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Abstract

We construct a 1-convex surface X such that its universal covering
X̃ has the property that H1(X̃,OX̃) is not separated.

1 Introduction

The Hausdorff property of the cohomology of a complex space with values
in a coherent sheaf appears naturally when one tries to prove duality re-
sults. At the same time, A. Markoe [15] and A. Silva [19] proved that an
increasing union of Stein open subsets of a complex space is Stein if and
only if its first cohomology group with values in the structure sheaf is sep-
arated and B. Jennane [10] proved that if X is a Stein complex space and
Ω is a locally Stein open subset then Ω is Stein if and only if H1(Ω,OΩ) is
separated. More recently M. Brumberg and J. Leiterer [2] proved that for a
smooth 2-dimensional 1-corona if the first cohomology group with values in
the structure sheaf is separated then the concave end can be filled in.

In [6] it is provided an example of a normal Stein space X of dimension
3, with only one singular point, and a closed analytic subset A ⊂ X of
codimension 1 of X such that H1(X \ A,O) is not separated. On the other
hand G. Trautmann [20] proved that if X is a normal Stein space, A ⊂ X
is a closed complex analytic subset with codim A ≥ 2, and F is torsion
free coherent sheaf on X then H1(X \ A,F) is separated. However, to our
knowledge, a complete answer to the following question raised by C. Bănică
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is not known: suppose that X is a Stein manifold, A ⊂ X is a closed analytic
subset and F is a locally free sheaf on X. Does it follow that Hq(X \ A,F)
is separated for every q ≥ 2? If F has torsion, this is not the case - see [6].

If X is a 1-convex complex space, that is a proper modification of a
Stein space at a finite set, then for every coherent analytic sheaf F on X
the cohomology groups Hq(X,F) are finite dimensional for every q ≥ 1.
In particular they are separated in their canonical QFS topology. If X is
holomorphically convex then Hq(X,F) is still separated. On the other hand
B. Malgrange [14] gave an example of a weakly pseudoconvex manifold, which
is an open subset of an algebraic 2-dimensional torus, that does not have
separated cohomology for the structure sheaf. Malgrange’s example builds
on an example of Grauert (see [16]) of a weakly pseudoconvex manifold on
which all global holomorphic functions are constant.

Suppose now that X is a 1-convex complex surface and p : X̃ → X is
the universal covering of X. In general X̃ is not holomorphically convex
and not even weakly pseudoconvex (i.e. X̃ does not carry a continuous
plurisubharmonic exhaustion function). The only geometric property of X̃
is that it is p3-convex in the sense of Grauert and Docquier [9] (i.e. it can
be exhausted by a sequence of strongly pseudoconvex domains). A natural
question in this context is to decide if X̃ has separated cohomology for the
structure sheaf. The purpose of this paper is to show that this is not always
the case. Namely we will prove the following theorem:

Theorem. There exists a 1-convex complex surface X such that its universal
covering X̃ has the property that H1(X̃,OX̃) is not separated.

Our main ingredients for the proof are the following:
- the construction in [8] of a 1-convex surface X such that its universal

covering does not satisfy the discrete Kontinuitätssatz,
- the p3-convexity of X̃,
- the Serre duality [18].
We note that H. Kazama and S. Takayama [11] constructed a smooth

projective surface Y and a covering Ỹ of Y such that Ỹ has the property
that H1(Ỹ ,OỸ ) is not separated. From their example one can construct
easily (see Remark 3 at the end of the paper) coverings X̃ → X of 1-convex
manifolds X with dimX ≥ 3 such that H1(X̃,OX̃) is not separated. Our
main contribution is that we can produce such examples for dimX = 2 and
X̃ the universal covering of X.
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In connection with Shafarevich conjecture it would be interesting to know
if the universal covering of a smooth projective manifold has separated co-
homology for the structure sheaf.

2 Preliminaries

Let X be a 1-convex manifold. This means that X is a proper modification
of a normal Stein space at finitely many points. Hence we have a normal
Stein space Y , a proper holomorphic map p : X → Y and a finite set B ⊂ Y
such that p : X \p−1(B)→ Y \B is a biholomorphism. A := p−1(B) is called
the exceptional set of X.

The following result is Theorem 2 in [4].

Theorem 1. Suppose that X is a 1-convex manifold and that the exceptional
set of X has dimension 1. Let X̃ be a covering of X. Then X̃ has an
exhaustion with relatively compact strongly pseudoconvex open subsets.

We will use this result for dimX = 2 and therefore the exceptional set
must have dimension 1.

Suppose that X is a 1-convex surface, A is its exceptional set and p : X̃ →
X is a covering. Let Ã := p−1(A). If Ã is holomorphically convex then X̃ is
also holomorphically convex. Therefore the most interesting case is when Ã
is an infinite Nori string, i.e. Ã is a connected non-compact complex space
such that all its irreducible components are compact. If X̃ does not contain
an infinite Nori string of rational curves then it was proved in [7] that X̃
satisfies the discrete disk property in the following sense: we denote by ∆r,
r > 0, the disc in the complex plane centered at the origin and of radius r
and we set ∆ := ∆1.

Definition 2. Suppose that X is a complex space. We say that X satisfies
the discrete disk property if whenever fn : U → X is a sequence of holo-
morphic functions defined on an open neighborhood U of ∆ for which there
exist an ε > 0 and a continuous function γ : S1 = {z ∈ C : |z| = 1} → X
such that ∆1+ε ⊂ U ,

⋃
n≥1 fn(∆1+ε \∆) is relatively compact in X and fn|S1

converges uniformly to γ we have that
⋃
n≥1 fn(∆) is relatively compact in

X.

However if Ã is a Nori string of rational curves this might not be the case.
More precisely, according to [8], one has:
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Theorem 3. There exists a 1-convex complex surface X such that its uni-
versal covering X̃ does not satisfy the discrete disk property.

Remark 1. In particular X̃ is not p5 convex in the sense of [9], i.e. there
exists a family of holomorphic disks fν : ∆ → X̃ such that

⋃
fν(∂∆) b X̃

but
⋃
fν(∆) is not relatively compact in X̃. From our construction in [8],

each disk is contained in a closed analytic curve of X̃.

Definition 4. Let (I,≤) be a directed set and {Gi, gi,j} be a direct system
of abelian groups and let gi : Gi → lim

−→
Gk be the canonical morphisms. The

inductive limit lim
−→

Gk is called essentially injective if for every i ∈ I there

exists j ∈ I such that for every x ∈ Gi if gi(x) = 0 then gi,j(x) = 0.

Notation: For a Fréchet space F we denote by F ∗ its topological dual.

Definition 5. Suppose that X is a complex space and {Xj}j∈N is an increas-
ing sequence of open subsets of X. For i ≤ j positive integers we denote by
ρi,j : O(Xj) → O(Xi) the restriction morphism. We say that {Xj} is a
Runge family if for every i ∈ N there exists j ∈ N, j ≥ i, such that for every
l ≥ j we have that ρi,j(O(Xj)) = ρi,l(O(Xl)), where the closures are taken
in the topology of uniform convergence on compacts in Xi.

The following proposition was proved in [3]. There the Runge family
condition was called the closed Mittag-Leffler condition.

Proposition 6. Let X be a complex space and {Xj}j∈N be an increasing se-
quence of open subsets of X such that

⋃
Xj = X, {Xj}j∈N is a Runge family,

and H1(Xj,OXj
) is separated for every j. Then H1(X,OX) is separated.

3 The Results

Proposition 7. Suppose that X is a smooth complex manifold and {Xj}j∈N
are open subsets of X such that Xj b Xj+1 and

⋃
Xj = X. We assume that

H1(Xj,O) is separated for each j ∈ N. Then H1(X,O) is separated if and
only if {Xj} is a Runge family.

Proof. The “if” part follows from Proposition 6. We will prove the “only if”
statement. The first part of the proof of this statement is completely similar
to the proof of Lemma 2.1 in [5]. We give it here for the reader’s convenience.
Let n = dimX.
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It follows from [12], see also [1], that H1(X,O) is separated if and only if
Hn
c (X,KX) is separated. At the same time Hn

c (X,KX) = lim
−→

Hn
c (Xj, KX).

By Theorem 4.1 in [17], we have that Hn
c (X,KX) is separated if and only if

the inductive limit lim
−→

Hn
c (Xj, KX) is essentially injective (here we use the

fact that Xj b Xj+1). We assumed that each H1(Xj,O) is separated and
therefore Hn

c (Xj, KX) = O(Xj)
∗. Therefore Hn

c (X,KX) is separated if and
only if the inductive limit lim

−→
O(Xj)

∗ is essentially injective.

For i ≤ j positive integers we denote by ρi,j : O(Xj) → O(Xi) the
restriction morphism and ρ∗i,j : O(Xi)

∗ → O(Xj)
∗ the induced morphism.

Let also ρ∗i : O(Xi)
∗ → lim

−→
O(Xj)

∗ be the canonical morphism.

Let i ∈ N be a fixed index and let j > i be such that for every µ ∈ O(Xi)
∗

if ρ∗i (µ) = 0 then ρ∗i,j(µ) = 0. We claim that for every l ≥ j we have that
ρi,j(O(Xj)) and ρi,l(O(Xl)) have the same closure in O(Xi). Indeed, let’s
denote by S1 the closure of ρi,j(O(Xj)) in O(Xi) and by S2 the closure of
ρi,l(O(Xl)).

Note that S2 ⊂ S1. Because S2 is closed, to show that S1 ⊂ S2 it suffices
to show that ρi,j(O(Xj)) ⊂ S2. Let’s suppose that this is not the case and let
f ∈ ρi,j(O(Xj))\S2. By Hahn-Banach theorem there exists µ ∈ O(Xi)

∗ such
that µ|S2 = 0 and µ(f) 6= 0. Because µ|S2 = 0 we have that ρ∗i,l(µ) = 0. In
particular we have that ρ∗i (µ) = 0. By our choice of j we have that ρ∗i,j(µ) = 0
and in particular µ(f) = 0, which, of course, is a contradiction.

Theorem 8. There exists a 1-convex surface X such that H1(X̃,OX̃) is not
separated where X̃ is the universal covering of X.

Proof. We will describe briefly the example constructed in [8]. We start with
Ω0 := C2 and we blow-up at the origin (0, 0) = a0 ∈ C2. Let Ω1 be this blow-
up. We choose a point a1 on the exceptional divisor of Ω1. To be precise, if
(z1, z2) are the coordinate functions on C2 then a1 = (0, 0, [0 : 1]) ∈ C2 × P1.
This means that a1 is the intersection between the proper transform of z1 = 0
and the exceptional divisor. We blow-up Ω1 at a1 and we obtain Ω2. We let
a2 be the intersection between the proper transform of z1 = 0 (more precisely
the proper transform of the proper transform of z1 = 0) and the exceptional
divisor of Ω2 and we blow-up Ω2 at a2. In this way we obtain a sequence
{Ωk}k≥0 of complex manifolds and a sequence of points ak ∈ Ωk such that
Ωk\{ak} ⊂ Ωk+1\{ak+1}. We denote by X0 the union of Ωk\{ak} and we call
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it the infinite blow-up of C2. Starting with X0 and going backwards one can
construct an increasing sequence of complex surfacesX0 ⊂ X−1 ⊂ X−2 ⊂ · · · .
Their union

⋃−∞
k=0 Xk is a complex surface that contains an infinite Nori string

of P1 indexed over Z. On each P1 we choose a suitable point (in appropriately
chosen coordinates this point is [1 : 1]) and we blow-up each of these points.
We obtain in this way a smooth complex surface that contains also an infinite
Nori string of P1. An appropriately chosen neighborhood X̂ of the Nori string
covers a 1-convex surface X whose exceptional set consists of two P1 meeting
only at two points and the intersection matrix is[

−3 2
2 −3

]
To show that X̂ does not satisfy the discrete disc property we defined a
sequence of polynomial mappings C → C2 and then we took the proper
transform of their images after all the blow-ups described above.

The holomorphic discs were the restriction of these holomorphic functions
to ∆1+ε for some ε > 0. (One difficulty of this construction was to show that
the images of ∆1+ε are in X̂.)

Note that every non-constant polynomial function C→ C2 is proper and
therefore its image is a closed analytic subset of C2. Moreover, the first
component of each of the polynomial functions used in our construction is
not identically equal to 0. And hence after finitely many blow-ups, its proper
transform will not contain the ak (the center of the blow-up). We deduce that
for each of these holomorphic discs fn there exists An, a closed 1-dimensional
analytic subset of X̂ such that An contains the image of fn.

The last step of our construction was to show that the universal covering
X̃ of X̂ (and hence of X) does not satisfy the discrete disc property. To
do that we noticed that there exists a simply connected open subset U (in
[8], U was denoted by W̃ ρ

r and, in fact, U is a covering of a neighborhood of
the exceptional set of X) of X̂ which contains the images of all holomorphic
discs. Hence each fn gives us a holomorphic disk in X̃. Taking the preimages
of An in X̃ we get that the image of each holomorphic disc fn : ∆1+ε → X̃ is
included in some closed 1-dimensional analytic subset of X̃.

Hence we have constructed:
• X a 1-convex smooth surface and p : X̃ → X the universal covering map,
• a sequence of closed 1-dimensional analytic subsets An of X̃,
• a sequence of holomorphic discs fn : ∆1+ε → X̃, n ∈ N, for some ε > 0,
such that:
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a) K :=
⋃
fn(∂∆1) is compact,

b)
⋃
fn(∆1) is not compact,

c) fn(∆1+ε) ⊂ An.

Claim: H1(X̃,OX̃) is not separated.
Proof of the claim: We assume, by reductio ad absurdum, thatH1(X̃,OX̃)

is separated.
Let L be the exceptional set of X and L̃ = p−1(L). By Theorem 1, there

exist Y1 b Y2 b · · · an exhaustion of X̃ with strictly pseudoconvex domains
with smooth boundaries. By Proposition 7 there exists j = j(K) ≥ 1 such
that for every l ≥ j we have that every holomorphic function in O(Yj) can
be approximated uniformly on K with functions in O(Yl).

Let f : ∆1+ε → X̃ be a holomorphic disc, ε > 0, A a 1-dimensional closed
analytic subset of X̃ and λ0 ∈ ∆1 such that

- f(∂∆1) ⊂ K,
- y0 := f(λ0) 6∈ L̃ ∪ Yj,
- f(∆1+ε) ⊂ A.

We choose l > j such that f(∆1+ε/2) ⊂ Yl.

We let pl : Yl → Xl and pj : Yj → Xj be the Remmert reductions of Yl and
of Yj respectively and we set Al := pl(A ∩ Yl), Aj := pj(A ∩ Yj) which are 1-
dimensional closed analytic subsets of Xl and Xj. Let also x0 := pl(y0) ∈ Al.

We choose now a holomorphic function h : Al → C such that {x ∈ Al :
h(x) = 0} = {x0}. Because Xl is Stein and Al is a closed analytic subset
of Xl we can extend h to a holomorphic function on Xl, which we denote
also by h. Hence we obtain a holomorphic function h ∈ O(Xl) such that
Z(h)∩Al = {x0} where Z(h) is the zero set of h, Z(h) = {x ∈ Xl : h(x) = 0}.

We let h̃ = h ◦ pl ∈ O(Yl). Because y0 6∈ L̃ we have that p−1(x0) = {y0}.
It follows that Z(h̃) ∩ A = {y0}.

Because pj is the Remmert reduction we have that pj∗OYj
= OXj

. Hence

there exists h1 ∈ O(Xj) such that h1 ◦ pj = h̃|Yj
. Since y0 6∈ L̃∪Yj, it follows

that Z(h1) ∩ Aj = ∅. In particular 1
h1

: Aj → C is a holomorphic function
on Aj. Because Xj is Stein and Aj is a closed analytic subset it follows that
there exists g ∈ O(Xj) such that g|Aj

= 1
h1

. We set g̃ := g ◦ pj ∈ O(Yj). It

follows that g̃h̃ ≡ 1 on A ∩ Yj.
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We recall that every holomorphic function in O(Yj) can be approximated
uniformly on K with functions in O(Yl). Hence we can find a sequence
of functions {φn}n, φn ∈ O(Yl), that converges uniformly on K to g̃. In
particular it follows that φn → g̃ uniformly on f(∂∆1). Therefore φnh̃→ g̃h̃
uniformly on f(∂∆1).

Because f(∂∆1) ⊂ A we get that φnh̃ → 1 uniformly on f(∂∆1) and
hence (φn ◦ f)(h̃ ◦ f)− 1→ 0 uniformly on ∂∆1. Note that φn ◦ f and h̃ ◦ f
are holomorphic functions defined on ∆1+ε/2 because we have chosen l such

that f(∆1+ε/2) ⊂ Yl. We deduce that (φn ◦ f)(h̃ ◦ f) − 1 → 0 uniformly on

∆1. In particular (φn ◦ f)(λ0)(h̃ ◦ f)(λ0) − 1 → 0. However we have that
(h̃ ◦ f)(λ0) = h̃(y0) = 0 and therefore we obtain a contradiction.

Remark 2. Let X0 be the infinite blow-up defined at the beginning of this
section. The arguments given in [8] show the existence of {An} and {fn}
satisfying a), b), and c). At the same time we have that X0 =

⋃
k≥0 Ωk\{ak}.

Each Ωk is 1-convex and hence H1(Ωk \ {ak},O) is separated. At the same
time O(Ωk\{ak}) = O(Ωk) = O(Ω0) and the restriction map O(Ωk\{ak})→
O(Ωj \ {aj}) is bijective. In particular {Ωk \ {ak}}k is a Runge family. By
Proposition 6 we have that H1(X0,OX0) is separated. In this case X0 is not
p3-convex.

Remark 3. As we mentioned in the Introduction, in [11], example 4.4, a
smooth projective surface Y was constructed, together with a covering p :
Ỹ → Y of Y such that Ỹ has the property that H1(Ỹ ,OỸ ) is not separated.
Let F → Y be a negative line bundle over Y . Therefore X := F is a 1-convex
manifold and the null-section of F is its exceptional set. Let X̃ := p∗F be
the pull-back of F . We have then a covering map X̃ → X and a line bundle
ρ : X̃ → Ỹ . Identifying the zero-section of this line bundle with Ỹ , we have
also an embedding i : Ỹ ↪→ X̃ and ρ ◦ i = idỸ . We claim that H1(X̃,OX̃) is
not separated. Indeed, we have

H1(Ỹ ,OỸ )
ρ∗−→ H1(X̃,OX̃)

i∗−→ H1(Ỹ ,OỸ )

and i∗ ◦ ρ∗ is the identity. It follows that ρ∗ is one-to-one (and, obviously,
continuous). Since H1(Ỹ ,OỸ ) is not separated, it follows that H1(X̃,OX̃) is
not separated as well.

Remark 4. If X is any 1-dimensional infinite Nori string then by Proposition
6 it follows that H1(X,OX) is separated (since X is obviously an increasing
union of strongly pseudoconvex domains Xn and the family {Xn} is Runge).
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Remark 5. It was shown in [13] that if {Xn} is an increasing sequence of
open sets contained in a Stein manifold X, then {Xn} is a Runge family.

It would be interesting to know what happens if we allow X to have
singularities.
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