Close the abstract
4. Ordinary and Partial Differential Equations, Controlled Differential Systems

Convergence estimates for some semilinear second order differential equations with two small parameters in Hilbert space

Andrei Perjan
Moldova State University, Chişinău, Moldova

Abstract:

In the real Hilbert space $H$ we consider the following Cauchy problem: $$ \left\{ \begin{array}{l} \varepsilon u''_{\varepsilon\delta}(t)+\delta\,u'_{\varepsilon\delta}(t)+ A u_{\varepsilon\delta}(t)+ B\big(u_{\varepsilon\delta}(t)\big)=f_{\varepsilon}(t), \quad t \in (0, T), \\ u_{\varepsilon\delta}(0)=u_{0\varepsilon},\quad u'_{\varepsilon\delta}(0)=u_{1\varepsilon},\ \end{array} \right.\ (Eq\, P_{\varepsilon \delta}) $$ where $A:V\subset H\to H$, be a linear self-adjoint operator and $B$ is nonlinear $A^{1/2}$ lipschitzian or monotone operator, $u_{0\varepsilon}, u_{1\varepsilon}\in H, f_{\varepsilon}: [0,T] \to H$ and $\varepsilon, \delta$ are two small parameters. We investigate the behavior of solutions $u_{\varepsilon\delta}$ to the problem ($P_{\varepsilon\delta}$) in two different cases:

(i) $\varepsilon\to 0$ and $\delta \geq \delta_0>0 $, relative to the solutions to the following unperturbed system: $$ \left\{ \begin{array}{l} \delta l_\delta'(t)+ A l_\delta(t)+B\big(l_\delta(t)\big)=f(t),\quad t\in(0,T),\\ l_\delta(0)=u_0; \end{array} \right.\ (Eq\, P_{\delta}) $$
(ii) $\varepsilon\to 0$ and $\delta \to 0$, relative to the solutions to the following system: $$ A v(t)+B\big(v(t)\big)= f(t),\quad t\in[0,T)\ (Eq\, P_{0}) $$ The mathematical model ${(P_{\varepsilon \delta})}$ governs various physical processes, which are described by the Klein-Gordon equation, the Sine-Gordon equation, the Plate equation and others equations.