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Abstract

We prove that if we consider p : Y — X to be an unbranched
Riemann domain between two complex spaces with isolated singula-
rities, X is Stein and p is locally g-complete with corners, then Y is
g-complete with corners.

1 Introduction

The "local Steinness problem” or the ”Levi problem on singular spaces” is
one of the most important and difficult problems in several complex varia-
bles. A survey concerning the Levi problem on Stein spaces is [5] or [22].
For complex spaces with isolated singularities this problem was solved by
Andreotti and Narasimhan in [2]. Namely they proved that if X is a Stein
space with isolated singularities and Y C X is a locally Stein open subset of
X, then Y is Stein.

This result was generalized by Coltoiu and Diederich in [6], as they showed
that if p: Y — X is an unbranched Riemann domain between two complex
spaces with isolated singularities such that X is Stein and p is a Stein mor-
phism, then Y is also Stein.

The notions of g-convex and ¢-complete complex spaces were introduced
by Andreotti and Grauert in [1]. They proved finiteness and vanishing the-
orems for the cohomology of ¢-convex and ¢-complete spaces with values in
a coherent analytic sheaf.
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The purpose of this paper is to prove the following result which genera-
lizes [6] (p being locally 1-complete with corners corresponds to p being a
Stein morphism):

Theorem 1. Let X and Y be complex spaces with isolated singularities and
p Y — X an unbranched Riemann domain. Assume that X is Stein and
that p s locally q-complete with corners, i.e., each point x € X has a neigh-
bourhood V =V (x) such that p~* (V') is q-complete with corners. Then Y is
q-complete with corners.

If p is the inclusion map, then the above theorem was proved by Vajaitu
in [23]. Also if X and Y are smooth, Vajaitu showed that if X is r-complete
with corners and p is locally g-complete with corners, then Y is (¢ +r — 1)-
complete with corners (see [24]).

Aknowledgements: 1 am very grateful to Professor Mihnea Coltoiu for
suggesting me this problem and for his helpful advice.

2 Preliminaries

In the following all complex spaces are assumed to be reduced and with
countable topology. If X be a complex space, then by T, X we denote the
holomorphic tangent space of X at a point x € X. As usual, set TX :=
U T,X. If we are referring to C", then the tangent space of C" at any
zeX

peoint x € C" is just C".

Let X be a complex space and U an open subset of X. A (local) chart
of X is a holomorphic embedding i : U < U’, where U’ is an open subset of
C™ (for some integer n > 1) such that i(U) is an analytic subset of U’ and
U and i(U) are biholomorphic (via 7).

Now, following Andreotti and Grauert [1], we define the notion of a ¢-
convex function on a complex space.

Let f : D — R be a smooth real function defined on some open subset
D c C". 1If zg € D, then we denote by L(f,zp) the Levi form of f at z,
namely

n 2
L2060 = 3 oo (i,

1,J=

where £, 7 € C". If £ = 7, then we simply denote the Levi form of f at z
by L(f,20)¢. A function f is called g-convez if its Levi form has at least
n — q+ 1 positive (> 0) eigenvalues at any point of D.

Using local charts the above notion can be generalized to arbitrary com-
plex spaces.
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Definition 1. Let X be a complex space. A function f : X — R s called
q-convez at a point x € X if there exists a local charti : U — U of X, x € U
and a smooth real q-convex function f': U — R such that f' oi = f|y.

The function f is said to be g-convex on a subset W C X if it is g-convex
at every point of W.

An upper semi-continuous function f : X — R is said to be an exhaustion
function on X if the sublevel sets {x € X : f(x) < ¢} are relatively compact
for any ¢ € R.

Definition 2. A complex space X is said to be q-convex, if there exists a
compact subset K of X and a smooth exhaustion function f : X — R,
which is q-convex on X\K. If we can choose K = 0, then X is said to be
q-complete.

By [9] and [19], the function f € C°(X,R) is called g-convex with corners
if for every point x € X there is an open neighbourhood U of x and finitely
many g-convex functions fi,..., fr on U such that

f|U = max(fl, e ,fk)
We denote by F,(X) the set of all g-convex functions with corners on X.

Definition 3. A complex space X is said to be q-convex with corners, if there
exists a compact subset K of X and an exhaustion function f : X — R, which
is q-convex with corners on X\K. If we can choose K = (), then X is said
to be q-complete with corners.

Definition 4. Let D C C" be an open subset and f : D — [—00,00) an
upper semicontinuous function. We say that f is subpluriharmonic if for
every relatively compact subset G CC D and for every pluriharmonic func-
tion h defined on a neighbourhood of G (i.e., h is locally the real part of a
holomorphic function) such that f|ac < hlag we have also f < h on G.

Definition 5. Let X be a complex space, f : X — [—00,00) an upper
semicontinuous function and q a positive integer. We say that f is:

(1) q-plurisubharmonic if for every open set G C C4 and every holomorphic
map g : G — X, the function f o g is subpluriharmonic;

(2) strongly q-plurisubharmonic if for every 6 € C§°(X,R) there ezists € >
0 such that the function f + €0 is q-plurisubharmonic on X.
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For a complex space X, let P,(X) be the set of all ¢g-plurisubharmonic
functions on X and SP,(X) the set of strictly g-plurisubharmonic functions.

In the literature (see [10], [11], [14], [16], [17], [21]) the concepts of sub-
pluriharmonicity and (strongly) ¢-plurisubharmonicity are defined in various
ways. For example, in [14], a function defined on an open subset D C C™ and
with values in [—00, 00) is called g-plurisubharmonic (1 < g < n) in D if it
is upper semicontinuous and if it is subpluriharmonic on the intersection of
every g-dimensional complex plane with D. Using local embeddings we can
gene-ralize this definition to arbitrary complex spaces. Fujita proved in [11]
that for X smooth the above notions coincide. This happens also in the sin-
gular case for ¢ = 1 (see [12]). For ¢ > 1, but only for continuous functions,
this result was announced by Popa-Fischer in [20] and proved in [21].

The next approximation result was proved by Bungart [3] for open subsets
of some C", but Matsumoto [17] remarked that it is also true for complex
manifolds.

Theorem 2. Let X be a compler manifold and f : X — R a continuous
strongly q-plurisubharmonic function. Then for an arbitrary continuous func-
tion § : X — (0,00) there exists a function f € F (X) such that |f — f| <.

In [7] Coltoiu and Mihalache proved the following result.

Theorem 3. Let X be a 1-conver complex space. Then X carries a strongly
plurisubharmonic exhaustion function ® : X — [—o00,00). Moreover, ® can
be chosen —oo exactly on the exceptional set S of X and real analytic outside

S.

We give now a criterion for g-completeness with corners of Vajaitu [24].

Proposition 1. Let X be a complex space and & € Fy (X) such that for
every ¢ € R the set X, := {® < ¢} is g-complete with corners. Then X is
q-complete with corners.

From [4] we quote:

Lemma 1. Consider X to be a complex space, A C X an analytic subset
and [ € F,(A). Then for every n € C°(A,R), n > 0 there is an open

neighbourhood U of A in X and fe F,(U) such that ‘ﬂA — f‘ <.

The following result was proved by M. Peternell in [18].

Lemma 2. Let X be a complex space and A C X an analytic subset. Then
there exists h € C*°(X,R), h > 0 such that:
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(a) {h =0} = A

(b) for everyx € X there exists an open neighbourhood U of x and a smooth
function o : U — R such that log(h|ina) + o|v\a is plurisubharmonic.

The function log h is locally equal to the sum of a plurisubharmonic func-
tion and a smooth function. Such a function is called almost plurisubhar-
monic or quasi-plurisubharmonic (see [8]).

3 The Proof

First we assume that Sing(X) is a finite set and that p(Y') is relatively com-
pact in X. Let us even assume that Sing(X) = {zo}. Otherwise the proof is
almost the same.

There are two possibilities: B

Case 1: xy ¢ p(Y). Consider 7 : X — X to be a resolution of the
singularity zo. Thus X is a 1-convex manifold. From Theorem 3 we get a
strongly plurisubharmonic exhaustion function ¢ : X — [—00, 00) which can
be chosen —oo exactly on the exceptional set of X.

Since xg ¢ p(Y), we consider p; : Y — X to be the Riemann domain
such that p = m o p;. Because p is locally g-complete with corners, we have
that p; is also locally g-complete with corners. We denote by U CC X a
strongly pseudoconvex neighbourhood of B (see [13]). This neighbourhood
can be chosen such that p;'(U) is g-complete with corners. Also on X we
have a smooth plurisubharmonic function « : X — R, such that o is 0 on
U and « is > 0 and strongly plurisubharmonic on X\U. We choose strongly
pseudocovex neighbourhoods V and V' of B with B ¢ U cc V cc V’
and such that p; (V') is g-complete with corners. Also we may assume that
¢ > 0 outside U. Since p;* (V') is g-complete with corners, we denote by
hy:p;t(V') — R, a smooth g-convex with corners exhaustion function.

In what follows, some arguments are similar to those in [6]. However, for
reader’s convenience, we repeat them here.

Since K := p;(Y) C X there exists a finite number of open balls {U;},
such that Y; := p;'(U;) is g-complete with corners. Thus —logd; is a ¢-
plurisubharmonic function (see Proposition 7, page 513 in [24]), where §;
represents the boundary distance measured in the euclidian metric for the
Riemann domain Y; — U; CC C". Consider now concentric balls V; CC U;
such that K is still covered by V;. By Lemma 3 in Matsumoto [16] (or M.
Peternell [19]) the quotients &;/8; are bounded on p;*(V; N'V;). Therefore,
the differences log d; — log d; are also bounded.
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For each i we can suitably choose a function 6; € C§°(V;), 6; > 0 such
that the function

I(y) := max (—logd;(y) + bi(pi(y)))
P1(y)EVi
is continuous on Y. Moreover, for a sufficiently large constant A > 0, the
function
qg=A-pop +1

is strongly g-plurisubharmonic on Y and has the following property:
m({g < c}) cc X, for every ¢ € R.

For the details one should consult Matsumoto [16] (pages 107-108).

The idea is to use Lemma 1 and 2 for A = Sing(Y’). Since Y is with
isolated singularities we have that dim A = 0; hence A is ¢g-complete with
corners. Lemma 1 gives us an open neighbourhood U of A and a function
g€ F,(U).

Using Lemma 2, there is a smooth function h : Y — [0,00) such that
{h =0} = A and log h is almost plurisubharmonic. Now select y € C*°(R,R)
strictly increasing and convex such that ¢’ := x o ¢ +logh € SP,(Y\A) and
¢ > 14gon 0U. By Theorem 2 there is f € F,(Y'\A) such that |f —¢'| <1
on Y\ A. Finally we can define a function ® : ¥ — R such that ® € F,(Y):

fon Y\U
¢ := ¢ max(f,g) on U\A
g near A.

In order to prove that Y is g-complete with corners, we will apply Propo-
sition 1. We have to show that for every ¢ € R the set {® < ¢} is ¢-
complete with corners, i.e., to define for every ¢ € R an exhaustion function
ne : {® < ¢} — R that is g-convex with corners.

Let’s denote by g a fixed Riemannian metric on X and by g¢* its pull-back
to Y. We define for each ¢ > 0 the set

Yor={y €Y :0(y) > e},

where 4 is the induced boundary distance on the Riemann domain p; : ¥ —
X.

Using the regularization method in Hormander [15] (see pages 141-142),
Coltoiu and Diederich [6] constructed a C:-function ¢ = ¢, : Y. — R, such
that ¢ is a Lipschitz vertical exhaustion function on Y, and the Levi form of
¢ is bounded from below.
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We define the function p:= ¢-a: {® < ¢} - R, where @ = aop;. In
order for u to be well-defined we choose a small enough € = €. > 0 such that

{® <cP\p'(U) C {0> ¢}

From the formula

L(p) = GL(¢) + ¢L(a) + 2Re(0¢)(9a)

we get that L(u) is bounded from below on {® < ¢}, p is a vertical exhaus-
tion function outside p;'(U) and it is identically 0 on p; ' (U) Now choose a
strongly pseudoconvex neighbourhood U" CC U of B such that there exists
a smooth 1-convex function ¢ : X — R, which enjoys the same properties
as the function a. So, for a sufficiently large constant C', the function

p+C-vpop :{d<c}—-R

is 1-convex on all {® < c}, relatively exhausting outside p; ' (U) and identi-

cally 0 on pfl(U/). Now we select a smooth rapidly increasing strictly convex
function x : [0,00) — [0,00), x(0) = 0 such that

xo(u+C-op)>hyon{®<c}npOV).

Remember that the goal is to construct a continuous g-convex with cor-
ners exhaustion function on {® < ¢}. Now consider the maximum between
hy and y o (u+ C -1 opy) over {® < ¢} Np; (V). Next we extentend this

function by yo(u+C-1op;) and we obtain a g-convex with corners function

1

on {® < ¢}; let’s denote it by A.. Therefore, the function 7. := A\, + is
c _

a continuous ¢-convex with corners exhaustion function on {® < ¢}. Using
Proposition 1 we get that Y is g-complete with corners.

Case 2: xy € p(Y). Let m : X — X be the local desingularization at
7o. Now consider the fiber product of p : ¥ — X and =, that is the set
Y ={(y,2) € Y x X : p(y) = n(Z)}. We have obtained two projection
maps: one on Y which will be denoted by m; and another one on X which
will be denoted by p;. As before let B := 7= ({zo}) be the exceptional set
of X. We have that 7 is a proper_modification of Y at the discrete set
p '({zo}) = {an}, and p; : ¥ — X is a Riemann domain over X. Now
the proof is almost the same as in case 1: p; is locally g-complete with
corners, thus there exists a strongly pseudoconvex neighbourhood U CC X
of B such that p;'(U) is a proper modification at a discrete subset of a ¢-
complete with corners space. We get a strongly plurisubharmonic exhaustion
function ¢ : Y — R which can be chosen —oo exactly on the exceptional set
BofY. Finally, for each ¢ € R, we have on the open set {CD <c} C Y
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a continuous real valued g-convex with corners exhaustion function. Using
the fact that m is biholomorphic outside B, we can define ® = & o 7! on
Y\(p~'({zo}) and ® = —occ on p~}({wg}). From Proposition 1 we get that
Y is g-complete with corners.

Now we only have to prove that it is enough to assume Sing(X) to be
a finite set, i.e., knowing that Sing(X) is finite we should infer that Y is
g-complete with corners. Since X is Stein, let’s denote by % a continuous
strongly plurisubharmonic exhaustion function on X. We write X = U X,

where X, = {¢ < c¢}. Since X has isolated singularities we have that
Sing(X,) is a finite set. We put Y. = p~}(X,) and we get that each Y,
is g-complete with corners. We have that ® := 1 op is 1-convex on Y. Since
= {1 op < ¢} and using Proposition 1 we have that Y is g-complete with
corners.
Using the same argument as before, we can assume that p(Y) CC X.

References

[1] Andreotti, A., Grauert, H.: Théorémes de finitude pour la cohomologie
des espaces complezes, Bulletin de la S.M.F. 90, 193-259, 1962.

[2] Andreotti, A., Narasimhan, R.: Oka’s Heftungslemma and the Levi
problem for complex spaces, Trans. Amer. Math. Soc. 111, 345-366,
1964.

[3] Bungart, L.: Piecewise smooth approzimations to q-plurisubharmonic
functions, Pacific J. Math. 142, 227-244, 1990.

[4] Coltoiu, M.: n-concavity of n-dimensional complex spaces, Math. Z.
210, 203-206, 1992.

[5] Coltoiu, M.: The Levi problem on Stein spaces with singularities. A
survey, Rend. Mat. (Roma) 29, 341-353, 20009.

[6] Coltoiu, M., Diederich, K.: The Levi problem for Riemann domains
over Stein spaces with singularities, Math. Ann. 338, 283-289, 2007.

[7] Coltoiu, M., Mihalache, N.: Strongly plurisubharmonic exhaustion
functions on 1-convex spaces, Math. Ann. 270, 63-68, 1985.

[8] Demailly, J.-P.: Cohomology of q-convex spaces in top degrees, Math.
Z. 204, 283-296, 1990.



g-completeness of Riemann domains 9

[9]
[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Diederich, K., Fornaess, J. E.: Smoothing q-Conver Functions in the
Singular Case, Math. Ann. 273, 665-671, 1986.

Fujita, O.: Domaines pseudoconvexes d’ordre général et fonctions pseu-
doconvezes d’ordre général, J. Math. Kyoto Univ. 30, 637-649, 1990.

Fujita, O.: On the equivalence of the q-plurisubharmonic functions and
the pseudoconvex functions of general order Ann. Reports of Graduate
School of Human Culture, Nara Women’s Univ. 7, 77-81, 1992.

Fornaess, J. E., Narasimhan, R: The Levi problem on complex spaces
with singularities, Math. Ann. 248, 47-72, 1980.

Grauert, H.: Uber Modifikationen und exzeptionelle analytische Men-
gen, Math. Ann. 146, 331-368, 1962.

Hunt, L. R., Murray, J. J.: ¢-plurisubharmonic functions and a gener-
alized Dirichlet problem, Michigan Math. J. 25, 299-316, 1978.

Hormander, L.: An Introduction to Complex Analysis in Several Varia-
bles, North Holland, 1990.

Matsumoto, K.: Pseudoconvex Riemann domains of general order over
Stein manifolds, Kyushu J. Math. 44, 95-107, 1990.

Matsumoto, K.: Boundary distance functions and q-convezity of pseu-
doconvexes domains of general order in Kdhler manifolds, J. Math. Soc.
Japan 48, 85-107, 1996.

Peternell, M.: Algebraische Varietiten und q-vollstandige komplexe
Rdume, Math. Z. 200, 547-581, 1989.

Peternell, M.: Continuous q-conver ezhaustion functions, Invent.
Math. 85, 249-262, 1986.

Popa-Fischer, A.: Sur un théoréeme de Fornaess et Narasimhan, C. R.
Acad. Sci. Paris Sér. I Math. 329, 11-14, 1999.

Popa-Fischer, A.: A Generalization to the g-Convex Case of a Theorem
of Fornaess and Narasimhan, Michigan Math. J. 50, 483-492, 2002.

Siu, Y-T.: Pseudoconvezity and the problem of Levi, Bull. AMS 840,
481-512, 1978.

Vajaitu, V.: Locally q-complete open sets in Stein spaces with isolated
singularities, Kyushu J. Math. 51, 355-368, 1997.



g-completeness of Riemann domains 10

[24] Vajaitu, V.: Pseudoconver domains over q-complete manifolds, Ann.
Sc. Norm. Sup. Pisa 29, 503-530, 2000.

George-lonut, Ionita

Department of Mathematics and Computer Science, ” Politehnica”
University of Bucharest, 313 Splaiul Independentei, Bucharest 060042,
Romania

and

Simion Stoilow Institute of Mathematics of the Romanian Academy
Research group of the project ID-3-0269

P.O. Box 1-764, Bucharest 014700, Romania

E-mail address: georgeionutionita@yahoo.com



