
THE LOCAL IMAGE PROBLEM FOR COMPLEX ANALYTIC MAPS

CEZAR JOIŢA AND MIHAI TIBĂR

Abstract. We address the question “when the local image of a map is well defined” and
answer it in case of holomorphic map germs with target (C2, 0). We prove a criterion
for holomorphic map germs (X,x) → (Y, y) to be locally open, solving a conjecture by
Huckleberry in all dimensions.

1. Introduction

Let F : (X, x)→ (Y, y) be a non-constant complex analytic map germ between complex
analytic set germs of pure dimensions. Consider an embedding (X, x) ⊂ (CN , 0) and the
intersections of some representative X with arbitrarily small balls Bε ⊂ CN centred at
0. We say that F has a well defined local image if and only if the germ at y of the set
F (Bε ∩X) is independent of the small enough ε > 0. This extends the notion of locally
open maps. The map germ F : (X, x)→ (Y, y) is said to be open at y (or that it is locally
open, see e.g. [Hu]) if for every open neighbourhood U of x, F (U) has y as an interior
point. Therefore “locally open” trivially implies “well defined local image”.

For instance in case of a non-constant holomorphic function germ f : (Cn, 0)→ (C, 0),
the Open Mapping Theorem tells that f(U) is open. Therefore the equality of set germs
(Im f, 0) = (C, 0) holds, thus f is locally open, and in particular the function germ f has
a well-defined image as a set-germ.

If the target of a holomorphic map F has higher dimension, then F may still have a well
defined local image, for instance if F is a proper map at y, by Remmert’s Proper Mapping
Theorem [Re2, GR1]. Nevertheless, without the properness, map germs as simple as
G : (C2, 0) → (C2, 0), (x, y) 7→ (x, xy), do not have a well defined local image. In this
example, the image by G of any small ball Bε centred at the origin is a subanalytic set
(but not analytic) which depends on the radius ε so radically that the set germs (G(Bε), 0)
and (G(Bε′), 0) are different if ε 6= ε′.

We address the following question:

The image problem. Under what conditions the image of a complex analytic map germ
is a well defined set germ?

We ask the local image to be a set germ, and not necessarily to be analytic. It is
another long standing question under what conditions the local image of a holomorphic
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map is an analytic variety, see for instance [Hu, p. 447] for some comments. If the image
is a well defined set germ then it must be a subanalytic set germ (see Note 3.6).

Beyond the case of holomorphic functions germs f : (Cn, 0)→ (C, 0) evoked before, one
encounters locally open images, according to Hamm’s result [Ha], also in case of complex
map germs F : (Cn, 0)→ (Cp, 0) which define an isolated complete intersection singularity
(X, 0) ⊂ (Cn, 0), where X is the zero locus Z(F ) of F . Moreover, it turns out that the
image by F of the germ of the singular locus (SingF, 0) is an analytic set germ, and more
precisely a hypersurface germ. It then follows, cf. [Ha, Lo], that there exists a fibration
over the germ at 0 of the complement Cp \F (SingF ), and on these bases one was able to
further study the topology of the Milnor fibration in relation to algebraic invariants1 of
the isolated complete intersection X. A far-reaching extension of local fibrations to map
germs F such that their zero locus Z(F ) has nonisolated singularities is done in [JT].

While the image problem remains widely open in general (and with almost no hope),
we provide here the following classification of holomorphic map germs (f, g) : (Cn, 0) →
(C2, 0):

Theorem 1.1. Let (f, g) : (Cn, 0) → (C2, 0) be a non-constant holomorphic map germ.
Then:

(i) The image of (f, g) is locally open, i.e. (Im (f, g), 0) = (C2, 0), if and only if:
(a) dimZ(f) ∩ Z(g) = n− 2, or
(b) dimZ(f) ∩ Z(g) = n − 1 and Z(f) 6⊂ Z(g), Z(g) 6⊂ Z(f), and Im (f, g) is

well defined as a set germ at 0.
(ii) In case Z(g) ⊂ Z(f) or Z(f) ⊂ Z(g), the map (f, g) has a well defined local image

if and only if (Im (f, g), 0) is an irreducible plane curve germ, and this is equivalent
to Jac(f, g) ≡ 0.

All situations described in Theorem 1.1 can be realised, and we discuss some examples
in §2.3 and §2.4. The case (b) of Theorem 1.1 leaves us with the problem of how to decide
whether the image of (f, g) is well defined as a set germ (and thus it is locally open),
which we will solve as follows. We first produce a handy test for the local openness of the
image in terms of gap lines, Proposition 3.3. Although this is a sufficient condition only,
it leads to the notion of gap curves which is central in our Theorem 3.5, a fully general
result that sounds as follows:

Let F : (X, a) → (Y, b), dimX ≥ dimY ≥ 1 be a holomorphic map germ between
two germs of reduced, locally irreducible complex spaces. Then the image of F is open at
b ∈ Y if and only if F has no gap curve.

This provides an equivalence criterion for a holomorphic map germ F : (X, a)→ (Y, b)
to be locally open, and thus completes the solution to our problem. Moreover, this
criterion allows us to answer a much older question, as follows.

About 50 years ago, Huckleberry addressed in [Hu] the problem of locally open maps,
which is a particular case of the Image Problem stated above (see the discussion at the

1The well known monograph [Lo], recently re-edited, contains some of the most significant results on
this rich topic.
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beginning of this Introduction). Huckleberry introduced the notion of a subflat map
(an algebraic condition, see Definition 3.10) and proved that a holomorphic map germ
(C2, 0) → (C2, 0) is open if and only if it is subflat. He conjectured that this characteri-
sation holds for any holomorphic map germ (X, x)→ (Y, y), in arbitrary dimensions.

We derive from Theorem 3.5 the following positive answer to Huckleberry’s conjecture
[Hu]:

Theorem 1.2. Let F : (X, a)→ (Y, b), dimX ≥ dimY ≥ 1, be a holomorphic map germ
between two germs of reduced locally irreducible complex spaces, and such that SingF 6= X.

Then (ImF, b) = (Y, b) if and only if F is subflat.

We end this introduction by a remark on possible further developments. One of the
anonymous referee’s questions, to whom we thank for the constructive criticism, advice,
and for the interesting remarks, has been “why is it difficult to address the image problem
in case of a higher dimensional target”, as we have written “no hope in the general case”.
Indeed, the classification provided by Theorem 1.1 does not extend by similar methods.
Nevertheless, in the subsequent paper [JT] which aims to finding necessary conditions
for the existence of fibrations of map germs, we ought to study the image problem from
a different angle, by enlarging it to the discriminant. More precisely, we ask not only
that the image of the map germ is a well defined set germ, but also that the image
of its singular locus is so, since these are preliminary conditions for the existence of
a local fibration. We have shown for instance the following result, which extends in
particular Theorem 1.1(i)(a) to a higher dimensional target, cf. [JT, Proposition 2.3]: Let
F : (Cn, 0) → (Cp, 0), n ≥ p ≥ 2, be a holomorphic map germ. If the fibre F−1(0) has
dimension n − p then (ImF, 0) = (Cp, 0). If moreover SingF ∩ F−1(0) = {0} then the
image by F of the singular set SingF is a well-defined set germ.

2. The image of the map germ (f, g)

Our proof of Theorem 1.1(i) will use the proof of (ii), therefore we start with the later.

2.1. Proof of Theorem 1.1(ii). If the image of (f, g) is a curve (necessarily irreducible)
then it is a germ by definition. In fact, if Im (f, g) is only included in a complex curve,
and Im (f, g) 6= {(0, 0)}, then Im (f, g) must be the whole irreducible curve germ, as an
application of the Open Mapping Theorem.
If Z(g) ⊂ Z(f) then Im (f, g) cannot be (C2, 0) since the axis C × {0} is missing from
the image. By the next result, if Im (f, g) is a well defined set germ then it must be an
irreducible curve germ.

Proposition 2.1. Let (f, g) : (Cn, 0)→ (C2, 0) be non-constant holomorphic map germ.
If Im (f, g) is a well defined set germ at the origin, then either (Im (f, g), 0) = (C2, 0)

or (Im (f, g), 0) = (C, 0) where (C, 0) ⊂ (C2, 0) is an irreducible complex curve germ.

To prove this proposition we need the following:

Lemma 2.2. Suppose that X is a complex space and F : X → C2 is a holomorphic map.
Then ImF can be written as a disjoint union U tA, where U is a (possibly empty) open
subset of C2 and A has 3-Hausdorff measure equal to 0.
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Proof. We stratify X by the rank of F and write X = M2 tM1 tM0, where the Mj’s are
complex manifolds, such that F|Mj

has rank j. Note that Mj is not necessarily connected
and its connected components may not have the same dimension. Then F (M2) is open and
F (M1 ∪M0) is a countable union of complex curves or points and hence has 3-Hausdorff
measure equal to 0. The subsets U := F (M2) and A := F (X) \ U ⊂ F (M1 ∪M0) verify
our claim. �

Proof of Proposition 2.1. Let Bε ⊂ Cn be an open ball centred at the origin of radius ε
such that (f, g) is holomorphic on Bε. By our hypothesis, for all 0 < ε′ < ε we have the
equality of germs ((f, g)(Bε), 0) = ((f, g)(Bε′), 0).

We fix 0 < ε′ < ε and r > 0 such that (f, g)(Bε′)∩Dr = (f, g)(Bε)∩Dr where Dr ⊂ C2

denotes the open ball centred at 0 and of radius r. Since

(f, g)(Bε′) ∩Dr ⊂ (f, g)(Bε′) ∩Dr ⊂ (f, g)(Bε) ∩Dr

we get the equality (f, g)(Bε′) ∩Dr = (f, g)(Bε) ∩Dr.
By the above equality, since K := (f, g)(Bε′) is a compact subset of C2, the image

(f, g)(Bε) ∩Dr = K ∩Dr is closed in Dr.
By Lemma 2.2 we have that K∩Dr is equal to a disjoint union U tA of an open subset

U ⊂ Dr and a subset A ⊂ Dr which has 3-Hausdorff measure equal to zero.
This implies:

(1) Dr \ A = U t (Dr \K)

which implies in turn that A is closed in Dr. Since A has 3-Hausdorff measure equal to
zero, it follows that Dr \ A is connected, see e.g. [Ch, Prop. 6, page 347].

We distinguish two cases, where the notation int(A) is for the interior of the set A.

Case 1: 0 ∈ int((f, g)(Bε)).
Our assumption implies that 0 ∈ ∂Ū , hence U 6= ∅. Then the disjoint union decompo-

sition (1) of the connected set Dr \ A into open sets shows that Dr \K = ∅. Therefore
we have the equality K ∩Dr = Dr, which shows that the image (f, g)(Bε′) contains the
ball Dr. We conclude that (Im (f, g), 0) = (C2, 0) in this case.

Case 2: 0 6∈ int((f, g)(Bε)).
By shrinking Bε we may assume that int(f, g)(Bε) = ∅. This implies that all non-empty

fibres (f, g)−1((f, g)(p)) arbitrarily close to (f, g)−1(0) have pure dimension n−1. Indeed,
if there is a sequence of points xi → 0 in the source, such that the local dimension of
the fibre (f, g)−1((f, g)(xi)) is n − 2 then we use the reasoning in the proof of Theorem
1.1(a) which shows (f, g)(xi) is an interior point of the image for any i, and thus 0 ∈
int((f, g)(Bε)), which contradicts the hypothesis.

In order to finish the proof we need the following result, which is also called “Remmert’s
Rank Theorem” by Łojasiewicz in [Łoj1, Theorem 1, page 295], see also [Na, Prop. 3, Ch.
VII]:

Proposition 2.3. [Re1, Satz 18, pag. 30] Let X and Y be complex spaces such that X
is pure dimensional and f : X → Y be a holomorphic map. If r = dimx f

−1(f(x)) is
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independent of x ∈ X then any point a ∈ X has a fundamental system of neighbourhoods
{Ui} such that f(Ui) is analytic at f(a), of dimension dimX − r. �

Since all non-empty fibres of (f, g) have dimension n−1, it follows from Proposition 2.3
that there exists a connected neighbourhoodW ⊂ Cn of 0 such that (f, g)(W ) is a complex
analytic subset of C2, thus a complex curve C containing the origin, by Proposition 2.1
and since in our case the image cannot be (C2, 0). Since W is connected, we get that C
is also irreducible, thus we get the equality (Im (f, g), 0) = (C, 0).

This ends the proof of Proposition 2.1, and thus of the first equivalence of Theorem
1.1(ii). �

Let us finally prove the second equivalence claimed by Theorem 1.1(ii), namely:
(Im (f, g), 0) is a well-defined curve germ ⇔ Jac(f, g) ≡ 0.

If Im (f, g) is a curve then the map (f, g) cannot be a submersion at x, for any point
x in the neighbourhood of 0, hence Jac(f, g) ≡ 0. It remains to prove the converse. The
hypothesis Jac(f, g) ≡ 0 implies rank x(f, g) ≤ 1, for any x in the neighbourhood of 0.
Since rank (f, g) ≡ 0 implies (f, g) ≡ 0, we are left with the case rank (f, g) 6≡ 0.

If B denotes a small enough open ball centred at 0 ∈ Cn, then B0 := {x ∈ B |
rank x(f, g) > 0} is an open, connected and dense analytic subset of B. As we have
just seen above, we actually have rank x(f, g) = 1, ∀x ∈ B0. By the rank theorem we
deduce that dimx(f, g)−1(f(x), g(x)) = n − 1 for all x ∈ B0. The next result on the
semi-continuity of the dimension of fibres is useful in order to figure out what happens at
points in B \B0, see also [Na, page 66]:

Lemma 2.4. [Re1, Satz 16] Let F : X → Y be a holomorphic map between complex
spaces. Then every a ∈ X has a neighbourhood U ⊂ X such that

dimx F
−1(F (x)) ≤ dima F

−1(F (a))

for any x ∈ U . �

Since B0 is dense in B, the above lemma tells that in our case, for any x ∈ B one
has at least the inequality dimx(f, g)−1(f(x), g(x)) ≥ n − 1. However, this inequal-
ity cannot be strict (i.e. not even at points in B \ B0) since the converse inequality
dimx(f, g)−1(f(x), g(x)) ≤ n − 1 necessarily holds, as we have shown in the first part of
the above proof.

And now, since dimx(f, g)−1(f(x), g(x)) = n − 1 for all x ∈ B, our claim follows from
Proposition 2.3 applied to the point 0 ∈ B.

This ends the proof of Theorem 1.1(ii). �

2.2. Proof of Theorem 1.1(i).
Let us prove the implication “⇒”. The dimension dimZ(f) ∩ Z(g) may be either n − 2
or n− 1. If this dimension is n− 1 and Z(f) ⊂ Z(g) or Z(g) ⊂ Z(f) then, by Theorem
1.1(ii) proved above, the map germ (f, g) cannot be open at 0. Therefore, if (Im (f, g), 0) =
(C2, 0), then one must have either dimZ(f) ∩ Z(g) = n− 2, or dimZ(f) ∩ Z(g) = n− 1
and Z(f) 6⊂ Z(g) and Z(g) 6⊂ Z(f).
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To show the converse implication “⇐”, we first consider the case (i)(a). Let (H, 0) ⊂
(Cn, 0) be a general complex 2-plane germ such that 0 is an isolated point ofH∩(f, g)−1(0).
It then follows, e.g. by [GR2, Proposition, page 63], that there exist an open ball B at 0
in Cn and an open neighbourhood U of the origin in C2 such that (f, g)(H ∩B) ⊂ U and
the induced map (f, g)|H∩B : H ∩ B → U is finite. By the Open Mapping Theorem (cf.
[GR2, page 107]), this implies that (f, g)(H ∩B) is open, thus (Im (f, g), 0) = (C2, 0).

We continue with the proof of the converse implication “⇐” in the case (i)(b). If the image
Im (f, g) is a set germ then by Proposition 2.1 it is either a curve germ or (C2, 0). Let us
show that it cannot be a curve. Indeed, if it is a curve (C, 0) different from the axes, then
this has a Puiseux parametrisation, say (h(t), tγ), for some holomorphic function h with
ord0h > 0, and some positive integer γ. Then g(x) = 0 implies that t = 0, thus f(x) = 0,
which means Z(g) ⊂ Z(f), and this contradicts the hypothesis. If the curve (C, 0) is one
of the axes, then we immediately get the same contradiction (for instance, if the axis is
C× {0}, then this implies Z(f) ⊂ Z(g)). �

2.3. Examples where the image of (f, g) is not a set germ.
Let G : C2 → C2, G(x, y) = (x, xy). The global image of this algebraic map is the
semi-algebraic set (C2 \ {x = 0}) ∪ {(0, 0)}, but since JacG = x (thus not identically 0),
Theorem 1.1(ii) tells that the image of the map germ G : (C2, 0) → (C2, 0) is not well
defined as a set germ. Actually, for the 2-disks Dt := {|x| < t, |y| < t} as basis of open
neighbourhoods of 0 for t > 0, the image At := G(Dt) is the open angle of vertex 0,
having the horizontal axis as bisector, and of slope t.
Let F : C2 → C2, F (x, y) = (x(x + y), xy). The global image of this algebraic map is
(C2 \∆) ∪ {(0, 0)}, where ∆ denotes the diagonal line.

Let us see that the image of the map germ F is not a set germ at (0, 0). The images of
the line segments x + (1− α)y = 0 inside a small ball Bε at the origin are line segments
centred at 0 in the target. When α tends to 1, the image segments tend to the diagonal ∆,
and their lengths tend to 0. It follows that the images by F of small balls intersected with
arbitrarily small balls Dδ in the target are different, namely F (Bε1) ∩Dδ 6= F (Bε2) ∩Dδ.

The property “the image of G is well defined as a set germ” being invariant under
change of coordinates in the source or in the target, we consider the linear change of
coordinates (a, b) 7→ (a−b, b) in the target. The resulting map germ G : (C2, 0)→ (C2, 0),
G(x, y) = (x2, xy) has one single gap line {x = 0} (see §3.1), and the image ImG is not
well defined as set germ, by Theorem 1.1(ii), since JacF 6≡ 0.

2.4. Examples where the image of (f, g) is a set germ.
Let F : (C3, 0)→ (C2, 0), F (x, y, z) = (xy, xz). This satisfies the hypothesis of Theorem
1.1(i)(b). The fibers are not equidimensional, i.e. all fibres are curves except of the one
over the origin which contains the plane {x = 0} = SingF . However, the image of any
open ball Bε ⊂ C3 centred at 0 contains the open ball Bε2 ⊂ C2 centred at 0, thus the
image of the map germ F is a germ and (ImF, 0) = (C2, 0).

Another example for Theorem 1.1(i)(b) is F : (C2, 0) → (C2, 0), F (x, y) = (x(y +
x2), y(y + x2)). It is not trivial but still not difficult to show that (ImF, 0) = (C2, 0). In
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§3.1 we give a sufficient criterion (Proposition 3.3) for the image to be (C2, 0) which is
easily verified by this example, cf. Example 3.7.

3. When is the image of a map germ locally open?

We first give a sufficient test for the image of (f, g) to be locally open which is handy
(see Example 3.7), and show its limits. Next we prove an “if and only if” criterium in full
generality, that is for a holomorphic map germ F : (X, a)→ (Y, b).

3.1. Gap lines.
In order to test the “locally open” possibility in Theorem 1.1(i)(b) we introduce the

notion of “gap line”, which loosely speaking means a line germ in the target which does
not contain points of the image except of 0 ∈ C2.

Definition 3.1. Suppose that dimZ(f) ∩ Z(g) = n− 1 and Z(f) 6⊂ Z(g), Z(g) 6⊂ Z(f).
Let f = hf̂ , g = hĝ, where h = gcd(f, g) ∈ mn, up to invertible elements in On, and such
that f̂ , ĝ ∈ mn. We say that Z(βx + αy) ⊂ C2, for some [α : β] ∈ P1, is a gap line for
(f, g) if the analytic set germ (Z(βf̂ + αĝ), 0) is included in the fibre (f, g)−1(0, 0).

Remark 3.2. For a given map germ (f, g) there are at most finitely many gap lines.
Indeed, since f̂ and ĝ are co-prime, for a gap line we must have the inclusion Z(βf̂+αĝ) ⊂
Z(h). As Z(h) has finitely many irreducible components, our conclusion follows.

Proposition 3.3. Let f = hf̂ , g = hĝ, where h = gcd(f, g) ∈ mn, and such that f̂
and ĝ are not units. If dimZ(h) ∩ Z(βf̂ + αĝ) = n − 2 for any [α : β] ∈ P1, then
(Im (f, g), 0) = (C2, 0).

The above result is not an equivalence, although it looks close to that, see Example 3.9.
The equality (Im (f, g), 0) = (C2, 0) implies that there are no gap lines (trivially), but the
converse is not true, see Example 3.8.

The proof of Proposition 3.3 will be given after the next §3.2 where we obtain a desired
equivalence, and moreover in the most general setting. But there is a price to pay.

3.2. The gap variety, and a general criterion for the existence of locally open
image. We consider here a holomorphic map germ F : (X, a)→ (Y, b) between two germs
of reduced, locally irreducible complex spaces with dimX ≥ dimY ≥ 1.

Definition 3.4. Let (V, b) ⊂ (Y, b) be a complex analytic germ of positive dimension. We
say that (V, b) is a gap variety for F if the inclusion of analytic set germs (F−1(V ), a) ⊂
(F−1(b), a) holds.

Let us remark that Huckleberry [Hu] had used the same concept under the name “F
omits V ”. Our general criterion is the following:

Theorem 3.5. Let F : (X, a)→ (Y, b), dimX ≥ dimY ≥ 1 be a holomorphic map germ
between two germs of reduced, locally irreducible complex spaces. Then the image of F is
open at b ∈ Y if and only if F has no gap curve.
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In case dimaX < dimb Y , the image of F cannot be open, and Theorem 3.5 tells that
F must have gap curves. We do not assume anything about the singular locus of F . For
instance if SingF = X then the image of F cannot be dense in the neighbourhood of 0,
and, once again, Proposition 3.5 implies that there are gap curves.

Let us remind a useful tool in the realm of subanalytic sets that will be employed in
the proof.

Note 3.6. The Curve Selection Lemma was first proved for semi-analytic sets, see e.g.
[BC], [Mi]. We shall need it in the subanalytic setting. The subanalytic concept has
been introduced because the image by a real analytic map of a semi-analytic set is not
semi-analytic in general. A subset X of a real analytic manifold M is called subanalytic
if for each point x ∈ M there exists a neighbourhood U ⊂ X of x, a real analytic
manifold N , and a relatively compact semi-analytic subset A of M × N such that U is
the image of A by the projection M × N → M . This category is closed under taking
closures, interiors, complements, finite intersections, finite unions. Moreover, the image of
a relatively compact subanalytic set by an analytic map is subanalytic. For more details,
see e.g. [Ga], [Hi], [BM], [Łoj2].

In the setting of subanalytic sets, the Curve Selection Lemma is due to Hironaka [Hi,
Prop. 3.9, pag. 482]: Let X ⊂M be a subanalytic set and let b ∈ ∂X. There exists a real
analytic function γ :]− ε, ε[→M such that γ(0) = b and that γ(]0, ε[) ⊂ X.

3.3. Proof of Theorem 3.5. “⇒” is obvious, so let us show “⇐”.
We assume that F has no gap curve, and we want to show that the image of F is open

at b ∈ Y . The proof is by contradiction. Suppose that the image of our holomorphic
map F is not open at b ∈ Y . Then there exists some open ball B centred at a such that
b ∈ ∂(Y \F (B)), where Y denotes here some representative of the analytic set germ (Y, b).
Since Y \F (B) is a subanalytic set (as being the complement of the image of a relatively
compact analytic set, see Note 3.6 and its references), the above cited Curve Selection
Lemma says that there exists a real analytic function γ :]− ε, ε[→ Y such that γ(0) = b
and that γ(]0, ε[) ⊂ Y \ F (B).

We then consider the complexification at 0 of the image γ(] − ε, ε[), i.e. the (unique)
irreducible complex analytic curve C containing γ(]− ε′, ε′[), for some positive ε′ ≤ ε.

We claim that C is a gap curve for F . If so, then this yields a contradiction to our
assumption, so the proof of Theorem 3.5 is finished.
Proof of the Claim. By contradiction, suppose that C is not a gap curve for F . Then
(F−1(C), a) 6⊂ (F−1(b), a). Let (A, a) be an irreducible component of (F−1(C), a) such
that (A, a) 6⊂ (F−1(b), a). Since the restriction F|A : (A, a) → (C, b) is not constant and
(C, b) is irreducible, we deduce that F|A : (A, a)→ (C, b) is locally open (see the argument
below). In particular F (B) will contain a neighborhood of b in C. This contradicts the
fact that, by construction we have γ(]0, ε[) ⊂ C and γ(]0, ε[) ∩ F (B) = ∅. This ends our
proof of our claim.

For the reader’s convenience, let us also show that the restriction F|A : (A, a)→ (C, b)
is locally open, a fact which has been used in the above proof. Let (A1, a) be the germ
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of an irreducible curve such that (A1, a) ⊂ (A, a) and F|A1 is not the constant map. It
then suffices to show that F|A1 is locally open. By the Riemann Extension Theorem,
F|A1 : (A1, a) → (C, b) lifts to a holomorphic map between the normalisations2 , F̃|A1 :

(Ã1, a)→ (C̃, b̃). By the Open Mapping Theorem, F̃|A1 is an open map. Since both (A1, a)

and (C, b) are irreducible, the normalisation maps (Ã1, a) → (A1, a) and (C̃, b̃) → (C, b)
are local homeomorphisms. It follows that F|A1 : (A1, a)→ (C, b) is locally open.

3.4. Proof of Proposition 3.3. Let us suppose by contradiction that the image of (f, g)
is not open at (0, 0) ∈ C2, or does not exist as a set germ. Applying Proposition 3.5 to
our setting, it follows that (f, g) has a gap curve germ (C, 0) ⊂ (C2, 0). If {ϕ = 0}
is a local equation for C, then by Definition 3.4 we have the inclusion Z(ϕ(f, g)) ⊂
Z(f)∩Z(g) = Z(h)∪ (Z(f̂)∩Z(ĝ)). Since Z(ϕ(f, g)) has pure dimension n−1 and since
dimZ(f̂)∩Z(ĝ) = n−2, we deduce the inclusion Z(ϕ(f, g)) ⊂ Z(h). In local coordinates
we may write ϕ(x, y) = P (x, y) +

∑
i+j≥p+1 ci,jx

iyj, where P (x, y) is a homogeneous
polynomial of degree p ≥ 1. Therefore ϕ(f, g)) = P (f̂ , ĝ)hp+hp+1h̃, for some holomorphic
function h̃. Then Z(ϕ(f, g)) ⊂ Z(h) implies that Z(P (f̂ , ĝ)+hh̃) ⊂ Z(h). We then deduce
Z(P (f̂ , ĝ) + hh̃) ⊂ Z(h) ∩ Z(P (f̂ , ĝ)), and in particular dimZ(h) ∩ Z(P (f̂ , ĝ)) = n− 1.

Writing now the homogeneous polynomial P (x, y) as a product of linear factors, we
deduce that there exists [α : β] ∈ P1 such that dimZ(h)∩Z(βf̂ +αĝ) = n− 1. This ends
the proof of Proposition 3.3.

The condition “no gap curve” is nice in theory but not easily verifiable in practice, thus
proving the locally openness of F usually amounts to direct computations. See Example
3.9 below, preceded by a couple of other examples for the above described situations.

Example 3.7. Let F : (C2, 0)→ (C2, 0), F (x, y) = (x(y + x2), y(y + x2)), which we have
already seen before (§2.4). It is trivial to check the criterion of Proposition 3.3, thus we
have (ImF, 0) = (C2, 0).

Let us also remark that by changing coordinates locally x = u, y = v − u2 one gets the
map germ (uv, v(v − u2)) which is an example that Huckleberry computed explicitely in
[Hu, p. 449].

Example 3.8. Let (f, g) : C2 → C2, (f, g)(x, y) = (xy, x2y2 + y3).
Then h(x, y) = y, f̂(x, y) = x, ĝ(x, y) = x2y + y2.
If [α : β] 6= [1 : 0] then Z(βf̂ + αĝ) ∩ Z(h) = {(0, 0)} and hence Z(βf̂ + αĝ) 6⊂ Z(h).
If [α : β] = [1 : 0] then Z(βf̂ + αĝ) = Z(y(x2 + y)) 6⊂ Z(y).

We deduce that (f, g) has no gap line. Nevertheless (f, g) has a gap curve since Im f ∩
{(u, v) ∈ C2 | v = u2} = (0, 0). By Theorem 3.5 together with Theorem 1.1(i)(b), it then
follows that the image of (f, g) is not a well defined set germ.

2This is a general fact about the normalisation of complex spaces and holomorphic maps X1 → X2 for
which the pre-image of the non-normal locus of X2 is nowhere dense in X1, see e.g. [GR2, Proposition
8.4.3], whereas in the 1-dimensional case it follows easily from the Riemann Extension Theorem.
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Example 3.9. Let (f, g) : C2 → C2, (f, g)(x, y) = (x(x4 + y), y(x4 + y)2). Note that
h(x, y) = x4 + y, f̂(x, y) = x, ĝ(x, y) = y(x4 + y) and hence dimZ(h)∩Z(ĝ) = n− 1. We
claim that (Im (f, g), 0) = (C2, 0).

Let Dr ⊂ C denote the closed disk centred at the origin and of radius r. We will show
that for any 1

2
> ε > 0, there is r > 0 such that f(Dε×Dε) ⊃ Dr×Dr. We shall actually

prove this inclusion in the following by assuming that r < ε10.
We need to show that for any (a, b) ∈ Dr×Dr there exists (x0, y0) ∈ Dε×Dε such that

(f, g)(x0, y0) = (a, b). The proof falls into two cases.

Case 1. |a|2 ≥ |b|. Let k := b
a2
, thus |k| ≤ 1. We consider the equation x(x4 + k2x2) = a.

This has five complex solutions and their product is a. It follows that for at least one of
them, say x0, we have |x0| ≤ |a|1/5 < r1/5 < ε. For y0 := kx20 we get (x0, y0) ∈ Dε ×Dε

and f(x0, y0) = (a, b).

Case 2. |a|2 ≤ |b|. Let k′ := a2

b
, thus |k′| ≤ 1. We consider the equation y((k′)2y2+y)2 = b

and claim that this equation has at least three solutions in Dε2 ⊂ Dε. Since the three
solutions of the equation y3 − b = 0 are in Dε2 , by Rouche’s Theorem it suffices to show
that |(k′)4y5+2(k′)2y4| < |y3−b| on ∂Dε2 . However, if |y| = ε2, we have |y3−b| ≥ ε6−r >
ε6 − ε10 ≥ 15

16
ε6 (since ε < 1/2). On the other hand |(k′)4y5 + 2(k′)2y4| < ε10 + 2ε8 <

( 1
16

+ 1
2
)ε6 < 15

16
ε6, and therefore we have |(k′)4y5 + 2(k′)2y4| < |y3 − b| on ∂Dε2 indeed.

We then use such a solution y0. For x0 := a
(k′)2y20+y0

we get x20 = a2

b
y0 = k′y0 and

therefore |x0|2 < ε2, thus |x0| < ε. We also have x0(x40 + y0) = a and y0(x40 + y0)
2 = b,

thus (f, g)(x0, y0) = (a, b).

3.5. Locally open image and the “subflat” condition. Huckleberry conjectured in
[Hu, p. 461] that if F is not totally singular (i.e. SingF = X as germs at a), then
(ImF, a) = (Y, b) if and only if F is subflat.

Definition 3.10. [Hu] If X and Y are reduced, locally irreducible complex spaces and
F : X → Y is a holomorphic mapping then F is called subflat at p ∈ X if for every prime
ideal I ⊂ OY,F (p) such that dimV (I) > 0 we have that 〈F ∗(I)〉 ∩ F ∗(OY,F (p)) = F ∗(I),
where 〈F ∗(I)〉 denotes the ideal generated by F ∗(I).

Huckleberry proves his conjecture in case of holomorphic maps (C2, 0) → (C2, 0). We
are now in position to derive a proof in the general setting:

Theorem 3.11. Let F : (X, a) → (Y, b), dimX ≥ dimY ≥ 1, be a holomorphic map
germ3 between two germs of reduced, locally irreducible complex spaces. Then (ImF, b) =
(Y, b) if and only if F is subflat.

Proof. Huckleberry [Hu, Prop. 3.2] had actually proved in the same setting the following
statement, by using essentially the Nullstellensatz:

(*) a holomorphic F such that SingF 6= X is subflat if and only if F has no gap curve.

3Again, this only makes sense for F which are not totally singular, i.e. Sing F 6= X.
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The notion of “gap curve ” has been given in Definition 3.4. Therefore the proof of
Theorem 3.11 reduces, via (*), to the equivalence “(ImF, b) = (Y, b) iff F has no gap
curve” which is precisely our Theorem 3.5. �

Remark 3.12. Given two germs of complex spaces (X, a) and (Y, b), it might happen
that there is no holomorphic map germ F : (X, a) → (Y, b) with (ImF, b) = (Y, b). In
[CJ] one obtains a characterisation of all two-dimensional complex germs (Y, b) for which
there exists a holomorphic map F : (Cn, 0)→ (Y, b) such that (ImF, b) = (Y, b).
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