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Abstract

We prove that if we consider p : Y → X to be an unbranched
Riemann domain between two complex spaces with isolated singula-
rities, X is Stein and p is locally q-complete with corners, then Y is
q-complete with corners.

1 Introduction

The ”local Steinness problem” or the ”Levi problem on singular spaces” is
one of the most important and difficult problems in several complex varia-
bles. A survey concerning the Levi problem on Stein spaces is [5] or [22].
For complex spaces with isolated singularities this problem was solved by
Andreotti and Narasimhan in [2]. Namely they proved that if X is a Stein
space with isolated singularities and Y ⊂ X is a locally Stein open subset of
X, then Y is Stein.

This result was generalized by Colţoiu and Diederich in [6], as they showed
that if p : Y → X is an unbranched Riemann domain between two complex
spaces with isolated singularities such that X is Stein and p is a Stein mor-
phism, then Y is also Stein.

The notions of q-convex and q-complete complex spaces were introduced
by Andreotti and Grauert in [1]. They proved finiteness and vanishing the-
orems for the cohomology of q-convex and q-complete spaces with values in
a coherent analytic sheaf.
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The purpose of this paper is to prove the following result which genera-
lizes [6] (p being locally 1-complete with corners corresponds to p being a
Stein morphism):

Theorem 1. Let X and Y be complex spaces with isolated singularities and
p : Y → X an unbranched Riemann domain. Assume that X is Stein and
that p is locally q-complete with corners, i.e., each point x ∈ X has a neigh-
bourhood V = V (x) such that p−1(V ) is q-complete with corners. Then Y is
q-complete with corners.

If p is the inclusion map, then the above theorem was proved by Vâjâitu
in [23]. Also if X and Y are smooth, Vâjâitu showed that if X is r-complete
with corners and p is locally q-complete with corners, then Y is (q + r − 1)-
complete with corners (see [24]).

Aknowledgements: I am very grateful to Professor Mihnea Colţoiu for
suggesting me this problem and for his helpful advice.

2 Preliminaries

In the following all complex spaces are assumed to be reduced and with
countable topology. If X be a complex space, then by TxX we denote the
holomorphic tangent space of X at a point x ∈ X. As usual, set TX :=⋃
x∈X

TxX. If we are referring to Cn, then the tangent space of Cn at any

point x ∈ Cn is just Cn.
Let X be a complex space and U an open subset of X. A (local) chart

of X is a holomorphic embedding i : U ↪→ U ′, where U ′ is an open subset of
Cn (for some integer n ≥ 1) such that i(U) is an analytic subset of U ′ and
U and i(U) are biholomorphic (via i).

Now, following Andreotti and Grauert [1], we define the notion of a q-
convex function on a complex space.

Let f : D → R be a smooth real function defined on some open subset
D ⊂ Cn. If z0 ∈ D, then we denote by L(f, z0) the Levi form of f at z0,
namely

L(f, z0)(ξ, η) =
n∑

i,j=1

∂2f

∂zi∂z̄j
(z0)ξiη̄j,

where ξ, η ∈ Cn. If ξ = η, then we simply denote the Levi form of f at z0
by L(f, z0)ξ. A function f is called q-convex if its Levi form has at least
n− q + 1 positive (> 0) eigenvalues at any point of D.

Using local charts the above notion can be generalized to arbitrary com-
plex spaces.
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Definition 1. Let X be a complex space. A function f : X → R is called
q-convex at a point x ∈ X if there exists a local chart i : U ↪→ U ′ of X, x ∈ U
and a smooth real q-convex function f ′ : U ′ → R such that f ′ ◦ i = f |U .

The function f is said to be q-convex on a subset W ⊂ X if it is q-convex
at every point of W .

An upper semi-continuous function f : X → R is said to be an exhaustion
function on X if the sublevel sets {x ∈ X : f(x) < c} are relatively compact
for any c ∈ R.

Definition 2. A complex space X is said to be q-convex, if there exists a
compact subset K of X and a smooth exhaustion function f : X → R,
which is q-convex on X\K. If we can choose K = ∅, then X is said to be
q-complete.

By [9] and [19], the function f ∈ C0(X,R) is called q-convex with corners
if for every point x ∈ X there is an open neighbourhood U of x and finitely
many q-convex functions f1, . . . , fk on U such that

f |U = max(f1, . . . , fk).

We denote by Fq(X) the set of all q-convex functions with corners on X.

Definition 3. A complex space X is said to be q-convex with corners, if there
exists a compact subset K of X and an exhaustion function f : X → R, which
is q-convex with corners on X\K. If we can choose K = ∅, then X is said
to be q-complete with corners.

Definition 4. Let D ⊂ Cn be an open subset and f : D → [−∞,∞) an
upper semicontinuous function. We say that f is subpluriharmonic if for
every relatively compact subset G ⊂⊂ D and for every pluriharmonic func-
tion h defined on a neighbourhood of G (i.e., h is locally the real part of a
holomorphic function) such that f |∂G ≤ h|∂G we have also f ≤ h on G.

Definition 5. Let X be a complex space, f : X → [−∞,∞) an upper
semicontinuous function and q a positive integer. We say that f is:

(1) q-plurisubharmonic if for every open set G ⊂ Cq and every holomorphic
map g : G→ X, the function f ◦ g is subpluriharmonic;

(2) strongly q-plurisubharmonic if for every θ ∈ C∞0 (X,R) there exists ε >
0 such that the function f + εθ is q-plurisubharmonic on X.
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For a complex space X, let Pq(X) be the set of all q-plurisubharmonic
functions on X and SPq(X) the set of strictly q-plurisubharmonic functions.

In the literature (see [10], [11], [14], [16], [17], [21]) the concepts of sub-
pluriharmonicity and (strongly) q-plurisubharmonicity are defined in various
ways. For example, in [14], a function defined on an open subset D ⊂ Cn and
with values in [−∞,∞) is called q-plurisubharmonic (1 ≤ q ≤ n) in D if it
is upper semicontinuous and if it is subpluriharmonic on the intersection of
every q-dimensional complex plane with D. Using local embeddings we can
gene-ralize this definition to arbitrary complex spaces. Fujita proved in [11]
that for X smooth the above notions coincide. This happens also in the sin-
gular case for q = 1 (see [12]). For q > 1, but only for continuous functions,
this result was announced by Popa-Fischer in [20] and proved in [21].

The next approximation result was proved by Bungart [3] for open subsets
of some Cn, but Matsumoto [17] remarked that it is also true for complex
manifolds.

Theorem 2. Let X be a complex manifold and f : X → R a continuous
strongly q-plurisubharmonic function. Then for an arbitrary continuous func-
tion δ : X → (0,∞) there exists a function f̃ ∈ Fq(X) such that |f̃ − f | < δ.

In [7] Colţoiu and Mihalache proved the following result.

Theorem 3. Let X be a 1-convex complex space. Then X carries a strongly
plurisubharmonic exhaustion function Φ : X → [−∞,∞). Moreover, Φ can
be chosen −∞ exactly on the exceptional set S of X and real analytic outside
S.

We give now a criterion for q-completeness with corners of Vâjâitu [24].

Proposition 1. Let X be a complex space and Φ ∈ Fq(X) such that for
every c ∈ R the set Xc := {Φ < c} is q-complete with corners. Then X is
q-complete with corners.

From [4] we quote:

Lemma 1. Consider X to be a complex space, A ⊂ X an analytic subset
and f ∈ Fq(A). Then for every η ∈ C0(A,R), η > 0 there is an open

neighbourhood U of A in X and f̃ ∈ Fq(U) such that
∣∣∣f̃ |A − f ∣∣∣ ≤ η.

The following result was proved by M. Peternell in [18].

Lemma 2. Let X be a complex space and A ⊂ X an analytic subset. Then
there exists h ∈ C∞(X,R), h ≥ 0 such that:
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(a) {h = 0} = A;

(b) for every x ∈ X there exists an open neighbourhood U of x and a smooth
function σ : U → R such that log(h|U\A) + σ|U\A is plurisubharmonic.

The function log h is locally equal to the sum of a plurisubharmonic func-
tion and a smooth function. Such a function is called almost plurisubhar-
monic or quasi-plurisubharmonic (see [8]).

3 The Proof

First we assume that Sing(X) is a finite set and that p(Y ) is relatively com-
pact in X. Let us even assume that Sing(X) = {x0}. Otherwise the proof is
almost the same.

There are two possibilities:
Case 1 : x0 /∈ p(Y ). Consider π : X̃ → X to be a resolution of the

singularity x0. Thus X̃ is a 1-convex manifold. From Theorem 3 we get a
strongly plurisubharmonic exhaustion function ϕ : X̃ → [−∞,∞) which can

be chosen −∞ exactly on the exceptional set of X̃.
Since x0 /∈ p(Y ), we consider p1 : Y → X̃ to be the Riemann domain

such that p = π ◦ p1. Because p is locally q-complete with corners, we have
that p1 is also locally q-complete with corners. We denote by U ⊂⊂ X̃ a
strongly pseudoconvex neighbourhood of B (see [13]). This neighbourhood

can be chosen such that p−11 (U) is q-complete with corners. Also on X̃ we

have a smooth plurisubharmonic function α : X̃ → R+ such that α is 0 on
U and α is ≥ 0 and strongly plurisubharmonic on X̃\U . We choose strongly
pseudocovex neighbourhoods V and V ′ of B with B ⊂ U ⊂⊂ V ⊂⊂ V ′

and such that p−11 (V ′) is q-complete with corners. Also we may assume that
ϕ ≥ 0 outside U . Since p−11 (V ′) is q-complete with corners, we denote by
h1 : p−11 (V ′)→ R+ a smooth q-convex with corners exhaustion function.

In what follows, some arguments are similar to those in [6]. However, for
reader’s convenience, we repeat them here.

Since K := p1(Y ) ⊂ X̃ there exists a finite number of open balls {Ui},
such that Yi := p−11 (Ui) is q-complete with corners. Thus − log δi is a q-
plurisubharmonic function (see Proposition 7, page 513 in [24]), where δi
represents the boundary distance measured in the euclidian metric for the
Riemann domain Yi → Ui ⊂⊂ Cn. Consider now concentric balls Vi ⊂⊂ Ui
such that K is still covered by Vi. By Lemma 3 in Matsumoto [16] (or M.
Peternell [19]) the quotients δi/δj are bounded on p−11 (Vi ∩ Vj). Therefore,
the differences log δj − log δi are also bounded.
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For each i we can suitably choose a function θi ∈ C∞0 (Vi), θi ≥ 0 such
that the function

l(y) := max
p1(y)∈Vi

(− log δi(y) + θi(p1(y)))

is continuous on Y . Moreover, for a sufficiently large constant A > 0, the
function

q := A · ϕ ◦ p1 + l

is strongly q-plurisubharmonic on Y and has the following property:

p1({q < c}) ⊂⊂ X̃, for every c ∈ R.

For the details one should consult Matsumoto [16] (pages 107-108).
The idea is to use Lemma 1 and 2 for A = Sing(Y ). Since Y is with

isolated singularities we have that dimA = 0; hence A is q-complete with
corners. Lemma 1 gives us an open neighbourhood U of A and a function
g ∈ Fq(U).

Using Lemma 2, there is a smooth function h : Y → [0,∞) such that
{h = 0} = A and log h is almost plurisubharmonic. Now select χ ∈ C∞(R,R)
strictly increasing and convex such that q′ := χ ◦ q + log h ∈ SPq(Y \A) and
q′ > 1 + g on ∂U . By Theorem 2 there is f ∈ Fq(Y \A) such that |f − q′| < 1
on Y \A. Finally we can define a function Φ : Y → R such that Φ ∈ Fq(Y ):

Φ :=


f on Y \U

max(f, g) on U\A
g near A.

In order to prove that Y is q-complete with corners, we will apply Propo-
sition 1. We have to show that for every c ∈ R the set {Φ < c} is q-
complete with corners, i.e., to define for every c ∈ R an exhaustion function
ηc : {Φ < c} → R that is q-convex with corners.

Let’s denote by g a fixed Riemannian metric on X̃ and by g∗ its pull-back
to Y . We define for each ε > 0 the set

Yε := {y ∈ Y : δ(y) > ε},

where δ is the induced boundary distance on the Riemann domain p1 : Y →
X̃.

Using the regularization method in Hörmander [15] (see pages 141-142),
Colţoiu and Diederich [6] constructed a C2-function φ = φε : Yε → R+ such
that φ is a Lipschitz vertical exhaustion function on Yε and the Levi form of
φ is bounded from below.
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We define the function µ := φ · α̃ : {Φ < c} → R, where α̃ = α ◦ p1. In
order for µ to be well-defined we choose a small enough ε = εc > 0 such that
{Φ < c}\p−11 (U) ⊂ {δ > ε}.

From the formula

L(µ) = α̃L(φ) + φL(α̃) + 2Re(∂φ)(∂̄α̃)

we get that L(µ) is bounded from below on {Φ < c}, µ is a vertical exhaus-
tion function outside p−11 (U) and it is identically 0 on p−11 (U) Now choose a
strongly pseudoconvex neighbourhood U ′ ⊂⊂ U of B such that there exists
a smooth 1-convex function ψ : X̃ → R+ which enjoys the same properties
as the function α. So, for a sufficiently large constant C, the function

µ+ C · ψ ◦ p1 : {Φ < c} → R

is 1-convex on all {Φ < c}, relatively exhausting outside p−11 (U) and identi-

cally 0 on p−11 (U
′
). Now we select a smooth rapidly increasing strictly convex

function χ : [0,∞)→ [0,∞), χ(0) = 0 such that

χ ◦ (µ+ C · ψ ◦ p1) > h1 on {Φ < c} ∩ p−11 (∂V ).

Remember that the goal is to construct a continuous q-convex with cor-
ners exhaustion function on {Φ < c}. Now consider the maximum between
h1 and χ ◦ (µ + C · ψ ◦ p1) over {Φ < c} ∩ p−11 (V ). Next we extentend this
function by χ◦(µ+C ·ψ◦p1) and we obtain a q-convex with corners function

on {Φ < c}; let’s denote it by λc. Therefore, the function ηc := λc +
1

c− Φ
is

a continuous q-convex with corners exhaustion function on {Φ < c}. Using
Proposition 1 we get that Y is q-complete with corners.

Case 2 : x0 ∈ p(Y ). Let π : X̃ → X be the local desingularization at
x0. Now consider the fiber product of p : Y → X and π, that is the set
Ỹ = {(y, x̃) ∈ Y × X̃ : p(y) = π(x̃)}. We have obtained two projection

maps: one on Y which will be denoted by π1 and another one on X̃ which
will be denoted by p1. As before let B := π−1({x0}) be the exceptional set

of X̃. We have that π1 is a proper modification of Y at the discrete set
p−1({x0}) = {an}n and p1 : Ỹ → X̃ is a Riemann domain over X̃. Now
the proof is almost the same as in case 1: p1 is locally q-complete with
corners, thus there exists a strongly pseudoconvex neighbourhood U ⊂⊂ X̃
of B such that p−11 (U) is a proper modification at a discrete subset of a q-
complete with corners space. We get a strongly plurisubharmonic exhaustion
function ϕ̃ : Ỹ → R which can be chosen −∞ exactly on the exceptional set
B̃ of Ỹ . Finally, for each c ∈ R, we have on the open set {Φ̃ < c} ⊂ Ỹ
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a continuous real valued q-convex with corners exhaustion function. Using
the fact that π1 is biholomorphic outside B̃, we can define Φ = Φ̃ ◦ π−11 on
Y \(p−1({x0}) and Φ = −∞ on p−1({x0}). From Proposition 1 we get that
Y is q-complete with corners.

Now we only have to prove that it is enough to assume Sing(X) to be
a finite set, i.e., knowing that Sing(X) is finite we should infer that Y is
q-complete with corners. Since X is Stein, let’s denote by ψ a continuous

strongly plurisubharmonic exhaustion function on X. We write X =
⋃
c

Xc,

where Xc = {ψ < c}. Since X has isolated singularities we have that
Sing(Xc) is a finite set. We put Yc = p−1(Xc) and we get that each Yc
is q-complete with corners. We have that Φ := ψ ◦ p is 1-convex on Y . Since
Yc = {ψ ◦ p < c} and using Proposition 1 we have that Y is q-complete with
corners.

Using the same argument as before, we can assume that p(Y ) ⊂⊂ X.
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[7] Colţoiu, M., Mihalache, N.: Strongly plurisubharmonic exhaustion
functions on 1-convex spaces, Math. Ann. 270, 63-68, 1985.

[8] Demailly, J.-P.: Cohomology of q-convex spaces in top degrees, Math.
Z. 204, 283-296, 1990.



q-completeness of Riemann domains 9

[9] Diederich, K., Fornaess, J. E.: Smoothing q-Convex Functions in the
Singular Case, Math. Ann. 273, 665-671, 1986.

[10] Fujita, O.: Domaines pseudoconvexes d’ordre général et fonctions pseu-
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