Geometric convexity properties of coverings of 1-convex surfaces *

Mihnea Colţoiu, Cezar Joiţa

Abstract

We prove that a complex surface that contains an infinite Nori string of rational curves is not p_{5}-convex and that a covering of a 1-convex complex surface which does not contain an infinite Nori string of rational curves is p_{5}-convex.

1 Introduction

Let X be a 1-convex complex surface whose exceptional set is the compact complex curve A. In this paper we are interested in studying the geometric convexity properties of unramified coverings $p: \tilde{X} \rightarrow X$. In general \tilde{X} is not holomorphically convex and not even weakly pseudoconvex (i.e. it does not carry a plurisubharmonic continuous exhaustion function). In [2] it was proved that \tilde{X} is p_{3}-convex in the sense of [7], i.e. it can be written as an increasing union of relatively compact strongly pseudoconvex domains.

In this paper we study the p_{5}-convexity of \tilde{X} in the sense of [7] (see Definition 3 below). Our main result (see Theorem 6) asserts that \tilde{X} is p_{5}-convex if and only if $\tilde{A}:=p^{-1}(A)$ does not contain an infinite Nori string of rational curves.

For arbitrary surfaces (not necessarily coverings of 1-convex surfaces) we are able to show (Theorem 5) that they are not p_{5}-convex if they contain an infinite Nori string of rational curves (not necessarily exceptional).

We also give an example of a covering \tilde{X} of a 1-convex surface such that \tilde{X} is p_{5}-convex and p_{3}-convex but its cohomology group $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated. In our construction \tilde{X} contains an infinite Nori string of irrational curves.

2 Preliminaries

Definitions 1 and 3 were given in [7].

[^0]Definition 1. A complex manifold is called p_{3}-convex if it has an exhaustion with relatively compact strictly pseudoconvex domains.

The following theorem was proved in [2].
Theorem 1. Suppose that X is a 1-convex manifold and that the exceptional set of X has dimension 1. Then any covering of X is p_{3}-convex.

Definition 2. We denote by Δ the unit disk in $\mathbb{C}, \Delta=\{z \in \mathbb{C}:|z|<1\}$. A holomorphic disk in a complex space X is a function $f: \bar{\Delta} \rightarrow X$ which is holomorphic on Δ and continuous on $\bar{\Delta}$.

Definition 3. We say that a complex space X is p_{5}-convex (or that it satisfies the Kontinuitätssatz) if for every sequence of holomorphic disks $\left\{f_{n}\right\}_{n \in \mathbb{N}}, f_{n}: \bar{\Delta} \rightarrow X$, if $\bigcup_{n \in \mathbb{N}} f_{n}(\partial \Delta)$ is relatively compact in X then $\bigcup_{n \in \mathbb{N}} f_{n}(\bar{\Delta})$ is relatively compact in X.

Definition 4. An infinite Nori string is a connected 1-dimensional complex space which is not compact but all its irreducible components are compact.

In [5] we proved the following.
Theorem 2. There exists a 1-convex complex surface whose universal covering is not p_{5} convex.

On the other hand in [4] we proved that if X is a 1-convex surface, $p: \tilde{X} \rightarrow X$ is a covering and \tilde{X} does not contain an infinite Nori string of rational curves then \tilde{X} satisfies a property which is weaker than p_{5}-convexity. More precisely we were considering a sequence of holomorphic functions $f_{n}: U \rightarrow \tilde{X}$ defined on the same neighborhood U of $\bar{\Delta}$, we assumed that $\bigcup_{n \geq 1} f_{n}(U \backslash \Delta)$ is relatively compact in \tilde{X} and that $f_{n \mid S^{1}}$ converges uniformly to a continuous function $\gamma: S^{1}=\{z \in \mathbb{C}:|z|=1\} \rightarrow \tilde{X}$ and we proved that $\bigcup_{n \geq 1} f_{n}(\bar{\Delta})$ is relatively compact in \tilde{X}. For the study of these two notions of convexity, see [10].

The following theorem was proved in [3].
Theorem 3. Suppose that X and T are complex spaces and $\pi: X \rightarrow T$ is a holomorphic map. Let $t_{0} \in T$ and $X_{t_{0}}:=\pi^{-1}\left(t_{0}\right)$. We assume that π is proper and surjective and that $\operatorname{dim} X_{t_{0}}=1$. Let $\sigma: \tilde{X} \rightarrow X$ be a covering space and let $\tilde{X}_{t_{0}}=\sigma^{-1}\left(X_{t_{0}}\right)$. If $\tilde{X}_{t_{0}}$ is holomorphically convex, then there exists an open neighbourhood Ω of t_{0} such that $(\pi \circ \sigma)^{-1}(\Omega)$ is holomorphically convex.

The next result was proved in [2].
Proposition 1. Let X be a 1-convex manifold with exceptional set $S_{\tilde{\sim}}$ and $p: \tilde{X} \rightarrow X$ any covering. Then there exists a strongly plurisubharmonic function $\tilde{\phi}: \tilde{X} \rightarrow[-\infty, \infty)$ such that $p^{-1}(S)=\{\tilde{\phi}=-\infty\}$ and for any open neighbourhood U of S, the restriction $\tilde{\phi}_{\mid \tilde{X} \backslash p^{-1}(U)}$ is an exhaustion function on $\tilde{X} \backslash p^{-1}(U)$.

Definition 5. Suppose that X is a complex surface, $A \subset X$ is a 1-dimensional compact complex subspace, and $A=\bigcup_{j=1}^{k} L_{j}$ is its decomposition into irreducible components.
a) We say that A is a chain of \mathbb{P}^{1} if each L_{j} is isomorphic to \mathbb{P}^{1}, for each $j \in\{1, \cdots, k-1\}$, L_{j} and L_{j+1} intersect transversely in precisely one point, and $L_{i} \cap L_{j}=\emptyset$ for $|i-j| \geq 2$.
b) We say that A is a cycle of \mathbb{P}^{1} if each L_{j} is isomorphic to \mathbb{P}^{1}, for each $j \in\{1, \cdots, k-1\}$, L_{j} and L_{j+1} intersect transversely in precisely one point, L_{k} and L_{1} intersect transversely in precisely one point, and $L_{i} \cap L_{j}=\emptyset$ for all other pairs $(i, j), i \neq j$.

For the next result, see [11].
Theorem 4. Suppose that X and X^{\prime} are complex surfaces, $A \subset X$ and $A^{\prime} \subset X^{\prime}$ are 1-dimensional compact subspaces. Then in either one the following two situations:
a) A and A^{\prime} are chains of \mathbb{P}^{1} of the same length and $\left(L_{j} \cdot L_{j}\right)=\left(L_{j}^{\prime} \cdot L_{j}^{\prime}\right) \leq-2$ for $j=\overline{1, k}$
b) A and A^{\prime} are cycles of \mathbb{P}^{1} of the same length, $\left(L_{j} \cdot L_{j}\right)=\left(L_{j}^{\prime} \cdot L_{j}^{\prime}\right) \leq-2$ for $j=\overline{1, k}$ and there exists j_{0} such that $\left(L_{j_{0}} \cdot L_{j_{0}}\right) \leq-3$
there exists $U \subset X$ and $U^{\prime} \subset X^{\prime}$ biholomorphic neighbourhoods of A and respectively A^{\prime}.

3 The Results

Theorem 5. Suppose that X is a smooth complex surface. If X contains an infinite Nori string of rational curves, then X is not p_{5}-convex.

Proof. After a locally finite sequence of blow-ups we obtain a complex surface X_{1} and a proper surjective morphism $X_{1} \rightarrow X$ such that X_{1} contains an infinite Nori string of rational curves as well and, moreover, this Nori string satisfies the following properties:

- all its irreducible components are smooth,
- any two irreducible components intersect in at most one point,
- any two irreducible components intersect transversely.

If we prove that X_{1} is not p_{5}-convex, since the map $X_{1} \rightarrow X$ is proper, we deduce that X is not p_{5}-convex as well. Hence we can assume from the beginning that X contains an infinite Nori string of rational curves that satisfies the three properties listed above. It follows then that there exists a sequence $\left\{F_{n}\right\}_{n \geq 0}$ of smooth closed complex curves in X such that each F_{j} is isomorphic to \mathbb{P}^{1}, F_{j} and F_{j+1} intersect in precisely one point and the intersection is transversal, $F_{j} \cap F_{k}=\emptyset$ if $|j-k| \geq 2$.

Let $K \subset X$ be a compact subset such that $F_{0} \subset \stackrel{\circ}{K}$.
We will prove that there exists a sequence of holomorphic disks $\left\{g_{n}\right\}, g_{n}: \bar{\Delta} \rightarrow X$, such that

1. $g_{n}(\partial \Delta) \subset K$
2. $g_{n}(\bar{\Delta}) \cap F_{n} \neq \emptyset$

The second property will guarantee that $\bigcup g_{n}(\bar{\Delta})$ is not relatively compact in X.
We fix $n \geq 1$.
Let $d=\max \left\{\left|F_{j} \cdot F_{j}\right|: j=0, \ldots, n\right\}+2$ where $F_{j} \cdot F_{j}$ denotes the self-intersection of F_{j}. By blowing-up $d+F_{j} \cdot F_{j}$ points on each F_{j} we obtain a surface Y together with a proper map $h: Y \rightarrow X$. If $\hat{F}_{j} \subset Y, j=0, \ldots, n$ are the proper transforms of F_{j}, then $\hat{F}_{j} \cdot \hat{F}_{j}=-d$. If we manage to find $\hat{g}_{n}: \bar{\Delta} \rightarrow Y$ such that $\hat{g}_{n}(\partial \Delta) \subset h^{-1}(K)$ and $\hat{g}_{n}(\bar{\Delta}) \cap \hat{F}_{n} \neq \emptyset$ then $g_{n}=h \circ \hat{g}_{n}$ will be the holomorphic disk in X that we are looking for. All these show that we can assume from the beginning that $F_{j} \cdot F_{j}=-d$ for $=0, \ldots, n$ with $d \in \mathbb{N}, d \geq 3$.

Now we make a construction that was used in [5]. The main point about this construction is that it allows us to define holomorphic disks in an explicit manner.

We consider \mathbb{C}^{2} with coordinate functions $\left(z_{1}, z_{2}\right)$. We let $\Omega_{0}=\mathbb{C}^{2}$, the coordinate functions $\left(z_{1}^{(0)}, z_{2}^{(0)}\right)=\left(z_{1}, z_{2}\right)$ and $a_{0}=(0,0)$. We consider Ω_{1} to be the blow-up of Ω_{0} in a_{0}. Hence $\Omega_{1}=\left\{\left(z_{1}^{(0)}, z_{2}^{(0)},\left[\xi_{1}^{(0)}: \xi_{2}^{(0)}\right]\right) \in \Omega_{0} \times \mathbb{P}^{1}: z_{1}^{(0)} \xi_{2}^{(0)}=z_{2}^{(0)} \xi_{1}^{(0)}\right\}$ and $a_{1}=(0,0,[0:$ 1]) $\in \Omega_{1}$. We let Ω_{2} to be the blow up of Ω_{1} in a_{1} and L_{0} to be the proper transform of the exceptional set of Ω_{1}. The subset of Ω_{1} given by $\xi_{2}^{(0)} \neq 0$ is biholomorphic to \mathbb{C}^{2} and the coordinate functions are $z_{1}^{(1)}:=\frac{\xi_{1}^{(0)}}{\xi_{2}^{(0)}}$ and $z_{2}^{(1)}:=z_{2}^{(0)}$. Moreover, in these coordinates a_{1} is defined by $z_{1}^{(1)}=0, z_{2}^{(1)}=0$. We repeat this blowing-up process until we obtain a complex surface Ω_{n+2} and $n+1$ smooth rational curves $L_{0}, \ldots L_{n}$, each one of them having self-intersection (-2).

The description of each L_{k} is the following: we start with \mathbb{C}^{2} with coordinate functions $\left(z_{1}^{(k)}, z_{2}^{(k)}\right)$ we blow it up at the origin and then we blow it up again at the point $(0,0,[0: 1])$. We obtain a surface M and L_{k} is the proper transform of the exceptional divisor of the first blow-up.

If in $\mathbb{C}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ we write the coordinate functions as $\left(z_{1}^{(k)}, z_{2}^{(k)},\left[\xi_{1}^{(k)}: \xi_{2}^{(k)}\right],\left[\xi_{1}^{(k+1)}:\right.\right.$ $\left.\left.\xi_{2}^{(k+1)}\right]\right)$ then M is given by

$$
z_{1}^{(k)} \xi_{2}^{(k)}=z_{2}^{(k)} \xi_{1}^{(k)}, \quad \xi_{1}^{(k)} \xi_{2}^{(k+1)}=\xi_{1}^{(k+1)} \xi_{2}^{(k)} z_{2}^{(k)}
$$

and L_{k} is given by the equations $z_{1}^{(k)}=0, \xi_{2}^{(k+1)}=0$. This means that $L_{k}=\left\{\left(0,0,\left[\xi_{1}^{(k)}\right.\right.\right.$: $\left.\left.\xi_{2}^{(k)}\right],[1: 0]\right)$: where $\left.\left[\xi_{1}^{(k)}: \xi_{2}^{(k)}\right] \in \mathbb{P}^{1}\right\}$. We will blow-up $p=d-2$ points on each L_{k}.

We fix now b_{1}, \cdots, b_{p} distinct complex numbers with $\left|b_{j}\right|=1 \forall j \in\{1, \ldots, p\}$.
For each $k \in\{0, \ldots, n\}$ and each $j \in\{1, \ldots, p\}$ we consider the point b_{j}^{k} of L_{k} which in the above description is given by $b_{j}^{k}=\left(0,0,\left[1: b_{j}\right],[1: 0]\right) \in L_{k}$, we blow-up Ω_{n+2} at all these points and we obtain $\widetilde{\Omega}_{n+2}$. We let \tilde{L}_{k} to be the proper transform of L_{k}. Therefore: each \tilde{L}_{k} is isomorphic to $\mathbb{P}^{1}, \tilde{L}_{k} \cdot \tilde{L}_{k}=-p+2=-d, \tilde{L}_{k}$ and \tilde{L}_{k+1} intersect in precisely one point and the intersection is transversal, $\tilde{L}_{j} \cap \tilde{L}_{k}=\emptyset$ if $|j-k| \geq 2$.

It follows from Theorem 4, that a neighbourhood of $F_{0} \bigcup \cdots \bigcup F_{n}$ in X is biholomorphic to a neighbourhood of $\tilde{L}_{0} \bigcup \cdots \bigcup \tilde{L}_{n}$ in $\widetilde{\Omega}_{n+2}$. Therefore it suffices to prove the following statement.

Statement: For each neighbourhood W of $\tilde{L}_{0} \bigcup \cdots \bigcup \tilde{L}_{n}$ in $\widetilde{\Omega}_{n+2}$ and for each compact set $K \subset \widetilde{\Omega}_{n+2}$ such that $\tilde{L}_{0} \subset \stackrel{\circ}{K}$ there exist a holomorphic map $g_{n}: \mathbb{C} \rightarrow W$, such that

1. $g_{n}(\bar{\Delta}) \subset W$
2. $g_{n}(\partial \Delta) \subset K$,
3. $g_{n}(\bar{\Delta}) \cap \tilde{L}_{n} \neq \emptyset$.

We fix W and K. The holomorphic map g_{n} will be defined as follows: we construct two polynomial functions with convenient properties $f_{1}=f_{1}^{(n)}$ and $f_{2}=f_{2}^{(n)}$ and we will let $g_{n}: \mathbb{C} \rightarrow \widetilde{\Omega}_{n+2}$ to be the proper transform of $\left(f_{1}, f_{2}\right): \mathbb{C} \rightarrow \Omega_{0}$ after all the blow-ups we made. We will denote by $\hat{g}_{n}: \mathbb{C} \rightarrow \Omega_{n+2}$ the proper transform of $\left(f_{1}, f_{2}\right)$ after the first $(n+2)$ blow-ups.

We will construct in fact f_{1} and f_{2} such that $g_{n}\left(\bar{\Delta}_{2}\right) \subset W$ where $\Delta_{2}=\{z \in \mathbb{C}:|z|<2\}$.
We have to describe a fundamental system of neighbourhoods for $\tilde{L}_{0} \cup \cdots \bigcup \tilde{L}_{n}$.
First we notice that a fundamental system of neighbourhoods for L_{k}, in the coordinates introduced above is the following: $U_{r}^{(k)}=\left\{\left|\xi_{2}^{(k+1)}\right|<r\left|\xi_{1}^{(k+1)}\right|,\left|z_{1}^{(k)}\right|<r\right\}, r>0$. Then $\left(z_{1}^{(k)}, \xi_{2}^{(k)}-b_{j}\right)$ are local coordinates around b_{j}^{k} and in these coordinates b_{j}^{k} is the origin and L_{k} is given by $z_{1}^{(k)}=0$. When we blow-up Ω_{n+2} at b_{j}^{k}, locally we obtain $\left\{\left(z_{1}^{(k)}, \xi_{2}^{(k)}-b_{j},\left[w_{1}\right.\right.\right.$: $\left.\left.\left.w_{2}\right]\right): w_{1}\left(\xi_{2}^{(k)}-b_{j}\right)=w_{2} z_{1}^{(k)}\right\}$ and the proper transform of L_{k} is given by $w_{1}=0$. It follows that a fundamental system of neighbourhoods for \tilde{L}_{k} is given by $\left\{\left|w_{1}\right|<\rho\left|w_{2}\right|\right\}$ for $\rho>0$ which outside \tilde{L}_{k} is given by

$$
\left\{\left(z_{1}^{(k)}, z_{2}^{(k)},\left[\xi_{1}^{(k)}: \xi_{2}^{(k)}\right],\left[\xi_{1}^{(k+1)}: \xi_{2}^{(k+1)}\right]\right) \in U_{r}^{(k)}:\left|z_{1}^{(k)}\right| \cdot\left|\xi_{1}^{(k)}\right|<\rho\left|\xi_{2}^{(k)}-b_{j} \xi_{1}^{(k)}\right|, \forall j=\overline{1, p}\right\} .
$$

We obtain in this way a fundamental system of neighbourhoods $V_{r, \rho}^{(k)}, r>0, \rho>0$, for each \tilde{L}_{k} and hence $\bigcup_{k=0}^{n} V_{r, \rho}^{(k)}$ is a fundamental system of neighbourhoods for $\tilde{L}_{0} \bigcup \cdots \bigcup \tilde{L}_{n}$. We choose $1>r>0,1>\rho>0$ such that $\bigcup_{k=0}^{n} V_{r, \rho}^{(k)} \subset W$. Moreover we choose them such that

$$
r<\frac{\rho}{2}(1-r) .
$$

In particular $\frac{\rho}{2}>r$.
If we are working outside $\tilde{L}_{0} \bigcup \cdots \bigcup \tilde{L}_{n}$ and we express $z_{1}^{(k)}, z_{2}^{(k)}, \xi_{1}^{(k)}, \xi_{2}^{(k)}$ in terms of z_{1} and z_{2} we obtain:
$\left\{\begin{array}{l}z_{1}^{(k)}=\frac{z_{1}}{z_{2}^{k}} \\ z_{2}^{(k)}=z_{2} \\ \frac{\xi_{1}^{(k)}}{\xi_{2}^{(k)}}=\frac{z_{1}^{(k)}}{z_{2}^{(k)}}=\frac{z_{1}}{z_{2}^{k+1}}\end{array}\right.$

Hence $U_{r}^{(k)} \backslash L_{0} \cup \cdots \cup L_{n}$ is given by

$$
\left\{\left|z_{2}\right|^{k+2}<r\left|z_{1}\right|,\left|z_{1}\right|<r\left|z_{2}\right|^{k}\right\}
$$

and $V_{r, \rho}^{(k)} \backslash \tilde{L}_{0} \cup \cdots \cup \tilde{L}_{n}$ is given by

$$
\left\{\left|z_{2}\right|^{k+2}<r\left|z_{1}\right|,\left|z_{1}\right|<r\left|z_{2}\right|^{k},\left|z_{1}\right|^{2}<\rho\left|z_{2}\right|^{k} \cdot\left|z_{2}^{k+1}-b_{j} z_{1}\right|, \forall j=\overline{1, p}\right\}
$$

Note also that if we set $\mathcal{Z}:=\left\{\lambda \in \mathbb{C}: f_{1}(\lambda)=f_{2}(\lambda)=0\right\}$ then $g_{n}(\mathcal{Z}) \subset \tilde{L}_{0} \cup \cdots \cup \tilde{L}_{n}$.

Remark 1.

a) $\left(U_{r}^{(k)} \cap U_{r}^{(k+1)}\right) \backslash L_{0} \cup \cdots \cup L_{n}$ is given by $\left\{\left|z_{2}\right|^{\mid k+2}<r\left|z_{1}\right|,\left|z_{1}\right|<r\left|z_{2}\right|^{k+1}\right\}$ and $U_{r}^{(k)} \cap U_{r}^{(j)}=\emptyset$ for $|j-k| \geq 2$.
b) $\left\{\left|z_{1}\right|>r\left|z_{2}\right|\right\} \cap\left(\bigcup_{k \geq 1} U_{r}^{(k)}\right)=\emptyset$.

The construction of f_{1} and f_{2}.

- Let $c_{1}=1$. For $k=1, \ldots, n-1$ we define inductively

$$
c_{k+1}=2 k+1+p\left[k c_{1}+(k-1) c_{2}+\cdots+c_{k}\right] .
$$

- We set $d_{n}=p$ and we define inductively downward

$$
d_{k}=p\left(d_{k+1}+2 d_{k+2}+\cdots+(n-k) d_{n}+n-k+1\right) .
$$

- Let $N=2(n+1)\left(d_{1}+d_{2}+\cdots+d_{n}+1\right)$ and let ε be a positive number such that

$$
\begin{equation*}
\varepsilon<\left(\frac{1}{6}\right)^{N} \frac{r}{n+3} . \tag{*}
\end{equation*}
$$

- We define the following polynomials:

$$
\begin{aligned}
& P_{n, b_{j}}(\lambda)=\varepsilon^{c_{n}}-b_{j} \lambda, \\
& P_{n}(\lambda)=\prod_{j=1}^{p} P_{n, b_{j}}(\lambda)
\end{aligned}
$$

and, inductively downward for $k \leq n-1$,

$$
\begin{gathered}
P_{k, b_{j}}(\lambda)=\varepsilon^{c_{k}}-b_{j} P_{k+1}(\lambda) P_{k+2}^{2}(\lambda) \cdots P_{n}^{n-k}(\lambda) \lambda^{n-k+1} \\
P_{k}(\lambda)=\prod_{j=1}^{p} P_{k, b_{j}}(\lambda)
\end{gathered}
$$

- f_{1} and f_{2} are defined by:

$$
\begin{gathered}
f_{1}(\lambda)=\varepsilon P_{1}(\lambda) P_{2}^{2}(\lambda) \cdots P_{n}^{n}(\lambda) \cdot \lambda^{n+1} \\
f_{2}(\lambda)=\varepsilon^{2} P_{1}(\lambda) P_{2}(\lambda) \cdot P_{n}(\lambda) \cdot \lambda
\end{gathered}
$$

Lemma 1. The polynomials defined above have the following properties:

1. $\operatorname{deg} P_{k}=d_{k}$ and the absolute value of its leading coefficient is 1 .
2. $P_{k}(0) \neq 0$ and P_{j} and P_{k} have no common zero for $j \neq k$.
3. If $P_{k}(\lambda)=0$ then $|\lambda|<\frac{1}{2^{k}}$.
4. $\left|P_{k}(\lambda)\right|<3^{d_{k}}$ for $|\lambda| \leq 2$.
5. $\left(\frac{1}{2}\right)^{d_{k}}<\left|P_{k}(\lambda)\right|<3^{d_{k}}$ for $1 \leq|\lambda| \leq 2$.
6. $\left|f_{1}(\lambda)\right|<\frac{r}{n}$ and $\left|f_{2}(\lambda)\right|<\frac{r^{2}}{n}$ for $|\lambda| \leq 2$.
7. $\left|f_{2}(\lambda)\right|<\frac{\left|f_{1}(\lambda)\right|}{n}$ for $1 \leq|\lambda| \leq 2$.
8. $\left|f_{2}(\lambda)\right|^{k}<\left|f_{1}(\lambda)\right|$ for $1 \leq|\lambda| \leq 2$ and $k \geq 1$.

Proof. 1 and 2 are obvious. For 3 one uses backward induction and Rouché's theorem. Indeed, notice that if all the zeros of $P_{j}, j \geq k+1$, are inside $\left\{|\lambda|<\frac{1}{2^{j}}\right\}$ then, since the leading coefficient of P_{j} has the absolute value equal to 1 , we get, for $|\lambda|=\frac{1}{2^{k}}$, that $\left|P_{j}(\lambda)\right| \geq$ $\left(\frac{1}{2^{k+1}}\right)^{d_{j}}$. Using our choice of ε, we obtain then that $\left|b_{j} P_{k+1}(\lambda) P_{k+2}^{2}(\lambda) \cdots P_{n}^{n-k}(\lambda) \lambda^{n-k+1}\right|>$ $\varepsilon^{c_{k}}$ for $|\lambda|=\frac{1}{2^{k}}$ and hence $P_{k, b_{j}}$ and $b_{j} P_{k+1} \cdot P_{k+2}^{2} \cdots P_{n}^{n-k} \cdot \lambda^{n-k+1}$ have the same number of zeros inside $|\lambda|<\frac{1}{2^{k}}$. As the two polynomials have the same degree and the latter one has all its zeros in the disk $|\lambda|=\frac{1}{2^{k}}$, the former has also all its zeros inside $|\lambda|=\frac{1}{2^{k}}$.

The rest of the relations follow easily from 3. See also Corollaries 1 and 2 in [5].
Lemma 2. $\left(f_{1}, f_{2}\right)\left(\bar{\Delta}_{2} \backslash \mathcal{Z}\right) \subset \bigcup_{k \geq 0}^{n} U_{r}^{(k)} \backslash\left(L_{0} \cup \cdots \cup L_{n}\right)$
Proof. We have that $U_{r}^{(k)} \backslash\left(L_{0} \cup \cdots \cup L_{n}\right)$ is given by $\left\{\left|z_{2}\right|^{k+2}<r\left|z_{1}\right|,\left|z_{1}\right|<r\left|z_{2}\right|^{k}\right\}=$ $\left\{\frac{\left|z_{2}\right|^{k+2}}{r}<\left|z_{1}\right|<r\left|z_{2}\right|^{k}\right\}$. If $\left|z_{2}\right|<r^{2}$ then (because $r<1$) we have also that $\frac{\left|z_{2}\right|^{k+1}}{r}<r\left|z_{2}\right|^{k}$. These show that $\bigcup_{k>0}^{n} U_{r}^{(k)} \backslash\left(L_{0} \cup \cdots \cup L_{n}\right) \supset\left\{\left|z_{2}\right|<r^{2},{\frac{\mid z_{2}}{r}}^{n+2}<\left|z_{1}\right|<r\right\}$. By Lemma 1, part 6 , we have $\left|f_{1}(\bar{\lambda})\right|<r$ and $\left|f_{2}(\lambda)\right|<r^{2}$ for $|\lambda| \leq 2$. At the same time we notice that $\frac{f_{2}(\lambda)^{n+1}}{f_{1}(\lambda)}$ is a holomorphic function on \mathbb{C}. By Lemma 1 , part 8 , we have that if $\lambda \in \partial \Delta_{2}$, then ${\frac{r\left|f_{2}(\lambda)\right|}{\left|f_{1}(\lambda)\right|}}^{n+1}<1$. By the maximum modulus principle the same inequality holds for $\lambda \in \Delta_{2}$. Therefore, if $\lambda \in \Delta_{2}$, we have that $\left|f_{1}(\lambda)\right|>r\left|f_{2}(\lambda)\right|^{n+1}>{\frac{\left|f_{2}(\lambda)\right|}{r}}^{n+2}$.

Next we want to show that if for some $\lambda \in \bar{\Delta}_{2} \backslash \mathcal{Z}$ we have that $\left(f_{1}, f_{2}\right)(\lambda) \in U_{r}^{(k)} \backslash$ $\left(L_{0} \cup \cdots \cup L_{n}\right)$ then, in fact, $\left(f_{1}, f_{2}\right)(\lambda) \in V_{r, \rho}^{k} \backslash\left(\tilde{L}_{0} \cup \cdots \cup \tilde{L}_{n}\right)$. This is the content of the next proposition.
Proposition 2. Suppose that $\lambda \in \bar{\Delta}_{2} \backslash \mathcal{Z}$ and $k \in\{0,1, \ldots, n\}$. If $\left|f_{1}(\lambda)\right|<r\left|f_{2}(\lambda)\right|^{k}$ and $\left|f_{2}(\lambda)\right|^{k+2}<r\left|f_{1}(\lambda)\right|$ then

$$
\left|f_{1}(\lambda)\right|^{2}<\rho\left|f_{2}(\lambda)^{k+1}-b_{j} f_{1}(\lambda)\right| \cdot\left|f_{2}(\lambda)\right|^{k} \quad \forall j=\overline{1, p} .
$$

In order to prove Proposition 2 we need the following lemma which is in fact one of the main motivations for the inductive construction of P_{k}.
Lemma 3. a) For every $k \in\{0,1, \ldots, n-1\}$ we have that

$$
P_{k+1, b_{j}} \text { is a divisor of } \varepsilon^{2 k+1} P_{1}^{k} \cdot P_{2}^{k-1} \cdots P_{k}-b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}
$$

b) $\varepsilon^{2 k+1} P_{1}^{k} \cdot P_{2}^{k-1} \cdots P_{k}-b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}=P_{k+1, b_{j}} \cdot Q$ where Q is a polynomial that does not vanish on $\bar{\Delta}_{2}$

Proof. a) For $k=0$ this follows from the definition of $P_{1, b_{j}}$. For $k \geq 1$ we notice that for $s \leq k$ we have:
$P_{s, b_{j}} \equiv \varepsilon^{c_{s}}\left(\bmod P_{k+1}\right) \Longrightarrow P_{s} \equiv \varepsilon^{c_{s} p}\left(\bmod P_{k+1}\right) \Longrightarrow$
$\varepsilon^{2 k+1} P_{1}^{k} \cdots P_{k} \equiv \varepsilon^{2 k+1+p\left(k c_{1}+\cdots+c_{k}\right)} \equiv \varepsilon^{c_{k+1}}\left(\bmod P_{k+1}\right) \Longrightarrow P_{k+1, b_{j}} \mid \varepsilon^{2 k+1} P_{1}^{k} \cdots P_{k}-\varepsilon^{c_{k+1}}$.
However $\varepsilon^{c_{k+1}}=P_{k+1, b_{j}}+b_{j} P_{k+2} \cdot P_{k+3} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}$ and the conclusion follows.
b) It follows from Lemma 1 and our choice of ε that $\left|\varepsilon^{2 k+1} P_{1}^{k} \cdot P_{2}^{k-1} \cdots P_{k}\right|<\mid b_{j} P_{k+2}$. $P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k} \mid$ for $1 \leq|\lambda| \leq 2$. Hence, by Rouché's theorem, $\varepsilon^{2 k+1} P_{1}^{k} \cdot P_{2}^{k-1} \cdots P_{k}-$ $b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}$ and $b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}$ have the same number of zeros inside Δ_{2}. We have seen that all the zeros of each P_{k} are inside Δ and hence $b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}$ has $d_{k+2}+2 d_{k+3}+\cdots+(n-k-1) d_{n}+n-k=d_{k+1} / p=$ $\operatorname{deg} P_{k+1, b_{j}}$ zeros inside Δ_{2}. Therefore $\varepsilon^{2 k+1} P_{1}^{k} \cdot P_{2}^{k-1} \cdots P_{k}-b_{j} P_{k+2} \cdot P_{k+3}^{2} \cdots P_{n}^{n-k-1} \cdot \lambda^{n-k}$ and $P_{k+1, b_{j}}$ have the same number of zeros counting multiplicity inside Δ_{2} and therefore their quotient does not vanish.

Proof of Proposition 2. We fix j.
We deal first with the case $k=0$. We will to prove that $\left|f_{1}(\lambda)\right|^{2} \leq \frac{\rho}{2}\left|f_{2}(\lambda)-b_{j} f_{1}(\lambda)\right|$ for $\lambda \in \bar{\Delta}_{2}$. This will imply, of course that $\left|f_{1}(\lambda)\right|^{2}<\rho\left|f_{2}(\lambda)-b_{j} f_{1}(\lambda)\right|$ for $\lambda \in \bar{\Delta}_{2} \backslash \mathcal{Z}$.

We notice first that $\frac{f_{1}(\lambda)^{2}}{f_{2}(\lambda)-b_{j} f_{1}(\lambda)}$ is holomorphic on a neighbourhood of $\bar{\Delta}_{2}$. Indeed

$$
\frac{f_{1}(\lambda)^{2}}{f_{2}(\lambda)-b_{j} f_{1}(\lambda)}=\frac{\varepsilon P_{1} \cdot P_{2}^{3} \cdots P_{n}^{2 n-1} \cdot \lambda^{2 n+1}}{\varepsilon-b_{j} P_{2} \cdot P_{3}^{2} \cdots P_{n}^{n-1} \cdot \lambda^{n}}
$$

By the definition of $P_{1, b_{j}}$, since $c_{1}=1$, we have that $\varepsilon-b_{j} P_{2} \cdot P_{3}^{2} \cdots P_{n}^{n-1} \cdot \lambda^{n}=P_{1, b_{j}}$. This implies immediately that indeed $\frac{f_{1}(\lambda)^{2}}{f_{2}(\lambda)-b_{j} f_{1}(\lambda)}$ is holomorphic on a neighbourhood of $\bar{\Delta}_{2}$ (in fact on \mathbb{C}). Hence, by the maximum modulus principle, it suffices to show that $\frac{\left|f_{1}(\lambda)^{2}\right|}{\left|f_{2}(\lambda)-b_{j} f_{1}(\lambda)\right|} \leq \frac{\rho}{2}$ on $\partial \Delta_{2}$. It suffices then to show that $\left|f_{1}(\lambda)^{2}\right| \leq \frac{\rho}{2}\left|f_{1}(\lambda)\right|-\frac{\rho}{2}\left|f_{2}(\lambda)\right|$ which is the same as $\left|f_{1}(\lambda)^{2}\right|+\frac{\rho}{2}\left|f_{2}(\lambda)\right| \leq \frac{\rho}{2}\left|f_{1}(\lambda)\right|$, i.e. $\varepsilon^{2}\left|P_{1}^{2} \cdots P_{n}^{2 n} \lambda^{2 n+2}\right|+\frac{\rho}{2} \varepsilon^{2}\left|P_{1} \cdots P_{n} \lambda\right| \leq$ $\frac{\rho}{2} \varepsilon\left|P_{1} \cdots P_{n}^{n} \lambda^{n+1}\right|$. Hence we want $\varepsilon\left(\left|P_{1} \cdots P_{n}^{2 n-1} \lambda^{2 n+1}\right|+\frac{\rho}{2}\right)<\frac{\rho}{2}\left|P_{2} \cdots P_{n}^{n-1} \lambda^{n}\right|$ on $\partial \Delta_{2}$. However this follows from Lemma 1, part 5, and ($*$).

Suppose now that $k \geq 1$. In this case we will show in fact that if $\left|f_{2}(\lambda)\right|^{k+2}<r\left|f_{1}(\lambda)\right|$ then $\left|f_{1}(\lambda)\right|^{2} \leq \frac{\rho}{2}\left|f_{2}(\lambda)^{k+1}-b_{j} f_{1}(\lambda)\right| \cdot\left|f_{2}(\lambda)\right|^{k} \quad \forall j$. In order to do this we let $A_{k}:=$
$\left\{\lambda \in \Delta_{2}:\left|f_{1}(\lambda)\right|<r\left|f_{2}(\lambda)\right|^{k}\right\}$. Notice that by Lemma 1 , part $8, A_{k} \subset \Delta$ and hence $\left|f_{1}(\lambda)\right|=r\left|f_{2}(\lambda)\right|^{k}$ on ∂A_{k}. We also note that, for $l \leq k-1, P_{l}$ does not vanish on \bar{A}_{k}. Indeed the polynomials P_{1}, \ldots, P_{n} have no common zero and the order of vanishing of f_{1} at a zero of P_{l} is (strictly) less than the order of vanishing f_{2}^{k} at the same zero.

Then part b) of Lemma 3 and a direct computation shows that

$$
\frac{f_{1}^{2}(\lambda)}{\left(f_{2}^{k+1}(\lambda)-b_{j} f_{1}(\lambda)\right) \cdot f_{2}^{k}(\lambda)}
$$

is holomorphic on a neighbourhood of \bar{A}_{k}.
By the maximum modulus theorem, it suffices to show that

$$
\frac{\left|f_{1}^{2}(\lambda)\right|}{\left|\left(f_{2}^{k+1}(\lambda)-b_{j} f_{1}(\lambda)\right) \cdot f_{2}^{k}(\lambda)\right|} \leq \frac{\rho}{2}
$$

on ∂A_{k}, hence for $\left|f_{1}(\lambda)\right|=r\left|f_{2}(\lambda)\right|^{k}$. But then it suffices to prove that $\left|f_{1}^{2}(\lambda)\right| \leq$ $\frac{\rho}{2}\left(\left|b_{j} f_{1}(\lambda)\right|-\left|f_{2}^{k+1}(\lambda)\right|\right)\left|f_{2}(\lambda)\right|^{k}$ and hence that $r^{2}\left|f_{2}(\lambda)\right|^{2 k} \leq \frac{\rho}{2}\left(r\left|f_{2}(\lambda)\right|^{k}-\left|f_{2}(\lambda)\right|^{k+1}\right)$. $\left|f_{2}(\lambda)\right|^{k}$, this means that it suffices to show that $r^{2} \leq \frac{\rho}{2}\left(r-\left|f_{2}(\lambda)\right|\right)$ and, since $\left|f_{2}(\lambda)\right| \leq r^{2}$, it suffices to have $r \leq \frac{\rho}{2}(1-r)$ and this exactly the condition that we have imposed on r and ρ.

All together, from Lemma 2 and Proposition 2 we deduce that $g_{n}(\bar{\Delta} \backslash \mathcal{Z}) \subset \bigcup_{k=0}^{n} V_{r, \rho}^{k} \backslash$ $\left(\tilde{L}_{0} \cup \cdots \bigcup \tilde{L}_{n}\right)$. As we have already mentioned, $g_{n}(\mathcal{Z}) \subset \tilde{L}_{0} \cup \cdots \bigcup \tilde{L}_{n}$. Therefore $g_{n}(\bar{\Delta}) \subset \bigcup_{k=0}^{n} V_{r, \rho}^{k} \subset W$.

We prove now that we can choose r and ρ such that $g_{n}(\partial \Delta) \subset K$.
Since $\left\{V_{r, \rho}^{0}\right\}$ is a fundamental system of neighbourhoods for \tilde{L}_{0} it follows that there exists r and ρ such that $V_{r, \rho}^{0} \subset K$. Hence it suffices to show that $g_{n}(\partial \Delta) \subset V_{r, \rho}^{0}$. We have seen that $\mathcal{Z} \subset \Delta$. Therefore it suffices to show that for $|\lambda|=1$ the following inequalities are satisfied: $\left|f_{2}\right|^{2}<r\left|f_{1}\right|,\left|f_{1}\right|<r,\left|f_{1}\right|^{2}<\rho\left|f_{2}-b_{j} f_{1}\right|$ for every j. That $\left|f_{1}\right|<r$ follows from Lemma 1, part 6 . The inequality $\left|f_{1}\right|^{2}<\rho\left|f_{2}-b_{j} f_{1}\right|$ for every j was already proved. It remains to deal with the first inequality. For $|\lambda|=1$ we have that:

$$
\left|f_{2}\right|^{2}<r\left|f_{1}\right| \Longleftrightarrow \varepsilon^{4}\left|P_{1}^{2} \cdots P_{n}^{2} \lambda^{2}\right|<r \varepsilon\left|P_{1} P_{2}^{2} \cdots P_{n}^{n} \lambda^{n+1}\right| \Longleftrightarrow \varepsilon^{3}<\frac{r\left|P_{3} P_{4}^{2} \cdots P_{n}^{n-2}\right|}{\left|P_{1}\right|}
$$

This last inequality follows from Lemma 1, part 5, and (*).
It remains to check that $g_{n}(\bar{\Delta}) \cap \tilde{L}_{n} \neq \emptyset$. Note that since $\lambda=0$ is a zero of order 1 for f_{2} and order $n+1$ for f_{1} then $\hat{g}_{n}(0) \in L_{n}$ (\hat{g}_{n} was the proper transform of $\left(f_{1}, f_{2}\right)$ after the first $(n+2)$ blow-ups). Moreover $\hat{g}_{n}(0)=\left(0,0,\left[f_{1}(0): f_{2}^{n+1}(0)\right],[1: 0]\right)$. Now $\frac{f_{2}^{n+1}(0)}{f_{1}(0)}=\varepsilon^{2 n+1} P_{1}^{n}(0) \cdots P_{n}(0)$ and $(*)$ and Lemma 1, part 4, imply that $\frac{\left|f_{2}^{n+1}(0)\right|}{\left|f_{1}(0)\right|} \neq 1$. In particular $\hat{g}_{n}(0) \neq b_{j}^{n}$ and this implies that $g_{n}(0) \in \tilde{L}_{n}$.

This finishes the proof of Theorem 5.

Proposition 3. Let X be a 1-convex manifold and let A be its exceptional set. Let also $p: \tilde{X} \rightarrow X$ be a covering and $\tilde{A}:=p^{-1}(A)$. If $\operatorname{dim} A=1$ and \tilde{A} is holomorphically convex then \tilde{X} is holomorphically convex.

Proof. Let U be a neighbourhood of A such that $p^{-1}(U)$ is holomorphically convex. Such an U exists by Theorem 3 since $\operatorname{dim} A=1$ and \tilde{A} is holomorphically convex. Let \hat{U} be the Remmert reduction of $p^{-1}(U)$ and $\psi: \hat{U} \rightarrow \mathbb{R}$ a strongly plurisubharmonic exhaustion function. The same contractions of connected compact subspaces of $p^{-1}(U)$ (hence of $\left.\tilde{A}\right)$ used to obtain \hat{U} can be viewed as taking place in \tilde{X} and we obtain a complex space \hat{X} and a proper modification $\rho: \tilde{X} \rightarrow \hat{X}$. We have also that \hat{U} is an open subset of \hat{X}.

We let $\tilde{\phi}: \tilde{X} \rightarrow[-\infty, \infty)$ be the plurisubharmonic function given by Proposition 1 and $V \subset X$ be an open neighbourhood of A such that $V \Subset U$. Since $\tilde{\phi}_{\mid \tilde{X} \backslash p^{-1}(V)}$ is an exhaustion we can find a strictly convex and increasing function $\chi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\chi \circ \tilde{\phi}>\psi$ on $p^{-1}(\partial V)$. Then $\hat{\phi}: \hat{X} \rightarrow \mathbb{R}$ defined as $\chi \circ \tilde{\phi}$ on $\tilde{X} \backslash p^{-1}(V)=\hat{X} \backslash p^{-1}(V)$ and as $\max \{\chi \circ \tilde{\phi}, \psi\}$ on $\rho\left(p^{-1}(V)\right)$ is a well-defined strictly plurisubharmonic exhaustion function. Therefore \hat{X} is Stein and hence \tilde{X} is holomorphically convex.

Lemma 4. Let A be a complex space of dimension 1 such that A does not contain as a closed subspace an infinite Nori string of rational curves. If L_{1}, \ldots, L_{k} are finitely many irreducible components of A, then there exists a holomorphically convex covering of A such that $L_{1} \bigcup \cdots \bigcup L_{k}$ is evenly covered.

Proof. We let $A=\bigcup_{i \in I} L_{i}$ be the decomposition of A into irreducible components. Hence $\{1, \ldots, k\} \subset I$. We let $I_{0}=\{1, \ldots, k\} \cup\left\{i \in I: A_{i}\right.$ is rational $\}$ and $I_{1}=I \backslash I_{0}$. We set $A_{0}=\bigcup_{i \in I_{0}} L_{i}, A_{1}=\bigcup_{i \in I_{1}} L_{i}$. Because A does not contain an infinite Nori string of rational curves we have that all connected components of A_{0} are compact. We let $p: \tilde{A}_{1} \rightarrow A_{1}$ be the universal covering of A_{1} (or any other Stein covering), $\left\{b_{j}, j \in J\right\}=A_{0} \cap A_{1}$ and $\left\{b_{j, n}: n \in \mathbb{N}\right\}=p^{-1}\left(b_{j}\right) \subset \tilde{A}_{1}$. We consider A_{0}^{n} countably many disjoint copies of A_{0} and $b_{j}^{n} \in A_{0}^{n}$ the points corresponding to b_{j}.

Now we define $\tilde{A}:=\left(\tilde{A}_{1} \bigsqcup_{n \in \mathbb{N}} A_{0}^{n}\right) / \sim$ where \sim identifies $b_{j, n}$ and b_{j}^{n}. Also we define $\tilde{p}: \tilde{A} \rightarrow A$ by $\tilde{p}=p$ on \tilde{A}_{1} and \tilde{p} is the identity on A_{0}^{n}. It is not difficult to see that \tilde{p} is a covering and \tilde{A} is holomorphically convex. Also A_{0} is evenly covered and therefore $L_{1} \bigcup \cdots \bigcup L_{k}$ is evenly covered.

Theorem 6. Let X be a 1-convex complex surface and $p: \tilde{X} \rightarrow X$ be a covering. Then \tilde{X} is p_{5}-convex if and only if \tilde{X} does not contain an infinite Nori string of rational curves.

Proof. The only if part follows from Theorem 5. We prove the if part.
Let $f_{n}: \bar{\Delta} \rightarrow \tilde{X}$ be a sequence of holomorphic disks such that $f_{n}(\partial \Delta) \subset K$ where K is a compact subset of \tilde{X}.

Let A be the exceptional set of X. Let W be a neighbourhood of A such that there exists a continuous strong deformation retract $W \rightarrow A$. It follows that there exists a strong deformation retract $\rho: p^{-1}(W) \rightarrow p^{-1}(A)$.

We choose $\psi: X \rightarrow \mathbb{R}$ a plurisubharmonic function and $0<b<a$ real numbers such that $\psi_{\mid X \backslash A}$ is strictly plurisubharmonic, $\psi_{\mid A}=0$, and $A \subset\{\psi<b\} \Subset\{\psi<a\} \Subset W$. We set $U=\{\psi<a\}$ and $V=\{\psi<b\}$.

We apply Proposition 1 and we choose $\phi: \tilde{X} \rightarrow[-\infty, \infty)$ a strictly plurisubharmonic function such that $\{\phi=-\infty\}=p^{-1}(A)$ and for every open neighbourhood Ω of A, $\phi_{\mid \tilde{X} \backslash \phi^{-1}(\Omega)}$ is an exhaustion. Let $M=\max _{x \in K} \phi(x)$. By the maximum principle we have that $\phi \circ f_{n} \leq M$ on Δ.

Since $\phi_{\mid \tilde{X} \backslash \phi^{-1}(V)}$ is an exhaustion it follows that $\{\phi \leq M\} \backslash p^{-1}(V)$ is compact. Let $K_{1}=K \bigcup\left(\{\phi \leq M\} \backslash p^{-1}(V)\right)$ which is also compact. Let K_{2} be another compact subset such that $K_{2} \subset p^{-1}(W)$ and the interior of K_{2} contains $K_{1} \cap p^{-1}(\bar{U})$. We have that $\rho\left(K_{2}\right)$ is a compact subset of $p^{-1}(A)$. We choose L_{1}, \ldots, L_{k} finitely many irreducible components of $p^{-1}(A)$ such that $L_{1} \cup \cdots \cup L_{k} \supset \rho\left(K_{2}\right)$. We apply Lemma 4 to obtain a holomorphically convex covering $\hat{A} \rightarrow p^{-1}(A)$ such that $L_{1} \cup \cdots \cup L_{k}$ is evenly covered. We consider the fiber product of this covering map and ρ and we obtain a covering $\hat{p}: \hat{W} \rightarrow p^{-1}(W)$ which extends the covering $\hat{A} \rightarrow p^{-1}(A)$. It follows that $\rho^{-1}\left(L_{1} \cup \cdots \cup L_{k}\right)$ is evenly covered for \hat{p}. In particular K_{2} is also evenly covered. We choose \hat{K}_{2} a compact subset of \hat{W} such that $\hat{p}: \hat{K}_{2} \rightarrow K_{2}$ is a homeomorphism. Since U is strictly pseudoconvex, Proposition 3 implies that $\hat{p}^{-1}\left(p^{-1}(U)\right)$ is holomorphically convex. Also since U is given by $\{\psi<a\}$ it follows that $f_{n}^{-1}\left(p^{-1}(U)\right) \cap \Delta$ is Runge in Δ. Let $\Omega_{n, j}$ be its connected components. Hence $\Omega_{n, j}$ are all simply connected.

We notice now that $\partial\left(f_{n}^{-1}\left(p^{-1}(U)\right) \cap \Delta\right) \subset\left(\bar{\Delta} \backslash f_{n}^{-1}\left(p^{-1}(V)\right)\right) \cup \partial \Delta$ and hence $f_{n}\left(\partial \Omega_{n, j}\right)$ is contained in the interior of K_{2}. We let $\Omega_{n, j}^{\prime} \Subset \Omega_{n, j}$ such that they have smooth boundary and they are diffeomorphic to a disk, and, moreover $f_{n}\left(\bar{\Omega}_{n, j} \backslash \Omega_{n, j}^{\prime}\right)$ is still contained in the interior of K_{2}. Let $\hat{f}_{n, j}: \bar{\Omega}_{n, j}^{\prime} \rightarrow \hat{p}^{-1}\left(p^{-1}(U)\right)$ be liftings of $f_{n \mid \bar{\Omega}_{n, j}^{\prime}}$ such that $\hat{f}_{n, j}\left(\partial \Omega_{n, j}^{\prime}\right) \subset$ \hat{K}_{2}. Because $\hat{p}^{-1}\left(p^{-1}(U)\right)$ is holomorphically convex, it follows that $\bigcup \hat{f}_{n, j}\left(\bar{\Omega}_{n, j}^{\prime}\right)$ is contained in a compact subset K_{3} of \hat{W}. Hence $f_{n}(\bar{\Delta}) \subset K_{1} \cup K_{2} \cup K_{3}$ and the proof of the theorem is complete.

4 Some remarks regarding separation of cohomology

In [6] we proved that there exists a 1-convex complex surface X and a covering \tilde{X} of X such that $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated. The main ingredients where:

- the p_{3}-convexity of \tilde{X},
- our construction from [5] of a 1-convex surface X such that for its universal covering \tilde{X} there exists a sequence of holomorphic disks $g_{n}: \bar{\Delta} \rightarrow \tilde{X}$ such that
a) $\bigcup g_{n}(\partial \Delta)$ is relatively compact and $\bigcup g_{n}(\bar{\Delta})$ is not.
b) there exist closed 1-dimensional analytic subsets A_{n} of \tilde{X} such that $g_{n}(\bar{\Delta}) \subset A_{n}$.

It turns out that the following more general statement holds:
Proposition 4. Let X be a 1-convex surface, A its exceptional set and $p: \tilde{X} \rightarrow X a$ covering map. We assume that A has a closed subspace A_{1} which is a cycle of \mathbb{P}^{1} such that
$p^{-1}\left(A_{1}\right)$ has a noncompact connected component. Then $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated.
Proof. Let $\varphi: X \rightarrow[0, \infty)$ be a plurisubharmonic exhaustion function on X such that $A=\{\varphi=0\}$ and φ is strictly plurisubharmonic outside A.

We prove first that there exist:

- a strictly pseudoconvex neighbourhood $\Omega \subset X$ of $A, \Omega=\left\{\varphi<\varepsilon_{0}\right\}$ for some $\varepsilon_{0}>0$,
- a sequence $\left\{B_{n}\right\}$ of closed 1-dimensional analytic subsets of $p^{-1}(\Omega)$, and
- a sequence of holomorphic disks $h_{n}: \bar{\Delta} \rightarrow p^{-1}(\Omega)$,
such that $h_{n}(\bar{\Delta}) \subset B_{n}, \bigcup h_{n}(\partial \Delta)$ is relatively compact in $p^{-1}(\Omega)$, and $\bigcup h_{n}(\bar{\Delta})$ is not relatively compact. This will imply, as in [6], that $H^{1}\left(p^{-1}(\Omega), \mathcal{O}_{\tilde{X}}\right)$ is not separated.

Let $\bigcup_{j \in \mathbb{Z}} L_{j}$ be the noncompact connected component of $p^{-1}\left(A_{1}\right)$. This is an infinite chain of \mathbb{P}^{1}. Let $\bigcup_{j=0}^{q} F_{j}$ be the decomposition of A_{1} into irreducible components and let A_{2} be the union of all irreducible components of A that are not included in A_{1}. After a finite number of blow-ups we can assume that $\left(F_{0} \cup F_{q}\right) \cap A_{2}=\emptyset$ and $F_{i} \cdot F_{i}=F_{j} \cdot F_{j} \leq-3$ for $i, j \in\{0, \ldots, q)$. Of course, all these blow-ups can be performed in \tilde{X} as well and still we obtain a covering.

Exactly as in [5], using the construction from the proof of Theorem 5, we can construct a complex surface X^{\prime} containing a cycle of $\mathbb{P}^{1}, A^{\prime}, A^{\prime}=\bigcup_{j=0}^{q} F_{j}^{\prime}$ with $F_{j}^{\prime} \cdot F_{j}^{\prime}=F_{j} \cdot F_{j}$ for each j and a covering $p^{\prime}: \tilde{X}^{\prime} \rightarrow X^{\prime}$ such that \tilde{X}^{\prime} is not p_{5}-convex. In fact $\tilde{X}^{\prime}=\bigcup_{k \in \mathbb{Z}} V_{r_{2}, \rho_{2}}^{(k)}$ and contains an infinite chain of $\mathbb{P}^{1}, \bigcup_{j \in \mathbb{Z}} L_{j}^{\prime}$. Here $0<r_{2}<1$ and $0<\rho_{2}<1$. By Theorem 4, there exist $U \subset X$ and $U^{\prime} \subset X^{\prime}$ biholomorphic neighbourhoods of A_{1} and respectively A^{\prime}. Let $\chi: U \rightarrow U^{\prime}$ be a biholomorphism. We let $W \subset U$ be an open neighborhood of A_{1} that has a continuous deformation retract onto A_{1} and $W^{\prime}=\chi(W) \subset U^{\prime}$. We let X_{0} be the connected component of $p^{-1}(W)$ that contains $\bigcup_{j \in \mathbb{Z}} L_{j}$ and X_{0}^{\prime} be the connected component of $p^{\prime-1}\left(W^{\prime}\right)$ that contains $\bigcup_{j \in \mathbb{Z}} L_{j}^{\prime}$. Then X_{0} is in fact the universal covering of W and X_{0}^{\prime} is the universal covering of W^{\prime}. Let $\tilde{\chi}: X_{0} \rightarrow X_{0}^{\prime}$ be the lifting of χ. It follows that $\tilde{\chi}$ is a biholomorphism.

We choose $0<r_{1}<r_{2}$ and $0<\rho_{1}<\rho_{2}$ such that $\overline{\bigcup_{k \in \mathbb{Z}} V_{r_{1}, \rho_{1}}^{(k)}} \subset X_{0}^{\prime}$. Then $\bigcup_{k \in \mathbb{Z}} V_{r_{1}, \rho_{1}}^{(k)}$ will cover a neighbourhood of A^{\prime}. The indices are chosen such that $p^{\prime}\left(V_{r_{1}, \rho_{1}}^{(k)}\right)=$ $p^{\prime}\left(V_{r_{1}, \rho_{1}}^{(k+q+1)}\right) \supset F_{j}^{\prime}$ if $j \equiv k(\bmod \mathrm{q}+1)$. For $j \in\{0, \ldots, q\}$ we set $\mathcal{V}_{j}^{\prime}=p^{\prime}\left(V_{r_{1}, \rho_{1}}^{(j)}\right) \subset W^{\prime}$ and $\mathcal{V}_{j}=\chi^{-1}\left(\mathcal{V}_{j}^{\prime}\right)$.

We choose $\varepsilon_{0}>0$ such that $\Omega:=\left\{\varphi<\varepsilon_{0}\right\}$, which is a strictly pseudoconvex neighbourhood of A, satisfies $\Omega \cap \partial\left(\mathcal{V}_{0} \cup \mathcal{V}_{q}\right) \subset \mathcal{V}_{1} \cup \mathcal{V}_{q-1}$. This is possible because $\left(F_{0} \cup F_{q}\right) \cap A_{2}=\emptyset$.

Finally, we choose $0<r<r_{1}$ and $0<\rho<\rho_{1}$ such that $r<\frac{\rho}{2}(1-r)$ and $\bigcup_{k \in \mathbb{Z}} \bar{V}_{r, \rho}^{(k)} \subset$ $p^{\prime-1}\left(W^{\prime} \cap \chi(\Omega)\right)$.

As in the proof of Theorem 5, we can construct a sequence of holomorphic disks, $g_{n}: \bar{\Delta} \rightarrow \bigcup_{k \in \mathbb{Z}} V_{r, \rho}^{(k)}$ such that $\bigcup g_{n}(\partial \Delta)$ is relatively compact in $\bigcup_{k \in \mathbb{Z}} V_{r, \rho}^{(k)}$ and $\bigcup g_{n}(\bar{\Delta})$ is not. We let $h_{n}=g_{n} \circ \tilde{\chi}^{-1}$ and we regard them as holomorphic disks in $p^{-1}(\Omega)$. Then $\bigcup h_{n}(\partial \Delta)$ is relatively compact in $p^{-1}(\Omega)$ and $\bigcup h_{n}(\bar{\Delta})$ is not.

At the same time there exist 1-dimensional analytic subsets B_{n}^{\prime} which are closed in X_{0}^{\prime} such that $g_{n}(\bar{\Delta}) \subset B_{n}^{\prime}$. These analytic sets are nothing else than the intersection of X_{0}^{\prime}
with $g_{n}(\mathbb{C}), g_{n}$ being the proper transform of $\left(f_{1}, f_{2}\right)$ where $f_{1}=f_{1}^{(n)}, f_{2}=f_{2}^{(n)}$ are the polynomials defined in the proof of Theorem 5. They are closed analytic subsets because f_{1} and f_{2}, being nonconstant polynomials, are proper maps from \mathbb{C} to \mathbb{C}. At the same time, by construction, $g_{n}(\mathbb{C}) \cap X_{0}^{\prime} \subset \bigcup_{k=0}^{n} V_{r_{2}, \rho_{2}}^{(k)}$.

Let $B_{n}=\tilde{\chi}^{-1}\left(B_{n}^{\prime} \cap\left(\cup_{k \in \mathbb{Z}} V_{r_{1}, \rho_{1}}^{(k)}\right)\right) \cap p^{-1}(\Omega)$. Clearly $h_{n}(\bar{\Delta}) \subset B_{n}$. We claim that the sets B_{n} are closed analytic subsets of $p^{-1}(\Omega)$. That they are analytic is obvious. We have to check that they are closed.

Because $g_{n}(\bar{\Delta})$ is a compact subset of X_{0}^{\prime} and $g_{n}(\bar{\Delta}) \subset \cup_{k \in \mathbb{Z}} V_{r_{1}, \rho_{1}}^{(k)}$, it follows that we have to deal only with $g_{n}(\mathbb{C} \backslash \Delta)$. That means that it suffices to show that $\tilde{\chi}^{-1}\left(g_{n}(\mathbb{C} \backslash \Delta) \cap\right.$ $\left(\cup_{k \in \mathbb{Z}} V_{r_{1}, \rho_{1}}^{(k)}\right) \cap p^{-1}(\Omega)$ is a closed subset of $p^{-1}(\Omega)$.

We note now that Lemma 1 and our choice of ε imply that for $|\lambda| \geq 1$ we have that $\left|f_{1}(\lambda)\right|>r\left|f_{2}(\lambda)\right|$. This inequality and Remark $\left.1, \mathrm{~b}\right)$ imply that $\left(f_{1}, f_{2}\right)(\mathbb{C} \backslash \Delta) \cap$ $\left(\cup_{k \geq 1} V_{r_{2}, \rho_{2}}^{(k)}\right)=\emptyset$, i.e. $g_{n}(\mathbb{C} \backslash \Delta) \cap\left(\cup_{k \geq 1} V_{r_{2}, \rho_{2}}^{(k)}\right)=\emptyset$. At the same time, since $g_{n}(\mathbb{C} \backslash \Delta) \cap X_{0}^{\prime} \subset$ $\bigcup_{k=0}^{n} V_{r_{2}, \rho_{2}}^{(k)}$ and $V_{r_{2}, \rho_{2}}^{(j)} \cap\left(\bigcup_{k=0}^{n} V_{r_{2}, \rho_{2}}^{(k)}\right)=\emptyset$ for $j \leq-2$ (see Remark 1, a)), we deduce that $\left.g_{n}(\mathbb{C} \backslash \Delta) \cap X_{0}^{\prime} \cap\left[\cup_{k \in \mathbb{Z} \backslash\{-1,0\}} V_{r_{2}, \rho_{2}}^{(k)}\right)\right]=\emptyset$.

The inclusion $\Omega \cap \partial\left(\mathcal{V}_{0} \cup \mathcal{V}_{q}\right) \subset \mathcal{V}_{1} \cup \mathcal{V}_{q-1}$ implies that $p^{-1}(\Omega) \cap \partial \tilde{\chi}^{-1}\left(V_{r_{1}, \rho_{1}}^{(-1)} \cup V_{r_{1}, \rho_{1}}^{(0)}\right) \subset$ $\tilde{\chi}^{-1}\left(V_{r_{1}, \rho_{1}}^{(-2)} \cup V_{r_{1}, \rho_{1}}^{(1)}\right)$. We deduce that

$$
\tilde{\chi}^{-1}\left(g_{n}(\mathbb{C} \backslash \Delta) \cap X_{0}^{\prime}\right) \cap \partial \tilde{\chi}^{-1}\left(V_{r_{1}, \rho_{1}}^{(-1)} \cup V_{r_{1}, \rho_{1}}^{(0)}\right) \cap p^{-1}(\Omega)=\emptyset .
$$

The following simple remark implies then that the sets B_{n} are closed in $p^{-1}(\Omega)$.
Remark 2. Suppose that D, D_{1}, D_{2} are open sets in a topological space such that $\bar{D}_{1} \subset$ D_{2}. Let A be a closed subset of D_{2}. If $A \cap \partial D_{1} \cap D=\emptyset$ then $A \cap D_{1} \cap D$ is closed in D.

Indeed, we apply this remark for $D_{2}=X_{0}^{\prime}, D_{1}=\tilde{\chi}^{-1}\left(V_{r_{1}, \rho_{1}}^{(-1)} \cup V_{r_{1}, \rho_{1}}^{(0)}\right), D=p^{-1}(\Omega)$ and $A=\tilde{\chi}^{-1}\left(g_{n}(\mathbb{C} \backslash \Delta) \cap X_{0}^{\prime}\right)$.

In order to finish the proof of the proposition we need the following:
Lemma 5. Suppose that X is a 1-convex manifold with exceptional set A and $p: \tilde{X} \rightarrow X$ is a covering. Let $\varphi: X \rightarrow[0, \infty)$ be a plurisubharmonic exhaustion function on X such that $A=\{\varphi=0\}$ and φ is strictly plurisubharmonic outside A. If the cohomology group $H^{1}\left(p^{-1}\left\{\varphi<\varepsilon_{0}\right\}, \mathcal{O}_{\tilde{X}}\right)$ is non-separated for some $\varepsilon_{0}>0$ then $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is non-separated.

Proof. (Sketch) Using "bumpings" (see [8]) we have that the morphism induced by restriction $H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(\left\{\varphi<\varepsilon_{0}\right\}, \mathcal{O}_{X}\right)$ is surjective and becomes injective when passing to separates (see Proposition 1.3, page 346 in [1]). The bumpings on X induce bumpings on \tilde{X} which gives easily that $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow H^{1}\left(p^{-1}\left\{\varphi<\varepsilon_{0}\right\}, \mathcal{O}_{\tilde{X}}\right)$ is surjective and becomes injective when passing to separates. This implies, of course, the conclusion of the lemma.

Example 1. We give an example of a 1-convex surface X and a covering \tilde{X} of X such that even though \tilde{X} does not contain an infinite Nori string of rational curves, $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated. Note that by Theorem $1 \tilde{X}$ is p_{3}-convex and by Theorem 6 it is p_{5}-convex.

Let us start with a 1-convex complex surface Y with exceptional set A and a covering $p_{Y}: \tilde{Y} \rightarrow Y$ such that

- $A=F_{1} \cup F_{2}$ where F_{1} and F_{2} are isomorphic with \mathbb{P}^{1},
- F_{1} and F_{2} intersect in precisely two points a and b and the intersection is transversal,
- $F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=-3$,
- $p_{Y}^{-1}(A)=\bigcup_{k \in \mathbb{Z}} L_{k}$ is an infinite chain of $\mathbb{P}^{1}, p_{Y}^{-1}\left(F_{1}\right)=\bigcup_{j \in \mathbb{Z}} L_{2 k+1}, p_{Y}^{-1}\left(F_{2}\right)=\bigcup_{k \in \mathbb{Z}} L_{2 k}$. We have seen that $H^{1}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\right)$ is not separated.
For $j \in\{1,2\}$, let $\mathcal{F}_{j} \rightarrow F_{j}$ be the normal bundle of F_{j} in Y. We choose simply connected neighbourhoods U_{j} of F_{j} in Y such that U_{j} is biholomorphic to a neighbourhood V_{j} of the zero section of \mathcal{F}_{j} and $U_{1} \cap U_{2}$ has two connected components $U^{a} \ni a$ and $U^{b} \ni b$. The existence of U_{j} follows from Theorem 4. See also [9]. Let $\phi_{j}: U_{j} \rightarrow V_{j}$ be biholomorphisms. We have that $p_{Y}^{-1}\left(U_{j}\right)=\bigcup_{k \in \mathbb{Z}} U_{j, k}$ where $U_{1, k}$ is a neighborhood of $L_{2 k+1}$ isomorphic via p_{Y} with U_{1} and $U_{2, k}$ is a neighbourhood of $L_{2 k}$ isomorphic via p_{Y} with U_{2}.

Let S_{1} and S_{2} be two compact complex curves of genus ≥ 1 and $\pi_{1}: S_{1} \rightarrow F_{1}$, $\pi_{2}: S_{2} \rightarrow F_{2}$ be ramified coverings that have the same number, p, of points in the generic fiber. This is possible if p is large enough. Moreover, we assume that a and b are not ramification points for π_{j}. We pull-back \mathcal{F}_{j} to S_{j} and we let $\psi_{j}: \pi_{j}^{*} \mathcal{F}_{j} \rightarrow \mathcal{F}_{j}$ be the canonical maps. We have that ψ_{j} are also ramified coverings and by shrinking U_{1} and U_{2} we can assume that $\phi_{j}\left(U_{1} \cap U_{2}\right)$ is evenly covered by ψ_{j}. We let $\psi_{j}^{-1}\left(\phi_{j}\left(U^{a}\right)\right)=\bigcup_{l=1}^{p} V_{l, j}^{a}$ and $\psi_{j}^{-1}\left(\phi_{j}\left(U^{b}\right)\right)=\bigcup_{l=1}^{p} V_{l, j}^{b}$.

Now we let $X=\psi_{1}^{-1}\left(V_{1}\right) \bigsqcup \psi_{2}^{-1}\left(V_{2}\right) / \sim$, where, for $l=1, \ldots, p, \sim$ identifies, $V_{l, 1}^{a}$ with $V_{l, 2}^{a}$ and $V_{l, 1}^{b}$ with $V_{l, 2}^{b}$ using the automorphisms induced by ϕ_{j} and ψ_{j}. It follows that X is a 1-convex surface and there exists a finite map $f: X \rightarrow Y$. The exceptional set of X is the union of two complex curves of genus g that intersect transversely in $2 p$ points.

In a completely similar manner, by gluing ramified coverings of $U_{j, k}, j \in\{1,2\}, k \in \mathbb{Z}$, we can construct a covering \tilde{X} of X and a finite map $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$.

Since $H^{1}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\right)$ is not separated, we get that $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated: simply consider the canonical map $\mathcal{O}_{\tilde{Y}} \rightarrow \tilde{f}_{*} \mathcal{O}_{\tilde{X}}$ and the trace map $f_{*} \mathcal{O}_{\tilde{X}} \rightarrow \mathcal{O}_{\tilde{Y}}$. Their composition $\mathcal{O}_{\tilde{Y}} \rightarrow \tilde{f}_{*} \mathcal{O}_{\tilde{X}} \rightarrow \mathcal{O}_{\tilde{Y}}$ is an isomorphism. By passing to cohomology we deduce that $H^{1}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}\right) \rightarrow H^{1}\left(\tilde{Y}, \tilde{f}_{*} \mathcal{O}_{\tilde{X}}\right)$ is injective. Since f is finite, $H^{1}\left(\tilde{Y}, \tilde{f}_{*} \mathcal{O}_{\tilde{X}}\right)$ is isomorphic to $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ and the conclusion follows.

Given this example, a natural question is the following.
Problem. Suppose that X is a 1-convex surface and \tilde{X} is a covering of X. If \tilde{X} is not holomorphically convex, does it follow that $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is not separated?

Remark 3. The complex surface \tilde{X} constructed in the above example is satisfies the Kontinuitätssatz with respect to holomorphic disks but not with respect with 1-dimensional analytic sets with boundary.

References

[1] C. Bănică; O. Stănăşilă: Méthodes algébriques dans la théorie globale des espaces complexes. Troisième édition. Gauthier-Villars, Paris, 1977.
[2] M. Colţoiu: Coverings of 1-convex manifolds with 1-dimensional exceptional set. Comment. Math. Helv. 68 (1993), 469-479.
[3] M. Colţoiu; K. Diederich: On the coverings of proper families of 1-dimensional complex spaces. Michigan Math. J. 47 (2000), 369-375.
[4] M. Colţoiu; C. Joiţa: The disk property of coverings of 1-convex surfaces. Proc. Amer. Math. Soc. 140 (2012), 575-580.
[5] M. Colţoiu; C. Joiţa: Convexity properties of coverings of 1-convex surfaces. Math. Z. 275 (2013), 781-792.
[6] M. Colţoiu; C. Joiţa: On the separation of the cohomology of universal coverings of 1-convex surfaces. Adv. Math. 265 (2014), 362-370.
[7] F. Docquier; H. Grauert: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140 (1960), 94-123.
[8] H. Grauert: On Levi's problem and the imbedding of real-analytic manifolds. Ann. of Math. (2) 68 (1958), 460-472.
[9] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331-368.
[10] C. Joiţa: The disk property. A short survey. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 20 (2012), 35-42.
[11] H. B. Laufer: Taut two-dimensional singularities. Math. Ann. 205 (1973), 131-164.

Mihnea Colţoiu
Simion Stoilow Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, ROMANIA
E-mail address: Mihnea.Coltoiu@imar.ro

Cezar Joiţa
Simion Stoilow Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, ROMANIA
E-mail address: Cezar.Joita@imar.ro

[^0]: *Mathematics Subject Classification (2000): 32E05, 32F10, 32C35, 32F32
 Key words: 1-convex surface, covering space, holomorphically convex space, Stein space, proper modification

