, such as ‘logic’ in [32].

2Here P denotes the power set function.
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3. Structured institutions

In this section we introduce the main technical concept underlying our novel approach to structured
specifications involving two levels of institution independence, and illustrates it with a series of examples
from the theory of structured specifications. These examples will serve as a benchmark to our abstract
developments.

Definition 3.1 (Structured institutions). Given two institutionsI = (Sig,Sen,Mod, |=) andI′ = (Sig′,Sen′,Mod′, |=′

) we say that I′ is structured over I through Φ when

– Φ : Sig′ → Sig is a functor,

– for each I′-signature Σ′ we have Sen(Φ(Σ′)) = Sen′(Σ′) and for each I′-signature morphism ϕ we
have Sen(Φ(ϕ)) = Sen′(ϕ),

– for each I′-signature Σ′ we have that Mod′(Σ′) is a full subcategory of Mod(Φ(Σ′)) such that for each
I′-signature morphism ϕ : Σ′1 → Σ′2 the diagram below commutes

Mod′(Σ′1) ⊆ // Mod(Φ(Σ′1))

Mod′(Σ′2)

Mod′(ϕ)

OO

⊆
// Mod(Φ(Σ′2))

Mod(Φ(ϕ))

OO

and

– for each I′-signature Σ′, each Σ′-model M′ and each Σ′-sentence ρ we have that

M′ |=′Σ′ ρ if and only if M′ |=Φ(Σ′) ρ.

Within the framework of Dfn. 3.1, the examples given below in the section, especially Ex. 3.3 and 3.4,
support the idea of the following nickname for the I′-signatures: abstract structured specifications.

The readers familiar with the concept of institution morphism introduced by [22] may understand the
concept of structured institution in the following way:

Fact 3.1. I′ is structured over I if and only if there exists an institution morphism (Φ, α, β) : I′ → I such
that α is identity and the components of β are full subcategory inclusions.

Example 3.1 (Trivial structuring). Each institution I is trivially structured over itself through the identity
functor on the signature category.

Example 3.2 (Theories). According to [22], in any institution I a theory is a pair (Σ, E) that consists of a
signature Σ and a set E of Σ-sentences closed under semantic consequence, i.e. if E |= ρ then ρ ∈ E. A
theory morphism ϕ : (Σ, E) → (Σ′, E′) is a signature morphism ϕ : Σ → Σ′ such that ϕ(E) ⊆ E′. Note
that I-theory morphisms form a category under the composition induced by the composition of signature
morphisms.

The institution of I-theories, denoted Ith, is defined as follows:

– the category of the signatures of Ith is the category of theories of I, and
8



– for each theory (Σ, E), the (Σ, E)-sentences are the Σ-sentences and the category of the (Σ, E)-models
is the full subcateory of the Σ-models that satisfy E.

Then Ith is structured over I through the forgetful functor from the category of I-theories to the category of
I-signatures, i.e. that maps each theory (Σ, E) to its underlying signature Σ. The institution Ith constitutes
the implicit framework for the modularization studies in works such as [17].

Example 3.3 (Structured specifications). Given any institution I = (Sig,Sen,Mod, |=) with designated
classes of signature morphisms T and D the class of the (T ,D)-structured specifications [5] is the least
class such that

– it contains all finite presentations, i.e. pairs (Σ, E) with Σ signature and E finite set of Σ-sentences;
we also define Φ(Σ, E) = Σ,

– if SP1 and SP2 are structured specifications such that Φ(SP1) = Φ(SP2) then SP1 ∪ SP2 is also a
structured specification and we define Φ(SP1 ∪ SP2) = Φ(SPi),

– if SP is a structured specification and (ϕ : Φ(SP) → Σ′) ∈ T then SP ? ϕ is structured specification
and Φ(SP ? ϕ) = Σ′, and

– if SP′ is a structured specification and (ϕ : Σ → Φ(SP′)) ∈ D then ϕ | SP′ is structured specification
and Φ(ϕ | SP′) = Σ.

For each structured specification SP its category of models Mod(SP) is the full subcategory of Mod(Φ(SP))
determined as follows:

– M ∈ |Mod(Σ, E)| if and only if M |= E,

– |Mod(SP1 ∪ SP2)| = |Mod(SP1) ∩Mod(SP2)|,

– |Mod(SP ? ϕ)| = {M′ | M′�ϕ ∈ Mod(SP)}, and

– |Mod(ϕ | SP′)| = {M′�ϕ | M′ ∈ Mod(SP)}.

According to [15, 38] a morphism of specifications ϕ : SP → SP′ is an I-signature morphism Φ(SP) →
Φ(SP′) such that for each M′ ∈ Mod(SP′) we have that M′�ϕ ∈ Mod(SP). Note that structured specifications
and their morphisms form a category Spec and Φ : Spec→ Sig is a functor.

These data are enough to define the institution of the (T ,D)-structured specifications as an institution
which is structured over I through Φ.

In the literature one may find several other examples of primitive specification building operators besides
the ones presented in the example, most notably initial semantics operators. In fact, each specification
formalism may be based upon its own specific set of primitive specification building operators, and in this
respect there may be significant differences across various specification languages. From this perspective,
this example may be replicated for other sets of specification building operators. Besides of course the
choice of the base institution I, another parameter is given by is the choice of T and D, which is also
specific to the particularities of actual specification formalisms.

Example 3.4 (Quotienting the structuring).

Definition 3.2 (Structuring congruence). Given an institution I′ structured over I through Φ a congru-
ence relation ≡ on Sig′ is a structuring congruence when
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– if two signatures are equivalent, i.e. Σ′1 ≡ Σ′2 then Φ(Σ′1) = Φ(Σ′2) and Mod′(Σ′1) = Mod′(Σ′2), and

– if two signature morphisms are equivalent, i.e. ϕ′1 ≡ ϕ
′
2, then Φ(ϕ′1) = Φ(ϕ′2).

Note that the latter condition implies also Mod′(ϕ′1) = Mod′(ϕ′2).
For any structuring congruence we may build the quotient of I′/≡ = (Sig′′,Sen′′,Mod′′, |=′′) which

has the quotient category Sig′/≡ as its category of signatures Sig′′, and the sentence and the model functors
and the satisfaction relation defined canonically those of I′, i.e. Sen′′(Σ′/≡) = Sen′(Σ′) = Sen(Φ(Σ′)),
Mod′′(Σ′/≡) = Mod′(Σ′) and M |=′′

Σ′/≡
ρ if and only if M |=′

Σ′
ρ (if and only if M |=Φ(Σ) ρ). Note that this

institution is structured over I through Φ/≡ : Sig′/≡ → Sig defined by Φ/≡(Σ′/≡) = Φ(Σ′).
This quotienting has relevance within the context of the classes of examples described by Ex. 3.3 above.

Then ≡ may be defined as the equivalence generated by some of the module algebra rules on the structured
specifications [2, 15, 17, 38] such as for example the associativity of union of specifications (∪), which
essentially means that we do not distinguish between (SP ∪ SP′) ∪ SP′′ and SP ∪ (SP′ ∪ SP′′). The largest
case for ≡ is to define it as semantical equivalence |=|, i.e. SP |=| SP′ if and only if Φ(SP) = Φ(SP′) and
Mod′(SP) = Mod′(SP′).

Yet another example may be given by the modular structure of model expansion problems [44]; we omit
its presentation here.

The following result is straightforward and shows that the process of structuring institutions is com-
positional (in a category theoretic sense), or in other words the nesting of structuring of institutions yields
a structuring of institutions. This result is relevant (within the context of Ex. 3.3) to situations when one
wants to add new specification building operators in a way that does not interfere with the existing ones.

Corollary 3.1. If I′ is structured over I through Φ and I′′ is structured over I′ through Φ′ then I′′ is
structured over I through Φ′; Φ.

4. General properties

In this section we address two properties of the abstract structured specifications that are considered of
fundamental importance in the algebraic specification approaches to modularization:

1. The existence of co-limits and their relationship to the co-limits of signatures in the base institution.
2. The model amalgamation properties. We will show that these rely upon three factors that can be

established quite naturally in the applications: the corresponding amalgamation property at the level
of the base institution, a pushout preservation property, and a model compositionality property of the
structuring.

4.1. Co-limits

Definition 4.1 (Lifting co-limits). Given an institution I′ structured over I through Φ, we say that Φ lifts
co-limits when for each diagram D in Sig′ each co-limit µ of D; Φ, i.e. the image in Sig of D through Φ,
can be lifted to a co-limit µ′ of D such that µ′Φ = µ.

The following consequence of lifting co-limits is rather straightforward.

Fact 4.1. If Φ lifts co-limits in the sense of Dfn. 4.1 then it also preserves co-limits.

10



Example 4.1. The seminal paper [22] shows the lifting of co-limits for the structuring of Ex. 3.2. This result
constitutes the foundations for Clear style module systems [8] and is one of the most important results in
the institution-independent development of the theory of the algebraic specifications. Let us recall here the
case of pushouts. Given two theory morphisms ϕ : (Σ, E) → (Σ1, E1) and θ : (Σ, E) → (Σ2, E2) for any
pushout of the underlying signature morphisms as follows

Σ
ϕ //

θ
��

Σ1

θ′

��
Σ2

ϕ′
// Σ′

we let E′ = (θ′(E1) ∪ ϕ′(E2))•. Then the following is a pushout square of signature morphisms.

(Σ, E)
ϕ //

θ
��

(Σ1, E1)

θ′

��
(Σ2, E2)

ϕ′
// (Σ′, E′)

Example 4.2. The book [38] shows the lifting of finite co-limits for the structuring of Ex. 3.3 provided that
the set of the specification building operators contains union (∪) and translation (?). However in this case
some special technical conditions are required with respect to the class T , in the sense that the components
of the co-limit co-cone need to belong to T . In fact this may restrict the class of co-limits that can be lifted,
fortunately without leading to real restrictions at the level of the applications. Let us see how this works for
pushouts. Given specification morphisms ϕ : SP→ SP1 and θ : SP→ SP2 and a pushout of the underlying
signature morphisms

Φ(SP)
ϕ //

θ
��

Φ(SP1)

θ′

��
Φ(SP2)

ϕ′
// Σ′

Then the following is a pushout square of specification morphisms.

SP
ϕ //

θ
��

SP1

θ′

��
SP2

ϕ′
// (SP1 ? θ

′) ∪ (SP2 ? ϕ
′)

Proposition 4.1. Given an institution I′ structured over I through Φ and a structuring congruence ≡ such
that

1. Φ is faithful, and
2. if Σ′1 ≡ Σ′2 then there exists i : Σ′1 → Σ′2 such that i/≡ = 1Σ′k/≡

, k ∈ {1, 2},

if Φ lifts co-limits then Φ/≡ lifts co-limits too.

11



Proof. For reasons of clarity of the presentation let us do this proof for the case of pushouts. Thus let us
consider a couple of morphisms ϕ′′ : Σ′′ → Σ′′1 and θ′′ : Σ′′ → Σ′′2 in Sig′/≡ and consider a pushout square
in Sig as follows:

Σ = Φ/≡(Σ′′)
ϕ=Φ/≡(ϕ′′) //

θ=Φ/≡(θ′′)
��

Σ1 = Φ/≡(Σ′′1 )

α

��
Σ2 = Φ/≡(Σ′′2 )

β
// Ω

We have that there exists ϕ′ : Σ′ → Σ′1 and θ′ : Σ′ → Σ′2 in Sig′ such that ϕ′/≡ = ϕ′′ and θ′/≡ = θ′′.
It follows that Σ′ ≡ Σ′; let i : Σ′ → Σ′ with i/≡ = 1Σ′′ . Since Φ(ϕ′) = ϕ and Φ(i; θ′) = Φ(i); Φ(θ′) =

Φ/≡(i/≡); θ = 1; θ = θ let us consider a lifting of the above pushout square as follows:

Σ′
ϕ′ //

i;θ′

��

Σ′1

α′

��
Σ′2 β′

// Ω′

We define α′′ = α′/≡ and β′′ = β′/≡. The square below commutes

Σ′′
ϕ′′ //

θ′′

��

Σ′′1

α′′

��
Σ′′2 β′′

// Ω′′ = Ω/≡

because it represents an application of the quotienting functor /≡ to the previous square, that obviously
commutes since it is a pushout square.

Now we show that the above square is a pushout. For this let us consider f ′′ : Σ′′1 → Γ′′ and g′′ : Σ′′2 →

Γ′′ such that ϕ′′; f ′′ = θ′′; β′′. We have to show that there exists a unique h′′ : Ω′′ → Γ′′ such that
α′′; h′′ = f ′′ and β′′; h′′ = g′′. Let f ′ : Σ′1 → Γ′ and g′ : Σ′2 → Γ′ such that f ′/≡ = f ′′ and g′/≡ = g′′.
These imply the existence of i1 : Σ′1 → Σ′1, i2 : Σ′2 → Σ′2 and j : Γ′ → Γ′ that are mapped by the quotienting
functor /≡ to identities. It follows that

Φ(i; θ′; i2; g′) = Φ(i; θ′); Φ(i2; g′) = Φ/≡(θ′′); Φ/≡(g′′) = Φ/≡(θ′′; g′′) = Φ/≡(ϕ′′; f ′′) =

Φ/≡(ϕ′′); Φ/≡( f ′′) = Φ(ϕ′; i1); Φ( f ′; j) = Φ(ϕ′; i1; f ′; j).

Since Φ is faithful we obtain that i; θ′; i2; g′ = ϕ′; i1; f ′; j.

Σ′
ϕ′ //

i;θ′

��

Σ′1
i1 //

α′

��

Σ′1

f ′

��
Σ′2

i2
��

β′
// Ω′

h′

��>
>>

>>
>>

> Γ′

j
��

Σ′2 g′
//
Γ′

12



By the pushout property of the left upper corner square in the diagram above there exists a unique h′ such
that

α′; h′ = i1; f ′; j and β′; h′ = i2; g′. (1)

We define h′′ = h′/≡. By applying the quotienting functor /≡ to the equations (1) we get that

α′′; h′′ = f ′′ and β′′; h′′ = g′′. (2)

For showing the uniqueness of h′′ that satisfies the equations (2) let us assume a k′′ such that α′′; k′′ = f ′′

and β′′; k′′ = g′′. By applying Φ/≡ to this equalities we obtain that α; Φ/≡(k′′) = Φ( f ′) and β; Φ/≡(k′′) =

Φ(g′). By the uniqueness aspect of the pushout property of

Σ = Φ/≡(Σ′′)
ϕ=Φ/≡(ϕ′′) //

θ=Φ/≡(θ′′)
��

Σ1 = Φ/≡(Σ′′1 )

α

��
Σ2 = Φ/≡(Σ′′2 )

β
// Ω

we get that Φ/≡(k′′) = Φ/≡(h′′). The desired conclusion followed if we transferred the faithfulness property
from Φ to Φ/≡. For this it is enough to consider k′ : Ω′0 → Γ′0 such that k′/≡ = k′′ and note that there exists
j1 : Ω′ → Ω′0 and j2 : Γ′ → Γ′0 such that j1/≡ and j2/≡ are identities. From Φ/≡(k′′) = Φ/≡(h′′) it follows
that Φ(h′) = Φ( j1; k′; j2) and from the faithfulness of Φ that h′ = j1; k′; j2. By applying the quotienting
functor /≡ to this equality we get h′′ = k′′. 2

Example 4.3. It is easy to note that the structuring congruences on the structured specifications discussed in
Ex. 3.4 satisfy the conditions of Prop. 4.1, hence the forgetful functors on the signatures of those quotienting
of structured specifications lift co-limits.

4.2. Model amalgamation
Definition 4.2 (Compositionality). An institution I′ structured over I through Φ is compositional when
for each pushout in Sig′

Σ′
ϕ1 //

ϕ2

��

Σ′1

θ1

��
Σ′2 θ2

// Ω′

for any model M′ ∈ Mod(Φ(Ω′)), M′�Φ(θk) ∈ Mod′(Σ′k), k ∈ {1, 2}, implies M′ ∈ Mod′(Ω′).

Example 4.4. The structuring of Ex. 3.2 is compositional; let us see how this works. Let the following be
a pushout of I-theory morphisms (see Ex. 4.1).

(Σ, E)
ϕ1 //

ϕ2

��

(Σ1, E1)

θ1
��

(Σ2, E2)
θ2

// (Σ′, E′)

Let M′ ∈ Mod(Σ′) such that M′�θ1 |= E1 and M′�θ2 |= E2. Then by the Satisfaction Condition M′ |= θ1(E1)
and M′ |= θ2(E2). Hence M′ |= θ1(E1) ∪ θ2(E2). Since E′ is the semantic closure of θ1(E1) ∪ θ2(E2) (see
Ex. 4.1) it follows that M′ |= E′.
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Example 4.5. The structuring of Ex. 3.3 given by the structured specifications that include union (∪) and
translation (?) building operators among others enjoys the compositionality property as follows. Let the
following be a pushout of structured specifications morphisms (see Ex. 4.2).

SP
ϕ1 //

ϕ2

��

SP1

θ1

��
SP2 θ2

// SP′

Let M′ ∈ Mod(Φ(SP′)) such that M′�θk ∈ Mod′(SPk) for k ∈ {1, 2}. It follows that M′ ∈ Mod′(SPk ? θk)
for k ∈ {1, 2} hence M′ ∈ Mod′(SP1 ? θ1 ∪ SP2 ? θ2). Since according to Ex. 4.2 it is easy to note that
SP′ |=| SP1 ? θ1 ∪ SP2 ? θ2 we obtain that M′ ∈ Mod′(SP′).

Proposition 4.2. Under the conditions of Prop. 4.1 if the structuring of I′ is compositional then the struc-
turing of the quotient I′/≡ is compositional too.

Proof. Let the following be a pushout of I′/≡-signature morphisms

Σ′′
ϕ′′1 //

ϕ′′2
��

Σ′′1

θ′′1
��

Σ′′2 θ′′2

// Ω′′

and let M′′ ∈ Mod(Φ/≡(Ω′′)) such that M′′�Φ/≡(θ′′k ) ∈ Mod′′(Σ′′k ) for k ∈ {1, 2}. From the proof of Prop. 4.1
we have that there exists a pushout of I′-signature morphisms

Σ′
ϕ′1 //

ϕ′2
��

Σ′1

θ′1
��

Σ′2 θ′2

// Ω′

that gets mapped by the quotienting functor /≡ to the above pushout of I′/≡-signature morphisms. Hence
M′′ ∈ Mod(Φ(Ω′)) and M′′�Φ(θ′k) ∈ Mod′(Σ′k) for k ∈ {1, 2}. By the compositionality property for the
structuring of I′ we have that M′′ ∈ Mod′(Ω′). But Mod′(Ω′) = Mod′′(Ω′′), thus M′′ ∈ Mod′′(Ω′′). 2

Example 4.6. By Prop. 4.2 we obtain that the quotients of the institutions of structured specifications mod-
ulo module algebra rules (described in Ex. 3.4; see also Ex. 4.3) have the compositionality property of
Dfn. 4.2.

Proposition 4.3. Let I′ be an institution structured over I through Φ such that

1. Φ preserves pushouts, and
2. I′ structured over I through Φ is compositional.

If I has model amalgamation (resp. weak model amalgamation, semi-exactness) then I′ has model amal-
gamation (resp. weak model amalgamation, semi-exactness).
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Proof. Let us assume the model amalgamation property for I and prove it for I′. Let the square below be
a pushout square of I′-signature morphisms.

Σ′
ϕ′1 //

ϕ′2
��

Σ′1

θ′1
��

Σ′2 θ′2

// Ω′

Let M′k ∈ Mod′(Σ′k) for k ∈ {1, 2} such that M′1�ϕ′1 = M′2�ϕ′2 . By the condition on the preservation of pushouts
we have that the following square is a pushout of I-signature morphisms.

Φ(Σ′)
Φ(ϕ′1)

//

Φ(ϕ′2)
��

Φ(Σ′1)

Φ(θ′1)
��

Φ(Σ′2)
Φ(θ′2)

// Φ(Ω′)

By the model amalgamation property of the institution there exists an unique amalgamation M′ ∈ Mod(Φ(Ω′))
of M′1 and M′2. Since M′k ∈ Mod′(Σ′k) for k ∈ {1, 2} by the compositionality condition we obtain that
M′ ∈ Mod′(Ω′). The uniqueness of the amalgamation in I′ follows directly from the corresponding prop-
erty in I.

Similar arguments may be employed for establishing the weak model amalgamation and semi-exactness
properties, resp. 2

Example 4.7. As corollaries to Prop. 4.3 we obtain that the institutions of the theories (Ex. 3.2), of the struc-
tured specifications (Ex. 3.3), and of the structured specifications modulo module algebra rules (Ex. 3.4)
enjoy the amalgamation properties of the base institution.

5. Normal Forms and their consequences

In this section we introduce a concept of normal form for abstract structured specifications that captures
abstractly the normal forms from the model oriented approach to structured specifications (see [2, 5, 9]). We
show that in the presence of normal forms it is possible to lift a series of important logical properties from the
base institution to the upper institution of the abstract structured specifications. These properties well known
for their relevance to specification, include compactness, and interpolation. Another important property
studied is the closure of (the class of) models of an abstract structured specification under isomorphisms.
Moreover, like in the work [5], we use normal forms for lifting a sound and complete proof system from the
base institution to the institution of the abstract structured specifications (however this is done differently
from [5]).

5.1. Normal forms
Definition 5.1 (Normal form). Given an institution I′ structured over I through Φ and a class D of I-
signature morphisms, a pair (ϕ, E) where (ϕ : Φ(Σ′) → Σ) ∈ D and E ⊆ Sen(Σ) is a D-normal form for
an I′-signature Σ′ when Mod′(Σ′) = Mod(Σ, E)�ϕ. When E is finite we say that the normal form is finitary.
We say that I′ admits (finitary)D-normal forms when each I′-signature has at least a (finitary)D-normal
form.
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Example 5.1. The institution Ith of theories over an institution I (Ex. 3.2) trivially has D-normal forms
for anyD that contains the identities.

Example 5.2. The institution of the (T ,D)-structured specifications built over an institution I that has
model amalgamation (Ex. 3.3) has finitaryD-normal forms when

1. D is a broad subcategory of Sig (the category of the I-signatures),
2. for each (d1 : Σ → Σ1) ∈ D and (d2 : Σ → Σ2) ∈ D there exists a pushout square as below such that

d ∈ D

Σ
d1 //

d2
�� d   A

AA
AA

AA
A Σ1

��
Σ2 // Σ′

3. for each (t : Σ → Σ′) ∈ T and (d : Σ → Σ1) ∈ D there exists a pushout square as below such that
d′ ∈ D

Σ
t //

d
��

Σ′

d′
��

Σ1 // Σ′1

The proof of this result can be found in the literature [14, 38]. Note that this result depends upon the choice
of the specific set of specification building operators of Ex. 3.3, for example if we added an initial semantics
operator the normal form property is lost.

The normal form property transfers rather straightforwardly from the above example of the (T ,D)-
structured specifications to any of its quotients described in Ex. 3.4.

The following is an important technical property that comes with the existence of normal forms and that
will be used several times in the proofs of results of this section.

Proposition 5.1. Let (ϕ : Φ(Σ′) → Σ, E) be a D-normal form for an I′-signature Σ′. Then for each set
Γ′ ⊆ Sen′(Σ′) and ρ ∈ Sen′(Σ′)

Γ′ |=′Σ′ ρ if and only if E ∪ ϕ(Γ′) |=Σ ϕ(ρ).

Proof. For the implication from the left to the right let us consider a Σ-model M such that M |=Σ E ∪ϕ(Γ′).
By the Satisfaction Condition for I it follows that M�ϕ |=Φ(Σ′) Γ′. But M |=Σ E means that M�ϕ ∈ Mod′(Σ′)
hence M�ϕ |=′Σ′ Γ′. Since (by the hypothesis) Γ′ |=′

Σ′
ρ it follows that M�ϕ |=′Σ′ ρ which means M�ϕ |=Φ(Σ′) ρ.

By the Satisfaction Condition for I it follows that M |=Σ ϕ(ρ).
For the implication from the right to the left we let M′ ∈ Mod′(Σ′) such that M′ |=′

Σ′
Γ′ which means

M′ |=Φ(Σ′) Γ′. Since Mod′(Σ′) = Mod(Σ, E)�ϕ there exists M ∈ Mod(Σ, E) such that M�ϕ = M′. By the
Satisfaction Condition for I it follows that M |=Σ ϕ(Γ′). Since M |=Σ E it follows that M |=Σ E ∪ ϕ(Γ′). By
the hypothesis it now follows that M |=Σ ϕ(ρ). By the Satisfaction Condition for I we obtain M′ |=Φ(Σ′) ρ

which means M′ |=′
Σ′
ρ. 2

Definition 5.2. A signature morphism ϕ : Σ → Σ′ in an institution lifts isomorphisms (of models) if and
only if for any two isomorphic Σ-models M � N and any ϕ-expansion M′ of M there exists a ϕ-expansion
N′ of N such that M′ � N′.
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Example 5.3. It is known from the literature (e.g. [14]) that in MSA a signature morphism lifts isomor-
phisms if and only if it is injective on the sorts. Moreover, this property holds as well for other many sorted
logical systems.

Proposition 5.2. Let I′ be an institution structured over I through Φ such that I′ admitsD-normal forms
for some class D of I-signature morphisms. If each morphism from D lifts isomorphisms then for each
I′-signature Σ′ we have that Mod′(Σ′) is closed under (I-model) isomorphisms.

Proof. Let M′ ∈ Mod′(Σ) and let N′ ∈ Mod(Φ(Σ′)) such that M′ � N′. We have to prove that N′ ∈ Mod′(Σ).
By the normal form assumption there exists (ϕ : Φ(Σ′) → Σ) ∈ D such that Mod′(Σ′) = Mod(Σ, E)�ϕ.

Let M ∈ Mod(Σ, E) such that M�ϕ = M′. By the lifting of isomorphisms assumption there exists a Σ-model
N such that N�ϕ = N′ and N � M. Since in all our institutions isomorphisms of models preserve the
satisfaction relation we have that N |= E, hence N ∈ Mod(Σ, E). It follows that N′ = N�ϕ ∈ Mod(Σ, E)�ϕ =

Mod′(Σ′). 2

5.2. Compactness

Proposition 5.3. Let I′ be an institution structured over I through Φ such that I′ admitsD-normal forms
for some classD of I-signature morphisms. If I is compact then I′ is compact too.

Proof. Let Σ′ be any I′-signature and let E′ |=′
Σ′
ρ for E′ ⊆ Sen′(Σ′) and ρ ∈ Sen′(Σ′). We have

to show that there exists finite E′0 ⊆ E′ such that E′0 |=
′
Σ′
ρ. By the normal form condition there exists

(ϕ : Φ(Σ′)→ Σ) ∈ D and E ⊆ Sen(Σ) such that Mod′(Σ′) = Mod(Σ, E)�ϕ. By Prop. 5.1 we have

E ∪ ϕ(E′) |=Σ ϕ(ρ). (3)

By the compactness assumption on I, from (3) there exists E′0 ⊆ E′ and E0 ⊆ E, both sets finite, such that

E0 ∪ ϕ(E′0) |=Σ ϕ(ρ). (4)

By Prop. 5.1 the relation (4) implies E′0 |=
′
Σ′
ρ. 2

Example 5.4. Applications of the general compactness result given by Prop. 5.3 include institutions of
theories Ith (cf. Ex. 5.1) and institutions of structured specifications and their quotients (cf. Ex. 5.2).

5.3. Interpolation

Theorem 5.1. Let I′ be an institution structured over I through Φ and L′ and R′ classes of signature
morphisms such that

1. Φ preserves pushouts,
2. the structuring of I′ is compositional,
3. I′ admitsD-normal forms for some classD of I-signature morphisms,
4. I has Craig-Robinson (L,R)-interpolation, and
5. Φ(L′);D ⊆ L and Φ(R′);D ⊆ R.

Then I′ has Craig-Robinson (L′,R′)-interpolation.
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Proof. Let us consider a pushout of I′-signature morphisms with ϕ′1 ∈ L
′ and ϕ′2 ∈ R

′ as follows

Σ′
ϕ′1 //

ϕ′2
��

Σ′1

θ′1
��

Σ′2 θ′2

// Ω′

and E′1 ⊆ Sen′(Σ′1) and E′2,Γ
′
2 ⊆ Sen′(Σ′2) such that

θ′1(E′1) ∪ θ′2(Γ′2) |=′Ω′ θ
′
2(E′2). (5)

By the normal forms assumption let (εk : Φ(Σ′k) → Σk) ∈ D and Ek ⊆ Sen(Σk) for each k ∈ {1, 2} such that
Mod′(Σ′k) = Mod(Σk, Ek)�εk for each k ∈ {1, 2}. In the commutative diagram below we let the outer square
to be a pushout and we let γ to be the unique signature morphism which makes the diagram commutative (γ
exists because the left-upper corner square of the diagram is a pushout by the assumption that Φ preserves
pushouts).

Φ(Σ′)
Φ(ϕ′1)

//

Φ(ϕ′2)
��

Φ(Σ′1)

Φ(θ′1)
��

ε1 // Σ1

γ1

��

Φ(Σ′2)
Φ(θ′2)

//

ε2

��

Φ(Ω′)
γ

""E
EE

EE
EE

EE

Σ2 γ2
// Σ

Let us show that

γ1(E1) ∪ γ2(E2) ∪ γ(Φ(θ′1)(E′1)) ∪ γ(Φ(θ′2)(Γ′2)) |=Σ γ(Φ(θ′2)(E′2)). (6)

For this we consider a Σ-model M such that

M |=Σ γ1(E1) ∪ γ2(E2) ∪ γ(Φ(θ′1)(E′1)) ∪ γ(Φ(θ′2)(Γ′2)). (7)

For each k ∈ {1, 2} by the Satisfaction Condition of I it follows that M�γk |=Σk Ek which means that
M�γk�εk ∈ Mod′(Σ′k). Since εk; γk = Φ(θ′k); γ it follows that M�γ�Φ(θ′k) ∈ Mod′(Σ′k) which by the composi-
tionality assumption on I′ implies M�γ ∈ Mod′(Ω′). By the Satisfaction Condition on I from (7) it follows
that M�γ |=Φ(Ω′) Φ(θ′1)(E′1) ∪ Φ(θ′2)(Γ′2) which because M�γ ∈ Mod′(Ω′) means M�γ |=′Ω′ θ

′
1(E′1) ∪ θ′2(Γ′2).

From (5) it follows that M�γ |=′Ω′ θ
′
2(E′2) which means M�γ |=Φ(Ω′) Φ(θ′2)(E′2). By the Satisfaction Condition

on I this is equivalent to M |=Σ γ(Φ(θ′2)(E′2)).
Note that (6) means

γ1(E1) ∪ γ2(E2) ∪ γ1(ε1(E′1)) ∪ γ2(ε2(Γ′2)) |=Σ γ2(ε2(E′2)). (8)

Note also that by the hypothesis that Φ(L′);D ⊆ L and Φ(R′);D ⊆ R it follows that Φ(ϕ′1); ε1 ∈ L and
Φ(ϕ′2); ε2 ∈ R. Since I has Craig-Robinson (L,R)-interpolation there exists E′ ⊆ Sen(Φ(Σ′)) such that

E1 ∪ ε1(E′1) |=Σ1 ε1(Φ(ϕ′1)(E′)) and E2 ∪ ε2(Γ′2) ∪ ε2(Φ(ϕ′2)(E′)) |=Σ2 ε2(E′2). (9)

Now by Prop. 5.1 the relations (9) imply

E′1 |=
′
Σ′1
ϕ′1(E′) and ϕ′2(E′) ∪ Γ2 |=

′
Σ′2

E′2. (10)

which show the Craig-Robinson (L′,R′)-interpolation property for I′. 2
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Example 5.5. Let T be the class of all MSA signature morphisms,D the class of those that are injective on
the sorts, and D′ the subclass of D of those morphisms for which no operation symbol outside the image
of the signature morphism is allowed to have the sort in the image of the signature morphism (see Ex. 2.3).
Then we consider the (T ,D)-structured specifications (see Ex. 3.3) over MSA as base institution and the
(T ,D′)-structured specifications over the Horn clause sub-institution of MSA. Then in both situations we
have the following:

– From Ex. 4.2 we have that Φ preserves pushouts.

– From Ex. 4.5 we have the required compositionality property for the structuring.

– From Ex. 5.2 we know that I′ admitsD-normal forms.

Then from Thm. 5.1, through the interpolation results recalled in Ex. 2.2 and 2.3 we obtain the following
interpolation results for our examples:

1. The (T ,D)-structured specifications over MSA have the Craig-Robinson (T ,D) and (D,T )-interpolation.
2. The (T ,D′)-structured specifications over the Horn cause sub-institution of MSA have the Craig-

Robinson (D′,T )-interpolation.

5.4. Proof theory

Definition 5.3. Let I′ be an institution structured over I through Φ and let D be a designated class of
I-signature morphisms. We let `′ be the least entailment system for I′ such that for each I′-signature Σ′,
for each of itsD-normal forms (ϕ : Φ(Σ′)→ Σ, E), for each E′ ⊆ Sen′(Σ′) and each ρ ∈ Sen′(Σ′)

E′ `′Σ′ ρ if E ∪ ϕ(E′) |=Σ ϕ(ρ).

The following is an immediate consequence of Prop. 5.1.

Corollary 5.1. (I′, `′) is sound. Moreover, if I′ admitsD-normal forms then (I′, `′) is complete too.

Dfn. 5.3 together with Cor. 5.1 constitute the basis for a rather simple lifting of a sound and complete
proof theory from the base institution I to the abstract structured specifications (the institution I′). This
goes as follows. Assuming that I′ admitsD-normal forms, if we are interested to prove that ρ is a property
of an abstract structured specification Σ′, i.e. that

|=′Σ′ ρ

then we have to do the following:

1. Compute aD-normal form (ϕ : Φ(Σ′)→ Σ, E) for Σ′. For example, for the (T ,D)-structured specifi-
cations of Ex. 3.3, the literature (e.g. [14]) gives a simple algorithm for this, the result being a finitary
D-normal form.

2. Prove

E |=Σ ϕ(ρ)

by using a sound and complete proof theory of the base institution.
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Note that the computed normal form may be any since according to Prop. 5.1 any normal form has the same
effect. The important thing here is to have at least one normal form. This procedure corresponds to (some
of the) actual formal verification practices, for example implementations of the OBJ family of languages
(e.g. CafeOBJ [16]) compute tacitly such normal forms as flattenings of actual loose semantics modules.
When performing formal verifications, the users of these languages often invoke the open command which
(among other things) makes available for the proof process the set E of sentences of the normal form. In
such methodologies the reuse of proofs comes in forms of lemmas, which may be properties proved for
component parts of the specification and which are being brought to the actual context via the ‘translation’
property of entailment systems.

The core verification methodology for structured specifications discussed here is simpler than that
emerging from the fundamental work of [5], for example it does not require interpolation. The drawback
here is that the correspondence between the modular structure of proofs and that of specifications is lost.
The existence of simple proof systems via normal forms has been known in the literature and is explicitly
stated in [38]. Note though that all these rely upon a common important requirement: the existence of
normal forms, which is explicit in our approach and in [5] and implicit in [31].

6. Pushout-style Parameterization with Sharing

Pushout-style parameterization originate from work on Clear [7] and constitutes the basis of param-
eterized specification for the whole OBJ family of languages (i.e. OBJ3 [24], CafeOBJ [16], etc.) but
also for ACT TWO [19] and other languages. In [15] we have developed a semantics for pushout-style
parameterization that refines the existing one by considering the possible sharing between the body of the
parameterized module and the instance of the parameter, a situation that is more realistic in practice than the
current approaches based upon an assumption of non-sharing. That have been done within the framework
of concretely structured specifications á la [37], meaning one level of institution independence, i.e. only for
the underlying logical system. Here we upgrade the concept of parameterization from [15] to our axiomatic
framework of abstract structured specifications. This upgrade is non-trivial as it involves several novel
technical developments required by the higher level of abstraction, the end result being a highly general
and definitive theory of pushout-style parameterization that covers a wide range of concrete specification
frameworks.

The section is structured as follows:

1. It starts with a brief survey of some necessary concepts and results about inclusion systems.
2. It introduces the concepts of parameterized module and of instantiation of parameters.
3. Under some technical conditions it develops an alternative definition for the instantiation of parame-

ters.

6.1. Inclusion systems

Inclusion systems were introduced in [17] as a categorical device supporting an abstract general study
of structuring of specification and programming modules that is independent of any underlying logic. They
have been used in a series of general module algebra studies such as [14, 17, 23] but also for developing
axiomatizability [11, 14, 35] and definability [1] results within the framework of the so-called ‘institution-
independent model theory’ [14]. Inclusion systems capture categorically the concept of set-theoretic inclu-
sion in a way reminiscent of how the rather notorious concept of factorization system [3] captures categor-
ically the set-theoretic injections; however in many applications the former are more convenient than the
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latter. Here we first recall from the literature the basics of the theory of inclusion systems together with a
series of new concepts and results developed recently [15] and needed here.

The definition below can be found in the recent literature on inclusion systems (e.g. [14]) and differs
slightly from the original one of [17].

Definition 6.1 (Inclusion systems). 〈I, E〉 is an inclusion system for a category C if I and E are two
broad sub-categories such that

1. I is a partial order (with the ordering relation denoted by ⊆), and
2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I.

The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The
domain of the inclusion i f in the factorization of f is called the image of f and is denoted as Im( f ) or f (A)
when A is a domain of f . An inclusion i : A→ B may be also denoted simply by A ⊆ B.

The inclusion system

– is epic when all abstract surjections are epis,

– has unions when I has finite least upper bounds (denoted ∪),

– has intersections when I has greatest lower bounds (denoted ∩), and

– is distributive when it has unions and intersections that satisfy the usual distributivity rules.

In [10] it is shown that the class I of the abstract inclusions determines the class E of the abstract surjections.
In this sense, [10] gives an explicit equivalent definition of inclusion systems which uses only the class I
of the abstract inclusions. In [17] it has been shown that whenever a category with an inclusion system has
pullbacks the existence of unions implies the existence of the intersections that are obtained as the pullback
of the union.

A ∩ B
⊆ //

⊆

��

A

⊆

��
B

⊆
// A ∪ B

It is often useful that the intersection-union squares are not only pullbacks, but they are also pushouts.
Although this property is widely spread among inclusion systems of interest, it does not hold in general and
therefore at the level of abstract inclusion systems it has to be assumed when necessary.

The standard example of inclusion system is that from Set, with set theoretic inclusions in the role of the
abstract inclusions and the surjective functions in the role of the abstract surjections. It is easy to note that
this has all properties introduced by Dfn. 6.1 above. The literature contains many examples of inclusion
systems for the categories of the signatures and for the categories of models of various institutions from
logic or from specification theory. Due to lack of space let us here recall only a couple of them.

Example 6.1 (Inclusion systems for MSA signatures). Besides the trivial inclusion system that can be de-
fined in any category (i.e. identities as abstract inclusions and all arrows as abstract surjections) the category
of the MSA signatures admits also the following non-trivial inclusion systems:
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inclusion system abstract surjections abstract inclusions
ϕ : (S , F)→ (S ′, F′) (S , F) ⊆ (S ′, F′)

closed ϕst : S → S ′ surjective S ⊆ S ′

Fw→s = F′w→s for w ∈ S ∗, s ∈ S
strong ϕst : S → S ′ surjective S ⊆ S ′

F′w′→s′ =
⋃
ϕst(ws)=w′s′ ϕ

op(Fw→s) Fw→s ⊆ F′w→s for w ∈ S ∗, s ∈ S

Note that the strong inclusion systems for the MSA signatures is epic and distributive while the closed
one has none of these properties. Therefore, the inclusion system for MSA signatures that is relevant for
specification is the strong one.

The following abstract concept that captures a rather common situation in practice, including of course
MSA, has been introduced in [17].

Definition 6.2 (Inclusive institutions). An institution is inclusive when its category of signatures is en-
dowed with an inclusion system such that whenever Σ ⊆ Σ′ we have Sen(Σ) ⊆ Sen(Σ′).

In the following we recall some concepts and results about inclusion systems that are necessary for our
work here and that have been developed in [15].

Definition 6.3 (Disjoint objects). In a category with pullbacks and a designated inclusion system we say
that two objects A and B are disjoint if and only if the intersection-union square

A ∩ B
⊆ //

⊆

��

A

⊆

��
B

⊆
// A ∪ B

is pushout and A ∩ B is an initial object in the category.

Example 6.2. Note that disjoint objects in Set just mean ordinary disjoint sets, while two signatures (S 1, F1)
and (S 2, F2) are disjoint (with respect to the strong inclusion system for the MSA signatures) if and only if
S 1 ∩ S 2 = ∅. If we considered single sorted signatures then disjointness of signatures F1 and F2 means
(F1)n ∩ (F2)n = ∅ for each arity n ∈ ω.

Corollary 6.1. If A and B are disjoint then A ∪ B is the coproduct of A and B.

Proposition 6.1. If B′ ⊆ B and A and B are disjoint, then A and B′ are disjoint too.

Proposition 6.2. In a category with an epic inclusion system we consider a pushout square as below

A
⊆ //

f
��

B
g
��

A
⊆
// B
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such that f ; f = f . Let f = e f ; ( f (A) ⊆ A) and g = eg; (g(B) ⊆ B) with e f , eg abstract surjections. Then
f (A) ⊆ g(B) and the commutative squares below are pushout squares

A
e f //

⊆

��

f (A)

⊆

��

⊆ // A

⊆

��
B eg

// g(B)
⊆
// B

Definition 6.4 (Preservation of objects). In any category endowed with an inclusion system with intersec-
tions we say that an arrow f : A→ B preserves an object C when (A ∩C ⊆ A); f is an inclusion.

Definition 6.5 (Free extensions along inclusions). In any category endowed with an inclusion system with
signatures we say that an arrow f : A → A1 admits free extensions along an inclusion A ⊆ A′ when there
exist pushout squares of the form

A
⊆ //

f
��

A′

f ′
��

A1 ⊆
// A′1

such that every object preserved by f is also preserved by f ′.

The following is an important example from [15].

Proposition 6.3. In MSA every signature morphism ϕ : (S , F) → (S , F) admits free extensions along any
inclusion of signatures (S , F) ⊆ (S ′, F′).

Definition 6.6 (Idempotent-by-extension). In a category with pullbacks and endowed with an epic inclu-
sion system, an arrow f : A → A is called idempotent-by-extension when it is idempotent, i.e. f ; f = f ,
and there exists an object B such that A = B ∪ f (A) and B and f (A) are disjoint.

6.2. Parameters and their instantiations

Definition 6.7 (Parameterized I′-signatures). Let I′ be an institution structured over an inclusive insti-
tution I through Φ. A parameterized I′-signature, denoted Σ′(ι), consists of an I′-signature morphism
ι : P→ Σ′ such that Φ(ι) is inclusion Φ(P) ⊆ Φ(Σ′). Then P is called the parameter of the I′-signature and
Σ′ the body of the parameterized I′-signature.

In practice, the parameter P is an (isomorphic) renaming of a specification P0 such that Φ(P0) and Φ(P)
are disjoint. If we denote by p the corresponding isomorphism Φ(P0) → Φ(P), then under the notations
from Ex. 3.3 P = P0 ? p. The readers familiar with the OBJ family of languages may find that our Σ′(ι)
here corresponds there to Σ′(p :: P0). The reason for such isomorphic renamings is that while usually we
specify P0, we also need to make sure the parameter does not share with other parts of our specifications,
such as other parameters or specifications used for instantiations. A practical way to achieve this, which
is realized in some implementations of actual specification languages, is to rename the entities of P0 by
qualifying them by p. For example a sort s of P0 would appear in P as s.p. This ideology about what is a
parameterized specification module has been explicitly defined also in [23] within the context of the theory
oriented approach.
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In the literature (e.g. [38]) parameterized specifications are sometimes defined just as specification
morphisms P → Σ′. We think that this is much too general and does not capture precisely enough the
realities of parameterized specifications (especially does not support considering sharing), our additional
condition that Φ(P) ⊆ Φ(Σ′) filling this conceptual gap. Below we will see that one of the consequences
of our inclusion systems based approach is the possibility to consider sharing in a rather natural and clean
way.

Example 6.3. Let us consider the extension of the (T ,D)-structured specifications over MSA (see Ex. 3.3)
with another specification building operator for initial semantics, called ‘free’ in [14, 15, 38] (we skip here
the details of this operator). Let us fix T to be the class of all signature morphisms and D the class of
the identities (meaning that we actually eliminate the building operator | ). We use the CafeOBJ [16]
notation for writing our specifications.

Below, in the parameterized specification of semigroups ‘with powers’, namely SGˆ, the parameter
consists of the renaming of the specification SG of semigroups by S. In the CafeOBJ notation this is
denoted (S :: SG).

mod* SG {
[ Elt ]
op + : Elt Elt -> Elt { assoc }

}
mod! PNAT {
[ PNat ]
op 0 : -> PNat
op s : PNat -> PNat

}
mod* SGˆ (S :: SG) {

protecting(PNAT)
op ˆ : Elt PNat -> Elt
eq E:Elt ˆ s(N:PNat) = E + (E ˆ N) .

}

In the parameterized specification SGˆ, the sort of SG? S is Elt.S. In this example the specification SGˆ
is defined as (SG ? S) ∪ PNAT ∪ (Σ′, E′) where Σ′ is Φ(SG ? S) ∪ Φ(PNAT) (meaning the union of the
MSA signatures in the strong inclusion system) plus the operation ˆ and E′ consists of the only equation
specified by SGˆ. The modules SG and SGˆ are specified with loose semantics (mod*) while PNAT is
specified with initial semantics (mod!). This means the denotation of SG consists of all semigroups and the
denotation of PNAT consists of the models that are isomorphic to the Peano model of the natural numbers.
Also the denotation of SGˆ consists of the amalgamation of the semigroups with the Peano model of the
natural numbers and with the models that satisfy E′.

Definition 6.8 (Instantiation of parameters). Let I′ be an institution structured over an inclusive institu-
tion I through Φ such that

1. Φ lifts co-products,
2. Φ has a left adjoint Φ such that the units of the adjunctions are identities, and
3. the inclusion system of I-signatures has unions and intersections.
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Given a parameterized I′-signature ι : P → Σ′ and an I′-signature morphism v : P → Σ′1 such that Φ(P)
and Φ(Σ′1) are disjoint an instance Σ′(ι ⇐ v) of Σ′(ι) through v is defined as a pushout of I′-signature
morphisms as follows:

P + (Σ′ e Σ′1) ι+i //

v+i1
��

Σ′

��
Σ′1

// Σ′(ι⇐ v)

where

– Σ′ e Σ′1 denotes Φ(Φ(Σ′) ∩ Φ(Σ′1)),

– P+(Σ′eΣ′1) is a co-product of P and Σ′eΣ′1 obtained as a lifting of the disjoint union Φ(P)∪(Φ(Σ′)∩
Φ(Σ′1)) (that this is a disjoint union follows by Prop. 6.1; on the other hand Cor. 6.1 gives that this
disjoint union is co-product of I-signatures),

– i : Σ′ eΣ′1 → Σ’ and i1 : Σ′ eΣ′1 → Σ′1, resp., denote the I′-signature morphisms Φ(Φ(Σ′)∩Φ(Σ′1) ⊆
Φ(Σ′)); εΣ′ and Φ(Φ(Σ′) ∩ Φ(Σ′1) ⊆ Φ(Σ′1)); εΣ′1 , resp., where ε denotes the co-unit of the adjunction
between I-signatures and I′-signatures, and

– ι + i and v + i1, resp., are the corresponding unique morphisms given by the co-product property of
P + (Σ′ e Σ′1).

In the applications the existence of instances of parameterized I′-signatures may be guaranteed by the
existence of pushouts of I-signatures and by the lifting of pushouts by Φ. The uniqueness of co-limits up
to isomorphisms imply that instances of parameterized I′-signatures are also unique up to isomorphisms.
The condition about Φ of Dfn. 6.8 holds naturally in the applications as suggested by the example below.

Example 6.4. For the example of theories (Ex. 3.2) the left adjoint Φ maps any I-signature Σ to the theory
of the Σ-tautologies, i.e. (Σ, ∅•).

For the example of the (T ,D)-structured specifications (Ex. 3.3) Φ maps any I-signature Σ to the empty
presentation (Σ, ∅). This may be also extended to Ex. 3.4 of quotients of (T ,D)-structured specifications.

In the actual situations when P is the renaming via an isomorphism p of another specification P0 (i.e.
P = P0 ? p) we specify a specification morphism v0 : P0 → Σ′1, usually called view in the literature. In this
case of course the specification morphism v above is just p−1; v0 and the result Σ′(ι⇐ v) of the instantiation
may be denoted by Σ′(p⇐ v0); a convention that is used by the OBJ family of languages.

Example 6.5. In the continuation of Ex. 6.3 let us obtain the multiplication of the natural numbers from
the addition of the natural numbers by instantiating SGˆ by the signature morphism pnat-as-sg. Below
is the CafeOBJ code for this.

mod! PNAT+ {
protecting(PNAT)
op + : PNat PNat -> PNat
vars M N : PNat
eq M + 0 = M .
eq M + s(N) = s(M + N) .
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}
view pnat-as-sg from SG to PNAT+ {
sort Elt -> PNat,
op + -> +

}
mod* PNAT* {
protecting(SGˆ (S <= pnat-as-sg) * {op ˆ -> * })
eq M:PNat * 0 = 0 .

}

First let us note that for the case of our (T ,D)-structured specifications over MSA all technical conditions
of Dfn. 6.8 may be checked quite easily:

– that the category of the MSA signatures has all finite co-limits is well known from the literature (e.g.
[14, 42]) and Ex. 6.2 shows how these are lifted to co-limits of (T ,D)-structured specifications,

– we have already noted in Ex. 6.1 that the strong inclusion system for the MSA signatures has unions
and intersections, and

– Ex. 6.4 gives the left adjoint Φ.

Our example gets fitted to the notations of Dfn. 6.8 as follows:

– P is SG ? S,

– Σ′ is SGˆ and Σ′1 is PNAT+,

– v is S−1;pnat-as-sg, and

– Σ′eΣ′1 is the empty presentation (Φ(PNAT), ∅) and therefore P+(Σ′eΣ′1) is (Φ(SG?S)∪Φ(PNAT), ∅).

Then according to Dfn. 6.8 the instance SGˆ(S⇐ pnat-as-sig) is obtained by a pushout of specification
shown below:

SG

pnat-as-sg

��

(Φ(SG ? S) ∪ Φ(PNAT), ∅) ⊆ //

(S−1;pnat-as-sg)+iPNAT

��

SG

��
PNAT+ PNAT+ // SG(S⇐ pnat-as-sg)

where iPNAT denotes the specification ‘inclusion’ PNAT→ PNAT+. Note how PNAT is shared between the
body SGˆ of the parameterized specification and the instance PNAT+ of the parameter.

6.3. An alternative definition for parameter instantiation

In the following we provide another definition for parameter instantiations that under some technical
conditions on the structured institution is equivalent to Dfn. 6.8 but that may be technically more convenient
than Dfn. 6.8 in some situations (such as dealing with multiple parameters; see the last result of [15]).

Notation 6.1. Let I′ be an institution structured over an inclusive institution I through Φ such that
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1. Φ lifts pushouts,
2. Φ has a left adjoint Φ such that the units of the adjunctions are identities, and
3. each intersection-union square of I-signatures is pushout.

For any I′-signatures Σ′ and Σ′1 by Σ′ d Σ′1 we denote a lifting of the intersection-union square determined
by Φ(Σ′) and Φ(Σ′1) to a pushout of I′-signature morphisms as shown by the following diagram:

Φ(Σ′) ∩ Φ(Σ′1) ⊆ //

⊆

��

Φ(Σ′)

⊆

��

Σ′ e Σ′1
i //

i1
��

Σ′

i′

��
Φ(Σ′1)

⊆
// Φ(Σ′) ∪ Φ(Σ′1) Σ′1 i′1

// Σ′ d Σ′1

Note that Σ′ d Σ′1 in general is not unique, but rather denotes a class of isomorphic I′-signatures. However
we are going to be lax about this and when there is not danger of error Σ′ d Σ′1 will mean whatever member
of this class of I′-signatures.

Example 6.6. It is rather easy to check that within the framework of Ex. 3.2 the ‘union’ of theories intro-
duced by Prop. 6.4 is

(Σ, E) d (Σ1, E1) = (Σ ∪ Σ1, (E ∪ E1)•)

and that within the framework of Ex. 3.3 the ‘union’ of (T ,D)-structured specifications introduced by
Prop. 6.4 is

Σ′ d Σ′1 = (Σ′ ? (Φ(Σ′) ⊆ Φ(Σ′) ∪ Φ(Σ′1))) ∪ (Σ′1 ? (Φ(Σ′1) ⊆ Φ(Σ′) ∪ Φ(Σ′1))).

The following generalizes a corresponding result from [15] to our structured institutions framework.

Proposition 6.4. Let I′ be an institution structured over an inclusive institution I through Φ. In addition
to the hypotheses of Dfn. 6.8 let us also assume that

1. Φ lifts pushouts and
2. each intersection-union square of I-signatures is pushout.

Given a parameterized I′-signature ι : P → Σ′ and an I′-signature morphism v : P → Σ′1 such that Φ(P)
and Φ(Σ′1) are disjoint, then Σ′(ι⇐ v) may be defined as a pushout of I′-signature morphisms as follows:

P + Σ′1
(ι;i′)+i′1 //

v+1Σ′1
��

Σ′ d Σ′1

v′

��
Σ′1 ι′

// Σ′(ι⇐ v)

where

– P + Σ′1 is a co-product that lifts the disjoint union Φ(P) ∪ Φ(Σ′1), and

– (ι, i′) + i′1 and v + 1Σ′1
, resp., are the unique I′-signature morphism ‘extending’ (ι; i′), i′1 and v, 1Σ′1

,
resp., according to the universal property of the co-product P + Σ′1.
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Moreover, if in addition

3. the inclusion system for the I-signatures is epic, and
4. each idempotent-by-extension I-signature morphism admits free extensions along any I-signature

inclusion

then we may choose the instance Σ′(ι⇐ v) such that

Φ(Σ′1) ⊆ Φ(Σ′(ι⇐ v)).

Proof. For the proof of the first part of the proposition we let in the diagram below j, k and j1, k1, resp., be
the co-cone morphisms of the co-products P + (Σ′ e Σ′1) and P + Σ′1, resp.

Σ′ e Σ′1
j //

i1
��

P + (Σ′ e Σ′1)

1P+i1
��

P
koo

k1wwoooooooooooooo

Σ′1 j1
// P + Σ′1

The I′-signature morphism 1P + i1 is defined to be the unique morphism making the diagram commute; this
is given by the universal property of the the co-product P + (Σ′ e Σ′1).

In the diagram below

Σ′ e Σ′1

i

((j //

i1

��

A©

P + (Σ′ e Σ′1)

1P+i1

��

ι+i //

B©

Σ′

i′

��
Σ′1 j1

// P + Σ′1 (ι;i′)+i′1
//

C©v+1Σ′1

��

Σ′ d Σ′1

��
Σ′1 ι′

// Σ′(ι⇐ v)

by a general categorical argument we may establish that A© is a pushout square and since A© + B© is the
pushout square defining Σ′ d Σ′1 by a well know general categorical property about gluing pushout squares
it follows that B© is a pushout square. By the same general categorical property it now follows that B© + C©
is pushout square if and only if C© is pushout square, which proves the first part of the proposition.

For the second part of the proposition let us first establish that the I-signature morphism below is
idempotent-by-extension.

Φ(P) ∪ Φ(Σ′1)
Φ(v)+1Σ′1 // Φ(Σ′1) ⊆ // Φ(P) ∪ Φ(Σ′1)

Let us denote this morphism by f . The idempotence of f is immediate. We also have that f (Φ(P) ∪
Φ(Σ′1)) = Φ(Σ′1) since e f = Φ(v) + 1Σ′1

(because this is retract and from [17] we know that any retract is
abstract surjection). Hence Φ(P)∪Φ(Σ′1) is the disjoint union of f (Φ(P)∪Φ(Σ′1)) and Φ(P) which shows f
idempotent-by-extension.
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From Prop. 6.2 (with Φ(P) ∪Φ(Σ′1) in the role of A, Φ(Σ′) ∪Φ(Σ′1) in the role of B, Φ(Σ′1) in the role of
f (A), and Σ in the role of g(B)) we obtain the following pushout squares:

Φ(P) ∪ Φ(Σ′1)
Φ(v)+1Σ′1 //

⊆

��

Φ(Σ′1)

⊆

��

⊆ // Φ(P) ∪ Φ(Σ′1)

⊆

��
Φ(Σ′) ∪ Φ(Σ′1) eg

// Σ
⊆

// Φ(Σ′) ∪ Φ(Σ′1)

The conclusion of the proposition now follows by lifting the left hand pushout square above to a pushout
square of I′-signature morphisms. 2

Example 6.7. The instance SGˆ(S⇐ pnat-as-sig) of Ex. 6.5 may be obtained by applying Prop. 6.4
as follows. First let us note that the additional conditions of Prop. 6.4 may be checked rather easily. For
example the existence of free extensions of MSA idempotent-by-extension signature morphisms is given
by Prop. 6.3; note however that Prop. 6.3 is more general since it requires a condition much weaker than
idempotency-by-extension.

Then according to the first part of Prop. 6.4 the instance SGˆ(S⇐ pnat-as-sig) may be obtained by
a pushout of specifications as shown below:

SG

pnat-as-sg

��

(SG ? S) + (PNAT+) ⊆ //

(S−1;pnat-as-sg)+1PNAT+

��

(SG) ∪ (PNAT+)

��
PNAT+ PNAT+ // SG(S⇐ pnat-as-sg)

Moreover, the second part of Prop. 6.4 allows us to choose the above pushout such that

Φ(PNAT+) ⊆ Φ(SG(S⇐ pnat-as-sg)).

7. Conclusion and Further Research

In this paper we have developed a theory of ‘abstract structured specifications’ involving two levels of
institution independence and which includes among its instances the so-called theory or property oriented
and the model oriented approaches to structuring specifications. Moreover, in the case of the latter approach
our upper level of institution independence means that we may deal with the structuring of specifications
without any reference to particular sets of specification building operators. Within such framework we have
developed concepts and results about co-limits of abstract specifications, model amalgamation, normal
forms, interpolation, compactness, and pushout-style parameterization with sharing.

We think that our proposed axiomatic approach involving two levels of institution independence con-
stitutes a proper framework for the study and understanding of structuring and modularization, hence we
expect the development of other modularization concepts and results within our framework. For example,
it seems quite straightforward to lift the theory of multiple parameters recently developed in [15] to our
framework of ‘abstract structured specifications’, including the equation

Σ′(ι1 ⇐ v1)(ι2 ⇐ v2) � Σ′(ι1 + ι2 ⇐ v1 + v2)
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representing the isomorphism between the sequential and the parallel instantiation of multiple parameters.
Particular open research questions are the development of a proof theory that supports reusability of

verifications in the style of [5] and to explore the relationship between our approach and the so-called
‘development graphs’ of [31], including proof theoretic aspects.
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[23] Joseph Goguen and Grigore Roşu. Composing hidden information modules over inclusive institutions. In From Object-
Orientation to Formal Methods, volume 2635 of Lecture Notes in Computer Science, pages 96–123. Springer, 2004.
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