
I N S T I T U T I O N T H E O RY A N D A P P L I C AT I O N S

R Ă Z VA N D I AC O N E S C U

Habilitation

Simion Stoilow Institute of Mathematics of the Romanian Academy

January 2014 –

S U M M A RY

Institution theory is a very general mathematical study of formal logical systems, with emphasis on

semantics, that is not committed to any particular concrete logical system. It is based upon a mathematical

definition for the informal notion of logical system, called institution, which includes both syntax and

semantics as well as the relationship between them. Because of its very high level of abstraction this

definition accommodates not only well established logical systems but also very unconventional ones

and moreover it has served and it may serve as a template for defining new ones. Institution theory was

introduced by Joseph Goguen and Rod Burstall in the late seventies as a response to the explosion in the

population of logical systems in use in formal specification theory and practice and it has become part of

the universal logic trend which approaches logic from a relativistic, non-substantialist perspective, quite

different from the common reading of logic, both in philosophy and in exact sciences.

Institution theory is generally used in two main ways, as mathematical foundations for computer science

studies (especially formal specification, but not only) and as an abstract approach to logical model theoretic

studies. Between these two trends there is a strong interdependency, for example if the underlying logic

enjoys good model theoretic properties then the respective language has good specification features. In this

habilitation thesis we present authored developments over the past two decades in the institution theoretic

approach to model theory and to formal specification.

The institution theoretic approach to model theory is based upon the development of most important

conventional model theory methods and concepts at the level of abstract institutions. These include semantics

of logical connectives and quantifiers, the methods of diagrams, of ultraproducts, of saturated models,

concepts of axiomatizability, interpolation, definability. Important results in these areas are developed,

sometimes representing high generalisations of well established results, and some of them leading to

new results even in well extensively studied topics in concrete conventional logic. On the other hand all

these provide a very convenient path to developing model theories to unconventional less studied concrete

logical systems, including modal and many valued logics but not only. We also present proof theoretic

developments within institution theory which play an important role in the institution theoretic approach to

completeness results. An alternative powerful way to establishing logical results is of borrowing them across

theoroidal comorphisms, which are encoding mappings between institutions. Important results obtained

by borrowing include interpolation and definability theorems, existence of saturated models, etc. We also

present a hierarchical way to logic combination that we apply to obtain many-valued or modal extensions of

logical systems, as well as a combination between specification logics within the context of the semantics

of the CafeOBJ language.

On the algebraic specification side, institutions provide a solid conceptual framework for the definition of

coherent hidden algebra, the logic underlying the behavioural specification paradigm of CafeOBJ. The

institution theoretic studies of the structuring of specifications or programs include here an axiomatic ap-

3

proach to structured specifications, module algebra studies, parameterized specifications. Due to the special

compositionality properties of hidden algebra signatures, the module algebra of behavioural specification

presents some particular problems. Specification over logically heterogeneous environments represents an

important modern trend. Its foundations are given by a Grothendieck construction on institutions. Other

developments presented are institution theoretic foundations for logic programming and for structural

induction as a basis for formal verification of inductive properties. Many of the theoretical developments

presented here have been motivated by the design of the algebraic specification language CafeOBJ, its

main features being also presented here.

4

R E Z U M AT

Teoria institut,iilor este un studiu matematic foarte general al sistemelor logice formale, cu accent pe

semantică, s, i care nu este legat de nici un sistem logic particular. Ea se bazează pe o definit,ie matematică

pentru not,iunea informală de sistem logic, numită institut,ie, care include atât sintaxa cât s, i semantica,

precum s, i relat,ia dintre acestea. Din cauza nivelului foarte ridicat de abstractizare, această definit,ie poate

curpinde nu numai sisteme logice bine stabilite, dar, de asemenea, s, i sisteme logice neconvent,ionale s, i în

plus a servit s, i serves, te ca s, ablon pentru definirea altelor noi. Teoria institut,iilor a fost introdusă de către

Joseph Goguen s, i Rod Burstall la sfârs, itul anilor s, aptezeci, ca răspuns la explozia de sisteme logice utilizate

în teoria s, i practica specificat,iilor formale, între timp devenind parte din curentul logicii universale, curent

care abordează logica din perspectivă relativistă, non-substant,ialistă, diferită de abordarea comună a logicii

atât în filozofie cât s, i în s, tiint,ele exacte.

Teoria institut,ilor este folosită în general în două moduri principale, ca fundamente matematice pentru

studii în informatică (în special în domeniul specificat,iilor formale, dar nu numai), s, i ca o abordare abstractă

a studiilor de teoria modelelor. Între aceste două tendint,e există o interdependent, ă puternică, de exemplu, în

cazul în care logica de bază se bucură de proprietăt,i bune de teoria modelelor, atunci limbajul respectiv are

caracteristici bune de specificat,ii. În această teză de abilitare prezentăm dezvoltări din ultimele două decenii

în abordarea institut,ională a teoriei modelelor s, i a specificat,iilor formale.

Abordarea institut,ională a teoriei modelelor se bazează pe dezvoltarea celor mai importante metode s, i

concepte din teoria convent,ională a modelelor la nivelul institut,iilor abstracte. Acestea includ semantica

conectorilor logici s, i ai cuantificatorilor, metoda de diagramelor, a ultraproduselor, a modelelor saturate,

concepte de axiomatizabilitate, interpolare, definabilitate. Sunt dezvoltate rezultate importante în aceste

domenii, acestea uneori reprezentând generalizări înalte ale unor rezultate bine stabilite, iar unele dintre

acestea conducând la rezultate noi chiar s, i în cazul unor probleme studiate extensiv în logica concretă

convent,ională. Pe de altă parte, toate acestea oferă o cale foarte convenabilă pentru dezvoltarea de teorii

ale modelelor pentru sisteme logice concrete neconventionale mai put,in studiate, inclusiv logici modale

s, i multi-valuate, s, i nu numai. Deasemeni prezentăm dezvoltări de teoria demonstrat,iei care joacă un rol

important în abordarea institut,ională a rezultatelor de completitudine. O modalitate alternativă eficientă

de stabilire a rezultatelor logice este împrumutul de-a lungul comorfismelor theoroidale, care reprezintă

codări între institut,ii. Rezultatele importante obt,inute prin împrumuturi includ teoreme de interpolare s, i

definabilitate, existent,a de modele saturate, etc. Deasemeni se prezintă o metodă de combinat,ie ierarhică

de sisteme logice, aplicată pentru obt,inerea sistematică de extensii multi-valuate s, i de extensii modale a

sistemelor logice, precum s, i combinarea de sisteme logice de specificat,ii în contextul semanticii limbajului

CafeOBJ.

Pe partea de specificat,ii algebrice, institut,iile oferă un cadru conceptual solid pentru definirea de logicii

algebrelor cu sorturi ascunse, logică care se află la baza paradigmei de specificat,ii comportamentale în

5

CafeOBJ. Studiile institut,ionale de structurare a specificat,iilor s, i programelor prezentate aici includ o

abordare axiomatică a specificat,iilor structurate, studii de algebre de module, de parametrizări de specificat,ii.

Datorită proprietăt,ilor speciale de compozit,ionalitate a signaturilor de algebre cu sorturi ascunse, algebra

respectivă de module ridică nis, te probleme particulare. Specificat,iile peste medii eterogene logic reprezintă

o tendint, ă modernă importantă. Fundamentele sale sunt date de o construct,ie Grothendieck peste institut,ii.

Alte dezvoltări prezentate sunt abordări institut,ionale de semantică denotat,ională pentru programarea

logică, s, i de induct,ie structurală ca o bază pentru verificarea formală a proprietăt,ilor inductive. Multe

dintre evolut,iile teoretice prezentate aici sunt motivate de proiectarea limbajului de specificat,ii algebrice

CafeOBJ, principalele sale caracteristici fiind, de asemenea, prezentate aici.

6

AC K N OW L E D G E M E N T

My deepest gratitude is towards my Professor, late Joseph Goguen, who brought me up as scientist, who

taught me institution theory, and who put a lot of trust into my thinking. Secondly, I have benefited a lot

from collaboration over many years with a number of colleagues, which I consider all to be also my friends.

They have been supporting my work in a wide variety of ways, many of them being co-authors of some of

my publications. This list includes Marc Aiguier, Jean-Yves Beziau, Rod Burstall, Carlos Caleiro, Kokichi

Futatsugi, Daniel Găină, Shuusaku Iida, Alexandre Madeira, Manuel-Antonio Martins, Till Mossakowski,

Kazuhiro Ogata, Marius Petria, Andrei Popescu, Grigore Ros, u, Petros Stefaneas, Andrzej Tarlecki, Ionut,
T, ut,u, Uwe Wolter, etc. Thirdly I would like to thank to so many anonymous referees of my peer-reviewed

publications. Their very dedicated and competent work represents a crucial contribution to my scientific

achievements; in fact I consider them as hidden co-authors of my works. The last but not the least, I am

indebted to my SNSB students from 2002 to 2011 with whom I learned a lot.

7

C O N T E N T S

I Scientific Achievements 11

1 L O G I C A N D M O D E L T H E O RY 15

1.1 Institution-independent model theory 15

1.1.1 The method of diagrams 15

1.1.2 Internal logic 16

1.1.3 The method of ultraproducts 17

1.1.4 Saturated models 19

1.1.5 Axiomatizability 20

1.1.6 Interpolation 20

1.1.7 Definability 22

1.1.8 Proof systems for institutional logic 23

1.2 Logic combination 24

1.2.1 Possible worlds semantics in abstract institutions 24

1.2.2 Institutional semantics for many valued logics 26

1.2.3 Hidden preordered algebra 28

1.3 Logic by translation 29

1.3.1 Borrowing interpolation 30

1.3.2 Borrowing definability 32

1.3.3 Borrowing saturated models 32

1.3.4 Encoding partial algebras as total algebras 33

1.3.5 Encoding hybridized institutions into first-order logic 35

1.4 Model theory for unconventional and non-classical logics 38

1.4.1 Initial semantics in many valued logic 39

1.4.2 Model theory for abstract many valued logics 39

1.4.3 Ultraproducts for possible worlds semantics 40

1.4.4 Quasi-varieties and initial semantics in hybridized institutions 41

1.4.5 Stratified institutions 42

2 A L G E B R A I C S P E C I FI C AT I O N 43

2.1 Behavioural specification 43

2.1.1 Coherent hidden algebra 44

2.1.2 Hierarchical object composition in behavioural specification 46

2.2 Modularity/structuring 51

9

2.2.1 Module algebra 52

2.2.2 Axiomatic approach to structured specifications 58

2.2.3 Parameterized specifications 62

2.2.4 Structuring behavioural specifications 66

2.3 Heterogeneous specification 70

2.3.1 Grothendieck institutions 71

2.3.2 Lifting local properties to global properties 73

2.3.3 Grothendieck inclusion systems 76

2.4 CafeOBJ 78

2.4.1 Equational specification and programming 79

2.4.2 Behavioural specification 79

2.4.3 Rewriting logic specification 80

2.4.4 Module system 80

2.4.5 Type system and partiality 81

2.4.6 Grothendieck institutional semantics 81

2.5 Other achievements 82

2.5.1 Herbrand theorems for abstract logic programming 82

2.5.2 Abstract structural induction 84

II Future Evolution 89

3 S C I E N T I FI C E VO L U T I O N 91

3.1 General scientific evolution 91

3.2 Specific coordinates 92

4 E T H I C S 95

10

Part I

Scientific Achievements

11

I N S T I T U T I O N S

Institution theory is a categorical abstract model theory that arose about three decades ago [73] as a response

to the explosion of the population of logical systems used for formal software specification. Its original aim

was to develop as much computing science as possible in a general, uniform way, independently of particular

logical systems. This has been achieved to an extent even greater than originally envisaged. The theory

of institutions became the most fundamental mathematical tool underlying algebraic specification theory

(in its wider meaning) [137], also being increasingly used in other areas of computer science. Moreover,

institution theory is a major trend in the so-called ‘universal logic’ (in the sense envisaged by Jean-Yves

Béziau [7, 8]) which is considered by many a true renaissance of mathematical logic. A lot of model theory

has been gradually developed at the level of abstract institutions (see [38]). A relatively recent survey of the

vast area of institution theory is [48].

The starting concept of institution theory is the formal definition of a logical system; this includes the

syntax, the semantics and the satisfaction relation between them. It plays the same role as, for example, the

definition of group plays for group theory. Although the definition of group is very simple, group theory is a

vast sophisticated mathematical area. The same with the definition of institution and institution theory.

Definition 0.1. [73] An institution is a tuple (Sign,Sen,Mod, (|=Σ)Σ∈|Sign||) that consists of

• a category Sign whose objects are called signatures,

• a functor Sen : Sign→ Set (to the category of sets) giving for each signature a set whose elements

are called sentences over that signature,

• a (contravariant) functor Mod : (Sign)op→ CAT (to the ‘category’ of categories), giving for each

signature Σ a category whose objects are called Σ-models, and whose arrows are called Σ-(model)

homomorphisms, and

• a relation |=Σ ⊆ |Mod(Σ)|×Sen(Σ) for each Σ ∈ |Sign|, called the satisfaction relation,

such that for each morphism ϕ : Σ→ Σ′ ∈ Sign, the Satisfaction Condition

M′ |=Σ′ Sen(ϕ)(ρ) if and only if Mod(ϕ)(M′) |=Σ ρ (1)

holds for each M′ ∈ |Mod(Σ′)| and ρ ∈ Sen(Σ).

The literature (e.g. [38, 137]) shows myriads of logical systems from computing or from mathematical

logic captured as institutions. In fact, an informal thesis underlying institution theory is that any ‘logic’ may

be captured by the above definition. While this should be taken with a grain of salt, it certainly applies to

any logical system based on satisfaction between sentences and models of any kind.

Concerning notations, this document in general follows a certain pattern of institution and category

theoretic notations that can be found in the author’s publications, such as [38]. Categorical composition is

written in diagrammatic notation. For any signature morphism in an institution if M = Mod(ϕ)(M′), we

denote Mod(ϕ)(M′) by M�ϕ and may we say that M is the ϕ-reduct of M′ and that M′ is a ϕ-expansion of

M. Also we may abbreviate Sen(ϕ)(ρ) simply by ϕ(ρ). We may use the also use the following notations

13

– for any E ⊆ Sen(Σ), E∗ denotes {M ∈ |Mod(Σ)| |M |=Σ ρ for each ρ ∈ E};

– for any E,E ′ ⊆ Sen(Σ), E |= E ′ denotes E∗ ⊆ E ′∗ and E |=| E ′ denotes E∗ = E ′∗;

– for any E ⊆ Sen(Σ), Mod(Σ,E) is the full subcategory of Mod(Σ) whose objects are in E∗.

14

1
L O G I C A N D M O D E L T H E O RY

1.1 I N S T I T U T I O N - I N D E P E N D E N T M O D E L T H E O RY

An important trend within institution theory is motivated by model theory research. Several important

model theory methods have been developed at the level of abstract institutions and a lot of very general

and yet deep results have been developed. This has resulted in a very abstract form of model theory, often

refereed to as institution-independent model theory or synonymously institutional model theory. Many

of the institution-independent model theory results constitute high generalisation of well known results

from conventional concrete model theory and can be used for obtaining easily corresponding results in less

conventional logical systems. The same can be said for model theoretic concepts.

In this chapter we present achievements by the author in this area, many of them being collected in the

monograph [38], which is widely considered as the authoritative reference of institution-independent model

theory.

1.1.1 The method of diagrams

In conventional model theory the method of diagrams is one of the most important methods. The institution-

independent method of diagrams pervades the development of a lot of model theoretic results at the level of

abstract institutions, many of these being presented in [38]. In the form introduced in [32] it is significantly

simpler than a previously introduced one in [141, 142].

Definition 1.1 (The method of diagrams [32]). An institution I has diagrams when for each signature Σ

and each Σ-model M, there exists a signature ΣM and a signature morphism ιΣ(M) : Σ→ ΣM , functorial

in Σ and M, and a set EM of ΣM-sentences such that Mod(ΣM,EM) and the comma category M/Mod(Σ)

are naturally isomorphic, i.e. the following diagram commutes by the isomorphism iΣ,M that is natural in Σ

and M

Mod(ΣM,EM)
iΣ,M //

Mod(ιΣ(M)) ((

(M/Mod(Σ))

forgetful
��

Mod(Σ)

The signature morphism ιΣ(M) : Σ→ ΣM is called the elementary extension of Σ via M and the set EM of

ΣM-sentences is called the diagram of the model M.

The existence of institution theoretic diagrams (in the sense of Dfn. 1.1) in concrete logical systems is

a mark of coherence between the syntax (the kind of sentences involved) and the semantics (the concept

15

of model morphism employed). Since [32] this institution theoretic concept of diagrams has been used

rather intensively in many institution-independent model theory and computer science works including

existence of co-limits of models [32], interpolation [91], definability [129], Tarski’s elementary chain

theorem [90], axiomatizability [38], saturated models [61], initial semantics [38, 88], abstract constraint

logic programming [47], etc.

1.1.2 Internal logic

The semantics of Boolean connectives (such as ∧, ¬, etc.) as well as of quantifiers (based on models reducts

along signature morphisms) has been introduced earlier in the institution theory literature by Tarlecki

[140]. In order to complete the semantics of first order sentences at the level of abstract institutions in [31]

two concepts are introduced and developed: basic sentences that cover the atomic sentences in concrete

institutions, and representable signature morphisms that represent a categorical capture of the first order

property of the quantifiers.

Definition 1.2 (Basic sentence). [31] Given a signature Σ in any institution, a Σ-sentence e is basic if there

exists a Σ-model Me, called the basic model of e such that for each Σ-model M, M |=Σ e if and only if there

exists a model homomorphism Me→M. The sentence e is epic basic when the homomorphism Me→M is

an epi.

Definition 1.3 (Representable signature morphism). [31] In any institution, a signature morphism χ : Σ→
Σ′ is representable if and only if there exists a Σ-model Mχ (called the representation of χ) and an

isomorphism iχ of categories such that the following diagram commutes:

Mod(Σ′)
iχ //

Mod(χ) ''

(Mχ/Mod(Σ))

forgetful
��

Mod(Σ)

In [38] several important compositionality properties of representable signature morphisms are developed.

Often the finiteness of the quantification plays an important role. This has been defined in [31] for

representable signature morphisms and extended in [38] to quantifications by any signature morphisms.

Definition 1.4. [38] A signature morphism χ : Σ→ Σ′ is finitary when for each co-limit (µi)i∈I of a

directed diagram (fi, j)(i< j)∈(I,≤) of Σ-models

Ai

µi ��

fi, j // A j

µ j��
A

and for each χ-expansion A′ of A

– there exists an index i ∈ I and a χ-expansion µ′i : A′i→ A′ of µi, and

16

– any two different expansions as above can be ‘unified’ in the sense that for any χ-expansions µ′i and µ′k
as above there exists an index j ∈ I with i,k < j, a χ-expansion µ′j as above and f ′i, j, f ′k, j χ-expansions

of fi, j, fk, j such that the following commutes

A′i
f ′i, j //

µ′i ��

A′j
µ′j
��

A′k
f ′k, joo

µ′k��
A′

Fact 1.5. A representable signature morphism χ : Σ→ Σ′ is finitary if and only if its representation Mχ is

finitely presented.

Substitutions in institution theory are given by the following concept introduced in [33] within the context

of an abstract approach to the denotational semantics of logic programming and developed in extenso in

[38]. This has been further used and refined in [44] within the context of a general institution theoretic

approach to structural induction.

Definition 1.6 (Substitutions). [33] For any signature Σ of an institution, and any signature morphisms

χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2, a Σ-substitution ψ : χ1→ χ2 consists of a pair (Sen(ψ),Mod(ψ)), where

– Sen(ψ) : Sen(Σ1)→ Sen(Σ2) is a function, and

– Mod(ψ) : Mod(Σ2)→Mod(Σ1) is a functor

such that both of them preserve Σ, i.e., the following diagrams commute:

Sen(Σ1)
Sen(ψ) // Sen(Σ2) Mod(Σ1)

Mod(χ1) $$

Mod(Σ2)
Mod(ψ)oo

Mod(χ2)zz
Sen(Σ)

Sen(χ1)

cc

Sen(χ2)

;;

Mod(Σ)

and such that the following satisfaction condition holds:

Mod(ψ)(M2) |= ρ1 if and only if M2 |= Sen(ψ)(ρ1)

for each Σ2-model M2 and each Σ1-sentence ρ1.

For any class D of signature morphisms in an institution, let us say that a D-substitution is just a

substitution between signature morphisms in D .

Other uses of this concept of substitution include works on completeness [24, 89], on institution theoretic

semantics of services [26], etc.

1.1.3 The method of ultraproducts

The method of ultraproducts is a most important and remarkably powerful one in conventional model theory

[21]. This has been realised at the abstract level of institution theory beginning with [31], on the basis of

the previously established concept of categorical ultraproduct (introduced perhaps first time in [109]) and

17

applied to the categories of models Mod(Σ) in institutions. Let us consider a family (Mi)i∈I of Σ-models

in an institution and a filter F on I. For any J ∈ F let us denote the direct product of (Mi)i∈J by MJ . If

Mod(Σ) has direct products then for any J ⊆ J′ in F there is a canonical projection pJ′⊇J : MJ′ → MJ .

Then any colimit µ = {µJ : MJ→MF | J ∈ F} of the diagram {pJ′⊇J | J ⊆ J′,J ∈ F} is called an F-product

of (Mi)i∈I . When F is ultrafilter, F-products are called ultraproducts.

The foundation of the ultraproducts method in first order model theory is constituted by a result in [105]

which gives a ‘preservation’ property for the satisfaction by ultraproducts of models that is common to all

sentences in first order logic. This has been highly generalised in institution theory in [31] by decomposing

it into a puzzle of general preservation results across Boolean connectors and quantifiers.

Definition 1.7. [31] For a signature Σ in an institution, for each filter F ∈ F over a set I and for each

family {Ai}i∈I of Σ-models, a Σ-sentence e is

• preserved by F -factors if AF |=Σ e implies {i ∈ I | Ai |=Σ e} ∈ F, and

• preserved by F -products if {i ∈ I | Ai |=Σ e} ∈ F implies AF |=Σ e.

When F is the class of all ultrafilters, preservation by F -factors, respectively products, is called preservation

by ultrafactors, respectively ultraproducts.

Theorem 1.8 (Fundamental ultraproducts theorem). [31] In any institution:

1. The basic sentences are preserved by all filtered products.

2. The finitary basic sentences are preserved by all filtered products and all filtered factors.

For any class F of filters closed under reductions:

3. The sentences preserved by F -products are closed under existential χ-quantification, when χ pre-

serves F -filtered products.

4. The sentences preserved by F -factors are closed under existential χ-quantification, when χ lifts

F -filtered products.

5. The sentences preserved by F -factors and the sentences preserved by F -filtered products are both

closed under conjunction.

6. The sentences preserved by F -products are closed under infinite conjunctions.

7. If a sentence is preserved by F -factors then its negation is preserved by F -products.

And finally, if we further assume that F contains only ultrafilters:

8. If a sentence is preserved by F -products then its negation is preserved by F -filtered factors.

9. The sentences preserved by both F -products and factors are closed under negation.

Concrete instances of this result and of some of its extensions provide for free an ultraproducts method

for a variety of logical systems, including unconventional ones for which such development was otherwise

difficult to envisage.

An immediate important general application of the general institution theoretic ultraproducts is compact-

ness in abstract institutions [31, 38].

18

Proposition 1.9. [31] Any institution in which each sentence is preserved by ultraproducts is model

compact. Moreover if in addition the institution has negations then it is compact too.

This remarkably general result when adjoined to the institution theoretic generalisation of the fundamental

ultraproducts result of [105] given by Thm. 1.8 gives a very general compactness result, which can be

instantiated with little effort to a wide variety of concrete logical systems. The efficiency of this path to

compactness has become transparent for example in [62] in the case of a wide class of quantified modal

systems.

Other applications of institution theoretic ultraproducts include a general ultrapower embedding theorem

[31, 38], a general isomorphism criterion for finitely sized models [38], an institution theoretic generalization

of the famous Keisler-Shelah isomorphism theorem [61], general preservation and axiomatizability results

[38], and interpolation [34] and definability [129] by axiomatizability.

1.1.4 Saturated models

A lot of deep results in model theory can be reached by the method of saturated models. The follow

definition of saturated models in abstract institution was given in [61].

Definition 1.10 (Saturated model). [61] For each signature morphism χ : Σ→ Σ′, a Σ-model M χ-realizes

a set E ′ of Σ′-sentences, if there exists a χ-expansion M′ of M which satisfies E ′. It χ-realizes finitely E ′ if it

realizes every finite subset of E ′.

A Σ-model M is (λ,D)-saturated for λ a cardinal and D a class of signature morphisms when for each

ordinal α < λ and each (α,D)-chain (Σi
ϕi, j //Σ j)i< j≤α with Σ0 = Σ, for each (Σα

χ //Σ′) ∈D, each

ϕ0,α-expansion of M χ-realizes any set of sentences if and only if it χ-realizes it finitely.

An institution has D-saturated models if for any cardinal λ and for each Σ-model M there exists a

Σ-homomorphism M→ N such that M is elementary equivalent to N and N is (λ,D)-saturated.

Two of the most useful properties of saturated models are their existence and their uniqueness [21]. The

existence means that each model can be elementarily extended to a saturated model, while uniqueness

holds when the model is ‘sufficiently’ small. Both properties have been developed at the level of abstract

institutions in [61].

An important class of applications can be developed in conjunction with the method of ultraproducts. In

[61] we have lifted at the level of abstract institutions an important result from conventional model theory

[21], namely that for certain ultrafilters, the corresponding ultraproducts of models are always saturated.

Assuming the Generalized Continuum Hypothesis, this leads to one of the most beautiful applications of

saturated models to first order model theory, the Keisler-Shelah isomorphism theorem [21] saying that

“two models are elementary equivalent if and only if they have isomorphic ultrapowers”. Apart from its

theoretical significance it has several applications, such as to axiomatizability and to interpolation. In [61]

this is also developed at the level of abstract institutions.

19

1.1.5 Axiomatizability

In [34] axiomatizability is used as a cause for interpolation, and in [129] as a cause for definability. These are

based upon the following institution theoretic generalization of Birkhoff style axiomatizability introduced

in [34] (to which the notorious Birkhoff axiomatizability theorem in equational logic is a concrete instance).

Definition 1.11 (Birkhoff institution). [34] (Sign,Sen,Mod, |=,F ,B) is a Birkhoff institution when

• (Sign,Sen,Mod, |=) is an institution such that for each signature Σ ∈ |Sign| the category Mod(Σ) of

Σ-models has F -filtered products,

• F is a class of filters with {{∗}} ∈ F , and

• BΣ ⊆ |Mod(Σ)|×|Mod(Σ)| is a binary relation for each signature Σ ∈ |Sign|, which is closed under

isomorphisms, i.e., (BΣ;∼=Σ) = BΣ = (∼=Σ;BΣ),

such that

M∗∗ = B−1
Σ (F M)

for each signature Σ and each class of Σ-models M ⊆ |Mod(Σ)|, and where F M is the class of all

F-filtered products of models from M for all filters F ∈ F .

In [34, 38] numerous concrete instances of this concept of axiomatizability are discussed. The monog-

raphy [38] develops also general axiomatizability results for varieties and quasi-varieties of models, that

constitute direct generalizations of corresponding results by Birkhoff [11] and Malcev [107], respectively.

1.1.6 Interpolation

Interpolation is one of the most studied properties in mathematical logic [139, 21], a recent monography

dedicated to interpolation in modal and intuitionistic being [68]. Interpolation has numerous applications

in computing science especially in formal specification theory [6, 59, 64, 63, 147, 14], but also in data

bases (ontologies) [100], automated reasoning [123, 125], type checking [99], model checking [111],

and structured theorem proving [3, 110]. In institution theory interpolation is considered in a form that

generalizes several aspects of its common formulation. First, the signature inclusions that appear implicitly

in the formulation of interpolation are abstracted to arbitrary signature morphisms. Then the common

formulation of interpolation corresponds to the situation when the institution comes with the signature

morphisms restricted to inclusions only. However the generalisation of interpolation to arbitrary signature

morphism allows in the concrete situations for consideration of signature morphisms that may rename or

even collapse syntactic entities. While such extended form of interpolation may be unusual in conventional

logic, it is used in specification theory. A second generalisation of the concept of interpolation replaces

individual sentences by finite sets of sentences. While in logics that have conjunction (such as classical

propositional, first order logics, etc.) this does not mean anything, it is very meaningful in logics lacking

20

conjunctions, such as equational or Horn clause logics. In the latter ones interpolation may fail artificially

due to unrealistic single sentence style formulation. These get us to the following definition of interpolation

introduced in [34].

Definition 1.12 (Interpolation). [34] A commuting square of signature morphisms like below

Σ0
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2

θ2

// Σ′

is a Craig interpolation square when for any finite sets E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2) such that

Sen(θ1)(E1) |=Σ′ Sen(θ2)(E2) there exists a finite set E0 ⊆ Sen(Σ0) such that E1 |=Σ1 Sen(ϕ1)(E0) and

Sen(ϕ2)(E0) |=Σ2 E2.

Such commuting squares are meant to emulate the intersection-union of signatures from the common

formulation of interpolation, with Σ0 in the role of Σ1∩Σ2 and Σ′ in the role of Σ1∪Σ2. However in the

common formulation of interpolation it is important that Σ1 ∪Σ2 is the lowest signature above Σ1 and

Σ2. In the generalised formulation of interpolation this property appears as a category theoretic condition,

that the commuting square is a pushout in the category Sign of the signatures of the institution. But when

considering interpolation as a property of the institution as a whole, it is in general not meaningful to look

for interpolation in all pushout squares. This leads to another generalisation layer in the formulation of inter-

polation, which restricts abstractly the range of ϕ1 and ϕ2 to designated subclasses of signature morphisms.

Thus, given L and R subclasses of signature morphisms, the institution has (L ,R)-interpolation when

each pushout of a span (ϕ1,ϕ2) of signature morphisms with ϕ1 ∈ L and ϕ2 ∈ R is an interpolation square.

Institution theoretic interpolation has been established at the general level in relation to several different

causes. One cause can be an axiomatizability property of the institution, like in [34]. A a typical example

here is many sorted equational logic which has (L ,R)-interpolation with L being the injective signature

morphisms and R being all signature morphisms. Another cause can be the Robinson consistency property,

like in [91]. An instance of this is many sorted first order logic which has (L ,R)-interpolation when either

L of R consists of signatures morphisms that are injective on the sorts. And yet another cause can be the

existence of an adequate translation to an institution that has well established interpolation properties, like

in [46].

The Craig interpolation property can be strengthened by adding to the ‘primary’ premises E1 a set

Γ2 (of Σ2-sentences) as ‘secondary’ premises. Craig-Robinson interpolation plays an important role in

specification language theory, see [6, 59, 65]. The name ‘Craig-Robinson’ interpolation has been used for

instances of this property in [139, 147, 65] and ‘strong Craig interpolation’ has been used in [59].

Definition 1.13 (Craig-Robinson interpolation). [38] In any institution we say that a commuting square of

signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1��
Σ2

θ2

// Σ′

21

is a Craig-Robinson Interpolation square (abbreviated CRI square) when for each set E1 of Σ1-sentences

and each sets E2 and Γ2 of Σ2-sentences, if θ1(E1)∪ θ2(Γ2) |=Σ′ θ2(E2), then there exists a set E of

Σ-sentences such that E1 |=Σ1 ϕ1(E) and Γ2∪ϕ2(E) |=Σ2 E2.

Also the (L ,R)-interpolation concept discussed above can be extended in a straightforward way from

Craig interpolation to Craig-Robinson interpolation.

By taking Γ2 to be the empty set /0 we can see that any CRI square is also a CI square. The opposite

implication does not hold in general. The following gives a sufficient condition when CI and CRI are

equivalent interpolation concepts.

Proposition 1.14. [38] In any compact institution that has implications, a commuting square of signature

morphisms is a CRI square if and only if it is a CI square.

1.1.7 Definability

One of the most important aspects of definability theory is the relationship between implicit and explicit

definability. The following definition of the two kinds of definability at the level of abstract institutions has

been introduced in [129].

Definition 1.15 (Definability). [129] Let ϕ : Σ→ Σ′ be a signature morphism and E ′ be a Σ′-theory. Then

ϕ

• is defined implicitly by E ′ if the reduct functor

Mod(Σ′,E ′) // Mod(Σ′)
Mod(ϕ)//Mod(Σ)

is injective, and

• is defined (finitely) explicitly by E ′ if for each pushout square

Σ
ϕ //

θ
��

Σ′

θ′
��

Σ1 ϕ1
// Σ′1

and each sentence ρ ∈ Sen(Σ′1), there exists a (finite) set of sentences Eρ ⊆ Sen(Σ1) such that

E ′ |=Σ′ (∀θ′)(ρ⇔ ϕ1(Eρ)).

A signature morphism ϕ has the (finite) definability property if and only if a theory defines ϕ (finitely)

explicitly whenever it defines ϕ implicitly.

While in many institutions, that explicit implies implicit definability is immediate, at the level of abstract

institutions this is non-trivial. For this to hold, in [129] it is shown that it is sufficient to impose only a rather

mild restriction on signature morphisms, which in actual (many-sorted) situations requires only surjectivity

of the sorts mapping.

22

The core of the institution-independent approach to definability consists of the study of the other

much more difficult and meaningful implication, that implicit implies explicit definability. One result

[129, 38] develops a generic definability theorem based upon the Craig-Robinson interpolation property, thus

generalizing the well-known causality relationship between interpolation and definability in conventional

model theory [21]. Another result [129, 38] has a complementary range of applications with respect to the

previous one and is based upon general Birkhoff axiomatizability properties. The paper [129] presents a

series of concrete instances of this general result in fragments of classical first order model theory and in

partial algebra.

1.1.8 Proof systems for institutional logic

The main concept developed in [37] (originally introduced in [121]) refines the entailment systems of [112]

to the situation when several different proofs between given sets of sentences are considered.

Definition 1.16 (Proof system). [37] A proof system (Sign,Sen,Pf) consists of

• a category of ‘signatures’ Sign,

• a ‘sentence functor’ Sen : Sign→ Set, and

• a ‘proof functor’ Pf : Sign→ CAT (giving for each signature Σ the category of the Σ-proofs)

such that

1. Sen;P ; (−)op is a sub-functor of Pf, and

2. the inclusion P (Sen(Σ))op ↪→ Pf(Σ) is broad and preserves finite products of disjoint sets (of

sentences) for each signature Σ, where P : Set→ CAT is the (CAT-valued) power-set functor.

The main results about proof systems developed in [37] are as follows:

1. The introduction of a formal concept of systems of proof rules for institutions and by showing that

systems of proof rules generate freely proof systems. This adjunction result is based on an algebra

of proofs. We argue that actual proof systems for institutions are freely generated by corresponding

systems of proof rules.

2. The classical meta-rule of ‘Generalization’ is refined to a property of the proof system rather than

considering it as a proof rule. We show that (universal) quantification can be added freely to any

proof system such that its sentence part has a syntax for quantifiers, and argue that this is the way one

obtains the actual proof systems with ‘Generalization’ as a meta-rule.

3. We show how these two universal properties lead to

• the compactness of the proof system freely generated by a system of finitary proof rules,

• the automatic transfer of compactness from proof systems to proof systems with universal

quantification,

• the automatic transfer of soundness from institutions with proof rules to institutions with proofs,

and

23

• under the assumption of semantic quantification, further transfer of soundness to institutions

with proof having proof-theoretic quantifiers.

These concepts and results have been used in several institution theoretic works on completeness such as

[24, 89], etc.

A corresponding chapter of [38] contains a study of Boolean connectives for proof systems.

1.2 L O G I C C O M B I NAT I O N

The entry on Combining Logics in the Stanford Encyclopedia of Philosophy [19] stresses the role of

Computer Science applications as a main driving force for research in obtaining new logic systems from

old, integrating features and preserving properties to a reasonable extent. In this section we present several

works on logic combination in institution theory by the author. They can all be regarded as a generic and

comprehensive (in the sense of addressing both the syntactic and the semantic levels) form of hierarchical

logic combination, when the essential features of a logic are built on top of another logic.

1.2.1 Possible worlds semantics in abstract institutions

The development of semantics for modal logic on top of abstract institutions started with [62] and continued

with the refinement to hybrid features in [108, 51]. The PhD thesis [106] was also developed in this area

under the supervision of the author. Here we will present these developments in their refined hybrid logic

form, called hybridization of institutions, its development being triggered by the concrete problem in

(rigorous) software engineering, that of the formal specification of reconfigurable software systems.

The hybridisation method enriches a base (arbitrary) institution I with hybrid logic features and the

corresponding Kripke semantics. The result is still an institution, H I , called the hybridisation of I . This

construction has several parameters, related to quantification and constraints on the Kripke semantics.

At the syntactic level the base signatures are enriched with nominals and polyadic modalities. Therefore,

the category of I -hybrid signatures, denoted by SignH I , is defined as the direct (cartesian) product of

categories of the original category of signatures SignI and that of signatures of REL, the sub-institution of

(the institution of) first order logic, without non-constant operation symbols, SignREL.

The second step in the method is to enrich the base sentences accordingly. The sentences of the base

institution I and the nominals in Nom are taken as atoms and composed with the boolean connectives, the

modalities given in Λ, satisfaction operators indexed by nominals, and quantifiers by signature morphisms

(from a designated quantification space DH I).

Given a H I -signature morphism ϕ, the translation of sentences SenH I (ϕ) is defined structurally: e.g.,

SenH I (ϕ)(i) = ϕNom(i), SenH I (ϕ)(@iρ) = @ϕNom(i)SenH I (ρ),

SenH I (ϕ)([λ](ρ1, . . . ,ρn)) = [ϕMS(λ)](SenH I (ρ1), . . . ,SenH I (ρn)), etc.

Turning to semantics, models of H I can be regarded as (Λ-)Kripke structures whose worlds are I -models.

Formally, they are pairs (M,W) where W is a (Nom,Λ)-model in REL and M is a function which assigns to

24

each state a model in |ModI (Σ)|. In each world (M,W), Wn provides interpretation for nominal n, whereas

relation Wλ interpretes modality λ. The reduct definition is lifted from the base institution: the reduct of

a ∆′-model (M′,W ′) along a signature morphism ϕ : ∆→ ∆′ is the ∆-model (M,W) such that W is the

(ϕNom,ϕMS)-reduct of W ′ (i.e, |W |= |W ′|, Wn =W ′
ϕNom(n)

, for each nominal n, and Wλ =W ′
ϕMS(λ)

for each

modality in Λ). In order to capture all kinds of constraints that may be around (the works on hybridization

of institutions keep producing logics displaying a wide range of constraints, less and less conventional), in

[51] the author has introduced a fully abstract formalization of constraints on Kripke structures simply as a

sub-functor ModC ⊆ModH I , however subject to a technical property of reflecting model amalgamation.

Finally, the satisfaction relation for the hybridised institution resorts to the one in the base institution for

sentences in I , i.e.,

Definition 1.17 (The Satisfaction Relation). Given a constrained model functor ModC ⊆ModH I , for any

(M,W) ∈ |ModC(Σ,Nom,Λ)| and for any w ∈ |W | we define:

• (M,W) |=w ρ iff Mw |=I ρ; when ρ ∈ SenI (Σ),

• (M,W) |=w i iff Wi = w; when i ∈ Nom,

• (M,W) |=w ρ∨ρ′ iff (M,W) |=w ρ or (M,W) |=w ρ′,

• (M,W) |=w ρ∧ρ′ iff (M,W) |=w ρ and (M,W) |=w ρ′,

• (M,W) |=w ρ⇒ ρ′ iff (M,W) |=w ρ implies that (M,W) |=w ρ′,

• (M,W) |=w ¬ρ iff (M,W) 6 |=wρ,

• (M,W) |=w [λ](ξ1, . . . ,ξn) iff for any (w,w1, . . . ,wn) ∈Wλ we have that (M,W) |=wi ρi for some

1≤ i≤ n.

• (M,W) |=w 〈λ〉(ξ1, . . . ,ξn) iff there exists (w,w1, . . . ,wn) ∈Wλ such that and (M,W) |=wi ξi for any

1≤ i≤ n.

• (M,W) |=w @ jρ iff (M,W) |=Wj ρ,

• (M,W) |=w (∀χ)ρ iff (M′,W ′) |=w ρ for any (M′,W ′) such that ModC(χ)(M′,W ′) = (M,W),

• (M,W) |=w (∃χ)ρ iff (M′,W ′) |=w ρ for some (M′,W ′) such that ModC(χ)(M′,W ′) = (M,W), and

We write (M,W) |= ρ iff (M,W) |=w ρ for any w ∈ |W |.

The following result stated initially in [108] for a simplified context and then extended and proved in

[51] shows that the result of this construction yields an institution.

Theorem 1.18. [51] Assume DI is adequate for ModI . Let ∆ = (Σ,Nom,Λ) and ∆′ = (Σ′,Nom′,Λ′)

be two H I -signatures and ϕ : ∆→ ∆′ a morphism of signatures. Given a constrained model functor

ModC ⊆ModH I , for any ρ ∈ SenH I (∆), (M′,W ′) ∈ |ModC(∆′)|, and w ∈ |W |

ModC(ϕ)(M′,W ′)(= ModH I (ϕ)(M′,W ′)) |=w
ρ if and only if (M′,W ′) |=w SenH I (ϕ)(ρ). (2)

Corollary 1.19 (The Satisfaction Condition). [51] (SignH I ,SenH I ,ModC, |=) is an institution.

25

1.2.2 Institutional semantics for many valued logics

The paper [49] builds on the idea that the essence of many-valued logic (mvl) is actually independent of the

concrete syntactic context in which it is usually presented, that in fact it is independent of any syntactic

context. The technical side of this abstract mvl development may be briefly and informally described

as follows. Given an abstract category of signatures and an abstract sentence functor (that gives the sets

of sentences corresponding to the signatures) we build both a syntax and a model theory as well as a

satisfaction relation between them.

The given syntax is considered as atomic syntax and the full syntax is built by iterative applications of

connectives (∧,∨,⇒, etc.) and quantifiers. Quantifiers are also treated rather abstractly by the concept of

quantification space of [40]; this covers concrete quantification situations much beyond first order.

Definition 1.20. [130] A logic syntax is a pair (Sign,Sen) such that

1. Sign is a category whose objects are called ’signatures’ and whose arrows are called ’signature

morphisms’, and

2. a functor Sen : Sign→ Set called ’sentence functor’; the objects of Sen(Σ) are called ’Σ-sentences’.

Given a residuated lattice L and a tuple (Sign,FSen,CSen,CSen0,D) such that

1. (Sign,FSen) is a logic syntax (called the fuzzy atomic syntax),

2. (Sign,CSen) is a logic syntax (called the crisp atomic syntax),

3. the fuzzy and the crisp atomic syntaxes are disjoint, i.e. for each signature Σ,

FSen(Σ)∩CSen(Σ) = /0,

4. CSen0 ⊆ CSen is a sub-functor (called the crisp truth functor), and

5. D is a quantification space for Sign

Definition 1.21 (I (L) sentences). [49] Let Sen∗ be the least mapping Sign→ Set such that for each

signature Σ

• FSen(Σ)∪CSen(Σ) ⊆ Sen∗(Σ),

• >,⊥ ∈ Sen∗(Σ),

• ρ1?ρ2 ∈ Sen∗(Σ) for ? ∈ {∧,∨,⇒,⊗} and for all ρ1,ρ2 ∈ Sen∗(Σ), and

• (∀χ)ρ, (∃χ)ρ ∈ Sen∗(Σ) for all ρ ∈ Sen∗(Σ′) and each (χ : Σ→ Σ′) ∈D ,

and for each signature morphism ϕ : Σ→ Σ1

• Sen∗(ϕ)(ρ) = FSen(ϕ)(ρ) for each ρ ∈ FSen(Σ),

• Sen∗(ϕ)(>) = >, Sen∗(ϕ)(⊥) = ⊥,

• Sen∗(ϕ)(ρ) = CSen(ϕ)(ρ) for each ρ ∈ CSen(Σ),

• Sen∗(ϕ)(ρ1?ρ2) = Sen∗(ϕ)(ρ1)?Sen∗(ϕ)(ρ2) for ? ∈ {∧,∨,⇒,⊗} and for all ρ1,ρ2 ∈ Sen∗(Σ),

and

• Sen∗(ϕ)((∀χ)ρ) = (∀χ(ϕ))Sen∗(ϕ[χ])(ρ) for each ρ ∈ Sen∗(Σ′) and similarly for (∃χ)ρ.

26

Let SenI (L) = Sen∗×L be the mapping Sign→ Set defined by

• SenI (L)(Σ) = Sen∗(Σ)×L for each signature Σ, and

• SenI (L)(ϕ)(ρ,x) = (Sen∗(ϕ)(ρ),x) for each signature morphism ϕ : Σ→Σ1, each Σ-quasi-sentence

ρ and each x ∈ L.

The model theory is defined generically by a comma category construction plus an interpretation of a

corresponding atomic syntax into a fixed space of truth values considered here as a fixed complete residuated

lattice L.

For each signature, the corresponding satisfaction relation between its models and its sentences is defined

by recursion on the structure of the sentences in the usual Tarski style.

Definition 1.22 (I (L) models). [49] For any signature Σ, a Σ-model is a pair (µ,m) that consists of

– a signature morphism µ : Σ→ Σµ, and

– a function m : FSen(Σµ)→ L.

A Σ-homomorphism h : (µ,m)→ (ν,n) between two Σ-models is a signature morphism h : Σµ→ Σν such

that µ;h = ν and m≤ FSen(h);n.

Σ
µ //

ν
��

Σµ

h
��

FSen(Σµ)
FSen(h)//

m
++

≤
!!

FSen(Σν)

n
��

Σν L

The category of the Σ-homomorphisms (composition inherited from Sign) is denoted ModI (L)(Σ).

For any signature morphism ϕ : Σ→ Σ′ the ϕ-reduct ModI (L)(ϕ)(µ′,m′) of a Σ′-model (µ′,m′) is

(ϕ;µ′,m′). The ϕ-reduct ModI (L)(ϕ)(h′) of a Σ′-homomorphism h′ : (µ′,m′)→ (ν′,n′) is just h′ : (ϕ;µ′,m′)→
(ϕ;ν′,n′).

In the concrete situations the component µ from the definition of I (L) models is usually a signature

extension with a set of constants representing the carrier (or underlying) set of the respective model. The

component m interprets the atomic syntax corresponding to the extended signature into the space L of the

truth values. Note that the crisp atomic syntax does not play any role in the semantics of I (L).

Definition 1.23 (I (L) satisfaction). [49] For each signature Σ we define a ‘satisfaction degree’ function

(_ |= _) : |ModI (L)(Σ)|×Sen∗(Σ)→ L by

– for each ρ ∈ FSen(Σ), ((µ,m) |= ρ) = m(FSen(µ)(ρ)),

– for each ρ ∈ CSen(Σ), ((µ,m) |= ρ) =

 > when CSen(µ)(ρ) ∈ CSen0(Σµ),

⊥ otherwise.

– ((µ,m) |= >) = > and ((µ,m) |= ⊥) = ⊥,

– ((µ,m) |= ρ1?ρ2) = ((µ,m) |= ρ1)?((µ,m) |= ρ2) for ? ∈ {∧,∨,⇒,⊗},

– ((µ,m) |= (∀χ)ρ) =
∧
{(µ′,m) |= ρ | µ′ : Σ′→ Σµ,µ = χ;µ′}, and

27

– ((µ,m) |= (∃χ)ρ) =
∨
{(µ′,m) |= ρ | µ′ : Σ′→ Σµ,µ = χ;µ′}.

Then for any Σ-model (µ,m) and any sentence ρ ∈ SenI (L)(Σ),

(µ,m) |=I (L)
Σ (ρ,k) if and only if k ≤ ((µ,m) |= ρ).

In [49] it is shown that this construction yields a(n ordinary binary) institution in which the sentences

are pairs consisting of an ordinary sentence and a truth value. This is an immediate consequence of the

many-valued satisfaction condition below:

Proposition 1.24. [49] For any signature morphism ϕ : Σ→ Σ1, any Σ1-model (µ,m), and any ρ ∈
Sen∗(Σ)

((ϕ;µ,m) |= ρ) = ((µ,m) |= Sen∗(ϕ)(ρ)).

The generic abstract mvl thus developed (denoted I (L)) covers various important concrete mvl systems.

In [49] its is shown that the semantics of traditional first-order mvl (such as in [92], denoted MVL) may

be conservatively embedded into I (L), which means that in this case the semantic consequence relation

provided (generically) by I (L) coincides with that of MVL. This applies also to various restrictions or

extensions of MVL, i.e. propositional fragment, second order extension, etc. A similar result is shown for a

rather natural fuzzy extension of the multi-algebras framework [95, 149, 150, 102].

Moreover our generic abstract mvl development may be used as a semantic oriented framework for

defining in an uniform way new concrete many-valued logical systems over various different logic syntaxes.

This also means an uniform semantic oriented method to export mvl to other logical contexts.

1.2.3 Hidden preordered algebra

In heterogenous specification frameworks it is crucial that any two logical formalisms involved have a ‘least

upper bound’, which should appear as a ‘super-logic’ to both of them. Thus in the case of a system like

CafeOBJ one needs to study such a combination between hidden algebra (HA), i.e. the logic underlying the

behavioural specification paradigm, and preordered algebra (POA). This, denoted HPOA has been defined

in model theoretic terms in [54, 56] (although only the latter reference constitutes the definitive solution

to this combination problem). That HPOA is more than just putting POA and HA together is clear from

the concept of behavioural transition which is syntactically supported in the CafeOBJ language as by the

keyword btrans.

The paper [41] gives the definitive solution to the hierarchical combination between POA and HA and

also provides a coinduction-like proof method for behavioural transitions which extends the well known

coinduction for proving behavioural equivalences. The novel contributions that emerged from these works

include:

1. A novel concept of congruence for preordered algebras.

Definition 1.25 (Preordered algebra congruences). [41] A POA-congruence (preordered algebra

congruence) on a preordered algebra (M,≤) for a signature (S,F) is a pair (∼,v) such that

28

– ∼ is an (S,F)-congruence on the (S,F)-algebra M,

– v is a (n S-sorted) preorder on M which contains ≤, i.e. ≤ ⊆ v, and which is compatible with

the operations, and

– a′ ∼ a,av b,b∼ b′ implies a′ v b′ for all elements a,a′,b,b′ of M.

2. The development of the institution of hidden preoredered algebra (HPOA) based on the a theorem of

the existence of the largest hidden preordered congruence for any algebra:

Definition 1.26 (Hidden POA congruence). [41] A hidden POA-congruence on a HPOA-algebra

(A,≤) is a POA (H ∪V ,BF)-congruence (≡,v) on (A,≤) such that on the visible sorts ≡ is the

identity and v is ≤.

Definition 1.27 (Behavioural POA congruence). [41] The behavioural POA-congruence on (A,≤) is

the which is the largest hidden POA-congruence on (A,≤).
Theorem 1.28. [41] Behavioural POA-congruence exists for any preordered (H,V ,F ,BF)-algebra.

3. The extraction of a coinduction principle for behavioural transitions as an extension of the well

known coinduction principle for behavioural equations [75]:

Corollary 1.29 (Coinduction for behavioural transitions). [41] The coinduction proof method for

HPOA consists of the following steps.

a) Define an equivalence relation R and a preorder relation P for each hidden sort such that

(s P s’) and (s R s1) and (s’ R s’1) imply (s1 P s’1)

and

(s −> s’) implies (s P s’)

for all s, s’, s1, s’1,

b) Prove that both R and P are preserved by the behavioural operations,
c) i. If we want to prove that t∼ t’ then we show that t R t’, and

ii. If we want to prove that t∼> t’ then we show that t P t’.

1.3 L O G I C B Y T R A N S L AT I O N

Logic by translation, which means borrowing of logical properties across suitable translations between

logical systems has emerged as an important method in mathematical logic, much associated with the

universal trend in logic. Institution theory has developed its own logic by translation technology that

owes to a solid concept of homomorphism between institutions, in the literature called ‘comorphism’

[83]. Institution comorphisms are mappings which preserve the mathematical structure of institutions, but

from a logic and model theoretic perspective their significance is that of either embeddings or encodings

between institutions. An important feature of comorphisms is that they relate between institutions both at

the syntactic and at the semantic level, and both the syntactic and the semantic components of comorphisms

are coherent to each other.

29

Definition 1.30 (Comorphisms). An institution comorphism (Φ,α,β) : I → I ′ consists of

1. a functor Φ : Sign→ Sign′,

2. a natural transformation α : Sen⇒Φ;Sen′, and

3. a natural transformation β : Φop;Mod′⇒Mod

such that the following satisfaction condition holds

M′ |=′Φ(Σ) αΣ(e) iff βΣ(M′) |=Σ e

for each signature Σ ∈ |Sign|, for each Φ(Σ)-model M′, and each Σ-sentence e.

Encodings between logics are represented as comorphism I → I ′th where I ′th denotes the canonically

defined institution of I ′-theories, that has as signatures the pairs (Σ,E) where Σ is an I ′-signature and E a

set of Σ-sentences. The comorphism I → I ′th are sometimes called theoroidal comorphisms.

The institution theoretic approach to logic by translation has achieved general recognition through the

paper [120] that won the contest ‘What is a logic translation?’ at the 2nd World Congress on Universal

Logic, Xi’an, China, 2007.

In this section we present several borrowing results across institution comorphisms developed by the

author.

1.3.1 Borrowing interpolation

The institution theoretic method for establishing interpolation developed in [46] can be described as fol-

lows: given an institution comorphism I → I ′, if I ′ has a certain interpolation property and the institution

comorphism ‘behaves well’ with respect to interpolation, then I can be established to have a correspond-

ing interpolation property. The properties required for the institution comorphisms have been originally

introduced in [35]:

Definition 1.31 (Left interpolation property for comorphisms). [35] For a fixed class S ⊆ Sign of signature

morphisms, we say that an institution comorphism (Φ,α,β) : I → I ′ has the Craig S -left Interpolation

property when for each (ϕ1 : Σ→ Σ1) ∈ S , for each set E1 of Σ1-sentences and each set E2 of Φ(Σ1)-

sentences such that αΣ1(E1) |=′ Φ(ϕ1)(E2), there exists a set of Σ-sentences E such that E1 |= ϕ1(E) and

αΣ(E) |=′ E2.

Sen(Σ)
Sen(ϕ1) //

αΣ

��

Sen(Σ1)

αΣ1
��

Sen′(Φ(Σ))
Sen′(Φ(ϕ1))

// Sen′(Φ(Σ1))

The following is the reflection in the mirror of the left property.

Definition 1.32 (Right interpolation property for comorphisms). [35] For a fixed class S ⊆ Sign of signature

morphisms, we say that an institution comorphism (Φ,α,β) : I → I ′ has the Craig S -right Interpolation

30

property when for each (ϕ2 : Σ→ Σ2) ∈ S , for each set E1 of Φ(Σ)-sentences and each set E2 of Σ2-

sentences such that (Φ(ϕ2)(E1) |=′ αΣ2(E2), there exists a set of Σ-sentences E such that E1 |= αΣ(E)

and ϕ(E) |=′ E2.

Sen(Σ)

Sen(ϕ2)
��

αΣ // Sen′(Φ(Σ))

Sen′(Φ(ϕ2))
��

Sen(Σ2) αΣ2

// Sen′(Φ(Σ2))

The main borrowing interpolation theorem is:

Theorem 1.33 (Borrowing interpolation). [46] Let (Φ,α,β) : I → I ′ be a conservative institution comor-

phism such that Φ maps pushouts to quasi-pushouts, and let L ,R ⊆ Sign be classes of signature morphisms

such that I ′ has the Craig (Φ(L),Φ(R))-interpolation. Then I has Craig (L ,R)-interpolation.

This generic result can be applied to various situations, requiring different styles of applying it. One

situation is when I and I ′ have essentially the same expressive power, such as (first order) partial algebra

and first order logic. Although partial algebra is more refined than first order logic, it can be encoded

into first order logic in a rather strong way which makes possible a quite straightforward transfer of first

order logic interpolation to partial algebra. The second situation we study is when I has significantly less

expressive power than I ′, which means that their interpolation properties are rather different and moreover

are obtained in different ways. This second situation is well illustrated by the logic of universal sentences

versus first order logic, which is an embedding rather than an encoding. In this case the application of the

main borrowing theorem requires more subtlety. Finally, a third situation is when I has more expressive

power than I ′ but an encoding of I into I ′ by means of a comorphism exists. This is well illustrated by

higher order logic in the role of I and first order logic in the role of I ′.
The general borrowing interpolation result of [46], together with its above mentioned associated styles

or patterns for applying it, constitute a new method within the rather large spectrum of methods to obtain

interpolation. Taking into account the great difficulty of the problem, the existing methods are never enough.

The strength of the borrowing method of [46] has at least several aspects to be mentioned. New interpolation

results have been obtained in [46] for preordered algebras and for higher order logic in a rather smooth way.

For many of the applications the alternatives seem to be much more difficult. For example, in partial or

preordered algebra, based on some similarity with classical many-sorted first order logic, we may expect

certain interpolation properties. We either have to replicate the whole complicated conceptual infrastructure

of the classical framework to these new frameworks (which is very complex and even problematic task) or

else to lift such infrastructure to a higher abstraction level as in [91, 34] (which is also a difficult task but in

a different way). The method of [46] saves such efforts. Moreover in other situations (such as higher order

logic) perhaps none of the above mentioned alternatives would work. The borrowing method of [46] has

been applied not only for obtaining new results but also for a better understanding of already know results

in partial algebra and even in fragments of first order logic. All these are related to a deeper aspect, that of

offering a rather clear, although unavoidably partial, insight into the interdependent nature of interpolation

properties in various logical systems.

31

1.3.2 Borrowing definability

A way to establish definability properties alternative to that by reliance upon interpolation or axiomatizability

is by borrowing across an institution comorphisms. The following abstract necessary condition has be

identified in [129]:

Definition 1.34. [129] We say that an I -signature morphism ϕ : Σ1→Σ2 is (Φ,α,β)-precise whenever the

function Mod′(Φ(Σ2))→Mod′(Φ(Σ1))×Mod(Σ2) mapping each M′2 to 〈M′2�Φ(ϕ), βΣ2(M
′
2)〉 is injective.

We say that the comorphism (Φ,α,β) is precise when each I -signature morphism is (Φ,α,β)-precise.

The following result from [129] establishes implicit definability by borrowing:

Theorem 1.35 (Borrowing implicit definability). [129] Let (Φ,α,β) : I → I ′ be an institution comorphism.

For any (Φ,α,β)-precise signature morphism ϕ and theory E ′, Φ(ϕ) is defined implicitly by α(E ′) if ϕ is

defined implicitly by an E ′.

The following result from [129] establishes explicit definability by borrowing:

Theorem 1.36 (Borrowing explicit definability). [129] Let (Φ,α,β) : I → I ′ be an institution comorphism.

If

1. (Φ,α,β) : I → I ′ is conservative,

2. Φ preserves pushouts, and

3. α is surjective modulo the semantic equivalence |=|,

then any I -signature morphism ϕ is defined (finitely) explicitly by a theory E ′ if Φ(ϕ) is defined (finitely)

explicitly by α(E ′).

The borrowing of implicit and explicit definability can be put together in order to obtain the borrowing of

Beth definability in abstract institutions:

Corollary 1.37 (Borrowing of Beth definability). [129] Under the assumptions of Thm. 1.36, any (Φ,α,β)-

precise signature morphism ϕ has the definability property if Φ(ϕ) has the definability property.

In [129] this is illustrated with definability results in partial algebra borrowed from classical first order

logic.

1.3.3 Borrowing saturated models

The general institution theoretic result on the existence of saturated models of [61] relies upon existential

quantifiers and conjunctions. The existence of saturated models can be extended to sub-institutions with

less expressive power of sentences by the following general result of [61].

Proposition 1.38. Let (Φ,α,β) : I → I ′ be an institution comorphism and D ⊆ Sign, D ′ ⊆ Sign′ be

classes of signature morphisms such that

32

1. (Φ,α,β) is conservative and has weak model amalgamation, and

2. Φ preserves inductive co-limits and Φ(D) ⊆D ′.

Then I has D-saturated models whenever I ′ has D ′-saturated models.

In [38] this result has been instantiated to obtain the existence of saturated models in fragments of first

order logic, such as Horn clause logic and equational logic.

1.3.4 Encoding partial algebras as total algebras

Partial functions play an important role in computing science; this is well know. In particular, the specifica-

tion power of operations that are partially defined makes partial algebra as one of the important formalisms

employed by modern formal methods, a prominent example being the recent algebraic specification language

CASL [5]. However, the current mathematical culture, including school mathematics that is responsible

for the basic patterns of our mathematical thinking, is strongly biased towards total functions. Reasons are

manifold. First of all, algebraic reasoning with total functions is much simpler. Then, the semantics of partial

functions is significantly more sophisticated than that of ordinary total algebra. These above two aspects are

of course interdependent. Consequently, mechanical algebraic reasoning with total functions is supported

by a rather impressive variety of tools and execution engines, most of them based upon the so-called term

rewriting method, while partial algebra formalism lacks such kind of computational infrastructure.

The above mentioned reasons have led to various efforts to translate, or encode, partial algebra into logics

with total functions with the benefit of doing things in the translation and exporting the results back to the

original partial algebra framework. Several translations partial algebra into logics with total functions have

been proposed in the literature, the most prominent one appearing in [118] encodes partial operations as

total operations but employs also relations for expressing the domains of definition of the partial operations.

Another important one [118, 129] encodes the partial operations as relation symbols.

The work [39] proposes a novel translation that, unlike the previous ones, has a pure algebraic nature

since it does employ only operation symbols, no relation symbols. Thus any partial algebraic signature

gets encoded as a set of conditional equations for a total algebraic signature. This translation is defined as

theoroidal comorphism from partial algebra to equational logic with total functions as follows.

Definition 1.39. [39] Each PA signature (S,TF ,PF) gets mapped to an MSA theory ((S∪ {b},TF ⊕
PF),Γ(S,TF ,PF)) where

– (TF⊕PF)w→s = TFw→s∪PFw→s when s 6= b,

– (TF⊕PF)ss→b = {e©s} for each s ∈ S, and

– (TF⊕PF)→b = {true}.

and Γ(S,TF ,PF) contains the following conditional equations:

1. (∀X)(X e©X = true)⇒ (σ(X)e©σ(X) = true) for any total operation symbols σ and X a string of

variables matching the arity of σ.1

1If X = {x1, . . . ,xn} then X e©X denotes the finite conjunction (x1 e©x1)∧·· ·∧ (xn e©xn).

33

2. (∀X ,Y)(X e©Y = true)⇒ (X e©X = true).

3. (∀X ,Y)(X e©Y = true)⇒ (X = Y).

4. (∀X)(σ(X)e©σ(X) = true)⇒ (X e©X = true) for any total or partial operation symbols.

Definition 1.40. [39] Given a PA signature (S,TF ,PF), the sentence translation α(S,TF ,PF) maps each

(S,TF ,PF)-sentence to a (S∪{b},TF⊕PF)-sentence as follows:

– α(S,TF ,PF)(t
e
= t ′) = (t e©t ′ = true) for any terms t and t ′ of the same sort.

– α(S,TF ,PF) commutes with all Boolean connectives, i.e.

α(S,TF ,PF)(ρ1∧ρ2) = α(S,TF ,PF)(ρ1)∧α(S,TF ,PF)(ρ2), etc.

– α(S,TF ,PF)((∀X)ρ) = (∀X)((X e©X)⇒ α(S,TF∪X ,PF)(ρ)).

The following gives the semantic part of the translation.

Definition 1.41. A functor β(S,TF ,PF) : MSA(S∪{b},TF⊕PF ,Γ(S,TF ,PF))→ PA(S,TF ,PF) (often denoted

simply by β when there is no danger of confusion) is defined as follows:

– For each (S∪{b},TF⊕PF)-algebra A satisfying Γ(S,TF ,PF),

– β(A)s = {a ∈ As | Ae©s(a,a) = Atrue} for each sort s ∈ S,

– β(A)σ(a) = Aσ(a) when Ae©s(Aσ(a),Aσ(a)) = Atrue for any operation symbol σ ∈ TFw→s ∪
PFw→s.

– β(A)σ(a) is undefined when Ae©s(Aσ(a),Aσ(a)) 6= Atrue for any operation symbol σ ∈ TFw→s∪
PFw→s.

Note that if β(A)σ(a) is defined then β(A)σ(a) ∈ β(A).

– For each (S∪{b},TF ⊕PF)-algebra homomorphism h : A→ B we define the homomorphism of

partial algebras β(h) : β(A)→ β(B) defined by β(h)(a) = h(a) for each a ∈ β(A).

Theorem 1.42 (Satisfaction condition). [39] For each PA signature (S,TF ,PF), for each (S∪{b},TF⊕
PF)-algebra A satisfying Γ, and for each (S,TF ,PF)-sentence ρ

A |= α(ρ) if and only if β(A) |= ρ.

In [39] several properties of this encoding have been developed, including that the model translations

admit free constructions such that their universal homomorphisms are identities. Important consequence

of this result include initial semantics for the Horn fragment of partial algebra (result already known but

here obtained by borrowing from many sorted algebra) and the reflection of the semantic consequence

across the translation. The latter leads to an important proof theoretic consequence: a sound and complete

calculus for the Horn fragment of partial algebra can be expressed as ordinary equational calculus with total

operations symbols. This provides a simple and efficient way to execute Horn partial algebraic specifications

by ordinary term rewriting.

34

1.3.5 Encoding hybridized institutions into first-order logic

Motivated by a methodology for the formal specification and verification of reconfigurable systems, the work

[60] which represents the core part of the PhD thesis [106] supervised by the author of this habilitation thesis,

extends the traditional translation of modal logic to FOL [145] (for the hybrid variant [12]) to encodings of

abstract hybridized institutions into FOL. This may also be regarded as ‘hybridizations’ of encodings into

FOL. The idea to ‘hybridize comorphisms’ has been sketched within a much a preliminary form in [108], in

[60] we have extended this in several directions: constrained models, theoroidal comorphisms (rather than

plain comorphisms), and quantified sentences. This main elements of this rather elaborate encoding are

given in what follows.

Notation 1.3.1. [60] For any FOL-signature (S,F ,P) we denote by ([S], [F], [P]) the following FOL-

signature:

• [S] = S∪{ST}, where ST is a designated sort not in S,

• [F]ar→s =

Far′→s for any s ∈ S, ar′ ∈ S∗ such that ar = (ST)ar′

/0 for the other cases;

• [P]ar =

Par′ for any ar′ ∈ S∗ \S such that ar = (ST)ar′;

/0, for the other cases.

For any morphism of FOL signatures ϕ : (S,F ,P)→ (S′,F ′,P′) we let [ϕ] : ([S], [F], [P])→ ([S′], [F ′], [P′])

morphism of FOL signatures defined as follows:

• [ϕ]st(ST) = ST,

• [ϕ]st(s) = ϕst(s) for any s ∈ S,

• [ϕ]op
(ST)ar′→s(σ) = ϕ

op
ar′→s(σ) for any σ ∈ Far′→s, and

• [ϕ]rl(ST)ar′(π) = ϕrl
ar′(π) for any π ∈ Par′ .

Definition 1.43. [60] For any FOL-signature (S,F ,P) and any new constant x of sort ST we define the

following translation

[_]x(S,F ,P) : SenFOL(S,F ,P)→ SenFOL([S], [F]+ x, [P])

defined by

• [t = t ′]x = ([t]x = [t ′]x) where [σ(t1, . . . , tn)]x = σ(x, [t1]x, . . . , [tn]x);

• [π(t)]x = π(x, [t]x);

• [ρ1 ?ρ2]x = [ρ1]x ? [ρ2]x, for ? ∈ {∨,∧,⇒};

• [¬ρ]x = ¬[ρ]x;

• [(∀Y)ρ]x = (∀Y)([ρ]x)Y where ([ρ]x)Y is the result of replacing in [ρ]x all occurrences of y(z) by y

for each y in Y .

35

Definition 1.44. [60] Let (S,F ,P) be any FOL-signature.

• For any s ∈ S let us denote by Ds a new designated relation symbol with arity (ST)s;

• For any σ ∈ Fs1...sn→s, by Dσ we denote the Horn sentence

(∀y)(∀x1, . . . ,xn)
∧

1≤i≤n

Dsi(y,xi)⇒ Ds(y,σ(y,x1, . . . ,xn))

• DF = {Dσ | σ ∈ Far→s, ar ∈ S∗,s ∈ S}.

Definition 1.45. [60] For any FOL-signature (S,F ,P) and any ([S], [F], [P])-model M′ such that M′ |= DF ,

for any w ∈M′ST the (S,F ,P)-model M′|w is defined as follows:

• for each s ∈ S, (M′|w)s = {m ∈M′s | (w,m) ∈M′Ds
};

• for each σ in F, (M′|w)σ(m) = M′σ(w,m);

• for each π in P, m ∈ (M′|w)π iff (w,m) ∈M′π.

Notation 1.3.2. [60] For any (S,F ,P)-sentence ρ, by V (ρ) we denote the set of all sentences (∀x,y)Ds(x,y)

for s any sort of a variable in a quantification that occurs in ρ. For any set E of sentences V (E) denotes

∪{V (ρ) | ρ ∈ E}.

Let (SignH I ,SenH I ,ModC, |=) be a hybridization of an institution I such that for all χ ∈DH I :

• χNom are finite extensions, and

• χMS are identities.

Given any comorphism (Φ,α,β) : I → FOLth such that for each ϕ : Σ→ Σ′ in DI we have that

• the underlying FOL signature morphism of Φ(ϕ) is in DFOL; and

• the difference between the theories Φ(Σ′) and Φ(Σ) consists of a finite set Γϕ of sentences,

in the paper [60] we define a comorphism (Φ′C,α′,β′C) : (SignH I ,SenH I ,ModC, |=)→ FOLth in two

steps:

1. We define a functor Φ′ : SignH I → SignFOLth
and natural transformations α′ : SenH I ⇒Φ′;SenFOLth

and β′ : Φ′op;ModFOLth ⇒ModH I .

2. We extend the definitions of Φ′ and β′ to Φ′C and β′C respectively and prove the Satisfaction Condition

for (Φ′C,α′,β′C).

Definition 1.46 (Translation of the signatures). For any H I signature (Σ,Nom,Λ), let Φ′(Σ,Nom,Λ) =

([SΣ], [FΣ]+Nom, (Ds)s∈SΣ +[PΣ]+Λ,ΓΣ∪DFΣ) where

• Φ(Σ) = ((SΣ,FΣ,PΣ),ΓΣ), where (SΣ,FΣ,PΣ) is a FOL-signature and ΓΣ is a set of (SΣ,FΣ,PΣ)-

sentences;

• (Nom)ar→s =

Nom when ar = /0,s = ST,

/0 for the other cases;

36

• (Λ)ar =

Λn when ar = (ST)n,n ∈ ω

/0 for the other cases;

• ΓΣ = {∀x [γ]x | γ ∈ ΓΣ}∪V (ΓΣ).

Definition 1.47 (Translation of the sentences). α′(Σ,Nom,Λ)(ρ) = (∀x)α′x(Σ,Nom,Λ)(ρ), where

α′x(Σ,Nom,Λ) : SenH I (Σ,Nom,Λ)→ ([SΣ], [FΣ]+Nom+ x, (Ds)s∈S +[PΣ]+Λ) with x being a constant of

sort ST, is defined by

• α′x(i) = (i = x), i ∈ Nom;

• for each ρ ∈ SenI (Σ), α′x(ρ) = [αΣ(ρ)]x

• α′x(ρ1 ?ρ2) = α′x(ρ1) ?α′x(ρ2), ? ∈ {∨,∧, =⇒};

• α′x(¬ρ) = ¬α′x(ρ);

• α′x(@iρ) = α′i(ρ);

• α′x([λ](ρ1, . . . ,ρn)) = ∀y1, . . . ,yn
(
λ(x,y1, . . . ,yn) =⇒

∨
1≤i≤n α′yi(ρi)

)
;

• α′x(〈λ〉(ρ1, . . . ,ρn)) = ∃y1, . . . ,yn
(
λ(x,y1, . . . ,yn)∧

∧
1≤i≤n α′yi(ρi)

)
;

• α′x(Σ,Nom,Λ)((∀i)ρ) = (∀i)α′x(Σ,Nom+i,Λ)(ρ) for ρ ∈ SenH I (Σ,Nom+ i,Λ);

• α′x∆((∀χ)ρ) = (∀y)
(
ΓχSig ∪{Dy} =⇒ α′x∆′(ρ)

)
y for ρ ∈ SenH I (∆′)

(where χ = (χSig,1Nom,1Λ) : ∆ = (Σ,Nom,Λ) → ∆′ = (Σ′,Nom,Λ) and Φ(χSig) extends the

signature of Φ(Σ) with the variable y and the theory Φ(Σ) with the finite set of sentences ΓχSig).

Definition 1.48 (Translation of the models). For any H I signature (Σ,Nom,Λ) and any Φ′(Σ,Nom,Λ)-

model M′ we define β′(Σ,Nom,Λ)(M
′) = (M,W) where

• W is the reduct M′�({ST},Nom,Λ), i.e. |W |= M′ST, Wi = M′i for each i ∈ Nom, and Wλ = M′
λ

for each

λ in Λ, and

• M : |W | → |ModI (Σ)| is defined for each w ∈ |W | by Mw = βΣ(M′|w) where M′|w denotes here the

abbreviation (M′�([SΣ],[FΣ],[PΣ]))|w.

The following theorem is the key result of [60].

Theorem 1.49. Assume a functor C matching Φ′ such that

1. For any H I -signature ∆ = (Σ,Nom,Λ) and for any Σ-sentence ξ we have

Φ′C(∆) |= V (αΣ(ξ)). (3)

2. Each signature morphism (χ : ∆→ ∆′) ∈DH I with χNom = 1Nom

• is adequate for β′C; and

• satisfies

C(∆′) |=|C(∆)∪{(∀z1,z2)y(z1) = y(z2) | y ∈ Y}. (4)

(where the signature of Φ(χSig) adds the finite block of variables Y to the signature of Φ(Σ))

37

Then, for any ∆ = (Σ,Nom,Λ) ∈ |SignH I |, ρ ∈ SenH I (∆), M′ ∈ |ModFOLth
(Φ′C(∆))| and w ∈M′ST,

β
′C
∆ (M′) |=w

∆ ρ if and only if M′w |=Φ′(∆)+x α
′x
∆(ρ), (5)

where M′w denotes the expansion of M′ to Φ′(∆)+ x defined by M′wx = w.

The most important consequence of this theorem is that the defined encoding is a comorphism indeed.

Corollary 1.50 (Satisfaction condition for (Φ′C,α′,β′C)). If in addition to the conditions of Thm. 1.49

above we also have that

β
′
∆(M

′) ∈ |ModC(∆)| for each H I -signature ∆ and each M′ ∈ |ModFOLth
(Φ′C(∆))|

then (Φ′C,α′,β′C) is comorphism (SignH I ,SenH I ,ModC, |=)→ FOLth, i.e. for any ∆ ∈ |SignH I |, ρ ∈
SenH I (∆) and M′ ∈ |ModFOLth

((Φ′C)(∆))|,

β
′C
∆ (M′) |=∆ ρ if and only if M′ |=Φ′C(∆) α

′
∆(ρ).

The paper [60] also gives a general method to lift the conservativity property from the base comorphism

(Φ,α,β) : I →FOLth to the comorphism (Φ′C,α′,β′) : H IC→FOLth. This result is of special importance

since it allows to transfer proof tasks from the source to the target logic: first translate across the comorphism,

then perform them in the target logic, and finally return back the results to the source logic.

The general results of [60] are applied in the same paper to a case study of a dynamically reconfigurable

specification. The underlying logic of the case study is a particular hybridization of partial algebra. The case

study includes also a formal verification with the corresponding proofs being performed by using SPASS

[151] automatic first order logic prover through the Hets system [116].

1.4 M O D E L T H E O RY F O R U N C O N V E N T I O NA L A N D N O N - C L A S S I C A L L O G I C S

One of the main aims of institutional model theory was to support the development of model theories for

unconventional and non-classical logics, many of them being used in computer science. While few of these

had been previously only partially developed, most of them did not have a model theory before. The reason

is that a model theory for an unconventional logic is often a very difficult and complex task. However when

approaching this problem from a top-down perspective, by using the abstract conceptual infrastructure

provided by institution theory, the task of developing model theories for particular unconventional logic

gets significantly simpler.

The institution theoretic model theory literature, including also [38], usually contains illustrations of

the applicability of the abstract general results by instances to a range of unconventional logical systems

that have a significant presence in computer science, such as partial algebra, preordered algebra, higher

order logic, modal logics, etc. Here we will present several model theoretic developments that are heavily

supported by institutional model theory in non-classical logics such as many-valued and modal logics.

Sometimes these are also considered in a rather generic form in which their non-essential parts are abstract.

38

1.4.1 Initial semantics in many valued logic

The work [43] develops and studies a concept of quasi-variety for many-valued logic (MVL); a consequence

being the derivation of an initial semantics result for many-valued logic. From the side of the theory of

quasi-varieties this represents a study on the scope an limits of the concept of quasi-variety, from the

many-valued logic side it represents a contribution to its model theory [92, 22, 69] which is only in the

early stages of development.

A first series of results in [43] concerns the extension of the concept of quasi-variety of models from

classical logic to MVL, prove that each quasi-variety of MVL models has a reachable initial model, and

prove a reciprocal of the above mentioned result. The domain of this reciprocal is however restricted to the

classes of models of MVL ‘theories’ that correspond to fuzzy sets of sentences:

Theorem 1.51. [43] Let (C,P) be an MVL signature, L be a residuated lattice, and Γ ⊆ L×Sen(C,P).

Then Mod(C,P)(Γ) is a quasi-variety if and only if for any C′ ⊇C, for any A⊆ L×At(C′,P) (with At(C′,P)
denoting the set of the (C′,P) atoms) and for any E ⊆C′×C′ the class of models Mod(C′,P)(Γ∪A,E) has

a reachable initial model.

The paper [43] also introduces a concept of MVL ‘Horn sentence’, that involves also the residual connector

characteristic to MVL:

Definition 1.52 (Horn sentence). [43] Any (C,P)-sentence of the form (∀X)H ⇒ ρ is called a Horn

sentence when ρ is an (C∪X ,P)-atom and H is a quantifier-free (C∪X ,P)-sentence formed from atoms

and the connectives ∧, ∨, and ⊗ (the residual monoidal operation). Let Horn(C,P) denote the set of the

Horn (C,P)-sentence.

The following result shows that models of ‘Horn theories’ form a quasi-variety. Consequently we obtain

that Horn theories admit initial models.

Theorem 1.53. [43] For any Γ ⊆ L×Horn(C,P), the class of models Mod(C,P)(Γ) is a quasi-variety.

Consequently Mod(C,P)(Γ) has a reachable initial model.

From the perspective of fuzzy logic programming [148, 69] the ‘Horn theories’ of [43] correspond

to (fuzzy) logic programs and the existence of initial model result corresponds to the ‘least Herbrand

model’ construction there. So, this may be regarded as an alternative way to obtain the (same) denotational

semantics for fuzzy logic programming, a way which we regard as more structural and which bridges the

gap towards the formal (algebraic) specification culture (see [33] for a general algebraic oriented approach

to logic programming).

1.4.2 Model theory for abstract many valued logics

In [49] it is shown that the generic institution I (L) (see Sect. 1.2.2) proposed as a general semantic

framework for many-valued logics enjoys rather naturally a couple of properties that according to the

39

tradition of institution-independent model theory (e.g. [38]) are of crucial importance for the development

of an in-depth model theory. Given that I (L) may provide a generic model theory for various concrete

many-valued logical systems, the importance of these properties transfers to the level of these concrete

many-valued logical systems.

A first result shows that I (L) enjoys a form of model amalgamation (see [38]) that is fundamental in the

development of many model theoretic results at the level of abstract institutions.

Proposition 1.54. [49] The institution I (L) is semi-exact.

A second result shows that I (L) is equipped rather naturally with a system of diagrams (see also

Sect. 1.1.1).

Proposition 1.55. [49] I (L) has diagrams such that for any I (L) Σ-model (µ,m), its diagram (Σ(µ,m),E(µ,m))

is defined by

– Σ(µ,m) = Σµ, and

– E(µ,m) = {(ρ,m(ρ)) | ρ ∈ FSen(Σµ)}.

1.4.3 Ultraproducts for possible worlds semantics

The work [62] extends the institution theoretic method of ultraproducts developed in [31] (see Sect. 1.1.3)

to modalities and Kripke semantics defined over abstract institutions (see Sect. 1.2.1). A first preliminary

result in this direction is the lifting of the existence of F -products from the base institution to the Krike

models [62, 38].

The method ultraproducts for possible worlds semantics requires the following refinement of the concept

of preservation of sentences by filtered factors/products (Dfn. 1.7) to Kripke semantics.

Definition 1.56. [62] Let F be a class of filters. For a signature Σ, a sentence ρ is

• modally preserved by F -factors when for each i ∈ IWF , (MF ,WF) |=i ρ implies “there exists J ∈ F

and k ∈ µ−1
J (i) such that (M j,Wj) |=k j ρ for each j ∈ J”, and

• modally preserved by F -products when for each i ∈ IWF , “there exists J ∈ F and k ∈ µ−1
J (i) such that

(M j,Wj) |=k j ρ for each j ∈ J” implies (MF ,WF) |=i ρ,

for each filter F ∈ F over a set I, for each family (M j,Wj) j∈I of Σ-Kripke models, and for each F-product

{µJ : (MJ ,WJ)→ (MF ,WF) | J ∈ F}.

The following extends the ultraproducts fundamental Thm. 1.8 to possible worlds semantics.

Theorem 1.57 (Modal fundamental theorem). [62]

1. Each sentence of the base institution which is preserved by F products (in the base institution) is also

modally preserved by F -products (of Kripke models).

2. Each sentence of the base institution which is preserved by F -factors (in the base institution) is also

modally preserved by F -factors (of Kripke models).

40

3. The sentences modally preserved by F -products (of Kripke models) are closed under possibility 3.

4. The sentences modally preserved by F -factors (of Kripke models) are closed under possibility 3.

Moreover if F is closed under reductions,

5. The sentences modally preserved by F -products (of Kripke models) are closed under existential χ-

quantification, when χ preserves F -products of models in the base institution (i.e., Mod(χ) preserves

F -products).

6. The sentences modally preserved by F -factors (of Kripke models) are closed under existential

χ-quantification, when χ lifts F -products of Kripke models (i.e., K-Mod(χ) lifts F -products).

7. The sentences modally preserved by F -factors (of Kripke models) and the sentences modally pre-

served by F -products (of Kripke models) are both closed under finite conjunctions.

8. The sentences modally preserved by F -products (of Kripke models) are closed under infinite con-

junctions.

9. If a sentence is modally preserved by F -factors (of Kripke models) then its negation is modally

preserved by F -products (of Kripke models).

And finally, if we further assume that F contains only ultrafilters,

10. If a sentence is modally preserved by F -products (of Kripke models) then its negation is modally

preserved by F -factors (of Kripke models).

11. The sentences modally preserved by both F -products and factors (of Kripke models) are closed under

negation.

An immediate important consequence of this result, that has been derived in [62] is a general model

compactness result for Kripke semantics over abstract institutions.

1.4.4 Quasi-varieties and initial semantics in hybridized institutions

The work [51] develops the quasi-variety method for establishing initial semantics in hybridized institutions

(see Sect. 1.2.1). The aim of this work is to provide a generic initial semantics for specifications of

dynamically reconfigurable systems, applicable to a wide range of concrete logical situations. This is

achieved in three steps:

1. development of inclusion systems (of [59]) for Kripke semantics; this involves the rather sophisticated

Grothendieck construction on inclusion systems of [42];

2. development of direct products of models for Kripke semantics, this being a special case of the

F-products of Kripke models developed in [62];

3. development of preservation results by direct products and by sub-models determined by inclusion

systems.

41

1.4.5 Stratified institutions

The work in [2] constitutes an institutional general unified study of a parameterization of the satisfaction

relation (between models and sentences) by introducing the concept of ‘stratified’ institution. These are

institutions for which the satisfaction relation is ‘stratified’ (or parameterized in other words) by ‘states

of models’. These ‘states of models’ may be explicit valuations of variables (like in first order logic), or

implicit possible worlds (like in propositional modal logic), or combination of both (like in first order modal

logic), or behavioral context (like in hidden algebra [55, 75, 82, 94]), or something else.

Definition 1.58 (Stratified institution). [2] A stratified institution consists of:

• a category Sign of signatures,

• a sentence functor Sen : Sign→ Set,

• a model functor Mod : Signop→ CAT,

• a “stratification” [[_]] which consists of a functor [[_]]Σ : Mod(Σ)→ Set for each signature Σ ∈
|Sign| (states of models), and a natural transformation [[_]]ϕ : [[_]]Σ′ ⇒ [[_]]Σ ◦Mod(ϕ) for each

signature morphism ϕ : Σ→ Σ′ such that [[M′]]ϕ is surjective for each M′ ∈ |Mod(Σ′)|, and

• a satisfaction relation between models and sentences which is parameterized by model states, M |=η

Σ ρ

where η ∈ [[M]]Σ such that the two following properties are equivalent:

1. Mod(ϕ)(M) |=[[M]]ϕ(η)
Σ ρ

2. M |=η

Σ′ Sen(ϕ)(ρ)

Then, we can define for every Σ ∈ |Sig|, the satisfaction relation |=Σ⊆ |Mod(Σ)|×Sen(Σ) as follows:

M |=Σ ρ if and only if M |=η

Σ ρ forall η ∈ [[M]]Σ

It is possible to ‘extract’ canonically an institution out of a ‘stratified’ institution as follows:

Proposition 1.59. [2] For each signature morphism ϕ : Σ→ Σ′, each Σ′-model M′ and each Σ-sentence

ρ, we have: M′ |=Σ′ Sen(ϕ)(ρ) if and only if Mod(ϕ)(M′) |=Σ ρ.

At this level [2] also contains a development of a general Tarski style study of connectives which is an

abstract unified approach to the usual Boolean connectives, to quantifiers, and to modal connectives, and

we show that this determines canonically a stratified institution (and hence an institution). This way to

explicitly structure the satisfaction relation opens the possibility to an institution-independent framework in

which various modal and non-modal logics can be treated uniformly. This is illustrated in [2] by developing

a general concept of elementary (model) homomorphism and by proving a general version of Tarski

Elementary Chain Theorem [21, 143].

42

2
A L G E B R A I C S P E C I F I C AT I O N

The field of formal specification and verification of software and hardware systems is without alternative in

safety-critical or security areas where one cannot take the risk of failure. This includes several success stories

such as the verification of the Pentium IV arithmetic, the verification of the Traffic Collision Avoidance

System TCAS, various security protocols, etc. In many cases, only the use of logic-based techniques has

been able to reveal serious bugs in software and hardware systems; in other cases, spectacular and costly

failures such as the loss of the Mars Climate Orbiter could have been avoided by formal techniques.

The achievements of the author in this area are concerned with the trend called algebraic specification

[137], which has a long history in computer science going back to the sixties and which is considered by

many as being most solidly founded. While originally algebraic specification is based upon considering

(many sorted) general algebra as an underlying logic for specification formalisms, since about three decades

the perspective of this area has widened up to a multitude of logical systems and more recently even to

heterogeneous environments based upon systems of logical systems. All these logical diversity has called

for a meta-level abstract approach, given by the institution theory of Goguen and Burstall [73].

In this chapter we will present authored results in the areas of behavioural specification, structuring

of specifications, heterogeneous specification, and formal verification through logic programming and

structural induction. All these theoretical developments have been largely motivated by the work on the

modern algebraic specification language CafeOBJ, whose main features will be also presented here.

2.1 B E H AV I O U R A L S P E C I FI C AT I O N

Modern algebraic specification theory and practice has extended the traditional many-sorted algebra-based

specification to several new paradigms. One of the most promising is behavioural specification, which

originates from the work of Horst Reichel [131, 132] and can be found in the literature under names such

as hidden algebra [75, 76], observational logic [9, 94], coherent hidden algebra [55] and hidden logic [133].

Behavioural specification characterises how objects (and systems) behave, not how they are implemented.

This new form of abstraction can be very powerful for the specification and verification of software systems

since it naturally embeds other useful paradigms such as concurrency, object-orientation, constraints,

nondeterminism, etc. (see [76] for details). In the tradition of algebraic specification, the behavioural

abstraction is achieved by using specification with hidden sorts and a behavioural concept of satisfaction

based on the idea of indistinguishability of states that are observationally the same, which also generalizes

process algebra and transition systems (see [76]).

An important effort has been undertaken to develop languages and systems supporting the behavioural ex-

tension of conventional or less conventional algebraic specification techniques; these include CafeOBJ [54,

43

56], CIRC [135] and BOBJ [133]. In other situations, behavioural specification, although not directly

realized at the level of the language definition, is employed as a mere methodological device [10].

In this section we present two important authored achievements in the area of behavioural specification,

namely an extension of the original paradigm that puts it at another level with respect to applications, and a

solidly founded method for object composition within behavioural specifications.

2.1.1 Coherent hidden algebra

This has been introduced in [55, 56] and we abbreviate it by HA. It is both a simplification and extension

of the classical hidden algebra of [75, 76] in several directions, most notably by allowing operations with

multiple hidden sorts in the arity, and differs only slightly from other modern formalizations of hidden

algebra in the literature [94, 133]. HA also is significantly more general than coalgebra with final semantics

[98] since it integrates smoothly data types and it allows behavioural operations with multiple hidden sorts.

Here we present a slightly upgraded variant (the changes concerning mostly notational conventions) that is

used in the most recent works.

Definition 2.1 (Signatures). A HA signature is a tuple (H,V ,F ,BF) where

• (H ∪V ,F) is an MSA signature with H ∩V = /0; the sorts in V are called visible sorts and the sorts

in H are called hidden sorts; and

• (H ∪V ,BF) is a sub-signature of (H ∪V ,F) such that BFw→s = /0 when w ∈V ∗; the operations of

BF are called behavioural operations.

Definition 2.2 (Hidden algebras). Given a signature (H,V ,F ,BF), an (H,V ,F ,BF)-algebra is just an MSA

(H ∪V ,F)-algebra.

Definition 2.3 (Hidden congruence). Given a (H,V ,F ,BF)-algebra A, a hidden (H,V ,F ,BF)-congruence

∼ on A is just an (H ∪V ,BF)-congruence which is identity on the visible sorts.

Definition 2.4 (Behavioural equivalence). The largest hidden (H,V ,F ,BF)-congruence∼A on a (H,V ,F ,BF)-

algebra A is called the behavioural equivalence on A.

A proof of the following crucial result can be found in several variants in several places in the literature;

in the form represented by our particular hidden algebra formalization it can be found in [41]. This result

generalizes the final semantics employed by the early hidden algebra frameworks [75] or by the coalgebraic

approaches [98] to the situation of behavioural operations with multiple hidden sorts in the arity and of

loose interpretation of the visible part of the signature.

Theorem 2.5. Behavioural equivalence exists for any (H,V ,F ,BF)-algebra.

Definition 2.6 (HA sentences). Given a HA signature (H,V ,F ,BF), the (H,V ,F ,BF)-sentences are built

like the MSA (H ∪V ,F)-sentences from the two kinds of atoms, behavioural equations t ∼ t ′ and strict

equations t = t ′ by iteration of quantifications and Boolean connectives (∧, ∨, ¬,⇒, etc.)

44

Definition 2.7 (HA satisfaction). The satisfaction relation between (H,V ,F ,BF)-algebras and (H,V ,F ,BF)-

sentences is defined like in MSA, in the Tarski style by recursion on the structure of the sentences, with the

addition that an algebra A satisfies a behavioural equation t ∼ t ′ if and only if At ∼A At ′ .

Definition 2.8 (Quasi-morphisms of signatures). A quasi-morphism of HA signatures ϕ : (H,V ,F ,BF)→
(S′,V ′,F ′,BF ′) is just an MSA morphism of signatures ϕ : (H ∪V ,F)→ (H ′∪V ′,F ′) such that

– ϕ(H) ⊆ H ′ and ϕ(V) ⊆V ′, and

– the restriction of ϕ to (H ∪V ,BF) is an MSA signature morphism (H ∪V ,BF)→ (H ′∪V ′,BF ′).

Fact 2.9. The HA signature quasi-morphisms are closed under composition.

Definition 2.10 (HA signature morphisms). A quasi-morphism ϕ : (H,V ,F ,BF)→ (H ′,V ′,F ′,BF ′) is a

signature morphism if and only if the following ‘encapsulation’ condition holds:

for any σ′ ∈ BF ′w→s, if w∩ϕ(H) 6= /0 (i.e. w contains an ‘old’ hidden sort) then there exists σ in BF such

that σ′ = ϕ(σ).

Notation 2.1.1. Given a MSA signature (S,F) and a sort z ∈ S we denote

F[z] = {(σ,w,s) | w ∈ S∗,s ∈ S,σ ∈ Fw→s,z ∈ w}.

Note that for any MSA signature (S,F) and sort z∈ S, any morphism of MSA signatures ϕ : (S,F)→ (S′,F ′)

induces a map ϕ[z] : F[z]→ F ′[ϕ(z)] defined by ϕ[z](σ,w,s) =
(
ϕ(σ),ϕ(w),ϕ(s)

)
.

Fact 2.11. Let ϕ : (H,V ,F ,BF)→ (H ′,V ′,F ′,BF ′) be any HA quasi-morphism of signatures. Then

1. If ϕ is injective on hidden sorts then ϕ is a morphism of signatures if and only if for any h ∈ H the

map ϕ[h] : BF[h]→ BF ′[ϕ(h)] is surjective.

2. If ϕ is injective then ϕ is a morphism of signatures if and only if for any h ∈H the map ϕ[h] : BF[h]→
BF ′[ϕ(h)] is bijective.

Fact 2.12. The HA signature morphisms are closed under composition.

The additional ‘encapsulation’ condition of Dfn. 2.10 has the flavour of class encapsulation from object

orientation and guarantees that the behavioural equivalence on the ‘old’ (hidden) sorts is not changed.

The following is a very important consequence of this and has been proved in several different variants in

several places in the literature (perhaps for the first time in [71] but within a significantly more restricted

hidden algebra context).

Corollary 2.13 (HA satisfaction condition). For any HA signature morphism ϕ : Σ→ Σ′, any Σ-sentence

ρ and any Σ′-algebra A′ we have that

A′ |= ϕ(ρ) if and only if A′�ϕ |= ρ.

Hence, HA is institution.

Both [71, 75] comment that the derivation of the encapsulation condition on the signatures from the

meta-principle of invariance of truth under change of notation (the Satisfaction Condition of institutions)

seem to confirm the naturalness of both principles.

45

Coinduction

Thm. 2.5 provides the foundation for the rather notorious coinduction proof method. This is a rather efficient

proof method, which however has a heuristic component, and which has been emphsised as one of the

important formal verifications mehtodologies in CafeOBJ (see [54]).

Suppose that one wants to prove that two states, represented as terms s and s′, are behaviourally equivalent.

Then it is enough to perform the following steps.

1. Define an equivalence relation R (called a coinduction relation) for each hidden sort,

2. Prove that R is a hidden congruence, and

3. Prove that s R s’.

The heuristic component of the coinduction method is represented by the choice of the relation R. Often

R happens to be the behavioural equivalence, however the coinduction method does not require this. The

choice of R is thus left to the user which has to rely upon his insight into the problem. Some methods have

been invented in order to assist and ease the process of finding such coinduction relations, such as the

so-called ‘circular coinduction’ of [133].

2.1.2 Hierarchical object composition in behavioural specification

In [36] we formally define the novel concept of behavioural object within hidden algebra, which is the

logic of CafeOBJ behavioural specification. Informally, a behavioural object is just a special kind of

behavioural specification which formally specifies the space of the states of the objects together with

actions (‘methods’) changing the state of the object, and with observations (‘attributes’) to (ordinary) data

types. This is the basis for a precise definition of several types of composition operators on behavioural

objects, such as parallel composition (without synchronisation), dynamic composition (in which component

objects gets created and deleted dynamically), and composition with synchronisation generalising both

the former operators. Informally, these composition operators are based on specifications of projections

from the state space of the compound object to the state spaces of the components. The definitions in [36]

give mathematical foundations for the corresponding methodological definitions of object composition in

[54, 96, 57]. The composition operators support hierarchical composition processes in the sense that the

result of a composition is still a behavioural object which can be therefore used for another composition.

This framework permits a clear formulation of semantical properties of the composition operators, such

as associativity and commutativity, and final semantics (i.e. the existence of final composition models). We

show that the basic parallel composition operator is associative and commutative modulo a meaningful

equivalence relation between behavioural objects. Informally, two behavioural objects are equivalent when

there is an isomorphism between the implementations modulo the same state space, the same actions, and

the same behavioural equivalence between the states. For the general composition with synchronisation

operator in [36] a compositionality result is proved for the behavioural equivalence relation, result which

constitute the foundation for automation of the verification process at the level of a compound object (see

[54, 96, 57]), and the existence of final semantics.

46

Below we review some of the concepts and results of this object composition method. The definitions

and results, although essentially developed in [36], are presented here in a upgraded form that covers the

structured case also, and which has been introduced in some unpublished lecture notes used for teaching a

master level course at S, coala Normală Superioară Bucures, ti between 2002-2011.

Definition 2.14 (Behavioural object). [36] A behavioural object B is pair consisting of a behavioural

specification SPB and a distinguished hidden sort hB in Sig[SPB] = (HB,VB, ,FB,BFB) such that each

behavioural operation in BFB is monadic, i.e. it has only one hidden sort in its arity. We may denote

Sig[SPB] by Sig[B]. We establish the following terminological conventions:

– The hidden sort hB denotes the (space of the) states of B.

– The visible sorted behavioural operations on hB are called B-observations.

– The hB-sorted behavioural operations on hB are called B-actions.

For any behavioural object B = (SPB,hB), a B-algebra is just an algebra of the specification SPB. The class

of B-algebras is denoted by Alg(B).

Definition 2.15 (Parallel composition). [36] A behavioural object B is a parallel composition of behavioural

objects B1 and B2 when

SPB = SPB1 +SPB2 +(Sig[B],E)

where Sig[B] adds to Sig[B1]∪Sig[B2] (we assume that hB1 6= hB2) the following:

1. hB as hidden sort,

2. ‘projections’ {π1 : hB→ hB1, π2 : hB→ hB2} as behavioural operations,

3. the set of B-actions: {σi : hBw→ hB | σ ∈ (BFBi)hBiw→hBi , i ∈ {1,2}},

4. a set of B-observations, obsB, and

5. a set of constants of sort hB, constB,

and E is the union of the following sets of (universally quantified) equations:

1. {(∀{x}∪W) πi(σi(x,W)) = σ(πi(x),W) | σ Bi-action, i ∈ {1,2}},

2. {(∀{x}∪W) π j(σi(x,W)) = π j(x) | σ Bi-action, {i, j}= {1,2}},

3. {(∀{x}∪W)σ(x,W) = cσ[πi(x)] | σ ∈ obsB} where i ∈ {1,2} and cσ[z] is any visible behavioural

(Sig[Bi]+W)-context (with hBi being the sort of z), and

4. {πi(c) = ci | c ∈ constB, i ∈ {1,2}} where ci is any constant of sort hBi.

Notation 2.1.2. Let us denote by B1‖B2 the class of behavioural objects B which are parallel compositions

of behavioural objects B1 and B2.

Parallel composition of behavioural objects enjoys the following important compositionality property for

the behavioural equivalence.

47

Proposition 2.16. [36] For any behavioural objects B1 and B2, for each parallel composition B ∈ B1‖B2,

we have that

a∼A a′ if and only if Aπ1(a) ∼A1 Aπ1(a
′) and Aπ2(a) ∼A2 Aπ2(a

′)

for each B-algebra A, elements a,a′ ∈ AhB , and where Ai is the reduct of A to Bi for each i ∈ {1,2}.

Definition 2.17 (Equivalent B-algebras). [36] For any behavioural object B, two B-algebras A and A′ are

equivalent, denoted A≡ A′, when

– AhB = A′hB
and ∼A = ∼A′ on the sort hB, and

– Aσ = A′σ for each B-action σ.

Note that the equality Aσ = A′σ above implies implicitly that Av = A′v for each visible sort v in the arity of

any B-action σ.

Definition 2.18 (Equivalent behavioural objects). [36] Two behavioural objects B and B′ are equivalent,

denoted B≡ B′, when there exists a pair of functions Φ : Mod[B]→Mod[B′] and Ψ : Mod[B′]→Mod[B]

which are inverse to each other modulo algebra equivalence, i.e. A≡ Ψ(Φ(A)) for each A ∈Mod[B] and

A′ ≡Φ(Ψ(A′)) for each A′ ∈Mod[B′].

Note that isomorphic objects are equivalent. The following shows that our parallel composition without

synchronisation is unique modulo equivalence of objects.

Proposition 2.19. [36] Let B1 and B2 be behavioural objects and let B,B′ ∈ B1‖B2.

1. If there are no constants of the sorts hB and hB′ then B and B′ have isomorphic classes of algebras.

2. B and B′ are equivalent objects, i.e. B≡ B′.

In the following we show that given any models for each of the component objects, such that they are

consistent on their common parts, they can be amalgamated ‘canonically’ to a model of the compound

object. For this we need a concept of homomorphism for hidden algebras.

Definition 2.20 (Homomorphism of hidden algebras). A homomorphism h : A→B between two (H,V ,F ,BF)-

algebras is just a homomorphism of (H∪V ,F)-algebra A→ B which preserves the behavioural equivalence

relation, i.e. if a∼A a′ then h(a) ∼A′ h(a′).

The following gives the final semantics for parallel composition without synchronisation.

Theorem 2.21. [36] Let B ∈ B1‖B2 and let Ai be algebras of Bi for i ∈ {1,2} such that A1�Sig[B1]∩Sig[B2] =

A2�Sig[B1]∩Sig[B2]. Then there exists a B-algebra A expanding A1 and A2 such that for any other B-algebra A′

expanding A1 and A2 there exists an unique B-algebra homomorphism A′→ A expanding 1A1 and 1A2 . (In

this case A is called the final B-algebra expanding A1 and A2.)

The parallel composition of behavioural objects is trivially commutative because the order in the parallel

composition is immaterial.

48

Fact 2.22. For any behavioural objects B1 and B2, we have that B1‖B2 = B2‖B1.

The associativity of parallel composition is non-trivial, and even its formulation requires some subtelty.

On the one hand let us first take any B12 ∈ B1‖B2 and then any B(12)3 ∈ B12‖B3. On the other hand let us

first take any B23 ∈ B2‖B3 and then take any B1(23) ∈ B1‖B23. So what is the relationship between B(12)3

and B1(23)?

However the nice thing is that B(12)3 and B1(23) can be proved equivalent in the sense of Dfn. 2.18.

Definition 2.23. Under the above notations, we say that B(12)3 and B1(23) are compatible on constants when

there is a bijective correspondence () between constB(12)3 and constB1(23) such that for each c ∈ constB(12)3

there are constants c1, c2, c3, c12 and c23 such that

– SPB(12)3 |= {π12(c) = c12, π1(c12) = c1, π2(c12) = c2, π3(c) = c3}, and

– SPB1(23) |= {π
′
1(c) = c1, π′23(c) = c23, π′2(c23) = c2, π′3(c23) = c3}.

Note that when constB(12)3 = constB1(23) = /0, the objects B(12)3 and B1(23) are trivially compatible on

constants.

Theorem 2.24. [36] If B(12)3 and B1(23) are compatible on constants then B(12)3 ≡ B1(23).

The mathematical definition below extends the definition of parallel composition (Dfn. 2.15) to the

synchronized situations.

Definition 2.25 (Synchronized composition). [36] A behavioural object B is a synchronized composition

of behavioural objects B1 and B2 when

SPB = SPB1 +SPB2 +V IS+(Sig[B],E)

where V IS is a specification with only visible sorts and Sig[B] adds to Sig[B1]∪ Sig[B2]∪ Sig[V IS] (we

assume that hB1 6= hB2) the following:

1. hB as hidden sort,

2. ‘projections’ {π1 : hBw1→ hB1, π2 : hBw2→ hB2} for some strings w1 and w2 of visible sorts, as

behavioural operations,

3. the set of B-actions that includes {σi : hBw→ hB | σ ∈ (BFBi)hBiw→hBi , i ∈ {1,2}},

4. a set of B-observations, obsB, and

5. a set of constants of sort hB, constB,

and E is the union of the following sets of (universally quantified conditional) equations:

1. For each B-action σ and i ∈ {1,2},
{(∀{x}∪W ∪Wi) Cσ,k

i [x,W ,Wi]⇒ (πi(σ(x,W),Wi) = τ
σ,k
i [x,W ,Wi]) | k ∈ {1, . . . ,ni}}, where

– each τ
σ,k
i [x,W ,Wi] is a hBi-sorted term of behaviourally coherent Bi-operations applied either

to πi(x,Wi) or to a Bi-constant, and

49

– Cσ,k
i [x,W ,Wi] is a quantifier-free formula formed (by iterations of negations, conjunctions, and

disjunctions), from equations t = t ′ (over the signature extended with x, W, Wi), and where t

and t ′ either

– do not have operations with hidden sorts, or

– they are terms of the form c[π j(x,Wj)] where c[z] is a behaviourally coherent context for

B j with Wj ⊆W ∪Wi,

such that for each A ∈Mod[SPB]

– A |= (∀{x}∪W ∪Wi)
∨
{Cσ,k

i [x,W ,Wi] | k ∈ {1, . . . ,ni}}

– A |= (∀{x}∪W ∪Wi) Cσ,k
i [x,W ,Wi]∧Cσ,k′

i [x,W ,Wi]⇔ false for k 6= k′ ∈ {1, . . . ,ni}.

2. {(∀{x}∪W)σ(x,W) = cσ[πi(x,Wi)] | σ∈ obsB} where i∈ {1,2} and cσ[z] is any visible behavioural

(Sig[Bi]+W)-context (with hBi being the sort of z) and Wi ⊆W, and

3. {πi(c,Wi) = cWi | c ∈ constB, i ∈ {1,2}} where cWi is any Bi-term of sort hBi formed from constants

and variables Wi.

Notation 2.1.3. Let us denote by B1⊗B2 the class of behavioural objects B which are synchronised

compositions of behavioural objects B1 and B2.

Note that Dfn. 2.25 generalizes Dfn. 2.15 in two different ways. The parallel composition of Dfn. 2.15 is

indeed a particular case of synchronized composition as defined in Dfn. 2.25 by taking each projection πi

without parameters, each ni = 1, each Cσ,k
i = true, and τ

σi,1
i [x,W] = σ[πi(x),W] and τ

σ j ,1
i [x,W] = πi(x)

for i 6= j.

The following extends the compositionality property of behavioural equivalence from the parallel case

(Prop. 2.16) to the synchronized case.

Theorem 2.26. [36] For any behavioural objects B1 and B2, for each composition with synchronisation

B ∈ B1⊗B2, we have that

a∼A a′ if and only if (∀Wi)Aπi(a,Wi) ∼Ai Aπi(a
′,Wi) for i ∈ {1,2}

for each B-algebra A, elements a,a′ ∈ AhB , and where Ai is the Bi-reduct of A for each i ∈ {1,2}.

The following results extends the final algebra semantics of parallel composition result (Thm. 2.21) to

synchronized compositions.

Theorem 2.27. [36] Let B ∈ B1⊗B2. For any Bi-algebras Ai for i ∈ {1,2} and AV ∈Mod[V IS] such that

A1�Sig[B1]∩Sig[B2] = A2�Sig[B1]∩Sig[B2] and Ai�Sig[Bi]∩Sig[V IS] = AV �Sig[Bi]∩Sig[V IS] for i ∈ {1,2},

there exists a B-algebra A expanding A1, A2, and AV such that for any other similar B-algebra A′ there

exists an unique homomorphism of B-algebras A′→ A expanding 1A1 , 1A2 , and 1AV .

50

While the significance of Thm. 2.27 is that it guarantees the consistency of the composition and also

gives an indication how implementation of the component specifications can be composed as a compound

implementation, Thm. 2.26 shows that the formal verification of behavioural properties at the level of the

compound object may be automatic. Moreover the rigidness of the methodology proposed allows for a

straightforward realization of this methodology at the level of the specification language constructs, which

may result as an important tool support for this object composition methodology.

2.2 M O D U L A R I T Y / S T RU C T U R I N G

A promising approach to developing large and complex systems (which may be software, hardware, or

both) is to start from a description of the system as an interconnection of some specification modules. This

permits the verification of many properties to be carried out at the level of design, rather than code, and thus

should improve reliability. With suitable mechanical support, it might also improve the efficiency of the

development process. In addition, it promotes reuse, because some modules may be taken directly from

a library, or else may be modifications of library modules. For this reason, many modern programming

and specification languages support some form of modularisation, and most results about modules have

appeared in the context of formal software engineering, particularly specification languages.

The earliest work on software modules is by Parnas [126, 127, 128]. Program modules differ from earlier

program structuring mechanisms such as subroutines, procedures and blocks, in that they may include a

number of procedure and data definitions, may be parameterised, may import other modules, and may

hide certain elements. A major motivation for modules in this sense is to facilitate the modification of

software, by localising the representation of data and the operations that depend upon it; this is called

information hiding. Such modules support software reuse because they can be specified, verified, and

compiled separately. Note that this notion of module is essentially syntactic: it concerns texts that describe

systems. The earliest work on specification modules is by Goguen and Burstall, for their specification

language Clear [17, 18], the semantics of which is based on institutions. This approach to modules has

been applied to various logic-based languages, particularly OBJ [85] (an equational based on order sorted

algebra), Eqlog [78] (which combines the functional and logic paradigms), FOOPS [80, 86] (which combines

the functional and object paradigms), and FOOPlog [80] (which combines all three paradigms); it could

also be applied to any pure logic-based programming languages, such as (pure) Lisp and (pure) Prolog. In

[70], it is even extended to imperative programming. Modern specification languages such as CASL [5] and

CafeOBJ [54] owe their structuring mechanisms more to the model oriented upgrade of the Clear approach

proposed in the seminal paper [136] than to the Clear approach itself.

In this section we review some authored contributions to the foundations of structuring specifications.

51

2.2.1 Module algebra

The module algebra of Bergstra, Heering and Klint [6] attempts to capture the horizontal structure of

modules with equations among certain basic operations on modules, including sum, renaming, and in-

formation hiding. These equations, together with constructors for signatures and sentences, give a many

sorted equational presentation, about which some interesting results can be proved, including a normal

form theorem. Unfortunately, this work has first order logic built into its choice of the constructors for

signatures and sentences. However, Bergstra et al. abstract some interesting general principles from this

special case. The work [53] (which was published in a special journal issue dedicated to Jan Bergstra)

develops module algebra over arbitrary institutions rather than first order logic by extending the model

oriented module algebra proposed in [136] (see also [137]) with new specification building operators

dealing with non-protecting importation modes. The non-protecting importation modes constitute a feature

of module systems of OBJ [85] and CafeOBJ [54] but they do not exist in CASL [5]. The paper [53]

argues that specification with non-protecting importation modes has strictly more expressive power than

that without. Below we review the institution independent semantics for structured specifications of [53]

that extends that defined in [136] (which has been rather intensively used in the foundational works about

structuring of specifications) with new building operators. In addition in [53] we also propose that for any

specification SP we may calculate the set of its axioms Ax[SP] ⊆ Sen(Sig[SP]).

Because the union operator below is defined total in [53] rather than partial like in [136, 137] we have

to resort to the concept of inclusion system. Inclusion systems were introduced in [59] as a categorical

device supporting an abstract general study of structuring of specification and programming modules that is

independent of any underlying logic. There they were defined in a stronger version (corresponding to the

epic inclusion systems with unions in our paper); here we use their weaker variant introduced by [27] under

the name of ‘weak inclusion systems’. Inclusion systems provide the underlying mathematical structure for

module imports (which constitute the most fundamental structuring construct) in specification theory, and

consequently have been used in a series of general module algebra studies such as [59, 84, 38]. Moreover

they have also been used for developing axiomatizability [134, 32, 38] and definability [1] results within

the framework of institution-independent model theory [38].

Inclusion systems capture categorically the concept of set-theoretic inclusion in a way reminiscent of how

the rather notorious concept of factorization system [13] captures categorically the set-theoretic injections;

however in many applications the former are more convenient than the latter. In fact, the applications to

specification module algebra can be done only with inclusion systems, since factorization systems lack the

uniqueness feature of inclusion systems.

Definition 2.28 (Inclusion systems). 〈I , E〉 is a inclusion system for a category C if I and E are two

sub-categories with |I |= |E |= |C| such that

1. I is a partial order (with the ordering relation denoted by ⊆), and

2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I .

52

The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The

domain of the inclusion i f in the factorization of f is called the image of f and is denoted as Im(f) or f (A)

when A is a domain of f .

Definition 2.29 (Epic inclusion systems). An inclusion system is epic when all abstract surjections are

epis.

The concept below is critical for the semantics of (software) module imports and is one of the important

features that distinguishes inclusion systems from factorization systems in the sense that the latter can not

support such concept in a proper way.

Definition 2.30 (Unions). An inclusion system 〈I , E〉 has unions when I has finite least upper bounds

(denoted ∪).

Let us fix two classes of signature morphisms T ,D ⊆ Sign, considered as parameters for the structuring

process.

Each finite presentation (Σ,E) is a specification such that

Sig[(Σ,E)] =Σ,

Ax[(Σ,E)] =E,

Mod[(Σ,E)] =Mod(Σ,E).

For any specifications SP1 and SP2 we can take their union SP1∪SP2 with

Sig[SP1∪SP2] =Sig[SP1]∪Sig[SP2],

Ax[SP1∪SP2] =Ax[SP1]∪Ax[SP2],

|Mod[SP1∪SP2]| ={M ∈Mod(Sig[SP1∪SP2]) |M�Sig[SPi] ∈Mod[SPi] for each i ∈ {1,2}}.

For any specification SP and signature morphism (ϕ : Sig[SP]→ Σ′) ∈ T we can take its translation

along ϕ denoted by SP?ϕ and such that

Sig[SP?ϕ] =Σ′,

Ax[SP?ϕ] =ϕ(Ax[SP]),

|Mod[SP?ϕ]| ={M′ ∈Mod(Σ′) |M′�ϕ ∈Mod[SP]}.
When ϕ is inclusion we may denote SP?ϕ by SP?Σ′.

For any specification SP′ and signature morphism (ϕ : Σ→ Sig[SP′]) ∈ D we can take its derivation

along ϕ denoted by ϕ | SP′ such that

Sig[ϕ | SP′] =Σ,

Ax[ϕ | SP′] =ϕ−1(Ax[SP′]∗∗),

|Mod[ϕ | SP′]| ={M′�ϕ | M′ ∈Mod[SP′]}.

When ϕ is inclusion we may denote ϕ | SP′ by Σ | SP′.

53

Given a class H of model homomorphisms, we consider the H -extension of a specification SP, denoted

H (SP), such that

Sig[H (SP)] =Sig[SP],

Ax[H (SP)] =Ax[SP], and

|Mod[H (SP)]| ={M′ ∈Mod(Sig[SP]) |M′ |= Ax[SP] and

there exists (h : M→M′) ∈H with M ∈Mod[SP]}

Given a class H of model homomorphisms, for any specifications SP1 and SP2 and signature morphism

ϕ : Sig[SP1]→ Sig[SP2], we consider the H -free restriction of SP2 modulo ϕ and SP1, denoted

SP2 !H (ϕ,SP1), such that

Sig[SP2 !H (ϕ,SP1)] =Sig[SP2],

Ax[SP2 !H (ϕ,SP1)] =Ax[SP2], and

|Mod[SP2 !H (ϕ,SP1)]| ={M2 ∈Mod[SP2] |there exists M1 ∈Mod[SP1] and

an universal arrow (η : M1→M2�ϕ) ∈H

to the reduct functor Mod[SP2]→Mod(Sig[SP1])}.

When ϕ is an inclusion of signatures we may omit ϕ from the notations and denote SP2 !H (ϕ,SP1)

simply by SP2 !H SP1. When SP1 is a presentation of the form (Σ, /0), with Σ signature, we may

simply write it as Σ and denote the specification SP2 !H (ϕ,SP1) by SP2 !H ϕ or SP2 !H Σ when ϕ is

inclusion. When H is the class of identities we omit it as the subscript of !, and the universal property

of the models of SP2 !H (ϕ,SP1) is called strongly persistently ϕ-free.

Remark 2.31. 1. As mentioned above in some of the literature, e.g. [14, 137] etc., the union ∪ is

usually partially defined, only for specifications over the same signature. The general union of two

specifications is then obtained as the (partially defined) union of their translations to the union

signature. Like in [59] our use of inclusion systems (concept introduced in [59]) allows for the direct

definition of the union of any specifications, without any conditions.

2. Note that if T and D, resp., are the class of the identities, then TRANS and DERIV, resp. are

cancelled. The rather realistic idea to define TRANS and DERIV relative to sub-classes of signature

morphisms seems to belong to [14]. Often in practice D is the class of signature inclusions while T
is the class of all signature morphisms.

3. H -EXT is a completely new operator introduced in [53] for capturing non-protecting importation

modes.

4. Our operator H -FREE constitutes a significant extension in [53] of the existing initial semantics

operator that can be found in the literature (such as in [137]) which corresponds to the case when

H is the class of the identities and SP1 is empty. The extension to arbitrary H is motivated by the

capture of initial semantics in relation with non-protecting importation modes.

54

Fact 2.32. The following defines a preorder on specifications

SP1 |= SP2 if and only if Sig[SP1] = Sig[SP2] and Mod[SP1] ⊆Mod[SP2].

The Definitions 2.33 and 2.34 together with the Facts 2.35 and 2.36 below can be found in the literature,

for example in [137].

Definition 2.33 (Equivalent specifications). Two specifications SP1 and SP2 are equivalent, denoted SP1 |=|
SP2, when SP1 |= SP2 and SP2 |= SP1.

In general it is possible to have different specifications that are equivalent. When we are interested only

in the semantics of specifications rather than in the way they are constructed, it does make sense to consider

specifications modulo this equivalence relation.

Definition 2.34 (Specification morphisms). A specification morphism ϕ : SP1→ SP2 between specifica-

tions SP1 and SP2 is a signature morphism ϕ : Sig[SP1]→ Sig[SP2] such that SP2 |= SP1 ?ϕ.

Fact 2.35. A signature morphism ϕ : Sig[SP1]→ Sig[SP2] is a specification morphism SP1→ SP2 if and

only if ϕ | SP2 |= SP1.

Fact 2.36. For any institution I , the specifications and their morphisms under the obvious composition

form a category, denoted SpecI .

Proposition 2.37. For any specifications SP, SP′, SP′′,

SP∪SP′ |=| SP′∪SP. (6)

SP∪SP |=| SP. (7)

(SP∪SP′)∪SP′′ |=| SP∪ (SP′∪SP′′). (8)

The following series of module algebra results represent new contributions of [53].

Proposition 2.38. In any institution, for any pushout of signatures as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and for any specifications SP1, SP2 such that Σk = Sig[SPk] for k ∈ {1,2} we have that

(ϕk;θk) | (SP1 ?θ1 ∪ SP2 ?θ2) |= (ϕ1 | SP1)∪ (ϕ2 | SP2), for k ∈ {1,2}. (9)

If the institution has weak model amalgamation then

(ϕk;θk) | (SP1 ?θ1 ∪ SP2 ?θ2) |=| (ϕ1 | SP1)∪ (ϕ2 | SP2), for k ∈ {1,2}. (10)

55

Corollary 2.39. In any institution with unions and intersections of signatures, for any specifications SP1

and SP2, let Σ = Sig[SP1]∩Sig[SP2]. Then

Σ | (SP1∪SP2) |= (Σ | SP1)∪ (Σ | SP2). (11)

Moreover if the institution has weak model amalgamation and each intersection-union square of signatures

is pushout then

Σ | (SP1∪SP2) |=| (Σ | SP1)∪ (Σ | SP2). (12)

The distributivity rule (12) above has been stated as an exercise in [137] for the particular case of

equational logic. Its property oriented variant has been a cornerstone in [6] (for the special case of

many sorted first order logic) and in [59] (in the general institution-independent case), its proof has been

significantly more difficult that the proof above of its model oriented variant and required an interpolation

property for the underlying institution.

Fact 2.40. If H contains all identities then for each flat specification (Σ,E)

H (Σ,E) |=| (Σ,E). (13)

Fact 2.41. If H = H ′;H ′′ then for each specification SP

H ′(H ′′(SP)) |=|H (SP). (14)

Definition 2.42. A class H of model homomorphisms is preserved by a signature morphism ϕ when

h�ϕ ∈H for each h ∈H .

Proposition 2.43. If each inclusion of signatures preserves H then for all specifications SP1 and SP2 we

have

H (SP1∪SP2) |= H (SP1)∪H (SP2) (15)

Recall from [38] the following concept:

Definition 2.44 (Lifting of relations). Let ϕ : Σ1→ Σ2 be a signature morphism and R = 〈R1, R2〉 with

R1 ⊆ |Mod(Σ1)| × |Mod(Σ1)| and R2 ⊆ |Mod(Σ2)| × |Mod(Σ2)| be a pair of binary relations. We say

that ϕ lifts R if and only if for each M2 ∈ |Mod(Σ2)| and N1 ∈ |Mod(Σ1)|, if 〈M2�ϕ, N1〉 ∈ R1, there exists

N2 ∈ |Mod(Σ2)| such that N2�ϕ = N1 and 〈M2, N2〉 ∈ R2.

M2�ϕ
R1N1 = N2�ϕ

M2 R2
(∃)N2

Proposition 2.45. If ϕ lifts H←− then

H (SP) ?ϕ |= H (SP?ϕ). (16)

56

If ϕ lifts H−→ and H preserves the satisfaction of all sentences of the institution then

H (ϕ | SP′) |= ϕ |H (SP′). (17)

If ϕ preserves H then

H (SP?ϕ) |= H (SP) ?ϕ. (18)

ϕ |H (SP′) |= H (ϕ | SP′). (19)

Corollary 2.46. If each morphism in D (i.e. used for derivation) lifts isomorphisms and H ; Iso⊆ Iso;H
then the class of models Mod[SP] of each specification SP is closed under isomorphisms.

Proposition 2.47. Assume the institution is semi-exact. For any pushout of signatures as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and for any specifications SP1, SP2 and SP such that Σk = Sig[SPk] for k ∈ {1,2} and Σ = Sig[SP] we

have

(SP1 ?θ1 ∪ SP2 ?θ2) !H ((ϕk;θk),SP) |= (SP1 !H (ϕ1,SP))?θ1 ∪ (SP2 !H (ϕ2,SP))?θ2 (20)

if (ϕ1 | SP1) |=| (ϕ2 | SP2).

Corollary 2.48. In any semi-exact institution in which the intersection-union squares of signatures are

pushouts we have that for any specifications SP1 and SP2 and for Σ = Sig[SP1]∩Sig[SP2]

(SP1 ! Σ)∪ (SP2 ! Σ) |= (SP1∪SP2) ! Σ and (21)

(SP1∪SP2) ! Σ |=| (SP1 ! Σ)∪ (SP2 ! Σ) if (Σ | SP1) |=| (Σ | SP2). (22)

Proposition 2.49. If the institution is semi-exact, then for any pushout of signatures

Σ
ϕ1 //

ϕ2
��

Σ1

θ1��
Σ2

θ2

// Σ′

and any specification SP′ such that Sig[SP′] = Σ′ we have that

(θ1 | SP′) ! ϕ1 |= θ1 | (SP′ ! θ2). (23)

57

2.2.2 Axiomatic approach to structured specifications

In the traditional institution theoretic approaches to structuring of specifications (e.g. [136, 59], etc.) one

may consider an ‘upper’ institution whose signatures are either theories (in the theory oriented approach,

e.g. [59]) or structured specifications (in the model oriented approach, e.g. [136]) that has the following

couple of properties:

– there is a ‘forgetful’ functor Φ to the signatures of the base institution,

– both the ‘upper’ and the base institution share the same sentences modulo Φ, and

– the models of the ‘upper’ institution are (modulo Φ) a sub-class of the models of the base institution.

The main idea underlying the approach of [45] is to consider an abstract institution in the role of this ‘upper’

institution together with some properties relating it to the base institution. This is what in [45] we call

the upper level of institution independence. Technically speaking, the whole situation can be condensed

in a special form of an institution morphism (in the sense of [73]), and this is taken as the axiomatic

basis for developing the theory of structured or modular specifications, without reference to theories or to

specification building operators. The benefits of this approach are as follows:

1. From the point of view of the model oriented approach to structured specifications, the axiomatic

approach of [45] achieves independence from the commitment to any specific set of specification

building operators, in other words we achieve a general uniform theory of structured specifications

that can be used for any particular set of specification building operators. This is very important

when we consider the richness of possible specification building operators (the book [137] gives a

hint about this) with new ones being proposed (in [53] for dealing with non-protecting importation

modes). Moreover, one may want also to consider quotienting structured specifications under various

module algebra rules (in the sense of [6, 59, 137]), a situation which is also captured naturally by the

approach of [45]. This approach may cover also structuring contexts that are beyond conventional

formal specification, such as the modular approach to the model expansion problems [144].

2. It unifies the theory and the model oriented approaches to modularization, many concepts or results

that seemed to bear high similarity can be now seen precisely as being both instances of the same

concept or result. A basic familiar example may be given by the lifting of co-limits from signatures

to specifications that can be found in [73] for the theory oriented approach and in [137] for the model

oriented approach. Moreover all the concepts or results developed here can be easily reflected down

to either the theory or the model oriented approach.

3. The theory is developed in a top down manner, with the hypotheses introduced on a by-need basis

with the benefit of understanding clearly the causality relationships between the various aspects of

specification structuring and modularization.

The main concept of the approach introduced by [45] is the following:

58

Definition 2.50 (Structured institutions). [45] Given two institutions I = (Sign,Sen,Mod, |=) and I ′ =
(Sign′,Sen′,Mod′, |=′) we say that I ′ is structured over I through Φ when

– Φ : Sign′→ Sign is a functor,

– for each I ′-signature Σ′ we have Sen(Φ(Σ′)) = Sen′(Σ′) and for each I ′-signature morphism ϕ we

have Sen(Φ(ϕ)) = Sen′(ϕ),

– for each I ′-signature Σ′ we have that Mod′(Σ′) is a full subcategory of Mod(Φ(Σ′)) such that for

each I ′-signature morphism ϕ : Σ′1→ Σ′2 the diagram below commutes

Mod′(Σ′1)
⊆ // Mod(Φ(Σ′1))

Mod′(Σ′2)

Mod′(ϕ)

OO

⊆
// Mod(Φ(Σ′2))

Mod(Φ(ϕ))

OO

and

– for each I ′-signature Σ′, each Σ′-model M′ and each Σ′-sentence ρ we have that

M′ |=′Σ′ ρ if and only if M′ |=Φ(Σ′) ρ.

Definition 2.51 (Lifting co-limits). [45] Given an institution I ′ structured over I through Φ, we say that Φ

lifts co-limits when for each diagram D in Sign′ each co-limit µ of D;Φ, i.e. the image in Sign of D through

Φ, can be lifted to a co-limit µ′ of D such that µ′Φ = µ.

The following consequence of lifting co-limits is rather straightforward, and generalizes corresponding

results in the literature (e.g. [137]).

Fact 2.52. If Φ lifts co-limits in the sense of Dfn. 2.51 then it also preserves co-limits.

The following generalizes the lifting of amalgamation from the base institution to that of the structured

specifications found in the literature (e.g. [137]).

Definition 2.53 (Compositionality). [45] An institution I ′ structured over I through Φ is compositional

when for each pushout in Sign′

Σ′
ϕ1 //

ϕ2

��

Σ′1

θ1
��

Σ′2 θ2

// Ω′

for any model M′ ∈Mod(Φ(Ω′)), M′�Φ(θk) ∈Mod′(Σ′k), k ∈ {1,2}, implies M′ ∈Mod′(Ω′).

Proposition 2.54. [45] Let I ′ be an institution structured over I through Φ such that

1. Φ preserves pushouts, and

2. I ′ structured over I through Φ is compositional.

If I has model amalgamation (resp. weak model amalgamation, semi-exactness) then I ′ has model amalga-

mation (resp. weak model amalgamation, semi-exactness).

59

In the paper [45] we introduce a concept of normal form for abstract structured specifications that

captures abstractly the normal forms from the model oriented approach to structured specifications (see

[6, 20, 14]). We show that in the presence of normal forms it is possible to lift a series of important logical

properties from the base institution to the upper institution of the abstract structured specifications. These

properties well known for their relevance to specification, include compactness, and interpolation. Another

important property studied is the closure of (the class of) models of an abstract structured specification

under isomorphisms. Moreover, like in the work [14], we use normal forms for lifting a sound and complete

proof system from the base institution to the institution of the abstract structured specifications (however

this is done differently from [14]).

Definition 2.55 (Normal form). [45] Given an institution I ′ structured over I through Φ and a class D of

I -signature morphisms, a pair (ϕ,E) where (ϕ : Φ(Σ′)→ Σ) ∈D and E ⊆ Sen(Σ) is a D-normal form

for an I ′-signature Σ′ when Mod′(Σ′) = Mod(Σ,E)�ϕ. When E is finite we say that the normal form is

finitary. We say that I ′ admits (finitary) D-normal forms when each I ′-signature has at least a (finitary)

D-normal form.

Proposition 2.56. [45] Let (ϕ : Φ(Σ′)→ Σ,E) be a D-normal form for an I ′-signature Σ′. Then for each

set Γ′ ⊆ Sen′(Σ′) and ρ ∈ Sen′(Σ′)

Γ′ |=′Σ′ ρ if and only if E ∪ϕ(Γ′) |=Σ ϕ(ρ).

Definition 2.57. A signature morphism ϕ : Σ→ Σ′ in an institution lifts isomorphisms (of models) if and

only if for any two isomorphic Σ-models M ∼= N and any ϕ-expansion M′ of M there exists a ϕ-expansion

N′ of N such that M′ ∼= N′.

Proposition 2.58. [45] Let I ′ be an institution structured over I through Φ such that I ′ admits D-normal

forms for some class D of I -signature morphisms. If each morphism from D lifts isomorphisms then for

each I ′-signature Σ′ we have that Mod′(Σ′) is closed under (I -model) isomorphisms.

Proposition 2.59. [45] Let I ′ be an institution structured over I through Φ such that I ′ admits D-normal

forms for some class D of I -signature morphisms. If I is compact then I ′ is compact too.

Theorem 2.60. [45] Let I ′ be an institution structured over I through Φ and L ′ and R ′ classes of signature

morphisms such that

1. Φ preserves pushouts,

2. the structuring of I ′ is compositional,

3. I ′ admits D-normal forms for some class D of I -signature morphisms,

4. I has Craig-Robinson (L ,R)-interpolation, and

5. Φ(L ′);D ⊆ L and Φ(R ′);D ⊆ R .

Then I ′ has Craig-Robinson (L ′,R ′)-interpolation.

60

Definition 2.61. [45] Let I ′ be an institution structured over I through Φ and let D be a designated class

of I -signature morphisms. We let `′ be the least entailment system for I ′ such that for each I ′-signature Σ′,

for each of its D-normal forms (ϕ : Φ(Σ′)→ Σ,E), for each E ′ ⊆ Sen′(Σ′) and each ρ ∈ Sen′(Σ′)

E ′ `′Σ′ ρ if E ∪ϕ(E ′) |=Σ ϕ(ρ).

The following is an immediate consequence of Prop. 2.56.

Corollary 2.62. (I ′,`′) is sound. Moreover, if I ′ admits D-normal forms then (I ′,`′) is complete too.

Dfn. 2.61 together with Cor. 2.62 constitute the basis for a rather simple lifting of a sound and complete

proof theory from the base institution I to the abstract structured specifications (the institution I ′). This

goes as follows. Assuming that I ′ admits D-normal forms, if we are interested to prove that ρ is a property

of an abstract structured specification Σ′, i.e. that |=′Σ′ ρ, then we have to do the following:

1. Compute a D-normal form (ϕ : Φ(Σ′)→ Σ,E) for Σ′. For example, for the (T ,D)-structured

specifications of Sect. 2.2.1, the literature (e.g. [38]) gives a simple algorithm for this, the result being

a finitary D-normal form.

2. Prove

E |=Σ ϕ(ρ)

by using a sound and complete proof theory of the base institution.

Note that the computed normal form may be any since according to Prop. 2.56 any normal form has the same

effect. The important thing here is to have at least one normal form. This procedure corresponds to (some

of the) actual formal verification practices, for example implementations of the OBJ family of languages

(e.g. CafeOBJ [54]) compute tacitly such normal forms as flattenings of actual loose semantics modules.

When performing formal verifications, the users of these languages often invoke the open command which

(among other things) makes available for the proof process the set E of sentences of the normal form. In

such methodologies the reuse of proofs comes in forms of lemmas, which may be properties proved for

component parts of the specification and which are being brought to the actual context via the ‘translation’

property of entailment systems.

The core verification methodology for structured specifications discussed here is simpler than that

emerging from the fundamental work of [14], for example it does not require interpolation. The drawback

here is that the correspondence between the modular structure of proofs and that of specifications is lost.

The existence of simple proof systems via normal forms has been known in the literature and is explicitly

stated in [137]. Note though that all these rely upon a common important requirement: the existence of

normal forms, which is explicit in our approach and in [14] and implicit in [115].

Although one of the main points of the theory of abstractly structured specifications is the liberation from

concrete structuring operators, in some situations it is useful to talk about structuring operators in an abstract

context. This is especially relevant when studying algebraic rules of module compositions. In [52] we have

introduced a couple of the most important generic structuring operators in the literature within the context

of the abstractly structured specifications. The following analogy with monoids may be quite helpful. The

61

structured specifications in the traditional approach [136] would correspond to the free monoids, while the

concept of abstractly structured specifications endowed with definitions for some (concrete) structuring

operators corresponds to the class of all monoids.

Definition 2.63 (Unions). [52] Let an institution I ′ be structured over I through Φ such that I is inclusive

(when exist the unions denoted by ∪). We say that I ′ has unions when for any I ′-signatures Σ′1 and Σ′2 such

that Φ(Σ′1)∪Φ(Σ′2) exists there exists a designated I ′-signature denoted Σ′1∪Σ′2 such that

• Φ(Σ′1∪Σ′2) = Φ(Σ′1)∪Φ(Σ′2), and

• |Mod′(Σ′1∪Σ′2)|=
{

M′ ∈ |Mod(Φ(Σ′1)∪Φ(Σ′2))| |M′�Φ(Σ′k)
∈ |Mod′(Σ′k)|,k ∈ {1,2}

}
.

Definition 2.64 (Translation and Derivation). [52] For any institution I ′ that is structured over I through

Φ and any I -signature morphism ϕ : Σ→Ω, we say that

• I ′ has ϕ-translations when for any I ′-signature Σ′ such that Φ(Σ′) = Σ there exists a designated

I ′-signature, denoted Σ′−> ϕ, such that

– Φ(Σ′−> ϕ) = Ω, and

– |Mod′(Σ′−> ϕ)|=
{

M′ ∈ |Mod(Ω)| |M′�ϕ ∈ |Mod′(Σ′)|
}

.

• I ′ has ϕ-derivations when for any I ′-signature Ω′ such that Φ(Ω′) = Ω there exists a designated

I ′-signature, denoted ϕ2Ω′, such that

– Φ(ϕ2Ω′) = Σ, and

– |Mod′(ϕ2Ω′)|=
{

M′�ϕ |M′ ∈ |Mod′(Ω′)|
}

.

For any class D of I -signature morphisms we say that I ′ has D-translations/derivations when it has

ϕ-translations/derivations for each ϕ ∈D .

2.2.3 Parameterized specifications

Parameterization is one of the most important modularization features of structuring of specifications since it

allows generic modules that can be instantiated to several concrete situations. Pushout-style parameterization

originate from work on Clear [17] and constitutes the basis of parameterized specification for the whole OBJ

family of languages (i.e. OBJ3 [85], CafeOBJ [54], etc.) but also for ACT TWO [66] and other languages.

In what follows we review recent upgrades of pushout-style parameterization concepts and foundational

results developed in [53] and [45].

Definition 2.65 (Parameterized I ′-signatures). [45] Let I ′ be an institution structured over an inclusive

institution I through Φ. A parameterized I ′-signature, denoted Σ′(ι), consists of an I ′-signature morphism

ι : P→ Σ′ such that Φ(ι) is inclusion Φ(P) ⊆Φ(Σ′). Then P is called the parameter of the I ′-signature

and Σ′ the body of the parameterized I ′-signature.

Definition 2.66 (Instantiation of parameters). [45] Let I ′ be an institution structured over an inclusive

institution I through Φ such that

62

1. Φ lifts co-products,

2. Φ has a left adjoint Φ such that the units of the adjunctions are identities, and

3. the inclusion system of I -signatures has unions and intersections.

Given a parameterized I ′-signature ι : P→ Σ′ and an I ′-signature morphism v : P→ Σ′1 such that Φ(P)

and Φ(Σ′1) are disjoint an instance Σ′(ι⇐ v) of Σ′(ι) through v is defined as a pushout of I ′-signature

morphisms as follows:

P+(Σ′eΣ′1)
ι+i //

v+i1
��

Σ′

��
Σ′1 // Σ′(ι⇐ v)

where

– Σ′eΣ′1 denotes Φ(Φ(Σ′)∩Φ(Σ′1)),

– P+(Σ′eΣ′1) is a co-product of P and Σ′eΣ′1 obtained as a lifting of the disjoint union Φ(P)∪
(Φ(Σ′)∩Φ(Σ′1)),

– i : Σ′ eΣ′1 → Σ’ and i1 : Σ′ eΣ′1 → Σ′1, resp., denote the I ′-signature morphisms Φ(Φ(Σ′)∩
Φ(Σ′1) ⊆ Φ(Σ′));εΣ′ and Φ(Φ(Σ′)∩Φ(Σ′1) ⊆ Φ(Σ′1));εΣ′1 , resp., where ε denotes the co-unit of

the adjunction between I -signatures and I ′-signatures, and

– ι+ i and v+ i1, resp., are the corresponding unique morphisms given by the co-product property of

P+(Σ′eΣ′1).

In the following we provide another definition for parameter instantiations that under some technical

conditions on the structured institution is equivalent to Dfn. 2.66 but that may be technically more convenient

than Dfn. 2.66 in some situations (such as dealing with multiple parameters; see the last result of [53]).

Notation 2.2.1. Let I ′ be an institution structured over an inclusive institution I through Φ such that

1. Φ lifts pushouts,

2. Φ has a left adjoint Φ such that the units of the adjunctions are identities, and

3. each intersection-union square of I -signatures is pushout.

For any I ′-signatures Σ′ and Σ′1 by Σ′dΣ′1 we denote a lifting of the intersection-union square determined

by Φ(Σ′) and Φ(Σ′1) to a pushout of I ′-signature morphisms as shown by the following diagram:

Φ(Σ′)∩Φ(Σ′1)
⊆ //

⊆
��

Φ(Σ′)

⊆
��

Σ′eΣ′1
i //

i1
��

Σ′

i′

��
Φ(Σ′1) ⊆

// Φ(Σ′)∪Φ(Σ′1) Σ′1 i′1
// Σ′dΣ′1

Note that Σ′dΣ′1 in general is not unique, but rather denotes a class of isomorphic I ′-signatures. However

we are going to be lax about this and when there is not danger of error Σ′dΣ′1 will mean whatever member

of this class of I ′-signatures.

63

Proposition 2.67. Let I ′ be an institution structured over an inclusive institution I through Φ. In addition

to the hypotheses of Dfn. 2.66 let us also assume that

1. Φ lifts pushouts and

2. each intersection-union square of I -signatures is pushout.

Given a parameterized I ′-signature ι : P→ Σ′ and an I ′-signature morphism v : P→ Σ′1 such that Φ(P)

and Φ(Σ′1) are disjoint, then Σ′(ι⇐ v) may be defined as a pushout of I ′-signature morphisms as follows:

P+Σ′1
(ι;i′)+i′1 //

v+1Σ′1
��

Σ′dΣ′1

v′
��

Σ′1
ι′
// Σ′(ι⇐ v)

where

– P+Σ′1 is a co-product that lifts the disjoint union Φ(P)∪Φ(Σ′1), and

– (ι, i′)+ i′1 and v+ 1Σ′1 , resp., are the unique I ′-signature morphism ‘extending’ (ι; i′), i′1 and v, 1Σ′1 ,

resp., according to the universal property of the co-product P+Σ′1.

Moreover, if in addition

3. the inclusion system for the I -signatures is epic, and

4. each idempotent-by-extension I -signature morphism admits free extensions along any I -signature

inclusion

then we may choose the instance Σ′(ι⇐ v) such that

Φ(Σ′1) ⊆Φ(Σ′(ι⇐ v)).

The study of multiple parameters and methods for their instantiations has been an important common

theme in both [53] and [45].

Definition 2.68 (Multiple parameters). [53, 45] A multiple parameterized specification is a specification

with several parameters such that for any parameters P1 and P2 we have that Sig[P1] and Sig[P2] are

disjoint.

Proposition 2.69. [53, 45] For any multiple parameterized specification SP(P1, . . . ,Pn) we have that

SP(P1∪·· ·∪Pn) is a (single) parameterized specification.

One way to instantiate multiply parameterized specifications is the simultaneous of the parallel one.

Corollary 2.70 (Simultaneous instantiation of parameters). [53, 45] Let us consider a multiple param-

eterized specification SP(P1,P2) with two parameters P1 and P2. Then for any specification morphisms

v1 : P1→ SP1 and v2 : P2→ SP2 such that for all i, j ∈ {1,2} Sig[Pi] and Sig[SP j] are disjoint, we have

that P1∪P2 and SP1∪SP2 are disjoint.

64

Consequently, since the condition of Dfn. 2.66 is fulfilled, the instance of SP(P1,P2) by v1 and v2 is

defined as SP(P1∪P2⇐ v1+v2) where v1+v2 is the unique specification morphism that makes the diagram

below commute

P1

v1

��

⊆ // P1∪P2

v1+v2
��

P2
⊇oo

v2

��
SP1 ⊆

// SP1∪SP2 SP2⊇
oo

According to [53, 45] another way to instantiate multiply parameterized specifications is given by a

sequential procedure as below. Given the data of Cor. 2.70 we instantiate the parameters one by one

by treating them as single separate parameters (Dfn. 2.66). Because in this case it is technically more

convenient, let us use the variant of parameter instantiation given by Prop. 2.67. The process of sequential

instantiation of parameters can be visualised in the diagram below:

P1∪SP1

i1⊆
��

v1+1Sig[SP1] // SP1

⊆i′1
��

P2
⊆ //

i2⊆
��

SP∪SP1
v′1 // SP(P1⇐ v1)

⊆i′2
��

P2∪SP2

v2+1Sig[SP2]

��

⊆
i3

// SP(P1⇐ v1)∪SP2

v′2
��

SP2
i′3
⊆

// SP(P1⇐ v1)(P2⇐ v2)

(24)

The correctness of the second instantiation step relies upon the fact that P2 is indeed a parameter for the

result SP(P1⇐ v1) of the first instantiation step. This follows immediately from the result below.

Proposition 2.71. [53, 45] In addition to the technical hypotheses underlying the sequential instantiation

defined above let us also assume that

– there exists a signature 0 initial both in Sign and in the subcategory I of the abstract inclusions,

– the inclusion system is epic and distributive, and

– each idempotent-by-extension signature morphism admits free extensions.

Then for the diagram of sequential instantiation (24) the signature morphism (Sig[P2] ⊆ Sig[SP∪SP1]);v′1
is an inclusion.

In general the results of the simultaneous and of the sequential institution of parameters need not produce

the same result (up to isomorphism). The following result, originally from [53], gives sufficient conditions

widely applicable in the concrete situations such that these two instantiation methods yield essentially the

same result.

Theorem 2.72. [53, 45] Let SP(P1,P2) be a multiple parameterized specification and vi : Pi → SPi,

i ∈ {1,2}, two specification morphisms such that Sig[Pi] and Sig[SP j] are disjoint, for i, j ∈ {1,2}. If in

65

addition to the hypotheses of Prop. 2.71 the base institution strongly admits free extensions for idempotent-

by-extension signature morphisms, then there exists an instantiation SP(P1⇐ v1) (of the first parameter)

such that any further instantiation SP(P1⇐ v1)(P2⇐ v2) (of the second parameter) is isomorphic with the

results SP(P1 +P2⇐ v1 + v2) of the simultaneous instantiation, making the diagram below commutative.

SP(P1∪P2⇐ v1 + v2)
∼= // SP(P1⇐ v1)(P2⇐ v2)

SP1∪SP2

⊆

dd

⊆

::

2.2.4 Structuring behavioural specifications

Bbehavioural specification poses a particular challenge given by some of the specificities of its underlying

logic that raise serious obstacles when attempting to apply established general theories on modularization.

For example, one major source of problems is given by the fact that the union or aggregation of behavioural

signatures is inherently partial rather than total and moreover, by noticing that this partiality is induced

by two different factors. On the one hand, one may not aggregate signatures that share a sort name that is

declared visible in one of the signatures and hidden in the other. On the other hand, any aggregation of

signatures has to fulfil the encapsulation condition characteristic to behavioural signature morphisms, which

cannot be guaranteed in all possible situations; this property is essential for the basic satisfaction condition

of the underlying logic to hold, which in turn is absolutely necessary with respect to modularization. The

requirement of both of these hypotheses (i.e. the preservation and the reflection of sorts’ visibility, together

with the encapsulation condition) has been extensively discussed in the literature (e.g. [76, 94]), not only

from a technical perspective, but also in terms of their practical relevance. Hence, under the current general

assumptions on behavioural specification, the union of signatures arises naturally as a partial operation.

In [52] we develop foundations for structuring of behavioural specifications in the light of the most recent

developments in structuring specifications in general [53, 45]. This means reliance upon well established

theoretical devices used in modularization studies such as institutions, pushouts, and inclusion systems. It

also means that only some of the concepts and results already available at the general level may be applied

directly, while much has to be reconsidered for the specific situation of behavioural specifications, thus

leading to a series of new theoretical investigations.

The following series of results concern the existence of pushouts and pullbacks of HA signature mor-

phisms.

Proposition 2.73. [52] The forgetful functor from the category of quasi-morphisms of HA signatures to

SignMSA lifts pushouts.

Proposition 2.74. [52] The forgetful functor from the category of HA signature morphisms to the category

of the quasi-morphisms of HA signatures lifts pushouts.

Proposition 2.75. [52] The forgetful functor from the category of the quasi-morphisms of HA signatures to

SignMSA lifts pullbacks.

66

Proposition 2.76. [52] Every pullback of HA-signature morphisms can be lifted from the category of

quasi-morphisms of HA-signatures.

Even though the question of establishing precisely the class of cospans (θ1,θ2) that admit pullbacks in

SignHA remains open, it should be noted that the answer to this question is irrelevant for the purposes of our

work, as the pullback property provided by Prop. 2.75 is sufficient for the subsequent developments on the

structuring of behavioural specifications.

Amalgamation follows from Prop. 2.73 and 2.76and from the amalgamation in many sorted algebra.

Corollary 2.77. [52] Each pushout square of HA signature morphisms is an amalgamation square.

Inclusion systems of [59] have become a standard foundational concept in the theory structured specifica-

tions for modelling specification imports.

Proposition 2.78. [52] The category of the quasi-morphisms of HA signatures admits an epic inclusion

system that inherits the strong inclusion system of MSA signatures as follows.

• The abstract inclusions (H,V ,F ,BF) ⊆ (H ′,V ′,F ′,BF ′) are such that

– H ⊆ H ′, V ⊆V ′, and

– for each w ∈ (H ∪V)∗ and s ∈ H ∪V , Fw→s ⊆ F ′w→s.

• The abstract surjections ϕ : (H,V ,F ,BF)→ (H ′,V ′,F ′,BF ′) are such that

– ϕ(H) = H ′ and ϕ(V) = V ′, and

– for each w′ ∈ (H ′∪V ′)∗ and s′ ∈ H ′∪V ′,

F ′w′→s′ =
⋃{

ϕ(Fw→s) | ϕ(w) = w′,ϕ(s) = s′
}

and

BF ′w′→s′ =
⋃{

ϕ(BFw→s) | ϕ(w) = w′,ϕ(s) = s′
}

.

Proposition 2.79. [52] Let ϕ be any morphism of HA signatures. Let us factor ϕ = eϕ; iϕ through the

inclusion system for the quasi-morphisms defined in Prop. 2.78. Then both the abstract surjection eϕ and

the abstract inclusion iϕ are morphisms of HA signatures.

Corollary 2.80. The category of HA signature morphisms admits an inclusion system that inherits the

strong inclusion system for the MSA signatures.

Notation 2.2.2. The inclusions, unions, and intersections, resp., are denoted by ⊆, ∪, ∩, resp., in the

inclusion system for the quasi-morphisms of HA signatures and by v, t, u, resp., in the inclusion system

for the HA signature morphisms.

The following series of results establishes the existence of intersections of HA signatures. These are

crucial for parameterized specifications and their instantiation with soem form of sharing.

Notation 2.2.3. For any MSA signature (S,F) and set S0⊆ S, we denote by (S0;F) the largest sub-signature

of (S,F) having S0 as the set of sorts, i.e. (S0,F0) with (F0)w→s = Fw→s for w ∈ S∗0 and s ∈ S0.

For any HA signature (H,V ,F ,BF) and sets H0 ⊆ H and V0 ⊆ S, we denote by (H0,V0;F ,BF) the

signature (H0,V0,F0,BF0) where (H0∪V0,F0) = (H0∪V0;F) and (H0∪V0,BF0) = (H0∪V0;BF).

67

Proposition 2.81. Let (Σi)i∈I be a non-empty set of HA signatures. Then:

1. There exists
⋂

i∈I Σi.

2. There exists
d

i∈I Σi. Moreover,
d

i∈I Σi =
⋂

n∈ω Σ(n), where

– Σ(0) =
⋂

i∈I Σi, and

– for each n > 0, if Σ(n) =
(

H(n),V ,F (n),BF (n)
)

then

Σ(n+1) =
(

H(n+1),V ,F (n+1),BF (n+1)
)
=
(

H(n+1),V ;F (n),BF (n)
)

where H(n+1) = H(n) \
{

h ∈ H(n) | BF (n)
[h] 6= (BFi)[h] for some i ∈ I

}
.

3.
d

i∈I Σi v
⋂

i∈I Σi.

Proposition 2.82. For any two HA signatures and Σ1 = (H1,V1,F1,BF1) and Σ2 = (H2,V2,F2,BF2) the

following are equivalent:

1. H1∩V2 = H2∩V1 = /0;

2. there exists Σ1∪Σ2 which inherits the union of the underlying MSA signatures;

3. there exists Σ1∪Σ2;

4. there exists Σ′ such that Σ1,Σ2 ⊆ Σ′;

5. Σ1 ∩Σ2 (which exists according to Prop. 2.81) inherits the intersection of the underlying MSA

signatures.

Moreover, in these situations the corresponding intersection-union square of HA signatures is a pushout

square of quasi-signature morphisms.

The algebraic properties of the union t and intersection u of HA-signatures play an important role

in establishing algebraic properties of behavioural specification modules. The union t on the class of

HA-signatures is a partial rather than total operation, which gives rise to a partial algebra of signatures in

the sense of [15]. In what follows we make use of two types of equalities specific to partial algebras: t e
= t ′

for the existence equality, i.e. both t and t ′ are defined and their values are equal, and t = t ′ for the strong

equality, i.e. either both t and t ′ are undefined or t e
= t ′.

Fact 2.83. [52] For any HA-signatures Σ, Σ1, Σ2,

ΣtΣ e
= Σ, and (25)

Σ1tΣ2 = Σ2tΣ1. (26)

Proposition 2.84. [52] For any HA-signatures Σ1, Σ2, Σ3,

Σ1t (Σ2tΣ3) = (Σ1tΣ2)tΣ3. (27)

Proposition 2.85. [52] For any HA-signatures Σ, Σ1, Σ2,

ΣtΣ1tΣ2
e
= ΣtΣ1tΣ2 implies Σu (Σ1tΣ2)

e
= (ΣuΣ1)t (ΣuΣ2).

68

In general, the distributivity rule of Prop. 2.85 does not hold unconditionally, not even in a weaker form

such as

Σu (Σ1tΣ2) = (ΣuΣ1)t (ΣuΣ2).

The following is a simple counterexample. Let Σ consist of a visible sort v, Σ1 of a visible sort s and Σ2 of

a hidden sort s. Then Σ1tΣ2 does not exist, hence the left-hand side of the rule does not exist. On the other

hand the right-hand side of the equation does exist and it is the empty signature.

The next series of results from [52] develops a module algebra for behavioural structured specifications,

which is a partial rather than total algebra. The behavioural specifications are considered over an abstract

institution that satisfies the compositionality properties of HA rather than over HA itself. The reason for this

is to accomodate other behavioural specification formalism that are based upon other behavioural logics than

HA, or as stated in [52] to accomodate even specification formalisms that are not necessarily behavioural

but display the same kind of partiality of the union as HA. Therefore let us consider a (Sig,I)-structured

institution I ′ that has unions in the sense of Dfn. 2.63. Let us call the signatures of I ′ specifications, and

denote them by SP, SP′, etc.

Definition 2.86 (Module expression). [52] The set of module expressions is the least set such that

• SP is a module expression for each ‘variable’ SP denoting a specification,

• E1tE2 is a module expression when E1 and E2 are module expressions,

• E−> ϕ and ϕ2E are module expressions when E is a module expression and ϕ is an I -signature

morphism.

Definition 2.87. [52] For any module expressions E and E ′,

• E ≡ E ′ when none of E and E ′ are defined or they are both defined and we have Sig(E) = Sig(E ′)

and Mod′(E) = Mod′(E ′); and

• E
e≡ E ′ when E and E ′ are defined and E ≡ E ′.

Corollary 2.88. [52] If the unions of I satisfy the idempotence (25), commutativity (26) and associativity

(27) rules then for any specifications SP, SP′, SP′′,

SPtSP
e≡ SP. (28)

SPtSP′ ≡ SP′tSP. (29)

(SPtSP′)tSP′′ ≡ SPt (SP′tSP′′). (30)

Proposition 2.89. If I ′ has D-translations for a class D of I -signature morphisms that is closed under

composition to the left with inclusions, then for any specifications SP1, SP2 and any ϕ ∈D ,

SP1tSP2
e≡ SP1tSP2 implies (SP1tSP2)−> ϕ≡ (SP1−> ϕ)t (SP2−> ϕ). (31)

69

Proposition 2.90. [52] If I ′ has D-derivations for a class D of I -signature morphisms that is closed under

composition then for any pushout of I -signatures that consists of morphisms from D as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and for any specifications SP1, SP2 such that Σk = Sig(SPk) for k ∈ {1,2}, it holds that

(ϕk;θk)2(SP1−> θ1tSP2−> θ2)
e≡ (ϕ12SP1)t (ϕ22SP2), for k ∈ {1,2}. (32)

Corollary 2.91. [52] If I ′ has translations and derivations for inclusions and in I each intersection-union

square describes a pushout then for any specifications SP1 and SP2,

SP1tSP2
e≡ SP1tSP2 implies Σ2(SP1tSP2)

e≡ (Σ2SP1)t (Σ2SP2), (33)

where Σ = Sig(SP1)uSig(SP2).

Cor. 2.88, Prop. 2.89, Prop. 2.90, and Cor. 2.91 can be easily instantiated to the case when I = HA

based on the results previously discussed. They can also be very easily applied to other frameworks with

partial unions of signatures, such as those considered in [137]. Moreover, they generalise corresponding

module-algebra properties that have been previously proved in the literature, in which the unions are

assumed to be total.

For a specific set of specification structuring operators for equational logic, a corresponding variant

of the distributivity rule (33) has been stated as an exercise in [137] and has been proved in an abstract

institution-independent setting in [53]. Its property-oriented variant has been a cornerstone in [6] (for the

special case of many sorted first order logic) and in [59] this gets a general institution-independent treatment

and proof. The property-oriented variants of [6, 59] required not only significantly more difficult proofs but

also significantly harder conditions, namely an interpolation property for the underlying institution. Since

derivation gets here (2 in Dfn. 2.64) a model-oriented definition, the result of Cor. 2.91 shares with the

corresponding result from [137] freedom from interpolation (which is quite important since interpolation

in general is difficult to establish, and in the particular case of HA it has not been studied yet, at least

up to our knowledge). However, a big difference between these related results is that in our framework

the union of specifications is a partial operation, hence the conditional form of the rule (33) and a more

sophisticated proof, which in the case of HA relies upon the series of results about the existence of unions

of HA-signatures.

2.3 H E T E RO G E N E O U S S P E C I FI C AT I O N

The specification of large software systems requires heterogeneous multi-logic specifications, since complex

problems have different aspects that are best specified in different logics. In addition to this, heterogeneous

specifications have the benefit that different approaches being developed at different sites can be related,

70

which means a formal interoperability among languages and tools. In many cases, specialized languages and

tools often have their strengths in particular aspects. Using heterogeneous specification, these strengths can

be combined with comparably small effort. These ideas have been expressed in many different occasions

by various scientists over the past ten or fifteen years, e.g. [119, 138], etc. Currently there are several

specification environments directly realising the idea of heterogeneous specification, most prominent ones

being Hets [119, 116] and CafeOBJ [54]. These environments are solidly and essentially based upon the

concept of Grothendieck institution (introduced first by [30] within the context of the semantics of CafeOBJ

and then by [117] with a different twist). Grothendieck institutions represent an institution theoretic replica

of a category theoretic construction originally from algebraic geometry [87], which in essence ‘flatten’ a

diagram of institutions to a single institution while retaining all data provided by the respective diagram of

institutions. The concept Grothendieck institution has spread beyond that of formal specification, to other

computing science areas, for example providing foundations for heterogeneous ontologies [72, 101].

In this section we review authored contributions to the foundations of heterogeneous specifications in the

theory of Grothendieck institutions and of Grothendieck inclusion systems.

2.3.1 Grothendieck institutions

The theory of Grothendieck institutions introduced in [30] has been preceded by the work [28] on institution

theoretic foundations of heterogeneous specifications, the former representing a definitive upgrade of

the latter. Grothendieck institutions generalize the flattening Grothendieck construction from (indexed)

categories to (indexed) institutions. Regarded from a fibration theoretic angle, Grothendieck institutions are

just institutions for which their category of signatures is fibred. For example, the actual institutions with

many-sorted signatures appear naturally as fibred institutions determined by the fibrations given by the

functor mapping each signature to its set of sort symbols. In this sense, fibred institutions can be regarded as

the reflection of many-sortedness at the level of abstract institutions. However for modeling heterogeneous

multi-logic environments the flattening Grothendieck construction on a system of institutions related by

institution morphisms (here called indexed institution) seems to be more adequate than the fibred institutions

approach. A Grothendieck institution puts together a system of institutions into a single institution such that

the individual identities of the component institutions and the relationships between them are fully retained.

Definition 2.92. [30] Given a category I, a fibred institution over the base I is a tuple (Π : Sign→ I,

Mod,Sen, |=) such that

• Π : Sign→ I is a fibred category, and

• (Sign,Mod,Sen, |=) is an institution.

The fibred institution is split when the fibration Π is split. A cartesian institution morphism is an institution

morphism between fibred institutions for which the signature mapping functor is a cartesian functor between

the corresponding fibred categories of signatures.

Given a fibred institution I = (Π : Sign→ I,Mod,Sen, |=), for each object i ∈ |I|, the fibre of I at i is

the institution I i = (Signi,Modi,Seni, |=i) where

71

• Signi is the fibre of Π at i, and

• Modi, Seni, and |=i are the restrictions of Mod, Sen, and respectively |= to Signi.

Proposition 2.93. [30] Given a fibred institution I = (Π : Sign → I,Mod,Sen, |=), for each arrow

u ∈ I(i, j), any inverse image functor Φu : Sign j → Signi (with distinguished cartesian morphisms

ϕu
Σ′ : Φu(Σ′)→ Σ′) determines a canonical institution morphism (Φu,αu,βu) : I j → I i between the

fibres of I , where for each signature Σ′ in the fibre Sign j at j, αu
Σ′ = Sen(ϕu

Σ′) and βu
Σ′ = Mod(ϕu

Σ′).

Definition 2.94. [30] The Grothendieck institution J] = (Sign],Sen],Mod], |=]) of an indexed institution

J : Iop→ Ins is defined as follows:

1. Let Sign : Iop → CAT be the indexed institution mapping each index i to Signi and each index

morphism u to Φu; then the category of the signatures of J] is the Grothendieck category Sign]. Thus

the signatures of J] consist of pairs 〈i, Σ〉 with i index and Σ ∈ |Signi| and signature morphisms

〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 consists of index morphisms u : i→ i′ and signature morphisms ϕ : Σ→
Φu(Σ′).

2. The model functor Mod] : (Sign])op→ CAT is given by

• Mod](〈i, Σ〉) = Modi(Σ) for each index i ∈ |I| and signature Σ ∈ |Signi|, and

• Mod](〈u, ϕ〉) = βu
Σ′ ;Modi(ϕ) for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.

3. The sentence functor Sen] : Sign]→ Set is given by

• Sen](〈i, Σ〉) = Seni(Σ) for each index i ∈ |I| and signature Σ ∈ |Signi|, and

• Sen](〈u, ϕ〉) = Seni(ϕ);αu
Σ′ for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.

4. The satisfaction relation is given by

M |=]
〈i,Σ〉 e if and only if M |=i

Σ e

for each index i∈ |I|, signature Σ ∈ |Signi|, model M ∈ |Mod](〈i, Σ〉)|, and sentence e∈ Sen](〈i, Σ〉).

The following shows that the above construction gives an institution indeed.

Proposition 2.95. [30] J] is an institution. Moreover, for each index i ∈ |I| there exists a canonical

institution morphism (Φi,αi,βi) : J i→ J] mapping any signature Σ ∈ |Signi| to 〈i, Σ〉 ∈ |Sign]| and such

that the components of αi and βi are identities.

In [117] the author argues that Grothendieck institutions can be constructed using comorphisms instead of

morphisms, and moreover that comorphism-based Grothendieck institutions may be more friendly towards

some important model theoretic properties than the morphism-based ones.

Definition 2.96. [117, 38] Given a category I of indices, an indexed comorphism-based institution , in

short called indexed co-institution, J is a functor J : Iop→ coIns. (Recall that coIns is the quasi-category

having institutions as objects and institution comorphisms as arrows.) Its Grothendieck institution J] is

defined as follows:

1. its category of signatures is ((Sign; (_)op)])op where Sign : Iop → CAT is the indexed category

of signatures of the indexed co-institution J , (_)op : CAT→ CAT is the ‘opposite’ functor, and

(Sign; (_)op)] is its Grothendieck category; this means that

72

• signatures are pairs 〈i, Σ〉 for i ∈ |I| index and Σ ∈ |Signi|, and

• signature morphisms are pairs 〈u, ϕ〉 : 〈i, Σ〉→ 〈i′, Σ′〉where u∈ I(i′, i) and ϕ∈Signi′(Φu(Σ),Σ′),

2. its model functor Mod] : (Sign; (_)op)]→ CAT is given by

• Mod](〈i, Σ〉) = Modi(Σ) for each index i ∈ |I| and signature Σ ∈ |Signi|, and

• Mod](〈u, ϕ〉) = Modi′(ϕ);βu
Σ for each 〈u, ϕ〉 : 〈i′, Σ′〉 → 〈i, Σ〉,

3. its sentence functor Sen] : ((Sign; (_)op)])op→ Set is given by

• Sen](〈i, Σ〉) = Seni(Σ) for each index i ∈ |I| and signature Σ ∈ |Signi|, and

• Sen](〈u, ϕ〉) = αu
Σ;Seni′(ϕ) for each 〈u, ϕ〉 : 〈i′, Σ′〉 → 〈i, Σ〉,

4. M |=]
〈i,Σ〉 e if and only if M |=i

Σ e for each index i∈ |I|, signature Σ∈ |Signi|, model M ∈ |Mod](〈i, Σ〉)|,
and sentence e ∈ Sen](〈i, Σ〉).

where J i = (Signi,Modi,Seni, |=i) for each index i ∈ |I| and J u = (Φu,αu,βu) for u ∈ I index morphism.

Proposition 2.97. [117, 38] The comorphism-based Grothendieck institution J] is indeed an institution,

i.e., the satisfaction condition holds.

With respect to the choice between the morphism or the comorphism styles of Grothendieck institutions,

the following result gives a quite common situation in the concrete applications when these yield the same

result. This result may also be interpreted as an invariance of the concept of Grothendieck institution with

respect to the duality between the concepts of institution morphism and comorphism given by an adjunction

between the signature categories that was discovered in [4].

Proposition 2.98. [38] For each dual pair of an adjoint-indexed institution J and an adjoint-indexed

coinstitution J their Grothendieck institutions J] and J] are isomorphic.

An important example when Prop. 2.98 applies is that of CafeOBJ where the respective diagram of

institutions is indeed an adjoint-indexed institution, which means that the CafeOBJ institution may be

defined either as a morphism-based Grothendieck institution (like originally in [56]) or as a comorphism-

based institution (like adopted by later works on the semantics of CafeOBJ, e.g. [42]).

In the paper [30] the author also answers the problem of a Grothendieck institutions as universal

constructions. This answer represents an extension of the traditional Grothendieck construction on categories

to institutions:

Theorem 2.99. [30] The Grothendieck institution is the lax co-limit of the respective indexed institution in

the 2-category of institutions.

2.3.2 Lifting local properties to global properties

A most important theme in the theory of Grothendieck institutions has been that of the lifting of institution

theoretic properties from the local level of the component institutions to the global level of the Grothendieck

institution. With the exception of free constructions, all of them can be done more easily within comorphism-

based contexts. All of the lifting properties presented in this section have been developed first in [28], and

73

later on upgraded in [30] for morphism-based Grothendieck institutions and in [117] for comorphism-based

institutions. Here we present them in their comorphism-based version like in [38].

The problem of co-limits of signatures in the Grothendieck institution is reduced to the problem of

co-limits in Grothendieck categories:

Definition 2.100. [30, 117, 38] For any category J we say that an indexed co-institution J : Iop→ coIns

supports J-co-limits when

• the index category I is J-complete, i.e., has J-limits,

• the indexed category of signatures Sign : Iop→ Cat of J is locally J-co-complete, i.e., Signi has all

J-co-limits for each index i ∈ |J|, and

• for each index morphism u, the comorphism J u preserves J-co-limits of signatures (meaning that the

corresponding sentence translation functors Φu preserve pushouts).

Theorem 2.101. [30, 117, 38] The category of theories ThJ]
of a comorphism-based Grothendieck institu-

tion J] has J-co-limits if the indexed co-institution J supports J-co-limits.

The following solves the problem of model amalgamation in Grothendieck institutions.

Definition 2.102. [30, 117, 38] An indexed coinstitution J : Iop→ coIns is locally (semi-)exact if and

only if the institution J i is (semi-)exact for each index i ∈ I.

Proposition 2.103. [30, 117, 38] Let J : Iop→ coIns be a co-institution which supports pushouts. Then

the semi-exactness of the Grothendieck institution J] implies the local semi-exactness of the indexed

co-institution J .

Proposition 2.104. [30, 117, 38] If the Grothendieck institution of an indexed co-institution J which

supports pushouts is semi-exact, then each institution comorphism J u = (Φu,αu,βu) is exact.

Definition 2.105. [30, 117, 38] An indexed co-institution J : Iop→ coIns is semi-exact if and only if for

each pullback

i j1u1oo

j2
u2
OO

k
v1
OO

v2
oo

in I and each signature Σ in I i, the square

Modi(Σ) Mod j1(Φu1(Σ))
βu1

Σoo

Mod j2(Φu2(Σ))

βu2
Σ

OO

Modk(Φvi(Φui(Σ)))

βv1
Φu1(Σ)

OO

βv2
Φu2(Σ)

oo

is a pullback.

Proposition 2.106. [30, 117, 38] If the Grothendieck institution J] of an indexed co-institution J : Iop→
coIns which supports pushouts is semi-exact, then J is also semi-exact.

74

Theorem 2.107. [30, 117, 38] Let J : Iop→ coIns be an indexed coinstitution which supports pushouts.

Then the Grothendieck institution J] is semi-exact if and only if

1. the indexed coinstitution J is locally semi-exact,

2. the indexed coinstitution J is semi-exact, and

3. all institution comorphisms are exact.

Interpolation is lifted from the component institutions to the Grothendieck institution as follows.

Definition 2.108. [35] A commuting square of institution comorphisms

I
(Φ1,α1,β1)//

(Φ2,α2,β2)
��

I1

(Φ′1,α′1,β′1)
��

I2
(Φ′2,α′2,β′2)

// I ′

is a Craig Interpolation square if for each I -signature Σ, for each set E1 of Φ1(Σ)-sentences and for each

set E2 of Φ2(Σ)-sentences, if (α′1)Φ1(Σ)(E1) |=′ (α′2)Φ2(Σ)(E2), then there exists a set E of Σ-sentences

such that E1 |=I1 (α1)Σ(E) and (α2)Σ(E) |=I2 E2.

Sen(Σ)
(α1)Σ //

(α2)Σ
��

Sen1(Φ1(Σ))

(α′1)Φ1(Σ)

��
Sen2(Φ2(Σ))

(α′2)Φ2(Σ)

// Sen′(Φ′k(Φk(Σ)))

Theorem 2.109. [35] Let J : Iop→ coIns be an indexed coinstitution which supports pushouts such that

– there are fixed classes of index morphisms L ,R ⊆ I containing all identities, and

– for each index i ∈ |I| there are fixed classes of signature morphisms L i,R i ⊆ Signi containing all

identities,

such that

– L and R are stable under pullbacks,

– Φu(R i) ⊆ R j for each index morphism u : j→ i in L , and

– Φu(L i) ⊆ L j for each index morphism u : j→ i in R .

Let L], and R], be the classes of signature morphisms 〈u : j→ i, ϕ〉 of the Grothendieck institution such

that u ∈ L , respectively u ∈ R , and ϕ ∈ L j, respectively ϕ ∈ R j.

Then the Grothendieck institution J] has the Craig (L],R])-interpolation property if and only if

1. for each index i the institution J i has the (L i,R i)-interpolation property,

2. each pullback square of index morphisms

Loo

R
OO OO

oo

determines a Craig interpolation square of institution comorphisms,

75

3. for each u : j→ i in L the institution comorphism J u = (Φu,αu,βu) has the Craig R i-right interpo-

lation property, and

4. for each u : j→ i in R the institution comorphism J u has the Craig L i-left interpolation property.

A rather spectacular application of the interpolation result of Thm. 2.109 in institutional model theory,

that has not been necessarily envisaged when developing the (specification motivated) interpolation theory

for Grothendieck institutions, is the following.

Theorem 2.110. [38] Consider a conservative institution comorphism (Φ,α,β) : I → I ′ and classes

L i,R i of signature morphisms in I such that

1. I and I ′ have pushouts of signatures and Φ preserves pushouts,

2. the institution comorphism (Φ,α,β) has Craig L i-left interpolation,

3. I ′ has implications and it is quasi-compact, and

4. I ′ has Craig (Φ(L i),Φ(R i))-interpolation.

Then the institution I has Craig-Robinson (L i,R i)-interpolation.

The practical importance of this result is that it provides an efficient way to establish Craig-Robinson

interpolation properties in logics without implications, such as equational logic, Horn clause logic, etc. A

list of such concrete applications of Thm. 2.110 in fragments of first order logic is given in [38].

2.3.3 Grothendieck inclusion systems

In the case of inclusion systems in a heterogeneous framework established as a Grothendieck institution the

following important practical problem arises:

Assuming that each ‘local’ institution (of an indexed system of institutions) comes equipped

with an inclusion system for its category of the signatures, do we have a canonical inclusion

system for signatures of the corresponding ‘global’ Grothendieck institution?

In [42] we have provided a definitive and complete answer to this problem by considering also an inclusion

system for the indexation, i.e. for the category of the indices. In fact, this problem is only about the

signatures of institutions, which means that in this case we have a problem only about categories equipped

with inclusion systems, the concept of institution not being needed in this work. The canonicity of our

Grothendieck inclusion system construction (Thm. 2.116) is expressed as an universal property (Prop. 2.120).

Moreover, this construction applies also to contexts that are very different from the main motivation of

our work, namely that of the inclusion systems for the signatures of Grothendieck institutions underlying

multi-logic heterogeneous specification. In [42] there are various examples of ‘strong’ inclusion systems

in use in concrete specification frameworks, or from model theory, or from abstract deductive theories.

Moreover the inclusion system for Kripke semantics developed in [51] is of the same kind. Although each

of these arise in a particular context, they have a common flavour (hence they are known in the literature

76

as ‘strong’) which can be explained in the light of the work in [42] as being instances of a same general

construction. The paper [42] also explores how some properties of inclusion systems which are important

for the semantics of specification languages lift to Grothendieck inclusion systems.

The problem solved in [42] has received preliminary answers in [28] and [30], however the constructions

proposed there can now be regarded as partial cases of the main construction in [42] (Thm. 2.116).

The definition below gives the concept of (homo)morphism of inclusion systems.

Definition 2.111 (Inclusive functors). A functor U : 〈I , E〉 → 〈I ′, E ′〉 (between the underlying categories

of the inclusion systems) is inclusive when it preserves the inclusions, i.e. U(I) ⊆ I ′.

Fact 2.112. Inclusion systems and inclusive functors form a category denoted IS. Moreover, IS can be

endowed with a 2-categorical structure with the 2-cells being defined as natural transformations between

inclusive functors such that all their components are inclusions.

The equational definition of the concept of adjunction by the so-called ‘triangular laws’ (see [103])

permits the well known generalization of the concept of adjunction from CAT to abstract 2-categories. Let

us call adjunctions defined in IS as IS-adjunctions.

Fact 2.113. An IS-adjunction between inclusion systems consists of an adjunction between the underlying

categories such that both the left and the right adjoints are inclusive functors and such that all components

of the unit and the co-unit are inclusions.

Definition 2.114. [42] An enriched indexed inclusion system is a functor B : 〈I , E〉 → ISop from the

underlying category of an inclusion system ‘of indices’ to the opposite of the category of inclusions systems

and inclusive functors.

Definition 2.115. [42] An enriched indexed inclusion system B : 〈I , E〉 → ISop is invertible when for

each index morphism u, the corresponding inclusive functor Bu has an IS-left-adjoint denoted [−]u. It is

E -invertible when the IS-left-adjoint to Bu exists for u ∈ E (and not necessarily for all index morphisms u).

The following establishes the existence of Grothendieck inclusion systems.

Theorem 2.116. [42] For any E-invertible enriched indexed inclusion system B : 〈I , E〉 → ISop the

Grothendieck category B] of Bop; (IS→ CAT) (from the opposite of the underlying category of 〈I , E〉 to

CAT) can be endowed with an inclusion system 〈I], E]〉 such that 〈u, ϕ〉 : 〈 j, Σ〉 → 〈 j′, Σ′〉 is

– an abstract inclusion iff both u and ϕ are abstract inclusions, and

– an abstract surjection iff u is an abstract surjection and Σ′ = [ϕ(Σ)]u.

The following result develops sufficient conditions for unions for Grothendieck inclusion systems and

requires invertible enriched indexed inclusion systems which is stronger than the E-invertible condition of

Thm. 2.116.

Proposition 2.117. [42] For any invertible enriched indexed inclusion system B : 〈I , E〉 → ISop, the

Grothendieck inclusion system 〈I], E]〉 has unions if

77

– the inclusion system of indices 〈I , E〉 has unions, and

– for each index j the ‘local’ inclusion system B j = 〈I j, E j〉 has unions.

The following result develops sufficient conditions for the Grothendieck inclusion systems to be epic.

Proposition 2.118. [42] In addition to the conditions of Thm. 2.116 if the inclusion system of the indices

〈I , E〉 is epic, B j = 〈I j, E j〉 is epic for each index j, and Bu are faithful for u ∈ E , then the inclusion

system 〈I], E]〉 defined in Thm. 2.116 is epic too.

The following result characterizes the Grothendieck inclusion system 〈I], E]〉 defined by Thm. 2.116 as a

lax colimit enriched by IS. This refines the characterization of Grothendieck categories as lax colimits [30]

and is also consonant to the characterization of Grothendieck institutions as a lax colimit in the 2-category

of institutions [30].

Definition 2.119 (IS-lax colimits). [42] For any pair of functors F ,G : 〈I , E〉→ ISop (from the underlying

category of an inclusion system 〈I , E〉), a IS-lax natural transformation µ : F ⇒ G is a lax natural

transformation such that

– for any object j of 〈I , E〉, the functor µ j : F(j)→ G(j) is inclusive, and

– for any u ∈ I , the natural transformation µu is abstract inclusion (for the inclusion system of the

corresponding functor category).

IS-lax co-cone and IS-lax colimits, respectively, are just lax co-cone and lax colimits, respectively, which

are IS-lax as natural transformations.

Proposition 2.120. [42] For any E-invertible IS-enriched indexed inclusion system B : 〈I , E〉 → ISop,

the Grothendieck inclusion system 〈I], E]〉 defined by Thm. 2.116 is the IS-lax co-limit of B.

2.4 C A F E O B J

Most of the theoretical achievements reviewed in this chapter have been motivated and inspired by the

work on the formal specification language CafeOBJ. Often they appeared as solutions or answers to the

foundational problems that have emerged from the design process of the language or from its associated

methodologies.

CafeOBJ is, together with CASL [5], a modern algebraic specification language. It is a natural successor

of the famous OBJ language [85] that has a direct realisation of some very new important trends in

algebraic specification such as rewriting logic and behavioural specification. Its definition [54] and its first

implementation have been developed in Japan between 1996-2000 within the framework of the large scale

project funded by the government. Various methodologies for formal specification and verification with

CafeOBJ are still being developed, and their foundations still constitute a source of interesting research

challenges. A recent overview of the process that has lead to the CafeOBJ definition and to the development

of some of the most important theoretical contributions of CafeOBJ to specification theory is given in [50].

In this section we overview briefly some of CafeOBJ most important features.

78

2.4.1 Equational specification and programming

Equational specification and programming is inherited from OBJ [85, 67] and constitutes the basis of

the language, the other features being somehow built on top of it. As with OBJ, CafeOBJ is executable

(by term rewriting), which gives an elegant declarative way of functional programming, often referred as

algebraic programming. Although this paradigm may be used as programming, from the applications point

of view, this aspect is secondary to its specification side. As with OBJ, CafeOBJ also permits equational

specification modulo several equational theories such as associativity, commutativity, identity, idempotence,

and combinations between all these. This feature is reflected at the execution level by term rewriting modulo

such equational theories. The underlying logic of this specification paradigm in CafeOBJ is order sorted

algebra, a refinement of many sorted algebra that supports a limited form of partiality through subsorting;

this will be discussed in more detail in a following section.

2.4.2 Behavioural specification

CafeOBJ behavioural specification paradigm is based on coherent hidden algebra of [55], the institution

denoted HA above. CafeOBJ directly supports behavioural specification and its proof theory through

special language constructs, such as

• hidden sorts (for states of systems),

• behavioural operations (for direct “actions” and “observations” on states of systems),

• behavioural coherence declarations for (non-behavioural) operations (which may be either derived

(indirect) “observations” or “constructors” on states of systems), and

• behavioural axioms (stating behavioural satisfaction).

The main behavioural proof method is based on coinduction. In CafeOBJ, coinduction can be used

either in the classical hidden algebra sense [76] for proving behavioural equivalence of states of objects

(see Sect. 2.1.1), or for proving behavioural transitions (see Sect. 1.2.3).

Besides language constructs, CafeOBJ supports behavioural specification and verification by several

methodologies. CafeOBJ highlights the methodology for concurrent object composition reviewed in

Sect. 2.1.2 which features high reusability not only of specification code but also of verifications [54, 97, 36].

Behavioural specification in CafeOBJ may also be effectively used as an object-oriented (state-oriented)

alternative for classical data-oriented specifications. Experiments seem to indicate that an object-oriented

style of specification even of basic data types (such as sets, lists, etc.) may lead to higher simplicity of code

and drastic simplification of verification process [54, 58].

Behavioural specification is reflected at the execution level by the concept of behavioural rewriting

[54, 55] which refines ordinary rewriting with a condition ensuring the correctness of the use of behavioural

equations in proving strict equalities.

79

2.4.3 Rewriting logic specification

Rewriting logic specification in CafeOBJ is based on a simplified version of Meseguer’s rewriting logic

[113] specification framework for concurrent systems which gives a non-trivial extension of traditional

algebraic specification towards concurrency. This simplification means that the CafeOBJ rewriting models

are preorders rather than categories, which yields an unlabelled form of rewriting logic called preordered

algebra (POA; see Sect. 1.2.3). This avoids many of the semantical complications resulting from the labelled

version of rewriting logic, the worst of these being the failure of the satisfaction condition of institution

theory.

POA incorporates many different models of concurrency in a natural, simple, and elegant way, thus giving

CafeOBJ a wide range of applications. The unlabelled aspect of POA means that, unlike Maude [23],

the CafeOBJ design does not support full reasoning about multiple transitions between states (or system

configurations), but provides proof support for reasoning about the existence of transitions between states

(or configurations) of concurrent systems. This is achieved via a built-in predicate with dynamic definition

encoding into equational logic both the proof theory of RWL and the user defined transitions (rules).

From a methodological perspective, CafeOBJ develops the use of POA for specifying and verifying the

properties of declarative encoding of algorithms (see [54]) as well as for specifying and verifying transition

systems.

2.4.4 Module system

The principles of the CafeOBJ module system are inherited from OBJ which builds on ideas first realized

in the language Clear [18]. However the foundations of the CafeOBJ module system are based upon the

most recent developments in the theory of structured specifications including those reviewed in Sect. 2.2.

The CafeOBJ module system features

• several kinds of imports,

• sharing for multiple imports,

• parameterised programming allowing

– multiple parameters,

– views for parameter instantiation,

– integration of CafeOBJ specifications with executable code in a lower level language

• module expressions.

Compared to CASL [5], CafeOBJ module system offers more specification possibilities by allowing

non-protecting importation modes and sharing when instantiating parameters of parameterised modules.

80

2.4.5 Type system and partiality

CafeOBJ has a type system that allows subtypes based on order sorted algebra [81, 74]. This provides a

mathematically rigorous form of runtime type checking and error handling, giving CafeOBJ a syntactic

flexibility comparable to that of untyped languages, while preserving all the advantages of strong typing.

CafeOBJ does not directly do partial operations but rather handles them by using error sorts and a sort

membership predicate in the style of membership equational logic [114].

2.4.6 Grothendieck institutional semantics

The design and definition of CafeOBJ represents a submission to the main principle underlying the design

and definition of modern formal specification languages, namely that there is an underlying logic in which

all language constructs can be rigorously defined as mathematical entities and such that the semantics of

specifications or programs is given by the model theory of this underlying logic. Another notable example

of a concrete realisation of this principle is CASL [5].

The heterogeneous nature of CafeOBJ has lead to the enrichment of institution theory with the concept

of Grothendieck institution. The indexed institution, or the diagram of institutions underlying the semantics

of CafeOBJ, is given by the notorious CafeOBJ cube which in its comorphism-based form is depicted

below. (The actual CafeOBJ cube consists of the full arrows, the dotted arrows denote the comorphisms

from components of the indexed institution to the Grothendieck institution.)

HA

MSA POA

HPOA

OSPOA

OSHPOAOSHA

OSA

Unfortunately, the time of the writing of [54] was prior to that of the definition of Grothendieck institutions,

thus the CafeOBJ definition presented in [54] treated heterogeneity of the language through the theory

developed in [28]. Soon this has been upgraded to Grothendieck institutions in [56] which however

presented the CafeOBJ institution as morphism-based Grothendieck institution. Since the CafeOBJ cube

is an adjoint-indexed institution, Prop. 2.98 applies which means that the CafeOBJ institution can be

equally presented as a comorphism-based Grothendieck institution. Recent works on the semantics of

CafeOBJ (e.g. [41, 42]) adopt this perspective. The full details of the institutions of the CafeOBJ cube can

be found in [56]. Below we present them briefly.

At the bottom of the CafeOBJ cube lies MSA, the institution of many-sorted algebra that has ‘alge-

braic signatures’ (consisting of sets of sort symbols and sorted function symbols) as signatures, algebras

interpreting the sort symbols as sets and the function symbols as functions, and (possibly conditional) uni-

81

versally quantified equations as sentences. The satisfaction between algebras and equations is the standard

Tarskian satisfaction. As in other algebraic specification languages, conditions of equations are encoded as

Boolean-values terms, hence in reality MSA should be thought like in [40].

OSA extends the MSA institution with order sortedness such that the set of sorts of a signature is a partially

ordered set rather than a discrete set, and algebras interpret the subsort relationship as set inclusion. The

embedding institution comorphism from MSA to OSA is the obvious one that interprets any MSA signature

as a discrete OSA signature.

POA has been already discussed in Sect. 1.2.3; it has the same signatures as MSA but the models interpret

the sort symbols as preorders and the function symbols as preorder functors (i.e. functors between preorders).

Besides equations, POA has other sentences too, the so-called ‘transitions’ which can be regarded as of

one-directional equations not obeying the symmetry rule. Their satisfaction by the models is determined by

the preorder relation between the interpretation of the terms of the transition. The embedding institution

comorphism from MSA to POA just forgets the preorder relationship between the elements of models.

The HA node of the CafeOBJ cube represents a slight restriction of the HA institution discussed above

in that the behavioural operations are required to have only one hidden sort in their arity. This nature of

this restriction has rather methodological nature, so from the point of view of foundations it does not have

any meaning. This means future versions of the CafeOBJ definition may remove this restriction. Besides

ordinary strict or behavioural equations, the CafeOBJ HA has also ‘coherence declarations’ which can

be regarded as just abbreviations for a special type of conditional behavioural equations (see [55, 56]) for

details. The embedding comorphism MSA→ HA just regards the MSA signature as HA signatures with a

trivial behavioural structure.

These extensions of MSA towards three different paradigms can be all combined into HOPOA (details

can be found in [56, 41]) which contains all institutions of the CafeOBJ cube as sub-institutions. Various

extensions of CafeOBJ towards new paradigms can be further considered by transforming the CafeOBJ

cube into a ‘hyper-cube’ and by flattening it to a Grothendieck institution, so in this sense the Grothendieck

institutional semantics of CafeOBJ is an open one.

2.5 OT H E R AC H I E V E M E N T S

2.5.1 Herbrand theorems for abstract logic programming

The logic programming paradigm [104] in its purely logical form can be described as follows:

Given a universal Horn (finite) theory (Σ,E) (called ‘program’, with Σ the ‘signature’ of the

program, i.e., the set of its symbols, and E the set of Σ-sentences) and an existentially quantified

conjunction of atoms ρ (called ‘query’) in Σ∪Y (for Y a new set of ‘logical variables’), find a

‘solution’ ψ for ρ, i.e., values for the variables Y , such that the corresponding instance ψ[ρ] of

ρ is satisfied by (Σ,E).

In other words, we need that (Σ,E) |= (∃Y)ρ.

82

In the most conventional form, logic programming is considered over unsorted first order logic without

equality [104], less conventional forms of logic programming extends this to multiple sorts, or even considers

first order logic with equality as underlying logic [124, 78, 79], this being considered as a new related

paradigm, and known under the name of ‘equational logic programming’. An extension object-oriented

extension of equational logic programming has been proposed in [77]. However, a careful look at the logic

programming paradigm shows its semantical foundations are essentially institution-independent.

The basic logic programming concepts, query, solutions, solution forms, and the fundamental results,

such as Herbrand theorems, can be developed over any institution by employing institution-independent

concepts of variable, substitution, quantifiers, atomic formulaæ, most of them being part of the ‘internal

logic’ of institutions developed in [31]. The institution-independent concept of substitution (see Sect. 1.1.2)

is developed for the first time in [33], being one of the main contributions of that work.

The paper [33] sets foundations for an uniform development of logic programming over a large variety

of computing science logics, which opens the door for a clean combination between logic programming

and various other computing paradigms. In this ‘institution-independent’ framework in [33] there is also a

discussion of some basic modularisation issues for logic programming.

In this section we review the most important developments in [33].

Definition 2.121 (Query). [33] Given a signature Σ in an arbitrary institution (Sign,Sen,Mod, |=) with a

designated class D of signature morphisms, a D-query is any existentially quantified sentence (∃χ)ρ such

that χ ∈D is quasi-representable and ρ is a basic sentence.

Theorem 2.122 (First Herbrand theorem). [33] In an institution consider a theory (Σ,E) which has an

initial model 0Σ,E . Then for each query (∃χ)ρ,

E |= (∃χ)ρ if and only if 0Σ,E |= (∃χ)ρ.

Definition 2.123 (Solutions). [33] Each χ-expansion N′ of 0Σ,E such that N′ |= ρ is called a solution for

the query (∃χ)ρ.

Theorem 2.124 (Second Herbrand theorem). [33] Consider an institution with representable D-substitutions

for a class D of representable signature morphisms such that

1. for each theory (Σ,E) with initial model, its signature Σ also has an initial model 0Σ,

2. for any theory (Σ,E) having an initial model 0Σ,E , for each signature morphism (χ : Σ→ Σ′) ∈D
its representation Mχ is projective with respect to all ‘quotient’ homomorphisms pΣ,E : 0Σ→ 0Σ,E .

Then for each theory (Σ,E) having an initial model, and for any D-query (∃χ1)ρ we have that

E |= (∃χ1)ρ if and only if there exists a D-substitution ψ : χ1→ χ2 such that E |= (∀χ2)ψ(ρ)

and χ2 is conservative.

When instantiated to institutions of predefined types like in [29, 47, 38], the abstract Herbrand theorems

above provide a clean denotational semantics for constraint logic programming based on initial models. This

83

shows that at the denotational level constraint programming is just a form of ordinary logic programming

when seen from a higher conceptual perspective.

This abstract approach to logic programming proposed in [33] has been recently applied also for providing

an institution theoretic semantics to services [26].

2.5.2 Abstract structural induction

Since its introduction within computing science by Burstall [16] structural induction has become a major

method for performing inductive proofs, which constitute one of the most important formal verification

trends. Originally structural induction was confined to proving properties of abstract data types, specified

within many-sorted algebra (MSA). But over the past decades due to the population explosion of underlying

logics for specification formalisms, the meaning and scope of structural induction has been extended

to logical systems that are increasingly sophisticated and different from MSA. However these structural

induction proof methodologies are often developed on a rather ad-hoc basis without clear mathematical

foundations, a situation that in our opinion ultimately undermines the credibility of the associated formal

methods.

In [44] we develop a generic method for proving inductive properties, that is directly applicable to

wide variety of logic based specification formalisms, already in existence or that may be developed in the

future. The genericity of our structural induction method is given by the fact that it is developed at the

level of abstract institutions, and it therefore lacks a commitment to a particular logical system. The main

contributions of this work are as follows:

1. The development of an axiomatic theory of substitutions for abstract institutions that is based upon

and refines the general institution-independent concept of substitution introduced in [33] (see also

[38]). This serves as the technical ground for the development of the institution-independent structural

induction method.

2. The core result of [44] is the structural induction theorem (Thm. 2.129). A particularly important

feature of these concrete methodologies emerging from this general results and that differs from

other formulations of structural induction in the literature (in fact mostly within MSA) is that they

allow simultaneous induction on several variables. This owes to the fact that we do not restrict X

of (∀X)ρ to a single variable, it may rather represent a block of variables. This comes naturally

from approaching the concepts of variable and substitution from an abstract institution theoretic

perspective.

3. An abstract theory of constructors that can be adjoined to the main structural induction theorem, and

that in concrete situations leads to a reduction in the complexity of the proof process associated to the

respective concrete proof methodologies.

The work [44] develops also instances of the abstract concepts and results in a series of non-conventional and

non-classical logical systems from specification theory and computer science, such as preordered algebra,

84

many-valued logic, many-sorted algebra with predefined types (for constraint programming), partial algebra.

In what follows we review the main technical developments of [44].

Definition 2.125 (Variables). For any signature Σ of an institution, a signature morphism X : Σ→ Σ′ is

called a Σ-variable. Usually we will denote Σ′, the target signature of X, by Σ(X).

Definition 2.126 (System of substitutions). [44] A system of substitutions in a given institution consists of

a |Sign|-indexed family S = {SΣ | Σ ∈ |Sign|} such that for each Σ ∈ |Sign|, SΣ is a sub-category of the

category of the Σ-substitutions and such that

1. 1Σ ∈ |SΣ|,

2. for each X ∈ |SΣ| and any signature morphism ι : Σ → Σ′ there exists a pushout of signature

morphisms

Σ ι //

X
��

Σ′

X ′
��

Σ(X)
ι(X)
// Σ′(X ′)

such that X ′ ∈ |SΣ′ |,

3. for any X ,Y ∈ |SΣ| and any functor F making the diagram below commute

Mod(Σ(Y)) F //

Mod(Y) $$

Mod(Σ(X))

Mod(X)zz
Mod(Σ)

there exists a unique θ ∈ SΣ such that F = Mod(θ).

The Σ-substitutions that belong to SΣ are called SΣ-substitutions.

Definition 2.127 (Substitutions with depth). [44] A depth measure d for a system S of substitutions in an

institution is a family of functions from the substitutions to the set ω of the natural numbers, d = {dΣ : SΣ→
ω | Σ ∈ |Sign|}, such that

1. d(1X) = 0 for any X ∈ |SΣ|, and

2. for any θ : X 99K Y and θ′ : Y 99K Z in SΣ we have that d(θ;θ′) ≤ d(θ)+ d(θ′).

The substitutions θ with d(θ) = 0 are called flat substitutions.

Definition 2.128 (Atomic substitutions). [44] In an institution, given a system of substitutions S with a

depth measure d, a designated subclass AtΣ ⊆ SΣ, for any signature Σ, is called a subclass of atomic

substitutions when

1. any flat substitution θ : X 99K 1Σ is atomic,

2. for each non flat SΣ-substitution θ there are SΣ-substitutions Q and T such that θ = Q;T , Q ∈ AtΣ,

and d(T) < d(θ).

The following generic structural induction theorem is the main result of [44].

85

Theorem 2.129 (Structural induction). [44] Let us consider a semi-exact institution with pushouts of

signatures, equipped with:

– a system of substitutions S ,

– a depth measure d for S ,

– a system of atomic substitutions At for S and d, and

– a binary relation @ on each set At(X ,Y) such that

ψ@ Q implies ψ is flat and Q is not flat.

Let ι : Ω→ Σ be a signature morphism, let X ∈ |SΩ| and let X ′ ∈ |SΣ| be defined by the following pushout

square:

Ω

X
��

ι // Σ

X ′
��

Ω(X)
ι(X)
// Σ(X ′)

Let Γ be a set of Σ-sentences and ρ be a Σ(X ′)-sentence such that, for every atomic SΩ-substitution

Q : X 99K Z and every pushout square:

Ω

Z
��

ι // Σ

Z′
��

Ω(Z)
ι(Z)
// Σ(Z′)

with Z′ ∈ |SΣ| we have:

Z′(Γ) ∪ {(ψ? ι)(ρ) | ψ@ Q} |=Σ(Z′) (Q? ι)(ρ).

Then for all SΩ-substitutions θ : X 99K 1Ω:

Γ |=Σ (θ? ι)(ρ).

Let us make the following comments with respect to Thm. 2.129.

1. In the applications ι represents the so-called ‘sub-signatures of constructors’. A general treatment at

the level of abstract institutions of this rather well-established concept, followed by examples, is given

below. Constructors have only a pure methodological role, namely that of reducing the complexity of

the proof process, a ‘smaller’ Ω leading to a smaller number of substitutions Q and hence a smaller

number of proof goals. If we disregarded this efficiency aspect, then we could very well do without

constructors, a situation that corresponds to setting ι of Thm. 2.129 to the identity 1Σ. In such a case,

the statement of Thm. 2.129 gets simplified with Ω = Σ, ι(X) and ι(Z) being identities, X = X ′ and

Z = Z′.

2. The parameter @ represents the main heuristic aspect of Thm. 2.129 and in actual situations the

setting of its value is a key factor in defining actual structural induction methodologies. In setting @

one should consider that a smaller @ means fewer hypotheses for the proof goals of the associated

structural induction methodology, a situation that may result in severe difficulties in the proof process.

86

On the other hand, it is crucial to ensure the finiteness of the proof process through the finiteness of

the set {ψ | ψ@ Q}. In the concrete instances of Thm. 2.129 presented below in this section @ is

set in a rather uniform way, which means that at the abstract level of Thm. 2.129 at this moment the

parameter @ may be seen mostly as an axiomatization device. However it seems a promising subject

of further research to come up with concrete values for @ leading to concrete structural induction

methodologies alternative to those presented below in this section.

3. A crucial aspect of Thm. 2.129 is that it is supposed to represent a finitary proof process. We have

already discussed one of the conditions for this, namely the finiteness of {ψ | ψ @ Q}. The other

condition is the finiteness of the number of the (atomic) substitutions Q (from the statement of the

theorem), which in the actual cases may be guaranteed by the finiteness of the signatures and by the

atomicity of the substitutions Q (see the examples below in this section). Note also that the latter

finiteness condition should be considered modulo isomorphism classes of Z and of Σ(Z′).

The remaining part of this section reviews the abstract approach to constructors developed in [44].

Definition 2.130 (Sub-signature of constructors). [44] In any institution, for any class E of model homo-

morphisms, a signature morphism ι : Ω→ Σ is a sub-signature of E -constructors for a set Γ of Σ-sentences

when

– Γ has an initial model 0Γ,

– the signature Ω has an initial model 0Ω, and

– the unique Ω-homomorphism (0Ω→ 0Γ�ι) is in E .

Definition 2.131. In any institution, given any class E of model homomorphisms, a model M is E-

projective when for each homomorphism (h : A→ B) ∈ E and each homomorphism g : M→ B there

exists a homomorphism f : M→ A such that f ;h = g.

M
f //

g
��

A

h
��

B

Definition 2.132 (Representable substitutions). [33, 38, 44]

An institution with a system of substitutions S has representable S-substitutions when

1. each S-variable X ∈ |SΣ| is representable, and

2. for each X ,Y ∈ |SΣ| and h : MX → MY there exists a SΣ-substitution θ : X 99K Y such that the

following diagram commutes:

Mod(Σ(Y))
Mod(θ) //

iY
��

Mod(Σ(X))

iX
��

MY /Mod(Σ)
h;(−)

// MX /Mod(Σ)

87

The following constitutes the main result about constructors in [44], and represents a result about the

correctness of the structural induction method of Thm. 2.129, showing that this actually proves inductive

properties.

Proposition 2.133. [44] In any institution

1. with model amalgamation,

2. with a designated class E of model homomorphisms, and

3. with a system S of representable substitutions such that MX is E-projective for each X ∈ |SΣ|,

let ι : Ω→Σ be a sub-signature of E -constructors for a set Γ of Σ-sentences and let X : Ω→Ω(X)∈ |SΩ|.
Let E be a set of Σ-sentences such that 0Γ |= E. Then for any pushout square of signature morphisms such

that X ′ ∈ |SΣ|
Ω ι //

X
��

Σ

X ′
��

Ω(X)
ι(X)
// Σ(X ′)

if for some Σ(X ′)-sentence ρ we have that Γ∪E |= (θ? ι)(ρ) for each SΩ-substitution θ : X 99K 1Ω then

0Γ |= (∀X ′)ρ.

88

Part II

Future Evolution

89

3
S C I E N T I F I C E VO L U T I O N

Scientific evolution can never be planned in detail. This is mainly because any serious personal scientific

agenda is highly dependent upon the global scientific evolutions which are increasingly difficult to predict

in a climat dominated by fast technological developments and a high degree of interdependency between

scientific areas. All these arguments are even more valid when we talk about computer science related

research. Therefore in this section I would like to outline my intentions regarding my future scientific

activity based upon an evaluation of the current situation.

3.1 G E N E R A L S C I E N T I FI C E VO L U T I O N

In general terms, the future evolution of my scientific activity will be along the same coordinates of the past

thirty years. In other words, I do not envisage a dramatic change of direction or style of research. Below I

present a list of arguments supporting this intention.

1. Although more the three decades have passed since the inception of institution theory, this research

area continues to enjoy a very dynamic growth, today even at an accelerated pace. This is in sharp

contrast to most of the computer science theoretical developments that are often short lived and with

very little impact. Some of the reasons for this continuing success of institution theory are as follows:

• The impact of institution theory and its associated methodology to approach logic, computing

and software phenomena has extended over a wide range of scientific interests, from philosophy

and logic to applied computing and engineering and even medical sciences. As witness to

this impact is that currently institution theory papers have been published in more the thirty

(30) journals of good international reputation, from computer science, logic, mathematics,

philosophy, and moreover this list continues to grow. An increasing number of doctoral theses

are been developed worldwide in relation to institution theory (I have recently supervised myself

on of those in Europe and I have been in the committees of several others).

• The strong advance of the universal trend in (mathematical) logic over the past ten to fifteen

years, process led by Jean-Yves Beziau, has coagulated a rather big worldwide community

(known as UNILOG after the name of the series of big world congress and schools already

organised in different parts of the world) that is taking a genuine interest in institution theory

mainly from the logic side. This is something that has not been envisaged by the fathers of

institution theory, although conceptually they draw a lot of inspiration from universal logic

ideas at the time (although these were not organised under such name). Apart of the series of

UNILOG schools and congresses, this community is also publishing a journal and a book series,

91

both at Springer, and has some dedicated corners in some reputed logic journals. All these have

become yet another platform for the institution theoretic research.

• Institution theory displays a conceptual and mathematical elegance difficult to find in other

computer science theories, hence it is intellectually very appealing. This aspect has been stated

as one of the strength of institution theory by many important researchers worldwide.

2. Whilst the traditional themes in institution theory have not yet exhausted their potential to rise new

research challenges, the growth of institution theory has led to the opening of new research avenues.

3. Formal specification is the originally envisaged application for institution theory. In the past years,

according to a number of experts, the software engineering community is beginning to take a new

interest in formal methods. This means a new cycle in the life of formal methods.

4. Taking into account the situation described above, since for many worldwide my name is associ-

ated with the development of institution theory over the past twenty plus years, I have a personal

responsibility to continue to support this research area both in theoretical and applied aspects.

3.2 S P E C I FI C C O O R D I NAT E S

Having established an intention for evolution as a natural continuation of my past scientific activity, this

does not mean that the emphasis will remain on exactly the same research topics as before. So there will be

some change of focus. As a general principle, the personal research interests will be much guided by those

of the community interested in institution theory and applications. Genuine research challenges will have to

be addressed.

For example there will be less focus on the development of classical model theory in a general and

abstract institution theoretic setting. This line of research has made already a lot of progress over the past

ten plus years, and moreover in the past few years several younger researchers worldwide have already

produced interesting results in this area, so now my presence here is less required. The situation is however

very different with respect to non-classical logics versus institution theory. While non-classical logics can

be captured properly as institutions, some of their fine aspects may be beyond the conventional institution

theory. For example, the institutions of many-valued logics handle the ternary aspect of the satisfaction

relation by adjoining truth value to the sentences; in this way we get a binary satisfaction relation. While

this works well with respect to most aspects of many-valued logics, it cannot handle graded (non-binary)

consequences. The same with modal logics, the conventional concept of institution does not allow for a

general semantics of modalities. These shortcomings have to be overcome by extensions of the definition of

institution towards non-classical aspects of logics. These hint to some concrete priorities for the next years

in the area of non-classical logics and applications.

1. Development of a many-valued in-depth refinement of institution theory with applications to artificial

intelligence (including fuzzy logic programming, formal systems for medical sciences [93], etc.).

92

2. Development of an in-depth refinement of institution theory towards modalities, with applications to

novel specification and verification paradigms (such as specifications of dynamically reconfigurable

systems [106], but not only).

These envisaged developments will be strongly related with the preparation in the next years of a new

edition of [38]. This is an important personal project. Whilst the first edition of [38] has got a great success,

the high dynamics of institution theory requires a rather substantial upgrade of this monograph.

The research in formal specification and verification will remain an important component part of my

future scientific activity. The context of this is determined by the following factors.

1. In spite of the huge progress in the past few decades on the foundations of formal specification,

still a series of foundational questions regarding various of its associated methodologies remain.

For example recently we have started a project about the semantics of multiply parameterised

specifications [53, 25] with implications to modularisation methodologies, a proper study of the

structuring of behavioural specifications has only very recently started [52], etc.

2. A generic logic independent in-depth approach to formal verification has been initiated only recently

with the institution theoretic work on structural induction [44]; this is an area that has a good

theoretical and applicative potential.

3. The recent development of the heterogeneous specification paradigm, heavily based on institution

theory, has opened a new research area. Although much progress have been made both in theoretical

and applied aspects, a lot still needs to be done.

4. The increasing sophistication of modern software systems requires new specification paradigms

which have to be addressed with adequate theoretical means.

5. Ideas and concepts from algebraic specifications have often found new homes in other computer

science area, such as logic programming [78], services [26], ontologies [72, 101, 122] (an ISO

standard for ontologies being developed with institution theory playing a crucial role), etc.

93

4
E T H I C S

In the recent years there is a growing awareness in the international scientific community regarding the role

of ethics in academia. For example while years ago international publishers used only to issue warnings

about plagiarism, these days they often ask authors to sign form declarations and even organise web

seminars (like Elsevier does) on this topic. But this is only a gross form of unethical scientific behaviour.

In a climate increasingly dominated by the competition and marketisation of research there are many

more subtle forms of unethical behaviour than may be much more damaging to the academic environment

than gross plagiarism (which anyway it is not so difficult to fight against). The issue of ethics is crucial

for maintaining a healthy and conducive academic environment that promotes high intelectual standards.

Therefore these days it is obligatory for any senior scientist to make clear his position with respect to

relevant ethical issues, and to act accordingly. This is even more valid for those working with students of

junior scientists, because the future climate in academia will depend on the ethical scientific behaviour of

the young generation of scientists. Therefore any plan of a future academic and scientific evolution should

address the ethical component.

Generally speaking, compared with other sciences, computer science has some specific heavy problems

regarding academic ethics. These are often related to the perception of outside scientists about computer

science as having generally low intelectual and scientific standards. These may be also dramatically

amplified across geographical areas where there is a general culture of corruption in the society. Some of

these problems may be identified as follows:

• Big publication lists containing mostly very minor contributions published in conferences, often in

domestic ones, rather than in international journals of good reputation. The peer-reviewing process

for conferences in general is quick, and for most of them very superficial and often based on group

interests reflected in the PC committee. Very often there is a big overlapping between the contents

of those papers, which shows a form of auto-plagiarism. Of course, the impact of such works is

minimal, with very low citation numbers. A discussion on this issue has been initiated at the highest

international level in [146], from which I give the following quotation:

An old joke tells of a driver, returning home from a party where he had one drink too

many, who hears a warning over the radio about a car careening down the wrong side of

the highway. “A car?” he wondered aloud, “There are lots of cars on the wrong side of the

road!” I am afraid that driver is us, the computing-research community.

• In relation to the previous issue, often computer science publications have long lists of authors, many

of them being in fact a kind of “honorary” authors rather than real ones. Senior scientists, leaders of

research teams, often use their power position for achieving authorship of papers without an enough

95

substantial contribution to their respective content. To be such an author is enough to provide a few

very general indications, or even just to have a grant from which to hire junior scientists to do the

real work. In many cases these senior scientists do not even understand the technical content of the

respective papers.

• To be a PhD student in computer science today may be quite different from twenty years ago. These

days PhD students are usually hired on project grants and have to work in order to fullfil the research

agendas of their professors. There is very little or no concern about the scientific development of

the student in accordance with their own talent or scientific inclinations. This is in fact a form of

exploitation, which is very different from when I was brought up as scientist during my DPhil years

at Oxford. Although founded from a grant, my Professor gave me full freedom to chose my research

topic, and was taking a keen interest in trying together with me to discover my main interests in

science.

An important number of paramount, highly respected scientists have showed by their life example that

there can be an ethical way to high academic achievements. I know very well a few cases: Jean-Yves Beziau,

Rod Burstall, Joseph Goguen, Don Sannella, Andrzej Tarlecki, etc. An important part of my future activity

is to promote their style of conducting research and bringing up young scientists. This will be done firstly

by personal example and secondly by explaining young students and scientists the benefits of a correct

scientific behaviour. In particular this means:

• journal publications rather than conference publications;

• international publications in places of good reputation rather than domestic publications;

• authorship based only upon substantial contribution;

• offer students and junior scientists a proper academic rather than a business climate.

96

B I B L I O G R A P H Y

[1] Marc Aiguier and Fabrice Barbier. An institution-independent proof of the Beth definability theorem.

Studia Logica, 85(3):333–359, 2007.

[2] Marc Aiguier and Răzvan Diaconescu. Stratified institutions and elementary homomorphisms.

Information Processing Letters, 103(1):5–13, 2007.

[3] Eyal Amir and Sheila McIlraith. Improving the efficiency of reasoning through structure-based

reformulation. In B.Y. Choueiry and T.Walsh, editors, Proceedings of the Symposium on Abstrac-

tion, Reformulation and Approximation (SARA’2000), volume 1864 of Lecture Notes in Artificial

Intelligence, pages 247–259. Springer-Verlag Berlin Heidelberg, 2000.

[4] M. Arrais and José L. Fiadeiro. Unifying theories in different institutions. In Magne Haveraaen,

Olaf Owe, and Ole-Johan Dahl, editors, Recent Trends in Data Type Specification, volume 1130 of

Lecture Notes in Computer Science, pages 81–101. Springer, 1996.

[5] Edigio Astesiano, Michel Bidoit, Hélène Kirchner, Berndt Krieg-Brückner, Peter Mosses, Don

Sannella, and Andrzej Tarlecki. CASL: The common algebraic specification language. Theoretical

Computer Science, 286(2):153–196, 2002.

[6] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Association for Computing

Machinery, 37(2):335–372, 1990.

[7] Jean-Yves Béziau. 13 questions about universal logic. Bulletin of the Section of Logic, 35(2/3):133–

150, 2006.

[8] Jean-Yves Béziau, editor. Universal Logic: an Anthology. Studies in Universal Logic. Springer

Basel, 2012.

[9] Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor specifications. Sci.

Comput. Program., 25(2-3):149–186, 1995.

[10] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation of CASL

specifications. Mathematical Structures in Computer Science, 18(2):325–371, 2008.

[11] Garrett Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical

Society, 31:433–454, 1935.

[12] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language and Informa-

tion, 4(3):251–272, 1995.

97

[13] Francis Borceux. Handbook of Categorical Algebra. Cambridge University Press, 1994.

[14] Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical Computer Science,

286(2):197–245, 2002.

[15] Peter Burmeister. Partial algebra - an introductory survey. Algebra Universalis, 15:306–358, 1982.

[16] Rod Burstall. Proving properties of programs by structural induction. Computer Journal, 12(1):41–48,

1969.

[17] Rod Burstall and Joseph Goguen. Putting theories together to make specifications. In Raj Reddy,

editor, Proceedings, Fifth International Joint Conference on Artificial Intelligence, pages 1045–1058.

Department of Computer Science, Carnegie-Mellon University, 1977.

[18] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language. In Dines Bjorner,

editor, 1979 Copenhagen Winter School on Abstract Software Specification, volume 86 of Lecture

Notes in Computer Science, pages 292–332. Springer, 1980.

[19] Walter Carnielli and Marcelo Esteban Coniglio. Combining logics. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. 2011.

[20] Maria-Victoria Cengarle. Formal specifications with higher-order parameterization. PhD thesis,

Ludwig-Maximilians-Universitat, Munchen, 1994.

[21] Chen-Chung Chang and H. Jerome Keisler. Model Theory. North Holland, Amsterdam, 1990.

[22] Petr Cintula and Petr Hájek. On theories and models in fuzzy predicate logic. Journal of Symbolic

Logic, 71(3):832–863, 2006.

[23] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer,

and Carolyn Talcott. All About Maude - A High-Performance Logical Framework, volume 4350 of

Lecture Notes in Computer Science. Springer, 2007.

[24] Mihai Codescu and Daniel Găină. Birkhoff completeness in institutions. Logica Universalis,

2(2):277–309, 2008.

[25] Ionuţ Ţuţu. Parameterisation for abstract structured specifications. Theoretical Computer Science.

DOI:10.1016/j.tcs.2013.11.008.

[26] Ionuţ Ţuţu and Jose Fiadeiro. A logic-programming semantics of services. In R. Heckel and S. Milius,

editors, CALCO 2013, volume 8089 of Lecture Notes in Computer Science, pages 299–313, 2013.

[27] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical Structures in

Computer Science, 7(2):195–206, 1997.

98

[28] Răzvan Diaconescu. Extra theory morphisms for institutions: logical semantics for multi-paradigm

languages. Applied Categorical Structures, 6(4):427–453, 1998. A preliminary version appeared as

JAIST Technical Report IS-RR-97-0032F in 1997.

[29] Răzvan Diaconescu. Category-based constraint logic. Mathematical Structures in Computer Science,

10(3):373–407, 2000.

[30] Răzvan Diaconescu. Grothendieck institutions. Applied Categorical Structures, 10(4):383–402,

2002. Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638, February 2000.

[31] Răzvan Diaconescu. Institution-independent ultraproducts. Fundamenta Informaticæ, 55(3-4):321–

348, 2003.

[32] Răzvan Diaconescu. Elementary diagrams in institutions. Journal of Logic and Computation,

14(5):651–674, 2004.

[33] Răzvan Diaconescu. Herbrand theorems in arbitrary institutions. Information Processing Letters,

90:29–37, 2004.

[34] Răzvan Diaconescu. An institution-independent proof of Craig Interpolation Theorem. Studia

Logica, 77(1):59–79, 2004.

[35] Răzvan Diaconescu. Interpolation in Grothendieck institutions. Theoretical Computer Science,

311:439–461, 2004.

[36] Răzvan Diaconescu. Behavioural specification of hierarchical object composition. Theoretical

Computer Science, 343(3):305–331, 2005.

[37] Răzvan Diaconescu. Proof systems for institutional logic. Journal of Logic and Computation,

16(3):339–357, 2006.

[38] Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.

[39] Răzvan Diaconescu. An encoding of partial algebras as total algebras. Information Processing

Letters, 109(23–24):1245–1251, 2009.

[40] Răzvan Diaconescu. Quasi-boolean encodings and conditionals in algebraic specification. Journal of

Logic and Algebraic Programming, 79(2):174–188, 2010.

[41] Răzvan Diaconescu. Coinduction for preordered algebras. Information and Computation, 209(2):108–

117, 2011.

[42] Răzvan Diaconescu. Grothendieck inclusion systems. Applied Categorical Structures, 19(5):783–802,

2011.

[43] Răzvan Diaconescu. On quasi-varieties of multiple valued logic models. Mathematical Logic

Quarterly, 57(2):194–203, 2011.

99

[44] Răzvan Diaconescu. Structural induction in institutions. Information and Computation, 209(9):1197–

1222, 2011.

[45] Răzvan Diaconescu. An axiomatic approach to structuring specifications. Theoretical Computer

Science, 433:20–42, 2012.

[46] Răzvan Diaconescu. Borrowing interpolation. Journal of Logic and Computation, 22(3):561–586,

2012.

[47] Răzvan Diaconescu. Interpolation for predefined types. Mathematical Structures in Computer

Science, 22(1):1–24, 2012.

[48] Răzvan Diaconescu. Three decades of institution theory. In Jean-Yves Béziau, editor, Universal

Logic: an Anthology, pages 309–322. Springer Basel, 2012.

[49] Răzvan Diaconescu. Institutional semantics for many-valued logics. Fuzzy Sets and Systems,

218:32–52, 2013.

[50] Răzvan Diaconescu. CafeOBJ traces. In S. Iida, J. Meseguer, and K. Ogata, editors, Specification,

Algebra, and Software, Lecture Notes in Computer Science. Springer, 2014.

[51] Răzvan Diaconescu. Quasi-varieties and initial semantics in hybridized institutions. Journal of Logic

and Computation, DOI:10.1093/logcom/ext016.

[52] Răzvan Diaconescu and Ionuţ Ţuţu. Foundations for structuring behavioural specifications. Journal

of Logic and Algebraic Programming. To appear.

[53] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured specifications. Theoretical Computer

Science, 412(28):3145–3174, 2011.

[54] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques,

and Methodologies for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in

Computing. World Scientific, 1998.

[55] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented algebraic

specification. Universal Computer Science, 6(1):74–96, 2000. First version appeared as JAIST

Technical Report IS-RR-98-0017F, June 1998.

[56] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of CafeOBJ. Theoretical Computer

Science, 285:289–318, 2002.

[57] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida. Component-based algebraic specification

and verification in CafeOBJ. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM’99

– Formal Methods, volume 1709 of Lecture Notes in Computer Science, pages 1644–1663. Springer,

1999.

100

[58] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida. CafeOBJ Jewels. In Kokichi Futatsugi,

Ataru Nakagawa, and Tetsuo Tamai, editors, Cafe: An Industrial-Strength Algebraic Formal Method,

pages 33–60. Elsevier, 2000.

[59] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modularisation. In

Gerard Huet and Gordon Plotkin, editors, Logical Environments, pages 83–130. Cambridge, 1993.

Proceedings of a Workshop held in Edinburgh, Scotland, May 1991.

[60] Răzvan Diaconescu and Alexandre Madeira. Encoding hybridized institutions into first order logic.

Mathematical Structures in Computer Science. To appear.

[61] Răzvan Diaconescu and Marius Petria. Saturated models in institutions. Archive for Mathematical

Logic, 49(6):693–723, 2010.

[62] Răzvan Diaconescu and Petros Stefaneas. Ultraproducts and possible worlds semantics in institutions.

Theoretical Computer Science, 379(1):210–230, 2007.

[63] Theodosis Dimitrakos. Formal Support for Specification Design and Implementation. PhD thesis,

Imperial College, 1998.

[64] Theodosis Dimitrakos and Tom Maibaum. On the role of interpolation for stepwise refinement, 1997.

In Proceeding First Panhellenic Logic Symposium.

[65] Theodosis Dimitrakos and Tom Maibaum. On a generalized modularization theorem. Information

Processing Letters, 74:65–71, 2000.

[66] Werner Fey. Pragmatics, concepts, syntax, semantics and correctness notions of ACT TWO: An

algebraic module specification and interconnection language. Technical Report 88–26, Technical

University of Berlin, Fachbereich Informatik, 1988.

[67] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Principles of OBJ2.

In Proceedings of the 12th ACM Symposium on Principles of Programming Languages, pages 52–66.

ACM, 1985.

[68] Dov M. Gabbay and Larisa Maksimova. Interpolation and Definability: modal and intuitionistic

logics. Oxford University Press, 2005.

[69] Giangiacomo Gerla. Fuzzy logic programming and fuzzy control. Studia Logica, 79(231–254),

2005.

[70] Joseph Goguen. Reusing and interconnecting software components. Computer, 19(2):16–28,

February 1986. Reprinted in Tutorial: Software Reusability, Peter Freeman, editor, IEEE Computer

Society, 1987, pages 251–263, and in Domain Analysis and Software Systems Modelling, Rubén

Prieto-Díaz and Guillermo Arango, editors, IEEE Computer Society, 1991, pages 125–137.

101

[71] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe, and Ralph F.

Wachter, editors, Topology and Category Theory in Computer Science, pages 357–390. Oxford, 1991.

Proceedings of a Conference held at Oxford, June 1989.

[72] Joseph Goguen. Data, schema, ontology and logic integration. Journal of IGPL, 13(6):685–715,

2006.

[73] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and program-

ming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.

[74] Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra. Mathematical

Structures in Computer Science, 4(4):363–392, 1994.

[75] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the object paradigm. In

Hartmut Ehrig and Fernando Orejas, editors, Recent Trends in Data Type Specification, volume 785

of Lecture Notes in Computer Science, pages 1–34. Springer, 1994.

[76] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55–101,

2000.

[77] Joseph Goguen, Grant Malcolm, and Tom Kemp. A hidden Herbrand theorem: Combining the object,

logic and functional paradigms. Journal of Logic and Algebraic Programming, 51(1):1–41, 2002.

[78] Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic modules for logic program-

ming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Programming: Functions, Relations

and Equations, pages 295–363. Prentice-Hall, 1986.

[79] Joseph Goguen and José Meseguer. Models and equality for logical programming. In Hartmut Ehrig,

Giorgio Levi, Robert Kowalski, and Ugo Montanari, editors, Proceedings, TAPSOFT 1987, volume

250 of Lecture Notes in Computer Science, pages 1–22. Springer, 1987.

[80] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational programming,

with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-

Oriented Programming, pages 417–477. MIT, 1987. Preliminary version in SIGPLAN Notices,

Volume 21, Number 10, pages 153–162, October 1986.

[81] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for multiple inheri-

tance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217–273,

1992. Also, Programming Research Group Technical Monograph PRG–80, Oxford University, De-

cember 1989.

[82] Joseph Goguen and Grigore Roşu. Hiding more of hidden algebra. In Jeannette M. Wing, Jim

Woodcock, and Jim Davies, editors, FM’99 – Formal Methods, volume 1709 of Lecture Notes in

Computer Science, pages 1704–1719. Springer, 1999.

102

[83] Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of Computing, 13:274–307,

2002.

[84] Joseph Goguen and Grigore Roşu. Composing hidden information modules over inclusive institutions.

In Olaf Owe, Stein Krogdahl, and Tom Lyche, editors, From Object-Orientation to Formal Methods,

volume 2635 of Lecture Notes in Computer Science, pages 96–123. Springer, 2004.

[85] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud.

Introducing OBJ. In Joseph Goguen and Grant Malcolm, editors, Software Engineering with OBJ:

algebraic specification in action. Kluwer, 2000.

[86] Joseph Goguen and David Wolfram. On types and FOOPS. In Robert Meersman, William Kent, and

Samit Khosla, editors, Object Oriented Databases: Analysis, Design and Construction, pages 1–22.

North Holland, 1991. Proceedings, IFIP TC2 Conference, Windermere, UK, 2–6 July 1990.

[87] Alexandre Grothendieck. Catégories fibrées et descente. In Revêtements étales et groupe fondamental,

Séminaire de Géométrie Algébraique du Bois-Marie 1960/61, Exposé VI. Institut des Hautes Études

Scientifiques, 1963. Reprinted in Lecture Notes in Mathematics, Volume 224, Springer, 1971, pages

145–94.

[88] Daniel Găină and Kokichi Futatsugi. Initial semantics in logics with constructors. Journal of Logic

and Computation, DOI:10.1093/logcom/exs044.

[89] Daniel Găină and Marius Petria. Completeness by forcing. Journal of Logic and Computation,

20(6):1165–1186, 2010.

[90] Daniel Găină and Andrei Popescu. An institution-independent generalization of Tarski’s Elementary

Chain Theorem. Journal of Logic and Computation, 16(6):713–735, 2006.

[91] Daniel Găină and Andrei Popescu. An institution-independent proof of Robinson consistency

theorem. Studia Logica, 85(1):41–73, 2007.

[92] Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

[93] Robert Helgesson. Generalized General Logics. PhD thesis, Umeå University, 2013.

[94] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Haeberer, editor, Algebraic

Methodology and Software Technology, number 1584 in LNCS, pages 263–277. Springer, 1999. Proc.

AMAST’99.

[95] Heinrich Hussmann. Nondeterminism in Algebraic Specifications and Algebraic Program. Birkhaüser,

1993.

[96] Shusaku Iida, Kokichi Futatsugi, and Răzvan Diaconescu. Component-based algebraic specifications:

- behavioural specification for component based software engineering -. In 7th OOPSLA Workshop

103

on Behavioral Semantics of OO Business and System Specification, pages 167–182, 1998. Also in

the technical report of Technical University of Munich TUM-I9820.

[97] Shusaku Iida, Kokichi Futatsugi, and Răzvan Diaconescu. Component-based algebraic specification:

- behavioural specification for component-based software engineering -. In Behavioral specifications

of businesses and systems, pages 103–119. Kluwer, 1999.

[98] B. Jacobs and J.M. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of EATCS,

62:222–259, 1997.

[99] Ranjit Jhala, Rupak Majumdar, and Ru-Gang Xu. State of the union: Type inference via Craig

interpolation. In Tools and Algorithms for the Construction and Analysis of Systems, volume 4424 of

Lecture Notes in Computer Science, pages 553–567. Springer, 2007.

[100] Oliver Kutz and Till Mossakowski. Modules in transition. Conservativity, Composition, and Colimits.

In Proceedings, Second International Workshop on Modular Ontologies, 2007.

[101] Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap, Goguen, and the hyperontologies -

logical pluralism and heterogeneous structuring in ontology design. Logica Universalis, 4(2):255–

333, 2010.

[102] Yngve Lamo. The Institution of Multialgebras – a general framework for algebraic software

development. PhD thesis, University of Bergen, 2003.

[103] Saunders Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.

[104] John Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988. Second, Extended edition.

[105] Jerzy Łoś. Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In

Mathematical Interpretation of Formal Systems, pages 98–113. North-Holland, Amsterdam, 1955.

[106] Alexandre Madeira. Foundations and techniques for software reconfigurability. PhD thesis, Univer-

sidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme), 2013.

[107] Anatoly Malcev. The Metamathematics of Algebraic Systems. North-Holland, 1971.

[108] Manuel-Antonio Martins, Alexandre Madeira, Răzvan Diaconescu, and Luis Barbosa. Hybridization

of institutions. In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors, Algebra and Coalgebra

in Computer Science, volume 6859 of Lecture Notes in Computer Science, pages 283–297. Springer,

2011.

[109] Günter Matthiessen. Regular and strongly finitary structures over strongly algebroidal categories.

Canadian Journal of Mathematics, 30:250–261, 1978.

[110] Sheila McIlraith and Eyal Amir. Theorem proving with structured theories. In Proceedings of the

17th Intl. Conf. on Artificial Intelligence (IJCAI-01), pages 624 – 631, 2001.

104

[111] Kenneth McMillan. Applications of Craig interpolants in model checking. In Proceedings

TACAS’2005, volume 3440 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[112] José Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium,

1987, pages 275–329. North-Holland, 1989.

[113] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer

Science, 96(1):73–155, 1992.

[114] José Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-

Pressice, editor, Proc. WADT’97, volume 1376 of Lecture Notes in Computer Science, pages 18–61.

Springer, 1998.

[115] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - proof management for structured

specification. Journal of Logic and Algebraic Programming, 67(1-2):114–145, 2006.

[116] T. Mossakowski, C. Maeder, and K. Lütich. The heterogeneous tool set. In Lecture Notes in Computer

Science, volume 4424, pages 519–522. 2007.

[117] Till Mossakowski. Comorphism-based Grothendieck logics. In K. Diks and W. Rytter, editors,

Mathematical foundations of computer science, volume 2420 of Lecture Notes in Computer Science,

pages 593–604. Springer, 2002.

[118] Till Mossakowski. Relating CASL with other specification languages: the institution level. Theoreti-

cal Computer Science, 286:367–475, 2002.

[119] Till Mossakowski. Heterogeneous specification and the heterogeneous tool set. Habilitation thesis,

University of Bremen, 2005.

[120] Till Mossakowski, Răzvan Diaconescu, and Andrzej Tarlecki. What is a logic translation? Logica

Universalis, 3(1):59–94, 2009.

[121] Till Mossakowski, Joseph Goguen, Răzvan Diaconescu, and Andrzej Tarlecki. What is a logic? In

Jean-Yves Béziau, editor, Logica Universalis, pages 113–133. Birkhäuser, 2005.

[122] Till Mossakowski, Oliver Kutz, and Christoph Lange. Semantics of Distributed Ontology Language:

Institutes and institutions. In Recent Trends in Algebraic Development Techniques, volume 7841 of

Lecture Notes in Computer Science, pages 212–230, 2013.

[123] Greg Nelson and Derek Oppen. Simplication by cooperating decision procedures. ACM Trans.

Program. Lang. Syst., 1(2):245–257, 1979.

[124] Michael J. O’Donnell. Computing in systems described by equation, volume 58 of Lecture Notes in

Computer Science. Springer, 1977.

105

[125] Derek Oppen. Complexity, convexity and combinations of theories. Theoretical Computer Science,

12:291–302, 1980.

[126] David Parnas. Information distribution aspects of design methodology. Information Processing ’72,

71:339–344, 1972. Proceedings of 1972 IFIP Congress.

[127] David Parnas. On the criteria to be used in decomposing systems into modules. Communications of

the Association for Computing Machinery, 15:1053–1058, 1972.

[128] David Parnas. A technique for software module specification. Communications of the Association

for Computing Machinery, 15:330–336, 1972.

[129] Marius Petria and Răzvan Diaconescu. Abstract Beth definability in institutions. Journal of Symbolic

Logic, 71(3):1002–1028, 2006.

[130] Florian Rabe. A framework for combining model and proof theory. Mathematical Structures in

Computer Science, 23(5):945–1001, 2013.

[131] Horst Reichel. Behavioural equivalence – a unifying concept for initial and final specifications. In

Proceedings, Third Hungarian Computer Science Conference. Akademiai Kiado, 1981. Budapest.

[132] Horst Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Clarendon,

1987.

[133] Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

[134] Grigore Roşu. Axiomatisability in inclusive equational logic. Mathematical Structures in Computer

Science, 12(5):541–563, 2002.

[135] Grigore Roşu and Dorel Lucanu. Circular coinduction: A proof theoretical foundation. In Alexander

Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer Science,

volume 5728 of Lecture Notes in Computer Science, pages 127–144, 2009.

[136] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution. Information and

Control, 76:165–210, 1988.

[137] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specifications and Formal Software

Development. Springer, 2012.

[138] Klaus Schneider. Verification of reactive systems. Springer, 2004.

[139] Joseph Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[140] Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David Pitt, Samson Abramsky,

Axel Poigné, and David Rydeheard, editors, Proceedings, Summer Workshop on Category Theory

and Computer Programming, volume 240 of Lecture Notes in Computer Science, pages 334–360.

Springer, 1986.

106

[141] Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions. Theoretical

Computer Science, 37:269–304, 1986.

[142] Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer and System

Sciences, 33(3):333–360, 1986.

[143] Alfred Tarski and Robert Vaught. Arithmetical extensions of relational systems. Compositio

Mathematicæ, 13:81–102, 1957.

[144] Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-language

modelling of search problems. In Frontiers of combining systems, volume 6989 of Lecture Notes in

Computer Science, pages 259–274, 2011.

[145] Johan van Bentham. Modal Logic and Classical Logic. Humanities Press, 1988.

[146] Moshe Vardi. Conferences vs. journals in computing research. Communications of the ACM, 52(5),

2009.

[147] Paulo Veloso. On pushout consistency, modularity and interpolation for logical specifications.

Information Processing Letters, 60(2):59–66, 1996.

[148] Peter Vojtás. Fuzzy logic programming. Fuzzy Sets and Systems, 124:361–370, 2001.

[149] Michał Walicki. Algebraic Specification of Nondeterminism. PhD thesis, Department of Informatics,

University of Bergen, 1993.

[150] Michał Walicki and Sigurd Meldal. Algebraic approaches to nondeterminism - an overview. ACM

Computing Surveys, 29, 1997.

[151] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian Theobald, and

Dalibor Topic. Spass version 2.0. In Proceedings of the 18th International Conference on Automated

Deduction, CADE-18, pages 275–279, London, UK, 2002. Springer-Verlag.

107

	I Scientific Achievements
	1 Logic and model theory
	1.1 Institution-independent model theory
	1.1.1 The method of diagrams
	1.1.2 Internal logic
	1.1.3 The method of ultraproducts
	1.1.4 Saturated models
	1.1.5 Axiomatizability
	1.1.6 Interpolation
	1.1.7 Definability
	1.1.8 Proof systems for institutional logic

	1.2 Logic combination
	1.2.1 Possible worlds semantics in abstract institutions
	1.2.2 Institutional semantics for many valued logics
	1.2.3 Hidden preordered algebra

	1.3 Logic by translation
	1.3.1 Borrowing interpolation
	1.3.2 Borrowing definability
	1.3.3 Borrowing saturated models
	1.3.4 Encoding partial algebras as total algebras
	1.3.5 Encoding hybridized institutions into first-order logic

	1.4 Model theory for unconventional and non-classical logics
	1.4.1 Initial semantics in many valued logic
	1.4.2 Model theory for abstract many valued logics
	1.4.3 Ultraproducts for possible worlds semantics
	1.4.4 Quasi-varieties and initial semantics in hybridized institutions
	1.4.5 Stratified institutions

	2 Algebraic specification
	2.1 Behavioural specification
	2.1.1 Coherent hidden algebra
	2.1.2 Hierarchical object composition in behavioural specification

	2.2 Modularity/structuring
	2.2.1 Module algebra
	2.2.2 Axiomatic approach to structured specifications
	2.2.3 Parameterized specifications
	2.2.4 Structuring behavioural specifications

	2.3 Heterogeneous specification
	2.3.1 Grothendieck institutions
	2.3.2 Lifting local properties to global properties
	2.3.3 Grothendieck inclusion systems

	2.4 CafeOBJ
	2.4.1 Equational specification and programming
	2.4.2 Behavioural specification
	2.4.3 Rewriting logic specification
	2.4.4 Module system
	2.4.5 Type system and partiality
	2.4.6 Grothendieck institutional semantics

	2.5 Other achievements
	2.5.1 Herbrand theorems for abstract logic programming
	2.5.2 Abstract structural induction

	II Future Evolution
	3 Scientific Evolution
	3.1 General scientific evolution
	3.2 Specific coordinates

	4 Ethics

