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Abstract

We discuss the connections between the polynomial convexity properties of a
domain biholomorphic to ball and its closure.

1 Introduction

A classical theorem of Runge states that for every simply connected open subset U of C,
the restriction morphism O(C) → O(U) has dense image. As usual, the topology on the
space of holomorphic functions is the topology of uniform convergence on compacts. We
say then that U is Runge in C. This is not longer true in Cn for n ≥ 2. It was shown in [13],
[14], [15] that there are open subsets of Cn that are biholomorphic to a polydisc and are
not Runge in Cn. E. F. Wold proved in [16] that there are Fatou-Bieberbach domains that
are not Runge and hence any open subset of Cn, n ≥ 2, is biholomorphic to a non-Runge
open subset of Cn. In [5] it was given an example of a bounded open subset of C3 which
is biholomorphic to a ball and it is not Runge in any strictly larger open subset of C3.

In this short paper, motivated by [9], which in turn is based on [7], we want to discuss
the possible connections between the polynomial convexity properties of f(Bn) and f(Bn)
where f : Bn → Cn is biholomorphic map onto its image. More precisely we will show
that, in general, there is no such connection.

2 Results

We start be recalling a few basic notions.

Definition 1. Let M be a complex manifold. By O(M) we will denote the set of holo-

morphic functions defined on M . If K ⊂ M is a compact subset we denote by K̂M the
holomorphically convex hull of K,

K̂M = {z ∈M : |f(z)| ≤ sup
x∈K
|f(x)|, ∀f ∈ O(M)}.

K is called holomorphically convex in M if K̂M = K.
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If M = Cn, then K̂Cn
is the same as the polynomially covex hull of K,

{z ∈M : |f(z)| ≤ sup
x∈K
|f(x)|, ∀ polynomial function f}.

Definition 2. If M is a Stein manifold and U is a Stein open subset then U is called
Runge in M if the restriction morphism O(M)→ O(U) has dense image

It is well-known, see e.g. [8], that, in the above setting, the following statements are
equivalent:

1. U is Runge in M .

2. For every compact set K ⊂ U we have K̂U = K̂M .

3. For every compact set K ⊂ U we have K̂M ⊂ U .

We recall that a Fatou-Bieberbach domain is a proper open subset of Cn which is
biholomorphic to Cn. We will need the precise statement of the main theorem of [16]
mentioned in the introduction. This is the following.

Theorem 3. There exits a Fatou-Bieberbach domain Ω ⊂ C×C∗ which is Runge in C×C∗
but not in C2.

We will move now to our discussion of the closure of domains in Cn that are biholo-
morphic to a ball. We denote by Bn the unit ball in Cn centered at the origin. We will
begin with some remarks.

Remark 4.

• If U is a bounded Runge open subset of C then it is simply connected and hence
biholomorphic to a disc. In general U might not be holomorphically convex. It
is easy to give such an example. However, if U has smooth boundary, then U is
holomorphically convex.

• If n ≥ 2 on can construct a bounded Runge open subset of Cn biholomorphic to
a ball and with smooth boundary such that U is not holomorphically convex. One
possible construction is the following: start with F : B2 → C2 biholomorphic onto its
image such that F (B2) is not Runge in C2. Let B(0, r) ⊂ C2 be the ball centered at
the origin and of radius r. It is easy to see that if r is small enough then F (B(0, r))
is Runge. Let r0 = sup{r : F (B(0, r)) is Runge}. Because an increasing union of
Runge domains is Runge as well we have that r0 < 1 and F (B(0, r0)) is Runge. It
was noticed in [10] that F (B(0, r0)) is not polynomially convex.

• The interior of a polynomially convex compact set is Runge. Hence if one is trying
to find F : B2 → C2 which is a biholomorpism onto its image such that F (B2) is
not Runge and F (B2) is polynomially convex then one must have that the interior
of F (B2) is strictly larger then F (B2).
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Proposition 5. Suppose that M is a connected complex manifold, Γ and ∆ two closed
sets, U and V two open sets such that Γ ⊂ U ⊂ ∆ ⊂ V . Moreover, we assume that there
exist an open set Ũ ⊂ Cn containing a closed ball B, a biholomorphism F : Ũ → U such
that F (B) = Γ, an open set Ṽ ⊂ Cn containing a closed polydisc P , and a biholomorphism
G : Ṽ → V such that G(P ) = Γ. Then there exists an open and dense subset of M which
is biholomorphic to a ball and contains Γ.

Proof. This proposition is simply a consequence of some of the results and the proofs given
in [3], [4] and [2]. For the reader’s convenience, we we will recall the main steps needed to
prove the proposition. Actually in [3] and [2] the authors prove more than density results:
they obtain full-measure embeddings.

We recall that a complex manifold M is called taut if for every complex manifold N
(in fact it suffices to work with the unit disc in C, see [1]) the space of holomorphic maps
from N to M is a normal family.
• It was noticed in [3] that in any complex manifold M there exists M1 ⊂ M a Stein,

dense, open subset.
• Another remark from [3] is that for any Stein manifold, M1, there exists M2 ⊂M1 a

taut dense open subset.
• It was proved in [3] that in a taut manifold an increasing union of open sets each one

biholomorphic to a polydisc is biholomorphic to a polydisc. A similar statement holds for
an increasing union of balls instead of polydiscs.
• A consequence of Theorem II.4 in [4] is the following: if Ũ ⊂ Cn is an open neigh-

borhood of a closed polydisc P , F : Ũ → U is a biholomorphism onto an open subset U
of a complex manifold M , ∆ = F (P ) and x is any point in M then there exists an open
subset ∆1 of M , biholomorphic to a polydisc, such that ∆ ∪ {x} ⊂ ∆1.
• This last statement implies easily that if Ũ ⊂ Cn is an open neighborhood of a closed

polydisc P , F : Ũ → U is a biholomorphism onto an open subset U of a complex manifold
M and ∆ = F (P ) then there exists an increasing sequence of open subsets biholomorphic
to polydiscs in M , ∆1 = ∆ b ∆2 b · · · such that

⋃
∆j is dense in M . Indeed, it suffices

to consider a dense sequence {xk}k≥1 ⊂M and to construct inductively the polydiscs such
that {x1, . . . , xk} ⊂ ∆k.

It follows then from the previous statements that:
• If M is any complex manifold, Ũ ⊂ Cn is an open neighborhood of a closed polydisc

P , F : Ũ → U is a biholomorphism onto an open subset U of M and ∆ = F (P ) then there
exists a dense open subset of M biholomorphic to polydisc that contains ∆.
• Lemma 2.1 in [2] implies the following statement: suppose that P is a polydisc in Cn,

U is an open subset of P such that there exists Ũ ⊂ Cn an open neighborhood of a closed
ball B and a biholomorphism F : Ũ → U . If Γ = F (B) and x is any point in P then there
exists an open subset Γ1 of P , biholomorphic to a ball, such that ∆∪ {x} ⊂ Γ1. As before
we deduce that there exists an open and dense subset of P that contains Γ.

The conclusion of the proposition is now straightforward.

The following corollary answers Question 3.19 in [7].
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Corollary 6. There exists F : B2 → C2 wich is biholomorphic onto its image and such
that F (B2) is not Runge in C2, and that F (B2) is a holomorphically convex compact subset
of C2.

Proof. Let Ω ⊂ C2 be a Fatou-Bieberbach domain which is not Runge in C2. Such a
domain exists by Theorem 3. Let also F : C2 → Ω be a biholomorphism.

As Ω is not Runge in C2, there exists a compact K ⊂ Ω such that K̂C2 6⊂ Ω. Choose a
point a ∈ K̂C2 \ Ω. Choose also a ball B and a polydisc P in C2 such that

F−1(K) ⊂ B ⊂ B ⊂ P,

and an open ball U ⊂ C2 such that {a} ∪ F (P ) ⊂ U .
We apply now Proposition 5 for M = U \ {a} and we deduce that there exists a dense

open subset Γ of U \{a} which is biholomorphic to a ball and contains F (B). In particular
it contains K while it does not contain a. This implies that Γ is not Runge in C2. The
closure of Γ is, of course, U which is polynomially convex.

Proposition 5 and Corollary 6 are geometric in nature in the sense that they are not
concerned with the behaviour of the map F : B2 → C2 (except that it is biholomorphic
onto its image). Our next theorem exhibits a somehow stranger behaviour of the map.

Theorem 7. There exists F : B2 → C2 biholomorphic onto its image such that F (B2) is
not Runge in C2 and for every open set V ∈ C2 with V ∩ ∂B2 6= ∅ we have F (B2 ∩ V ) ⊃
(C2 \ F (B)).

Before we prove the theorem, we need some preliminaries.

For the following definition, see [11].

Definition 8. A complex manifold M has the density property if every holomorphic vector
field on M can be approximated locally uniformly by Lie combinations of complete vector
fields.

Manifolds with the density property have been studied in [11] and [12]. In particular
one has:

Proposition 9. C× C∗ has the density property.

The following theorem is a particular case of Theorem 0.2 in [12]. If M = Cn, it is
Corollary 2.2 in [6].

Theorem 10. Suppose that M is a conected Stein manifold that satisfies the density
property. Let K be a holomorphically convex compact subset of M and g a metric on
M . Suppose also given: ε a positive number, A a finite subset of K, and {x1, . . . , xs},
{y1, . . . , ys} two finite subsets of M \ K of same cardinality. Then there exists an auto-
morphism F : M →M such that:

1. supx∈K dg(F (x), x) < ε where dg is the distance induced by g,
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2. F (a) = a and dF (a) = Id for every a ∈ A,

3. F (xj) = yj for every j = 1, . . . , s.

We need also the following elementary lemma.

Lemma 11. Suppose that U, V,Ω are connected open subsets of Cn with V b U b Ω. Let
r > 0 be such that there exists a ball B(x0, r) of radius r with B(x0, r) ⊂ V and let δ be the
distance between V and ∂U . If F : Ω → F (Ω) ⊂ Cn is a biholomorphism onto its image
and supx∈U ‖F (x)− x‖ < min{δ, r} then V ⊂ F (U).

Proof. Because supx∈U ‖F (x) − x‖ < δ, we get that F (∂U) ∩ V = ∅. In particular V ⊂
F (U)∪(Cn\U). At the same time supx∈U ‖F (x)−x‖ < r implies that F (x0) ∈ B(x0, r) and
hence F (U)∩V 6= ∅. As V is connected, we deduce that V ⊂ F (U). Finally, F (∂U)∩V = ∅
implies that V ⊂ F (U).

Proof of Theorem 7. We consider the Fatou-Beiberbach domain Ω ⊂ C × C∗ given by
Theorem 3 which is Runge in C×C∗ but not in C2. Let K be a compact subset of Ω such
that K̂C2 6⊂ C × C∗. Let F0 : C2 → Ω be a Fatou-Beiberbach map. Of course we may
assume that F0(B

2) ⊃ K. We fix also a point a ∈ K.
We choose a strictly increasing sequence of open balls, {Bs}s≥−1, centered at the origin,

such that
⋃

sBs = B2 and such that B−1 ⊃ F−10 (K).
We will construct inductively a sequence of automorphisms {Hs}s≥0 of C × C∗ such

that, if we set Fs = Hs ◦ · · · ◦ H0 ◦ F0 ∈ S(B2), then the map we are looking for will be
F = lims Fs. Note that F (B2) will be also a subset of C× C∗ because C× C∗ is Stein.

We have to make sure that the sequence converges to a nondegenerate map on B2. At
the same time we would like to have F0(B−1) ⊂ F (B2). If this is the case, we will have
K ⊂ F (B2) and this will imply that F (B2) is not Runge in C2. In fact we will need more
that that, namely we would like to have Fs(Bs−1) ⊂ F (B2) for every s. To force this
inclusion we will apply Lemma 11. Hence we will introduce a sequence of positive real
numbers {εs}s≥0 that will act as the bounds needed in that lemma.

For the remaining property, we will need to introduce an increasing sequence of of finite
subsets of B2, {As}s ∈ N, As ⊂ As+1 that will help “spreading” the image of F .

•We consider {xn}n≥1 ⊂ ∂B2 a dense sequence. For each n ∈ N we consider {xpn}p∈N ⊂
B2 a sequence that converges to xn. Moreover we assume that xn 6= xm for n 6= m and
xpn 6= xqm for (n, p) 6= (m, q).
• We set H0 to be the identity and A0 = {a}, ε0 = 1.

• We assume that we have constructed H0, . . . , Hs, A0, . . . , As, ε0, . . . , εs and that
Hj(a) = a for j ≤ s and we will construct Hs+1, As+1, and εs+1.

We choose T s+1
1 , . . . , T s+1

s+1 pairwise disjoint, finite, subsets of C × C∗, , such that for
every j = 1, . . . , s+ 1 we have

� T s+1
j ∩ (Fs(Bs) ∪ Fs(As)) = ∅ and
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�
⋃

z∈T s+1
j

B(z, 1
s
) ⊃ {z ∈ C2 \ Fs(Bs) : d(z, Fs(Bs)) ≤ s}.

Here d(z, Fs(Bs)) stands for the distance between z and the compact set Fs(Bs).

After we chose these finite sets T s+1
j , we choose, for each j = 1, . . . , s+1, a finite subset,

As+1
j , of {xpj : p ∈ N} such that:

� #As+1
j = #T s+1

j ,

� As+1
j ∩ (Bs ∪ As) = ∅,

� ‖xj − x‖ < 1
s

for every x ∈ As+1
j .

We set

As+1 = As ∪

(
s+1⋃
j=1

As+1
j

)
.

Let δs denote the distance between Fs(Bs−1) and ∂Fs(Bs). Fs(Bs−1) is an open subset
of C× C∗. Let rs > 0 be such that there exists a ball of radius rs included in Fs(Bs−1).

We define

εs+1 :=
1

2s+1
min{δs, rs, ε0 . . . , εs}.

Because Hj, j ≤ s, are automorphisms of C × C∗ we have that Fs(B
2) is Runge in

C × C∗ and hence Fs(Bs) is holomorphically convex in C × C∗. As As is a finite set,
Fs(Bs ∪ As) is holomorphically convex in C× C∗.

We apply Theorem 10 and we deduce that there exists an automorphism Hs+1 of C×C∗
such that

1. ‖Hs+1(z)− z‖ < εs+1 for every z ∈ Fs(Bs),

2. Hs+1(z) = z for every z ∈ Fs(As) (in particular Hs+1(a) = a),

3. dHs+1(a) = I2,

4. Hs+1(Fs(A
s+1
j )) = T s+1

j for every j = 1, . . . s+ 1.

Note now that property 1 implies that F = lims Fs (where Fs = Hs ◦ · · · ◦H0 ◦ F0) is
holomorphic and property 3 that it is nondegenerate. Hence F is biholomorphic on B2.
Also property 2, together with Lemma 11, imply that Fs(Bs−1) ⊂ F (B2) (in fact it implies
that Fs(Bs−1) ⊂ F (Bs)) for every s. In particular K ⊂ F (B2) and therefore F (B2) is not
Runge in C2.

It remains to check that for every V ∈ C2 with V ∩ ∂B2 6= ∅ we have F (B2 ∩ V ) ⊃
(C2 \ F (B)). Fix then such an open set V and a point p ∈ C2 \ F (B2). We recall that
the sequence {xn} was chose to be dense in ∂B2. Let xj ∈ V ∩ ∂B2. Let m ∈ N be large
enough such that m > j, ‖p− a‖ < m, and B(xj,

1
m

) ⊂ V .
We distinguish now two cases:

a) p 6∈ Fm(Bm). Note that ‖p− a‖ < m implies, in particular that d(p, Fm(Bm)) < m.
According to our choice of Tm+1

j , there exists a point z ∈ Tm+1
j such that ‖p− z‖ < 1

m
. By
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property 4 in the construction of {Hs}, there exists x ∈ As+1
j such that Hm+1(Fm(x)) = z.

According to the choice of As+1
j , we have that ‖xj − x‖ < 1

m
and hence x ∈ V . Note also

that property 2 in the construction of {Hs} implies that F (x) = z.

b) p ∈ Fm(Bm). Since Fm+1(Bm) ⊂ F (B2) and p 6∈ F (B2), we have that p 6∈ Fm+1(Bm).
Let q = Hm+1(p). It follows that q ∈ Fm+1(Bm). At the same time, property 1 in the
construction of {Hs} implies that ‖q − p‖ < 1

2m+1 . It follows that d(p, Fm+1(Bm)) < 1
2m+1

and therefore d(p, ∂Fm+1(Bm)) < 1
2m+1 . Let v ∈ ∂Fm+1(Bm)) be such that ‖p− v‖ < 1

2m+1 .
However ∂Fm+1(Bm)) = Hm+1(∂Fm(Bm) and we let u ∈ ∂Fm(Bm) such that Hm+1(u) = v.
We have then ‖u − v‖ < 1

2m+1 . We use again our choice of Tm+1
j and we find a point

z ∈ Tm+1
j such that ‖u − z‖ < 1

m
. Hence ‖p − z‖ < 1

m
+ 1

2m
. As above we obtain a point

x ∈ V such that F (x) = z.

In both cases we found x ∈ V such that ‖p − F (x)‖ < 1
m

+ 1
2m

. As m can be chosen
arbitrarily large, this finishes the proof.
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