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Abstract

We give two examples of complex spaces on which global holo-
morphic functions separate points and give local coordinates and they
cannot be realized as open subsets of Stein spaces. At the same time
we notice that these examples are open subsets of Stein schemes, a
notion introduced by H. Grauert in [7]. In the context of complex
schemes we notice that by contracting a Nori string one obtains a
complex scheme and not a complex space. The covering spaces of
1-convex surfaces are divided in two categories: those that have an
envelope of holomorphy and those that do not. More interesting are
those in the second category and they correspond to covering spaces
for singularities which in the desingularization with normal crossings
contain cycles in the exceptional set.

1 Introduction

Let Y be a Stein space and X an open subset of Y . Then X satisfies the
following two properties:
a) the global holomorphic functions on X separate the points of X (i.e., for
any x, y ∈ X, x 6= y, there exists f ∈ O(X) such that f(x) 6= f(y));
b) the global holomorphic functions on X give local coordinates on X (i.e.,
for any x ∈ X there exists f : X → CN , N = N(x), a holomorphic function,
which is an immersion at x).
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In [2] it was raised the following question, called ”the open immersion
problem”:
Question. Given a complex space X that satisfies the two conditions a) and
b) above, is it possible to realize X as an open subset of a Stein space?

In this paper we give two counter-examples to this question. The first
one is an irreducible complex space of dimension 2 with isolated singularities
and the second example is a complex space of dimension 2 with hypersurface
non-isolated singularities, having infinitely many irreducible components but
which is a covering space of an open subset of a Stein space and, additionally,
we prove that it can be realized as closed analytic subset of an open subset
of C4.

We notice that the two examples are open sets of Stein schemes, a gen-
eralization of Stein complex spaces introduced by Grauert in [7].

We remark that the given examples have non-normal singularities and
therefore the question remains open for normal complex spaces.

Related to the open immersion problem is the existence of envelope of
holomorphy (see [4] for a discussion of this topic). A complex space is said
to have an envelope of holomorphy (or to be precomplete) if there exists a
Stein space Y and a holomorphic map f : X → Y such that the natural map
O(Y ) → O(X) is an isomorphism. When X satisfies the conditions a) and
b), the map f is an injective immersion. The first example of open subsets
in Stein spaces of dimension 3 with normal isolated singularities, without
envelope of holomorphy, was obtained by H. Grauert in [7]. Another exam-
ple, satisfying additionally the hypersurface section condition was obtained
by M. Colţoiu and K. Diederich in [3]. Related to the notion of envelope of
holomorphy H. Grauert [7] generalized the notion of complex space to the
notion of complex scheme. A complex scheme might be quite pathological:
not locally compact, with non-noetherian local rings, etc. In Section 3 of
our paper we consider a germ (X, x0) of a two-dimensional normal singular-
ity. The desingularization Y of (X, x0) is a 1-convex manifold which might
contain cycles in its exceptional set Z. In this case, see [5], there exists
coverings Ỹ of Y which contain infinite Nori strings Ã ⊂ Z̃. (i.e., Ã is a con-
nected, non-compact one-dimensional complex space having only compact
irreducible components). We show that Z̃ as above does not have an enve-
lope of holomorphy and blowing-down the Nori string Ã one gets a complex
scheme instead of a complex space.
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2 The counter-examples

Example 1. We consider two complex lines, L1 and L2, in C2 such that
0 ∈ L1, L1∩L2 = {p} where p 6= 0. We consider also two sequences, {xn}n≥1

and {yn}n≥1, such that
- xn ∈ L1 \ {0}, yn ∈ L2 for every n ≥ 1 and x1 = y1 = p,
- xn 6= xm and yn 6= ym for n 6= m,
- lim xn = 0 and lim |yn| = ∞.

We define X = C2 \ {0}/ v where v identifies xn and yn for every
n ≥ 1. Clearly X is an irreducible complex space. Let π : C2 \ {0} → X be
the canonical projection. We prove, using Cartan’s Theorem B, that global
holomorphic functions separate points and give local coordinates on X.

Let a 6= b be two points in C2 \ {0} such that π(a) 6= π(b). If a 6∈ L1 ∪L2

we consider a holomorphic function f : C2 → C such that f(a) 6= f(b)
and f|L1∪L2 ≡ 0. Then f will induce a holomorphic function f̃ on X and

f̃(π(a)) 6= f̃(π(b)). If a, b ∈ L1 we consider a holomorphic function g1 : L1 →
C such that g1(a) 6= g1(b). Let g2 : L2 → C be a holomorphic function such
that g2(yn) = g1(xn) for every n. This is possible because {yn : n ≥ 1} is a
discrete set in L2. Then g : L1∪L2 → C, g|L1 = g1, g|L2 = g2 is a holomorphic
function which can be extended to a holomorphic function on C2 which in
turn induces a holomorphic function f̃ on X and f̃(π(a)) 6= f̃(π(b)). The
other remaining cases can be treated in a similar fashion.

To prove that the global holomorphic functions on X give local coordi-
nates we choose a point x ∈ X. We consider the case x = π(xn0) = π(yn0)
for some n0. We consider (g1, h1) : L1 → C2 a holomorphic function such
that (g1, h1) is a local embedding around xn0 , (g2, h2) : L2 → C2 a holo-
morphic function such that (g2, h2) is a local embedding around yn0 and
g2(yn) = g1(xn), h2(yn) = h1(xn) for every n. Let g : L1 ∪L2 → C, g|L1 = g1,
g|L2 = g2 and h : L1 ∪ L2 → C, h|L1 = h1, h|L2 = h2. We choose now
f1 : C2 → C and f2 : C2 → C extensions of g and h, respectively, such that
(f1, f2) : C2 → C2 is a local biholomorphism around both xn0 and yn0 and
let f̃1 and f̃2 be the induced functions on X. Then (f̃1, f̃2, f̃1, f̃2) : X → C4

is a local embedding around x. Again the other cases are simpler and can be
treated in a similar fashion.

To show that X is not biholomorphic to an open subset of a Stein space
we argue again by contradiction and we assume that there exists Z a Stein
space such that X is an open subset of Z. Then the projection π takes values
in Z and as Z is Stein it extends to a holomorphic map π : C2 → Z. Notice
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now that π(xn) are isolated singular points in X and hence in Z. On the
other hand because lim xn = 0 we have that lim π(xn) = π(0). All these
contradict the fact that the singular locus of Z is a complex space.

Example 2. Let L1 and L2 be two complex lines in C2 both passing
through the origin. For every k ∈ Z let Xk be a copy of C2 and let L1,k and
L2,k be the corresponding complex lines in Xk. We set X =

⊔
k∈Z Xk\{0}/ ∼

where ∼ identifies L2,k \ {0} with L1,k+1 \ {0} via a linear isomorphism. We
obtain in this way a complex space on which global holomorphic functions
are easy to describe: they are given by {fk}k∈Z where fk : Xk → C are
holomorphic functions such that fk |L2,k

= fk+1|L1,k+1
. Moreover, by Cartan’s

Theorem B, any holomorphic function f :
⊔

m≤k≤n Xk \ {0}/ ∼ → C can
be extended to a holomorphic function on X. It is clear then that global
holomorphic functions separate points and give local coordinates on X.

We assume that there exists a Stein space Z such that X is an open
subset of Z. If Z2 is the union of all two-dimensional irreducible components
of Z then X is in fact an open subset of Z2 and therefore we can assume
from the beginning that Z has pure dimension 2. Let fk : Xk \ {0} → Z
be the inclusion maps. As Z is Stein it follows from the Hartogs theorem
for functions with values in a Stein space that fk extends to a holomorphic
function fk : Xk → Z. At the same time fk |L2,k

= fk+1|L1,k+1
and this implies

that fk(0) = fk+1(0) for every k ∈ Z and therefore fk(0) = fp(0) for every
k, p ∈ Z.

As obviously fk is one-to-one on Xk \ {0} we have that 0 is isolated in
f−1

k (fk(0)) and so there exists U ⊂ Xk a neighborhood of 0 and V ⊂ Z a
neighborhood of fk(0) such that fk(U) ⊂ V and fk : U → V is a finite map.
Then fk maps the germ of Xk at 0 onto an irreducible component of the
germ of Z at fk(0). As the images of fk and fs intersect only in one point
for |p− k| ≥ 2 we will have that the germ of Z at fk(0) has infinitely many
irreducible components which is of course a contradiction.

• Now we show that X is a covering of an open subset of a Stein space.
Let M1 and M2 be two copies of C2 and L1,1, L2,1 ⊂ M1, L1,2, L2,2 ⊂ M2 the
lines that correspond to L1 and L2. We define Y = M1 ∪ M2/ ∼ where ∼
identifies L1,1 with L2,2 and L2,1 with L1,2 and we denote by y0 the point that
corresponds to the origin of M1 (which is identified with the origin of M2).
Clearly Y is a Stein space with two irreducible components. We consider, for
every k ∈ Z, f2k+1 : X2k+1 → M1 and f2k : X2k → M2 linear isomorphisms
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such that f2k+1(L1,2k+1) = L1,1, f2k+1(L2,2k+1) = L2,1, f2k(L1,2k) = L1,2,
f2k(L2,2k) = L2,2. Then f : X → Y \ {y0}, defined by f|X2k+1\{0} = f2k+1,
f|X2k\{0} = f2k, is a covering map.

• We prove that X is biholomorphic to a closed analytic subset of C4 \
C2. In C4 we set e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0) which are orthogonal.
We show that there exists a sequence {ak}k∈Z, ak ∈ C4, with the following
properties:
1) ‖ak‖ = 1
2) for every k1, k2, k3, k4 ∈ Z, k1 < k2 < k3 < k4, we have that ak1 , ak2 , ak3

and ak4 are linearly independent (over C).
3) for every k1, k2 ∈ Z, k1 < k2, we have that ak1 , ak2 , e1 and e2 are linearly
independent.
4) ‖a2k+1 − e1‖ ≤ 1

|k|+1
and ‖a2k − e2‖ ≤ 1

|k|+1
for every k ∈ Z

We will do the construction recursively. We set a0 = (0, 0, 1, 0). We
assume now that for n ∈ Z, n ≥ 0, we have constructed a−n, a−n+1 . . . , an

and we will construct a−n−1 and an+1. We denote by S7 the unit sphere in
C4 and we let

A1 =
⋃

−n≤k1<k2<k3≤n

SpanC{ak1 , ak2 , ak3}; A2 =
⋃

−n≤k≤n

SpanC{e1, e2, ak}.

As both A1 and A2 are finite unions of complex linear spaces of complex
dimension 3 they have 7-dimensional Hausdorff measure equal to 0 and hence
(A1∪A2)∩S7 is nowhere dense in S7. We choose an+1 ∈ S7\A1∪A2 such that
it satisfies Property 4 above. In a completely similar manner we construct
a−n−1.

Let now X̃k = Span{ak, ak+1} for k ∈ Z and Y = Span{e1, e2}. We
notice that
- X̃k ∩ X̃k+1 = C · ak+1

- if |p− k| ≥ 2 then X̃k ∩ X̃p = {0}
- X̃k ∩ Y = {0}.

We verify now that X̃ =
⋃

k∈Z X̃k \ {0} is a closed analytic subset of

C4 \ Y . We will show that
⋃

k≥0 X̃k \ {0} is a closed analytic subset of

C4 \ Y because a completely similar proof will work for
⋃

k≤0 X̃k \ {0}. It is
enough to show that if {kp} is an increasing sequence of positive numbers,
xkp ∈ X̃kp and limp→∞ xkp = y then y ∈ Y . Passing to a subsequence
we can assume that every kp is odd (the same proof works if every kp is
even). Then limp→∞ akp = e1 and limp→∞ akp+1 = e2. And then, for p large
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enough, | < akp , akp+1 > | < 1
2

since e1 and e2 are orthogonal. If we set
xkp = αpakp + βpakp+1 then

‖xkp‖2 =< xkp , xkp >= |αp|2 + |βp|2 + 2<(αpβp < akp , akp+1 >)

and therefore ‖xkp‖2 ≥ |αp|2+|βp|2−|αpβp| ≥ 1
2
(|αp|2+|βp|2). As {‖xkp‖2}p is

bounded it follows that {αp}p and {βp}p are bounded. We choose now {kps}s

a subsequence of {kp}p such that lims→∞ αps = α and lims→∞ βps = β. We
deduce that y = αe1 + βe2 and therefore y ∈ Y .

Obviously X and X̃ are biholomorphic.

Motivated by these two examples we raise the following two problems:

Problem 1. Suppose that X is a complex space of bounded Zariski
dimension such that global holomorphic functions separate points and give
local coordinates on X. Does it follow that X is a closed analytic subset of
an open subset some Euclidean space CN?

Problem 2. Suppose that Y is a normal Stein space and p : X → Y is an
unbranched Riemann domain. We assume that global holomorphic functions
separate points and give local coordinates on X. Does it follow that X is an
open subset of a Stein space?

Remark: It is well-known that global holomorphic functions on X (X
as in Problem 2) might not separate points, see for example [10], Chapter
6. We provide here a very simple example. Let B ⊂ C2 be the open unit
ball and S3 = ∂B its boundary. Choose two points p, q ∈ ∂B, p 6= q, and
attach a handle to ∂B inside B. That means that we choose a real analytic
arc γ inside B such that γ(0) = p and γ(1) = q. A small enough open
neighborhood Y of γ ∪ S3 in B can be deformed continuously to γ ∪ S3 and
therefore π1(Y ) = Z. In particular π1(Y ) admits subgroups of any finite
index and hence Y admits finite coverings of order ν for every ν ∈ N. Let
p : X → Y a covering with ν sheets, ν ≥ 2. Since holomorphic functions
on Y extend uniquely to holomorphic functions on B (by Hartogs’ theorem)
and B is simply connected, it follows from Proposition 1.3 in [6] that the
holomorphic functions on X are pull-backs of holomorphic functions on Y .
In particular they do not separate the points of X.

We would like to show now that the two examples above are actually
open subsets of Stein schemes. For the convenience of the reader we recall
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briefly the basic definitions regarding complex schemes according to Grauert
[7] (see also [9], [11]).

Suppose that X is a normal, reduced complex space and I∗ ⊂ O(X) is a
complex algebra of holomorphic functions with 1 ∈ I∗. On X we introduce
the following equivalence relation: x1 ∼ x2 if and only if f(x1) = f(x2) for
every f ∈ I∗. Let Y be the quotient space X/ ∼ endowed with the quotient
topology and π : X → Y the quotient map. Every function f ∈ I∗ induces
a continuous function on Y , denoted also by f . For any open subset U of Y
let ΓU to be the complex algebra of all continuous functions that locally can
be written as

∑
aν1···νk

f ν1
1 · · · f νk

k with uniform convergence on π−1(U) where
f1, . . . , fk ∈ I∗. We let OY to be the sheaf generated by the pre-sheaf {ΓU}.

Definition 1. Then the ringed space (Y,OY ), which is also denoted by
S(X, I∗) is called the spectrum of (X, I∗).

Definition 2. A complex scheme is a ringed space (Y,O) on a Hausdorff
topological space Y , which locally is isomorphic to a spectrum.

Definition 3. A complex scheme (Y,O) is called holomorphically convex if
for every compact subset K of Y its holomorphically convex hull, defined by
K̂ := {y ∈ Y : |f(y)| ≤ sup |f(K)|,∀f ∈ O(Y )} is compact as well.

Definition 4. A complex scheme (Y,O) is called Stein if it is holomorphically
convex and for every y1, y2 ∈ Y , y1 6= y2, there exists f ∈ O(Y ) such that
f(y1) 6= f(y2).

• For Example 1 we consider X1 = C2 and the following algebra of holo-
morphic functions I∗ = {f ∈ O(C2) : f(xn) = f(yn) ∀n ∈ N}. Let (Y,OY )
be the spectrum of (X1, I

∗) and π : X1 → Y be the quotient map. Obviously
the space X constructed in this example is an open subset of Y , namely
X = Y \ {π(0)}. It is clear that functions in OY (Y ) separate the points of
Y . To show that Y is holomorphically convex, as Y is second countable, it
is enough to prove that for every discrete sequence {ak}k∈N in Y there exists
f ∈ OY (Y ) such that {|f(ak)|}k∈N is unbounded. So let {ak}k∈N be a discrete
sequence in Y and bk ∈ C2 be such that π(bk) = ak. As π(xn) → π(0) we
have that {k ∈ N : ∃n ∈ N ak = π(xn)} is finite and hence we can assume
that {bk : k ∈ N}

⋂
({xn : n ∈ N} ∪ {yn : n ∈ N}) = ∅. We choose a

holomorphic function g1 : L1 → C such that g1(bk) = k whenever bk ∈ L1

and then a holomorphic function g2 : L2 → C such that g2(yn) = g1(xn) for
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every n and g2(bk) = k whenever bk ∈ L2. We use Cartan’s Theorem B to
get a holomorphic function f : C2 → C such that on L1 one has f = g1, on
L2 one has f = g2 and f(bk) = k. Then f induces a function in OY (Y ) with
the desired property.

We notice that Y is not locally compact. Indeed if V is any neighborhood
of π(0) we choose zn ∈ π−1(V ) such that 0 < ‖zn − yn‖ < 1. We will have
then that π(zn) ∈ V and the sequence {π(zn)}n∈N is discrete in Y .

We also notice that the local ring of OY,π(0) is not Noetherian. Indeed
let An be the set of positive integers of the form 2nm where m is a positive
integer. We have that An ⊃ An+1 and, moreover, An \ An+1 is infinite for
every n ≥ 0. Let Jn be the ideal of OY,π(0) that contains all those germs of
functions f ∈ OY (V ) such that f ◦ π vanishes identically on a neighborhood
of ym for every m ∈ An and on the intersection of L1 with a neighborhood
of 0. Then these ideals form an ascending chain. To show that the chain is
non-stationary we consider I the coherent sheaf of ideals in OC2 consisting of
holomorphic functions that vanish on L1∪{ym : m ≥ 1} ({ym} being discrete
L1 ∪ {ym : m ≥ 1} is an analytic subset of C2). Let W0 be a connected Stein
neighborhood of 0 and Wm be a connected Stein neighborhood of ym for
every m ≥ 1 such that Wm, m ≥ 0, are pairwise disjoint and the sequence
{Wm}m≥0 is uniformly Runge in C2.

We recall (see [8]) that a sequence, {Dn}n≥1 of pairwise disjoint Runge
domains in a Stein space X is called uniformly Runge if for every sequence
of positive real numbers {εn}n≥1, every sequence of compact sets {Kn}n≥1,
Kn ⊂ Dn, and every sequence of holomorphic functions {fn}n≥1, fn ∈ O(Dn),
there exist f ∈ O(X) such that for every n ≥ 1 we have ‖f − fn‖Kn < εn. In
our case we choose h ∈ O(C2) such that h(0) = 0 and h(ym) = m for m ≥ 1.
We choose then Wm to be Runge in C2 and m − 1

2
< <(h|W m

) < m + 1
2
. It

follows from Propositions 3 and 4 in [8] that {Wm}m≥0 is uniformly Runge.
Let Um b Wm be such that 0 ∈ U0 and ym ∈ Um and let U :=

⋃
m≥0 Um

and W :=
⋃

m≥0 Wm. We consider a function f ∈ I(W ) such that f|Wm ≡ 0
for m ∈ An+1 and f|Wm 6≡ 0 for m ∈ An \ An+1. As {Wm}m≥0 is uniformly
Runge in C2 we have that f can be approximated uniformly on U by func-
tions in I(C2). Note now that I(C2) ⊂ I∗ and that f induces a continuous
functions on an open subset of Y containing π(0). It follows that f induces
a function in OY (V ) where V is a neighborhood of π(0). Clearly its germ
fπ(0) ∈ Jn+1. As An \An+1 is infinite we have that fπ(0) 6∈ Jn as well. There-
fore OY,π(0) is not Noetherian.
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• For Example 2 we consider X̃ =
⊔

k∈Z Xk and I∗ = {f ∈ O(X̃) : f|L2,k =

fL1,k+1}, (Y,OY ) be the spectrum of (X̃, I∗) and π : X̃ → Y the quotient
map. We have that X = Y \ {π(0)} where 0 is the origin in any Xk. Clearly
the functions in OY (Y ) separate the points of Y . To show that (Y,OY ) is
holomorphically convex we consider again a discrete sequence {as}s∈N in Y ,
we split the problem in two cases:
- there exists k ∈ Z such that {s ∈ N : as ∈ π(Xk)} is infinite
- there exists an infinite set A ⊂ Z such that for every k ∈ A there exists
s ∈ N such that as ∈ π(Xk),
and we use Cartan’s Theorem B.

As for Example 1 the scheme Y is not locally compact (with the same
type of argument) and the local ring OY,π(0) is not Noetherian. Here the non-
stationary, ascending chain of ideals is {Jn}n≥1 where Jn consists of those
germs at π(0) of functions f ∈ OY (V ) such that f ◦π vanishes identically on⋃
|k|≥n π(Xk).

Remark. Note that in both examples the quotient map has 0-dimensional
fibers and still the complex scheme is not a complex space. This shows that
the condition on the connectivity of the fibers required by Grauert in [7],
Satz 2, page 389, is essential.

3 Nori strings and envelopes of holomorphy

We have seen in the previous section that there exist complex spaces that
satisfy the conditions a) and b) but are not open subsets of Stein spaces.
In particular they do not have envelopes of holomorphy. For the first time
Grauert [7] noted the connection between envelopes of holomorphy and com-
plex schemes. We want now to relate the coverings of a desingularization of
a germ of a two-dimensional normal singularity (X, x0) to a complex scheme.
Let π : Y → X be a desingularization of (X, x0) with normal crossings and
denote by A the exceptional set of π, i.e., A = π−1(x0). If A contains no
cycles then any covering Ỹ of Y is holomorphically convex, therefore O(Ỹ ) is
a Stein algebra. We are interested in the more difficult case when A contains
cycles. For simplicity we assume that A is a cycle (the proof is the same if
A contains a cycle). As in [5] we can construct a covering space p : Ỹ → Y
such that Ã := p−1(A) is a Nori string.

The following result is due to A. Brudnyi [1].
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Theorem 1. Let X be a 1-convex manifold, D b X a strongly pseudoconvex
domain with smooth boundary, containing the exceptional set A of X. Let
p : X̃ → X be a covering map, D̃ = p−1(D), and Ã = p−1(A). Then if
x1, x2 ∈ D̃ \ Ã, x1 6= x2 and p(x1) = p(x2) there exists f ∈ O(D̃) such that
f(x1) 6= f(x2).

Remark. In fact the author shows that the function f can be chosen to
be L2 on the covering with respect to the pull-back of a Riemannian metric
on X.

Let I∗ = O(Ỹ ) and let (Z,OZ) be the spectrum of (Ỹ , I∗).

Corollary 1. The topological space Z is the (topological) contraction of Ã
to a point P0 and (OZ)|Z\{P0} = (OỸ )|Ỹ \Ã.

We want to prove the following:

Theorem 2. Ỹ has no envelope of holomorphy in the category of complex
spaces and Z is not a complex space.

Proof. Let us assume by reductio ad absurdum that Ỹ has an envelope of
holomorphy τ : Ỹ → W in the category of complex spaces. It follows from
Theorem 1 that on Ỹ \ Ã the map τ is an injective immersion. At the same
time since Ã is connected and all its irreducible components are compact it
follows that τ(Ã) is just a point.

Let f be a holomorphic function on the germ (X, x0) such that f(x0) = 0
and {f = 0} is smooth outside {x0}. On the desingularization Y we let A1 be
the union of all non-compact irreducible components of {f ◦π = 0}, therefore
the union of those components that do not belong to the decomposition of
the exceptional set A into irreducible components. Let Ã1 = p−1(A1). The
map f ◦π ◦p has a unique extension f1 ∈ O(W ). Since τ is injective on Ỹ \ Ã
and p is infinitely sheeted this would imply that {f1 = 0} had infinitely many
local irreducible components at τ(Ã), which is, of course, a contradiction.

Completely the same argument shows that Z is not a complex space.
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