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ON THE EMBEDDINGS OF THE RIEMANN SPHERE

WITH NONNEGATIVE NORMAL BUNDLES

RADU PANTILIE

Abstract. We describe the (complex) quaternionic geometry encoded by the em-

beddings of the Riemann sphere, with nonnegative normal bundles.

Introduction

There are problems that our generation can not hope to see them solved. Here are

two such problems:

(1) classify the germs of the (known) geometric structures,

(2) classify the germs of the embeddings of compact complex manifolds.

Twistor theory provides a bridge between significant subclasses of the classes in-

volved in (1) and (2) , above. From this perspective, in quaternionic geometry the

point is replaced by the Riemann sphere; that is, (up to a complexification) the objects

are parameter spaces for locally complete families [14] of embedded Riemann spheres.

But, so far (see [20] , [25] , and the references therein), only for the families of Riemann

spheres whose normal bundles split and are positive, there exists a fair understanding

of the differential geometry of the corresponding parameter spaces (a positive vector

bundle over the Riemann sphere is a complex analytic vector bundle whose Birkhoff–

Grothendieck decomposition contains only terms of positive Chern numbers).

In this note, we complete this picture by describing the geometric structures corre-

sponding to the germs of embeddings of the Riemann sphere with nonnegative normal

bundles. For this, we are led to consider principal ρ-connections, a straight generaliza-

tion of the classical notion of principal connection, which appear (see Section 1, below)

by shifting the emphasis from the tangent bundle to another vector bundle over the

manifold (then ρ is a morphism from that bundle to the tangent bundle). The fact

that the geometric structures may require another bundle, besides the tangent one,

is not new (see [10] ). However, instead of a bracket, the quaternionic geometry re-

quires a connection, to control the integrability [28] . Our main result (Theorem 2.1 )

shows that to integrate all the families of embedded Riemann spheres with nonnegative
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2 Radu Pantilie

normal bundles we have to pass, from the classical connections, to the ρ-connections,

and from the (co-CR) quaternionic structures, to the ρ-quaternionic structures (see

Section 2 ). Furthermore, a bracket can be associated in this setting as well and, if ρ

is surjective, the Jacobi identity is satisfied only if the corresponding ρ-quaternionic

manifold is obtained as a twistorial quotient of a (classical) quaternionic manifold. For

example, the quaternionic geometry of the space of Veronese curves in the complex

projective space is induced, through a twistorial submersion, from (the complexifica-

tion of) a quaternionic manifold.

As already mentioned, it was twistor theory who emphasized the richness of the

differential geometry encoded by the embeddings of the Riemann sphere. Chronolog-

ically, there were the, by now, classical, anti-self-dual manifolds (see [2] ), the three-

dimensional Einstein–Weyl spaces [11] , and the quaternionic manifolds [28] (see, also,

[4] ), containing the important pre-existent subclass of quaternionic–Kähler manifolds

(see [17] ). Furthermore, such spaces of ‘rational curves’ (that is, nonconstant holo-

morphic maps from the sphere) are, also, involved in the classification of irreducible

representations whose images can occur as holonomy groups of torsion free connections

( [5] , [7] ; see, also, [21] , and the references therein). Also, note that, the almost ρ-

quaternionic manifolds are related to the paraconformal manifolds of [3] .

On the other hand, the algebraic geometers are interested in complex projective man-

ifolds which admit an embedding of the Riemann sphere with positive normal bundle,

as these are the ‘rationally connected manifolds’ - see the paper [12] of Paltin Ionescu

(and the references therein) to whom I am grateful for kindly drawing my attention to

this important fact.

We hope that our approach will deepen the understanding of the interconnections of

these two domains.

1. Principal ρ-connections

We work in the complex analytic category. By the tangent bundle we mean the

holomorphic tangent bundle and if E is a vector bundle then Γ(E) denotes the sheaf of

its sections. All the facts that follow, in this section, can be straightforwardly extended

to the smooth setting.

Let M be a manifold endowed with a pair (E, ρ) , where E is a vector bundle over

M and ρ : E → TM is a morphism of vector bundles.

Let (P,M,G) be a principal bundle and let π : P → M be the projection. A principal

ρ-connection on P is a G-equivariant vector bundle morphism C : π∗E → TP which

when composed to the morphism from TP to π∗(TM) , induced by dπ, gives π∗ρ.

If E = TM and ρ is the identity, we retrieve the classical notion of principal connec-

tion. Also, if E is a distribution on M and ρ is the inclusion morphism then a principal

ρ-connection is just a principal partial connection over E.

Any principal ρ-connection on P corresponds to a morphism of vector bundles
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c : E → TP/G which when composed to TP/G → TM gives ρ .

Also, let (aUV )U,V ∈U be a cocycle defining P , where U is an open covering ofM . Then

any principal ρ-connection on P corresponds to a family (AU )U∈U of local connection

forms, where AU ∈ Γ
(

g⊗ (E|U )
∗
)

and AV = ρ∗
(

a∗UV θ
)

+Ad
(

a−1
UV

)

AU on U ∩V , where

g is the Lie algebra of G, ρ∗ : T ∗M → E∗ is the transpose of ρ , and θ is the canonical

form on G. Over each local trivialisation P |U = U ×G we have TP/G = (TU)⊕ g and

c = (ρ ,−AU ) .

Obviously, any principal connection induces a principal ρ-connection, but not all

principal ρ-connections are obtained this way. Also, the set of principal ρ-connections

is an affine space over the vector space of global sections of Hom(E,AdP ) . Conse-

quently, similarly to the classical case [1] , the obstruction to the existence of principal

ρ-connections is an element of H1
(

M,Hom(E,AdP )
)

(which, in the smooth case, is

zero).

Let F be a bundle associated to P . Then any principal ρ-connection on P induces a

morphism of vector bundles cF : π∗E → TF which we call a ρ-connection (here, π is the

projection of F ). If F is a vector bundle then cF corresponds to a covariant derivation

∇ : Γ(F ) → Γ
(

Hom(E,F )
)

which is a linear map such that ∇(fs) = ρ∗(df)⊗s+f∇s ,

for any (local) function f on M and any (local) section s ∈ Γ(F ). Note that, in [6] was

considered a notion which is, essentially, the same with the covariant derivation of a

ρ-connection on a vector bundle.

The usual constructions of connections - such as, the pull-back and the tensor pro-

duct - admit straight generalizations to ρ-connections.

Any ρ-connection ∇ on E has a torsion T ∈ Γ(TM ⊗ Λ2E∗) (compare [26] ), char-

acterised by T (s1, s2) = ρ ◦ (∇s1s2 − ∇s2s1) − [ρ ◦ s1, ρ ◦ s2] , for any s1, s2 ∈ Γ(E) .

Note that, if T = 0 then, on defining [s1, s2] = ∇s1s2 −∇s2s1 , for any s1, s2 ∈ Γ(E) ,

we obtain that:

(i) [·, ·] is linear and skew-symmetric on Γ(E) ,

(ii) ρ intertwine [·, ·] and the usual bracket on vector fields on M ,

(iii) [s1, fs2] = (ρ◦s1)(f)s2+f [s1, s2] , for any function f on M and s1, s2 ∈ Γ(E) .

We call [·, ·] the bracket associated to ∇.

For applications there is a characterisation of the torsion which in the classical case

is a consequence of the Cartan’s first structural equation. If (P,M,G) is the frame

bundle of E then π∗E = P ×E0 , where E0 is the typical fibre of E. Then any principal

ρ-connection on P is a G-invariant morphism of vector bundles C : P ×E0 → TP . For

any ξ ∈ E0 let B(ξ) be the vector field tangent to P such that B(ξ)u = C(u, ξ) , for any

u ∈ P (in the classical case, these become the well known ‘standard horizontal vector

fields’; see, also, [26] ).

Proposition 1.1. If T is the torsion of C then T (uξ, uη) = − dπ
(

[B(ξ), B(η)]u
)

, for

any ξ, η ∈ E0 and u ∈ P .
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Proof. We may assume P = M × G and verify the relation at u = (x, e) , where e is

the identity of G. As C is G-invariant, we have B(ξ)(x,a) =
(

ρ(x, aξ),−Γ(x, aξ)a
)

, for

any x ∈ M and a ∈ G, where Γ is the corresponding local connection form.

If X and A are vector fields on P such that, at each point, X is tangent to M and A

is tangent to G then, for any x ∈ M and a ∈ G, we have that dπ
(

[X,A](x,a)
)

depends

only of X and Aa .

Consequently, the bracket of B(ξ) and the component of B(η) tangent toG is mapped

by dπ(x,e) to ρ(x,Γ(x, η)ξ) . Hence,

dπ
(

[B(ξ), B(η)](x,e)
)

= ρ(x,Γ(x, η)ξ) − ρ(x,Γ(x, ξ)η) + [ρ(·, ξ), ρ(·, η)]x ,

which is easily seen to be equal to −T
(

(x, ξ), (x, η)
)

. �

Returning, now, to a principal ρ-connection c : E → TP/G on P , suppose that E

is endowed with a bracket [·, ·] , satisfying (i) , (ii) , (iii) , above. Then we can define

the curvature form R ∈ Γ
(

AdP ⊗ Λ2E∗
)

of c , which, for any s1, s2 ∈ Γ(E) , is given

by R(s1, s2) = c ◦ [s1, s2] − [c ◦ s1, c ◦ s2] , where the second bracket is induced by the

usual bracket on vector fields on P , and we have identified AdP with the kernel of the

morphism TP/G → TM .

All the classical formulae involving R admit straight generalizations to this setting,

up to the Bianchi identities for which one needs that the bracket on E satisfies the

Jacobi identity (see [18] for the corresponding theory of such brackets). Then, by using

[18, Theorem 2.2] , if ρ is surjective, at least locally, we have E = TQ/H and the

following commutative diagram, where (Q,M,H) is a principal bundle:

0

��

AdQ

��

TQ/H

ρ

��

c

zz✉✉
✉
✉
✉
✉
✉
✉
✉

0 // AdP
ι

// TP/G // TM //

��

0

0

There are two important particular cases, the first of which showing that the Cartan

connections are just a special kind of principal ρ-connections.

Example 1.2. Let H ⊆ G be a closed subgroup, and Q a restriction of P to H.

Then the simplest example of a principal ρ-connection is the canonical inclusion map

c0 : TQ/H → TP/G (this is, obviously, flat; that is, its curvature form is zero).
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Any other principal ρ-connection c on P differ from c0 by a vector bundles morphism

γ : TQ/H → AdP ; that is, c = c0 − ι ◦ γ .

Note that, in this setting, the Cartan connections appear as principal ρ-connections

c on P satisfying the following:

(1) c is induced by a (classical) principal connection on P (that is, c factors into

ρ followed by a section of TP/G → TM),

(2) c restricted to AdQ takes values in AdP and is given by the inclusion h → g ,

(3) the corresponding γ : TQ/H → AdP is an isomorphism.

It is fairly well known that for flat Cartan connections we, locally, have Q = G,

M = G/H and γ is the canonical isomorphism of vector bundles from TG/H onto

(G/H) × g . Then Proposition 1.1 gives that the torsion is given by T0 ∈ (g/h)⊗ Λ2g∗

defined by T0(A,B) is the projection of −[A,B] onto g/h .

The second class of examples of principal ρ-connections is, in a certain sense, dual

to Example 1.2 .

Example 1.3. Let G ⊆ H be a closed subgroup, P a restriction of Q to G, and c a

retraction of the inclusion TP/G → TQ/H. Then c is determined by its kernel which

is a vector subbundle of AdQ .

We shall need the case P = K, where K is a Lie group, with G ⊆ H ⊆ K closed

subgroups. ThenM = K/G and we may identifyQ = (K×H)/G, whereG is embedded

diagonally as a closed Lie subgroup of K × H. Accordingly, the action of H on Q is

obtained from the action to the left of H, seen as a normal subgroup of K ×H.

Then TQ/H is the bundle associated to (K,K/G,G) through the representation of

G on (k×h)/g induced by the adjoint representations of K and H, where g , h and k are

the Lie algebras of G, H and K, respectively. Hence, ρ is given by the projection from

(k×h)/g onto k/g ; in particular, kerρ is the subbundle corresponding to (g×h)/g = h .

Thus, any K-invariant principal ρ-connection c : TQ/H → TP/G which is the

identity on TP/G corresponds to a G -invariant projection γ : (k × h)/g → k which

is the identity when restricted to k and when composed with the projection k → k/g

gives the projection from (k×h)/g onto k/g . Therefore any such principal ρ-connection

corresponds to a G -invariant decomposition h = g⊕m , for some vector subspacem ⊆ h ,

so that c is induced by the projection γ from k×m
(

= (k× h)/g
)

onto k with kernel m .

The curvature form of the principal ρ-connection corresponding to m is given by

the g-valued two-form on k × m induced by the g-valued two-form on m which is the

composition of the restriction of the bracket on h followed by the opposite of the

projection on g . Furthermore, by using Proposition 1.1 , we obtain that the torsion is

given by the composition of the bracket on k followed by the opposite of the projection

on k/g .

On comparing with Example 1.2 , we see that these K-invariant principal ρ-connec-

tions on (K,K/G,G) are ‘extentions’ of H-invariant (classical) principal connections

on (H,H/G,G) by the flat Cartan connection on (K,K/G,G).
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2. The quaternionic geometry of the embeddings of the Riemann sphere

A (complex) quaternionic vector bundle is a (complex analytic) vector bundle E with

typical fibre C
2 ⊗ C

k and structural group SL(2,C ) · GL(k,C ) acting on the typical

fibre through the tensor product of the canonical representations of the factors. Thus,

at least locally, any quaternionic vector bundle is of the form S⊗F , where S and F are

vector bundles and the structural group of S is SL(2,C ) ; obviously, Z = PS is always

globally defined.

An almost ρ-quaternionic structure on a manifold M is a pair (E, ρ) , where E is a

quaternionic vector bundle over M , and ρ : E → TM is a morphism of vector bundles

whose kernel, at each point, contains no (nonzero) decomposable elements. Obviously,

if ρ is an isomorphism then we obtain the (complexified version of the) notion of almost

quaternionic structure (see [28] ), whilst if ρ is surjective then we obtain the notion of

almost co-CR quaternionic structure [20] .

Suppose that E (= S ⊗ F ) is endowed with a ρ-connection ∇ (compatible with its

structural group) and let cZ : π∗E → TZ be the induced ρ-connection on Z, where

π : Z → M is the projection. Let B be the distribution on Z (= PS) such that

B[e] = cZ
(

{e⊗f | f ∈ Eπ(e)}
)

, for any [e] ∈ Z . As cZ is a ρ-connection and the kernel of

ρ contains no decomposable elements, B is well-defined; furthermore, B ∩ (ker dπ) = 0 .

We say that (M,E, ρ) is a ρ-quaternionic manifold if the ρ-connection ∇ can be

chosen such that B is integrable; then ∇ is a quaternionic ρ-connection. If, further,

there exists a surjective submersion πY : Z → Y such that ker dπY = B and each fibre

of πY intersects at most once each fibre of π, then Y endowed with
{

πY
(

π−1(x)
)}

x∈M
,

is the twistor space of (M,E, ρ,∇) . Obviously, if ρ is surjective and ∇ is a (classical)

connection then we retrieve the co-CR quaternionic manifolds [20] .

Theorem 2.1. There exists a natural bijective correspondence between the following,

where Y is a complex manifold:

(i) germs of (complex analytic) embeddings of the Riemann sphere into Y with non-

negative normal bundles;

(ii) germs of ρ-quaternionic manifolds whose twistor spaces are open subsets of Y .

Proof. Let Y be a manifold endowed with an embedded Riemann sphere t0 ⊆ Y , with

nonnegative normal bundle. Then, by [14] , there exist a map πY : Z → Y and a

surjective proper submersion π : Z → M such that πY restricted to each fibre of π is

an embedding, and t0 = πY
(

π−1(x0)
)

, for some x0 ∈ M ; moreover, πY and π induce

linear isomorphisms TxM = H0(tx, Ntx) , where tx = πY
(

π−1(x)
)

, and Ntx is its

normal bundle, (x ∈ M) . Furthermore, by the rigidity of the Riemann sphere (see

[23] ), π is locally trivial.

As Nt0 is nonnegative, it is generated by its sections. Consequently, dπY restricted

to π−1(x0) is submersive. Thus, by passing, if necessary, to open neighbourhoods of x0
and t0 we may assume πY a surjective submersion. Therefore, for any x ∈ M , we have
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an exact sequence

(2.1) 0 −→ Bx −→ tx × TxM −→ Ntx −→ 0 ,

where we have identified tx = π−1(x) , we have denoted B = ker dπY , Bx = B|tx , and

the inclusion morphism Bx → TxM is induced by dπ . Together with the fact that the

induced linear map TxM → H0(tx, Ntx) is bijective, this shows that Ntx is nonneg-

ative, for any x ∈ M . Furthermore, from the exact sequence of cohomology groups,

induced by (2.1) , we deduce that both H0(tx,Bx) and H1(tx,Bx) are zero. Therefore

the Birkhoff–Grothendieck decomposition of Bx contains only terms of Chern num-

ber −1 .

Consequently, by [15, Theorems 7.4] and [16, Theorem 9] (see, also, [9] , [23] ), the

dual of the direct image, through π, of B∗ is a vector bundle over M which, by also

using [19, §3] , it is a quaternionic vector bundle. Denote this quaternionic vector bun-

dle by E and, note that, π∗E contains (the annihilator of) B so that we have an exact

sequence 0 −→ B −→ π∗(E) −→ E −→ 0 , for some vector bundle E over Z.

The exact sequence of cohomology groups of the dual of (2.1) induces a linear map

ρ∗x : T ∗
xM → H0(tx,B

∗
x) = E∗

x , for any x ∈ M . By applying, for example, [19, §3] , we

obtain that (E, ρ) is an almost ρ-quaternionic structure on M . Note that, ρ is induced

by a morphism of vector bundles R : E → π∗(TM)/B.

At least locally, we may suppose E = S ⊗ F with S of rank 2 and whose structural

group is SL(2,C ) . Also, Z = PS and the fibre, over x , of the quotient of the tangent

bundle of SL(S) , through SL(2,C ) , is H0
(

tx, (TZ)|tx
)

. Therefore, to prove the exis-

tence of a quaternionic ρ-connection on E which determines Y , it is sufficient to find a

morphism π∗E → TZ which when restricted to B is the identity, and when composed

with the morphism TZ → π∗(TM) , induced by dπ, it is equal to π∗ρ ; equivalently, we

have to find a morphism E → TZ/B which when composed to TZ/B → π∗(TM)/B is

equal to R .

Now, the obstruction to build such a morphism is an element of H1(Z, E∗ ⊗ ker dπ) .

As Z is locally trivial, and the restriction of E∗⊗ker dπ to each fibre of π is isomorphic

to kO(1) , where rank E = k , an application of the Künneth formula shows that any

point of M has an open neighbourhood U such that the restriction of this obstruction

to Z|U is zero.

Conversely, suppose that an open subset of Y is the twistor space of a ρ-quaternionic

manifold M . Then, for all x ∈ M , we obtain exact sequences as (2.1) , where now we

know that the Birkhoff–Grothendieck decomposition of Bx contains only terms of Chern

number −1 ; hence, TxM = H0(tx, Ntx) and, consequently, Ntx is nonnegative. �

Note that, Theorem 2.1 gives, in fact, an isomorphism of categories, as the fami-

lies of embedded Riemann spheres involved are locally complete. In particular, any

ρ-quaternionic vector space (that is, a ρ-quaternionic vector bundle over a point) cor-

responds to a nonnegative vector bundle over the sphere (cf. [27] ; see, also, [24] ).



8 Radu Pantilie

If we apply Theorem 2.1 to the Veronese curve in the complex projective space, of

dimension at least two, then we obtain a ρ-quaternionic manifold (M,E, ρ) endowed

with a quaternionic ρ-connection which is not a (classical) connection. Indeed, if that

would have been the case then the normal bundle sequence of the Veronese curve would

have split, which would contradict [22] . In fact, our approach gives, in particular, a

new proof for that consequence of [22] , as we shall now explain.

Example 2.2. Let Uk = ⊙kU1 , where dimU1 = 2 , and ⊙ is the symmetric product,

(k ∈ N) . Then Uk is the irreducible representation of dimension k + 1 of SL(U1) .

For any k ≥ 1 , we have an embedding PGL(U1) ⊆ PGL(Uk) and the quotient

PGL(Uk)/PGL(U1) , obviously, parametrizes the space of Veronese curves on PUk .

We are in the setting of Example 1.3 with G = PGL(U1) , H = PGL(Uk−1) , and

K = PGL(Uk) , where k ≥ 2 (the case k = 1 is trivial). To describe the quaternionic

ρ-connection, note that, the representation of G on the Lie algebra k of K, induced by

the adjoint representation of K, is U2⊕· · ·⊕U2k ; indeed, as k⊕U0 = Uk⊗Uk , we may

apply [8, p. 151] . Accordingly, for the Lie algebra h of H we have h = U2⊕· · ·⊕U2k−2 ,

and the quaternionic ρ-connection is given by m = U4⊕· · ·⊕U2k−2 . (Note that, if k = 2

then we, also, are in the setting of Example 1.2 with G = PGL(U2) , H = PGL(U1) and

the quaternionic ρ-connection given by the flat Cartan connection on (G,G/H,H) .)

From the proof of Theorem 2.1 it follows that the invariant principal ρ-connection

on (K,K/G,G) is unique. As this is not a classical principal connection, the normal

bundle sequence of a Veronese curve does not split.

Finally, let Y be the twistor space of a ρ-quaternionic manifold (M,E, ρ) , with ρ

surjective, rankE > 4 . Suppose that E is endowed with a bracket which satisfies

the Jacobi identity. By, also, applying [18, Theorem 2.2] , we obtain that, at least

locally, there exists a quaternionic manifold Q and a twistorial submersion ϕ : Q → M

(that is, ϕ corresponds to a submersion from the twistor space of Q onto Y ). For

example, if M is the space of Veronese curves of degree k then Q =
(

PGL(Uk) ×

PGL(Uk−1)
)

/PGL(U1) . By, also, taking into consideration the conjugations we obtain

real quaternionic structures on SU(3) (see [13] ), and
(

SU(k + 1)× SU(k)
)

/SU(2) .
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