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1 Introduction

Let π : Cn+1 → Cn be the projection π((z1, z2, ..., zn+1)) = (z2, , ..., zn+1). It
is obvious that if D is a convex domain in Cn+1 then π(D) is convex too.
Although under certain conditions the projection of a pseudoconvex domain
remains pseudoconvex (see in this sense [7],[8]), for general pseudoconvex
domains this is not true anymore. A counterexample was given by Peter
Pflug in [11].
In the first part of this note we prove that any connected open subset of Cn

is the projection of a connected Runge open subset of Cn+1 (Theorem 3).
In the same circle of ideas we study then the following problem: if P1 and

P2 are closed subsets of Cn, each one having a fundamental system of Runge
neighborhoods, does their union have the same property ?
For arbitrary closed subsets P1 and P2 this is not true. A thorough discussion
about the union of totally real subspaces of Cn can be found in [12].
Corollary 1 (see also Remark 2) gives sufficient conditions such that if P1

and P2 are contained in two analytic subsets of Cn, A1 and A2 respectively,
then P1 ∪ P2 has a fundamental system of Runge neighborhoods.

Aknowledgements I am very grateful to Professor Mihnea Colţoiu for
suggesting me these problems and for his helpful advises.
I would also like to thank Professors Mohan Ramachandran, Terrence Napier
and Anca Popa for their comments and Professor Klas Diederich for suggest-
ing me a better version of Proposition 4 and Corollary 1.
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2 Preliminaries

Throughout this paper by a closed analytic subset I will understand a closed
complex analytic subset.
If A is a closed analytic subset of Cn and K ⊂ A is a compact subset, we
denote by K̂A = {z ∈ A : |f(z)| ≤supK |f | for any f ∈ O(A)} its holomor-
phically convex hull. K is called holomorphically convex with respect to A
if K = K̂A.
It is easy to see that K̂A = K̂Cn , therefore a compact subset of A is holo-
morphically convex with respect to A iff it is holomorphically convex with
respect to Cn.

If D ⊂ A is a Stein open subset, D is said to be Runge in A if the
restriction map O(A) → O(D) has dense image.

The following result is proved in [2].

Proposition 1. Let X be a Stein space, ϕ be a holomorphic function on X.
Let K1, K2 be compact subsets of X and let Re(ϕ) < 0 on K1, Re(ϕ) > 0 on

K2. Then we have (K1 ∪K2)̂= K̂1 ∪ K̂2

Theorem 1 is proved in [5].

Theorem 1. Let A ⊂ Cn be a closed analytic subset, K ⊂ Cn a holomor-
phically convex compact subset and U an open neighborhood of K ∪ A.Then
there exists a C∞ plurisubharmonic function ψ on Cn such that ψ < 0 on
K ∪A and ψ > 0 on {U . In particular, K ∪A has a fundamental system of
Runge neighborhoods.

The next two results are from [4].

Proposition 2. Let A ⊂ Cn be a closed analytic subset, K ⊂ Cn a holomor-
phically convex compact subset and L ⊂ A a holomorphically convex compact
subset with K ∩ A ⊂ L.

Then K ∪ L has a fundamental system of Runge neighborhoods, hence it
is holomorphically convex.

With a slight modification Theorem 3 in [4] becomes:

Theorem 2. Let X be a Stein space of finite embedding dimension, A ⊂ X
be a closed analytic subset, D ⊂ A a Runge open subset K ⊂ X a holomor-
phically convex compact subset such that K ∩ A ⊂ D and V ⊂ X an open
subset such that D ∪K ⊂ V . Then there exists a Runge open subset D̃ in X
with D̃ ∩ A = D, K ⊂ D̃ and D̃ ⊂ V .
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The only thing we have to change in the proof of Theorem 3 in [4] is to
choose Vn such that Vn ⊂ V and to embed X as a closed subvariety of CN

for some N .

3 The Results

Theorem 3. For every D open and connected subset of Cn there exists a
connected Runge open subset D̃ of Cn+1 such that π(D̃) = D. Furthermore,

if D is bounded we can find a bounded D̃ with this property.

Proof. Let {Pm}m≥1 be a covering of D by compact polydiscs such that
Pm ∩ Pm+1 6= ∅ and let xm ∈ Pm ∩ Pm+1. Such a covering exists since D is
connected.
We construct by induction a sequence {Vm}m≥1 of connected open subsets of
Cn+1 with the following properties:

(1)V m is compact and V m ⊂ Vm+1

(2)Vm is Runge in Cn+1 and V m is holomorphically convex with respect
to Cn+1

(3)V m ⊂ ((0, 1)× (0, 1))×D and Pm ⊂ π(Vm)
We define V1 as follows: let B1 be a compact disc in C, B1 ⊂ (0, 1)×(0, 1)

and let K1 = B1×P1. Then K1 is a holomorphically convex compact subset
of Cn+1 so it has a fundamental system of Runge neighborhoods.
Let U1 ⊂ Cn+1 be a Runge open subset, K1 ⊂ U1 ⊂ ((0, 1)× (0, 1))×D and
let ϕ1 be a C∞ strongly plurisubharmonic exhaustion function for U1.
Using Sard Theorem we choose c ∈ R a regular value for ϕ1 such that
{ϕ < c} ⊃ K1. Because c is a regular value {ϕ < c} = {ϕ ≤ c}.
We choose V1 to be the connected component of {ϕ < c} that contains K1.
Then V 1 is the connected component of {ϕ ≤ c} that contains K1. So V1 is
a Runge open subset of U1 and V 1 is holomorphically convex with respect to
U1. Since U1 is Runge in Cn+1 we deduce that V1 is Runge in Cn+1 and V 1

is holomorphically convex with respect to Cn+1.
Because B1×P1 ⊂ V1 and U1 ⊂ ((0, 1)× (0, 1))×D we have π(V1) ⊃ P1 and
V 1 ⊂ ((0, 1)× (0, 1))×D. So V1 has the desired properties.

Now assume that we have constructed V1, ..., Vm with the required
properties and define Vm+1 as follows: because V m is compact and
V m ⊂ ((0, 1) × (0, 1)) × D there exists a real number αm, αm ∈ (0, 1),
such that V m ⊂ ((0, αm) × (0, 1)) × D. Let Bm+1 be a compact disc in C,
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Bm+1 ⊂ (αm, 1)× (0, 1) and let Km+1 = V m ∪Bm+1 × Pm+1.
Since V m and Bm+1 × Pm+1 are holomorphically convex subsets of Cn+1

and Re(z1 − αm) < 0 on V m, Re(z1 − αm) > 0 on Bm+1 × Pm+1 it follows
from Proposition 1 (see also the Separation Lemma in [6]) that Km+1 is a
holomorphically convex compact subset of Cn+1.
Let Am = C × {xm}. Am is an analytic subset of Cn+1 and by Theorem 1
Km+1 ∪ Am has a fundamental system of Runge neighborhoods. Note also
that π(Km+1 ∪ Am) = π(Km+1) ⊂⊂ D.

Let then Ũm+1 be a Runge open subset of Cn+1 such that Km+1∪Am ⊂ Ũm+1

and π(Ũm+1) ⊂⊂ D and put Um+1 = ((0, 1)× (0, 1))× Cn ∩ Ũm+1.
Then Um+1 is Runge in Cn+1, Km+1 ⊂ Um+1 and Um+1 ⊂ ((0, 1)× (0, 1))×D.
Because π(Vm) ⊃ Pm and xm ∈ Pm there exists am ∈ C such that
(am, xm) ∈ Vm. But Vm ⊂ ((0, 1)× (0, 1))×D. So am ∈ (0, 1)× (0, 1).
Let am+1 ∈ Bm+1 and γm : [0, 1] → Cm+1, γm(t) = (tam + (1 − t)am+1, xm)

and Γm = γm([0, 1]). Then Γm ⊂ Am ⊂ Ũm+1 and Γm ⊂ ((0, 1)× (0, 1))×D.
So Γm ⊂ Um+1.
Km+1 has two connected components and Γm is a path that joins them. It
follows that Km+1 ∪ Γm is a connected compact subset of Um+1.
Let ϕm+1 be a C∞ strongly plurisubharmonic exhaustion function for Um+1

and let c ∈ R a regular value for ϕm+1 such that Km+1 ∪ Γm ⊂ {ϕm+1 <
c}. Put Vm+1 :=the connected component of {ϕm+1 < c} that contains
Km+1 ∪ Γm.

As in the construction of V1, Vm+1 is Runge in Cn+1 and V m+1 is
holomorphically convex with respect to Cn+1, π(Vm+1) ⊃ Pm+1,
V m+1 ⊂ ((0, 1) × (0, 1)) × D and since V m ⊂ Km+1 it follows V m ⊂ Vm+1.
So Vm+1 satisfies (1),(2) and (3) and the existence of the sequence {Vm}m≥1

is proved.
Put now D̃ =

⋃∞
m=1 Vm. Because every Vm is a connected Runge open

subset of Cn+1, D̃ is connected and Runge. From π(Vm) ⊃ Pm we get that

π(D̃) ⊃ ⋃∞
m=1 Pm = D. On the other hand, since Vm ⊂ ((0, 1)× (0, 1))×D

it follows D̃ ⊂ ((0, 1) × (0, 1)) × D, so π(D̃) ⊂ D. Therefore π(D̃) = D.

Moreover, if D is bounded then ((0, 1) × (0, 1)) × D is bounded so D̃ is
bounded.

Remark 1: If we did not ask D̃ to be connected the construction would
be immediate: just take D̃ =

⋃
Dk×Qk for some disjoint open discs Dk ⊂ C

and {Qk} a covering by open polydiscs for D.
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The following proposition shows that if D is an arbitrary relatively com-
pact open and connected subset of Cn we cannot expect to find D̃ a rela-
tively compact open Runge subset of Cn+1 with smooth boundary such that
π(D̃) = D, so the statement of theorem 3 is in this respect maximal.

Proposition 3. Let ∆ be the unit disc in C. There exists A ⊂ ∆ a countable
closed set such that there exists no integer k > 2 and no open and bounded
subset of Rk with C2 boundary whose projection on C is ∆ \ A.

Proof. We will construct A as follows:
For every integer n ≥ 2 we consider the following four points:
Pn,k = 1

n
exp(2πk

√−1
4

), k = 1, 2, 3, 4 and put An={Pn,1, Pn,2, Pn,3, Pn,4}
Note that for every open disc ∆1 of radius 1

n
if 0 ∈ ∂∆1 then ∆1 ∩ An 6= ∅.

Let A = {0}∪⋃∞
n=1 An. Then for every open disc ∆1 in C if 0 ∈ ∆1 then

∆1 ∩ A 6= ∅.
This is obvious if 0 ∈ ∆1. If 0 ∈ ∂∆1 just take an integer n ≥ 1

r
and an open

disc ∆2 ⊂ ∆1 of radius 1
n

such that 0 ∈ ∂∆2 and then we have ∆2 ∩An 6= ∅.
We will prove now that A has the desired properties.

It is obvious that A is closed, 0 being its only accumulation point.
Suppose that there exists k > 2 and V an open subset of Rk, V bounded
and with C2 boundary, such that p(V ) = ∆ \ A. Here p : Rk → C is the
projection p(x1, x2, ..., xk) = x1 + ix2.
There exists a point Q ∈ ∂V , p(Q) = 0. Indeed: take {zn} a sequence of
points in ∆ \A that converges to 0 and {xn} in V with p(xn) = zn. V being
bounded {xn} has a convergent subsequence and and we may take Q to be
its limit.

Because V has C2 boundary we can find B ⊂ V an open ball such that
Q ∈ ∂B. In fact if R is on the inward normal of ∂V at Q and it is sufficiently
close to Q then the open ball B with center R and radius d(R, Q) is contained
in V and d(R,Q) = d(R, ∂V ).
B being a ball, ∆1 := p(B) is a disc in C and 0 ∈ ∂∆1. So A ∩∆1 6= ∅.
But B ⊂ V and p(V ) = ∆ \ A. This contradiction proves our proposition.

Proposition 4. Let A1, A2 be closed analytic subsets of Cn and U1, U2 be
Runge open subsets of A1 and A2 respectively. If A1 ∩ U2 = A2 ∩ U1 then
U1 ∪ U2 is a Runge open subset of A1 ∪ A2.

This proposition is a direct consequence of Corollary 3.8 in [9]. We give
here an alternative proof.
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Proof. Because A1 ∩ U2 = A2 ∩ U1 it is easy to see that U1 ∪ U2 is open in
A1 ∪ A2.
For j = 1, 2 let {Kn,j} be an exhaustion of Uj with holomorphically convex
compact subsets such that:

(α) Kn,j ⊂ Int(Kn+1,j)
(β) Kn,1 ∩ A2 ⊂ Kn,2

(γ) Kn,2 ∩ A1 ⊂ Int(Kn+1,1)
Put Fn = Kn,1 ∪Kn,2.Then (α),(β), (γ) guarantee that Fn ⊂ Int(Fn+1).

From (β) and Proposition 2 it follows that Fn is a holomorphically convex
compact subset of A1 ∪ A2. Therefore U1 ∪ U2 =

⋃∞
n=1 Fn is a Runge open

subset of A1 ∪ A2.

Corollary 1. If A1 and A2 are closed analytic subsets of Cn and P1 ⊂ A1,
P2 ⊂ A2 are closed subsets each one having a fundamental system of Runge
neighborhoods, {W1,n} and {W2,n} respectively, such that A1 ∩W2,n = A2 ∩
W1,n then P1 ∪ P2 has a fundamental system of Runge neighborhoods.

Proof. Let V be an open set that contains P1 ∪ P2.
For j = 1, 2 let Wj Runge in Cn with Pj ⊂ Wj ⊂ V and A1 ∩W2 = A2 ∩W1.
Then U1 = A1 ∩W1 and U2 = A2 ∩W2 satisfy the conditions of Proposition
4 so U1 ∪ U2 is a Runge open subset of A1 ∪ A2 and P1 ∪ P2 ⊂ U1 ∪ U2.
From Theorem 2 we deduce that that there exists a Runge domain W ⊂ Cn,
with W ⊂ V and W ∩ (A1 ∪ A2) = U1 ∪ U2. So W is Runge and P1 ∪ P2 ⊂
W ⊂ V .

Remark 2. If P1 and P2 have fundamental systems of Runge
neighborhoods then the conditions of Corollary 1 are fulfiled if:
a) P1 ∩ P2 = A1 ∩ A2

or if
b) P1 or P2 is compact and A1 ∩ P2 = A2 ∩ P1

a) is straightforward and for b) one has to apply Theorem 2.
Note also that if P1 and P2 have fundamental systems of neighborhoods
{W1,n} and {W2,n} such that A1 ∩W2,n = A2 ∩W1,n then A1 ∩P2 = A2 ∩P1.

Corollary 2. Let in C2 : C = {(z1, z2) : z2 = 0}, R = {(z1, z2) : z1 = 0,
y2 = 0} where zj = xj + iyj.
Then R ∪ C has a fundamental system of Runge neighborhoods.
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Remark 3. C× R does not have a fundamental system of Runge
neighborhoods. In fact it has been proved in [1] that this is the case for
every open subset of C× R.

As Prof. Colţoiu pointed to me, if A is a closed subset of C then C×A has
a fundamental system of Runge neighborhoods iff A is complete pluripolar.
If C × A has a fundamental system of Runge neighborhoods then one can
choose U to be a Runge neighborhood of C×A such that U does not contain
the fibre C×{x} if x is outside A and define ϕ : {0}×C∩U → R∪ {−∞},
ϕ = −log d where d is the distance to the boundary of U in the z1 direction.
It follows then that ϕ is subharmonic and A = {ϕ = −∞}.
If A is complete pluripolar, then C × A is complete pluripolar and using
Corollary 1 in [10] we note that, for q = 1 and X a Stein space, the neighbor-
hoods constructed in the proof of Theorem 2 in [3], are in fact Runge in X.
(This argument shows also that C× R does not have a fundamental system
of Stein neighborhoods either.)

Remark 4. In all our results Cn can be replaced by any Stein space X
of finite embedding dimension.
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