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Abstract. We provide lower and upper estimates for the Hausdorff dimension
of the limit sets of conformal iterated function systems with overlaps. What
is most important is that the alphabet of those system, though countable,
is allowed to be infinite. As in [4], where the case of finite alphabet was
explored, these estimates are expressed in terms of the topological pressure
and the function d(·) counting overlaps. However, the infinite case introduces
new difficulties. In the case when the function d(·) is constant, we get an exact
formula for the Hausdorff dimension. We also prove that in certain cases this
formula holds if and only if the function d(·) is constant. In the end, we also
give examples of countable IFS with overlaps.

1. Introduction

In the paper [4] we have dealt with conformal iterated function systems with
overlaps. We always assumed there that the alphabet of the system is finite. We
have provided lower and upper estimates for the Hausdorff dimension of the limit
sets of such systems expressing them in terms of the topological pressure and the
function d counting overlaps.

In the present paper we consider conformal iterated function systems with overlaps
built over a countable alphabet which is allowed to be infinite. As in [4] we work
on one fixed system rather than, as it has been common in the theory of iterated
function sytems with overlaps, a family of systems. In particular we do not utilize
the celebrated transversality condition.

The difficulties of having an infinite alphabet are manifold, particular ones
arise from the set S(∞) being non-empty. In this paper we deal with them and
pay bigger attention to the boundaries of images of generators of the system. This
permits us not only to handle the case of infinite alphabet but also to improve the
estimates, both lower and upper, of the Hausdorff dimension of the limit set, even
in the case of finite alphabet. This is particularly transparent in the last section of
our paper when we address the question of when our estimates are optimal.

2010 Mathematics Subject Classification. Primary 37C45. Secondary 37D35, 28A80.
Key words and phrases. Conformal iterated function systems, Infinite alphabet, Hausdorff

dimension, overlaps, equilibrium states.
Research of Eugen Mihailescu supported by UEFISCDI through the project PCE 2011-3-
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The general strategy of our proofs in the present paper develops the one from [4],
and as we have already said, it goes beyond.

2. IFS Preliminaries

Fix an integer q ≥ 1 and a real number s ∈ (0, 1). Let X be a compact subset
of Rq such that X = IntX. Suppose that V is a bounded connected open subset of
R

q such that X ⊂ V . For every closed set F ⊂ X and every map g : F → R put

||g|| := sup{|g(x)| : x ∈ F} ∈ [0,+∞].

Also fix an arbitrary countable, either finite or infinte, set E called in the sequel an
alphabet. A system

S = {φe : V → V }e∈E

of C1+ε conformal injective maps from V to V is called a conformal iterated function
system if the following conditions are satisfied.

(a)

φe(X) ⊂ X

for all e ∈ E.

(b) There exists s ∈ (0, 1) such that

||φ′
e|| = sup{|φ′

e(x)| : x ∈ X} ≤ s < 1

for all e ∈ E. Here, φ′
e(x) : R

q → R
q is the derivative of the map

φe : V → V evaluated at the point x, it is a similarity map, and |φ′
e(x)| is

its operator norm, or equivalently, its scaling factor.

(c) (Refined Distortion Property) There are two constants L ≥ 1 and α > 0
such that ∣∣|φ′

e(y)| − |φ′
e(x)|

∣∣ ≤ L‖(φ′
e)

−1‖−1‖y − x‖α

for all x, y ∈ V and all e ∈ E.

(d) If the alphabet E is infinite, then

lim
e→∞

diam(φe(X)) = 0.

We will usually assume that the system S is irreducible meaning that

JS 	⊂ ∂X or equivalently JS ∩ Int(X) 	= ∅,
where JS is defined next in this Section.

If, in addition, the system S satisfies the Open Set Condition (OSC), meaning
that the interiors of the sets φe(X), e ∈ E, are mutually disjoint (perhaps with
different set X), then there is a fully systematic and fairly complete account of
the fractal properties of its limit set; see [1] and [2] for example. If the alphabet
E is finite, then this condition is equivalent (see [5]) to the the Strong Open Set
Condition (SOSC) which apart from (OSC) requires that JS ∩ Int(X) 	= ∅. If
the alphabet E is infinite, then (OSC) does not in general imply (SOSC), see
[6]. None of these conditions should be mixed with the qualitatively stronger,
Strong Separation Condition (SSC) which requires all the sets φe(X), e ∈ E, to
be mutually disjoint. Let us however emphasize that we do not assume any sort
of such conditions, we assume no open set condition at all, i.e. we do allow any
overlaps of the sets φa(X) and φb(X), where a, b ∈ E with a 	= b. This is what
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makes the theory of such systems qualitatively different from the one with(OSC).
Let

E∗ =

∞⋃
n=0

En and E∞ = {(ωn)
∞
n=1 : ∀(n ≥ 1)ωn ∈ E}.

If τ ∈ E∞ and n ≥ 0, we put τ |n = τ1 . . . τn. Now fix ω ∈ E∞ and notice that(
φω|n(X)

)∞
n=1

is a descending sequence of compact sets such that

diam
(
φω|n(X)

)
≤ D̃sndiam(X),

where the number D̃ ≥ 1 is due to the fact that we do not assume the set X to be
convex. Therefore, the intersection

⋂∞
n=1 φω|n(X) is a singleton, and we denote its

only element by π(ω). So, we have defined a map

π : E∞ → X

which is Lipschitz continuous if E∞ is endowed with the metric

ds(ω, τ ) = s|ω∧τ |,

where ω ∧ τ is the longest common initial block of ω and τ and |ω∧ τ | is its length.
We also set s∞ = 0. The limit set (or the attractor) J = JS of the system S is
defined to be equal to π(E∞). Clearly JS satisfies the following self-conformality
condition

JS =
⋃
e∈E

φe(JS),

and, by induction,

JS =
⋃

|ω|=n

φω(JS)

for all n ≥ 1. Let σ : E∞ → E∞ be the (one sided) shift map, i.e.

σ
(
(ωn)

∞
n=1

)
=

(
(ωn+1)

∞
n=1

)
.

By the definition of JS we have that

JS =
⋃

ω∈E∞

∞⋂
n=1

φω|n(X).

However the order of the union and the intersection cannot be exchanged always,
i.e. in general it is not true that JS =

⋂∞
n=1

⋃
ω∈En φω(X). The former is contained

in the latter, and equality holds if, for example the families {φω(X) : ω ∈ En} are
pointwise bounded for all n ≥ 1. This is in particular the case if the system S
satisfies the Open Set Condition.

Let now ψ : E∞ → R be the function defined by the following formula,

ψ(ω) = log |φ′
ω1
(π(σ(ω)))|, ω ∈ E∞.

It is well known and easy to prove that the following two lemmas hold.

Lemma 2.1. The function ψ : E∞ → R is Hölder continuous.

For every ω ∈ E∗, say ω ∈ En, let us define the (initial) cylinder initiated by
ω:

[ω] = {τ ∈ E∞ : τ |n = ω}.
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Let also Fin(S) be the set of all t ∈ R such that∑
e∈E

‖φ′
ω‖t∞ < +∞.

Obviously this series converges if and only if the following series converges.∑
e∈E

exp(sup(tψ|[e])).

We say then that the potential tψ is summable. Following [1] and [2], we denote

θS := inf(Fin(S)).

Lemma 2.2. If g : E∞ → R is Hölder continuous, then there exists a constant
Cg > 0 such that ∣∣∣∣∣∣

n−1∑
j=0

g(σj(ω))−
n−1∑
j=0

g(σj(τ ))

∣∣∣∣∣∣ ≤ Cg

for all n ≥ 1 and all ω, τ ∈ E∞ such that ω|n = τ |n.

Recalling the notation J = JS , let us define now a function d : J → N by the
following formula,

d(x) = #{e ∈ E : x ∈ φe(J)}.
Immediately from this definition we get the following trivial, but very useful, for-
mula

(2.1)
∑

e∈E: x∈φe(J)

1

d(x)
= 1

for all x ∈ J . Now let κ : E∞ → [1,+∞) be a (not necessarily bounded) Hölder
continuous function and, for an arbitrary parameter t ∈ R, consider the potentials
ψκ,t : E

∞ → R defined as follows:

ψκ,t(ω) = tψ(ω)− log κ(ω) = t log |φ′
ω1
(π(σ(ω)))| − log κ(ω),

for all ω ∈ E∞. One can check easily that ψκ,t is Hölder continuous, by using
Lemma 2.1 and the Hölder continuity of κ. Since the function log κ is non-negative,
the set

Finκ(S) = {t ∈ R :
∑
e∈E

exp(sup(ψκ,t|[e])) < +∞},

that is the set of those parameters t ∈ R for which the potential ψκ,t is summable,
contains Fin(S). For any t ≥ 0, let P(ψκ,t) be the topological pressure, as defined
in [2], of the potential ψκ,t with respect to the dynamical system σ : E∞ → E∞.
Precisely,

P(ψκ,t) := lim
n→∞

1

n
log

∑
ω∈En

exp

⎛
⎝sup

⎛
⎝n−1∑

j=0

ψκ,t ◦ σj |[ω]

⎞
⎠
⎞
⎠ .

This limit exists since the sequence involved is subadditive. Since log |φ′
ω1
(π(σ(ω)))|

≤ log s < 0, it is straightforward to check that the function Finκ(S) � t �→
P(ψκ,t) ∈ R is convex, continuous, strictly decreasing, and limt→+∞ P(ψκ,t) = −∞.
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From now on we will frequently denote P(ψκ,t) simply by P(t). If it will be needed
to be more specific, we will write also PS(t) or PE(t) for P(t). Define now

hκ := inf{t ≥ 0 : P(ψκ,t) ≤ 0}.

Like with the pressure, we write hκ(S) or hκ(E) if we want to be more specific.
If there exists t ≥ 0 such that P(ψκ,t) = 0, then such a t is unique and is equal
to hκ. If t ∈ Finκ(S), then (see [2]) there exists a unique shift-invariant Gibbs
(equilibrium) state μ̃t of the Hölder continuous potential ψκ,t : E∞ → R. Being
shift-invariant it is uniquely characterized by the (Gibbs) property that

(2.2) μ̃t([ω|n]) � e−P(t)n||φ′
ω|n ||

t
n−1∏
j=0

1

κ(π(σj(ω)))

for every ω ∈ E∞ and every n ≥ 1. Let

(2.3) μt = μ̃t ◦ π−1.

Clearly, μt(J) = 1. If A is an arbitrary Borel subset of J and F ⊂ E∗ is a family
of mutually incomparable words, meaning that none is extension of another, such
that π−1(A) ⊂

⋃
ω∈F [ω], then

(2.4) μt(A) ≤
∑
ω∈F

μ̃t([ω]).

We say that a set F ⊂ X is S-invariant if⋃
e∈E

φe(F ) ⊂ F.

We say that a Borel probability measure μ on X is S-invariant if there exists a
Borel probability shift-invariant measure μ̃ on E∞ such that

μ = μ̃ ◦ π−1.

Then obviously μ(JS) = 1. We further say that such a measure μ is ergodic if the
measure μ̃ is ergodic, that is μ is ergodic if and only if for an S-invariant Borel
subset F of X either μ(F ) = 0 or μ(F ) = 1. Let

∂∞X :=
⋃

ω∈E∗

φω(∂X).

Of course ∂∞X is an S–invariant subset of X. We shall prove the following.

Lemma 2.3. If S is a conformal IFS and μ is a Borel probability S–invariant
measure such that μ(∂∞X) < 1, then μ(∂∞X) = 0.

Proof. Since μ(∂X) < 1, we have that μ̃(π−1(∂X)) < 1. Since σ(π−1(∂X)) ⊂
π−1(∂X), ergodicity of μ̃ implies that μ(∂X) = μ̃(π−1(∂X)) = 0. Since π−1(∂∞X) ⊂⋃∞

n=0 σ
−n(π−1(∂X)) and since the measure μ̃ is σ-invariant, we thus conclude that

μ(∂∞X) = 0. �

Recall from [2] that S(∞), the boundary at infinity of the system S, is defined to
consist of all cluster points of all sequences (xn)

∞
n=1, where xn ∈ φen(X) with some
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en ∈ E, and all elements en, n ≥ 1, are mutually distinct. Obviously S(∞) is a
closed subset of X. We put

S+(∞) :=
⋃

ω∈E∗

φω(S(∞)).

So, S+(∞) is a Borel (in fact Fσ) S-invariant subset of X. We say that the system
S is small at infinity if

μ(S(∞)) = 0

for every Borel S-invariant probability measure μ on JS such that μ(∂X) = 0. Let
us make the following straightforward observation.

Observation 2.4. Assume that S is a conformal irreducible IFS. If any of the
following conditions holds, then S is small at infinity.

(a) S(∞) ⊂ ∂∞X.
(b) S(∞) is countable.
(c) S(∞) ∩ JS = ∅
(d) S(∞) = ∅ meaning that the alphabet E is finite.

Proof. To see the sufficiency of (a) just notice that the argument used in the
last part of the proof of Lemma 2.3 yields μ(∂∞X) = 0. The sufficiency of either
(b), (c), or (d) is obvious. �

Employing the same argument as in the proof of Lemma 2.3, we get the folowing.

Lemma 2.5. If t ∈ Finκ(S) and μt(S(∞)) = 0, then μt(S+(∞)) = 0. In
particular, if S is small at infinity, then μt(S+(∞)) = 0 for a dense set of parameters
t ∈ (θS , q).

3. Upper Bound

Following closely the proof of the corresponding theorem in [4], which was
formulated and proved there assuming that the alphabet E is finite, we shall prove
in this section Theorem 3.1. It gives an upper bound for the Hausdorff dimension
of the limit set JS from which an invariant subset is taken away. In [4] this set was
empty.

Theorem 3.1. Let S = {φe}e∈E be a conformal iterated function system. Let
H be an S-invariant subset of JS . If k ≥ 1 is an integer satisfying d(x) ≥ k for all
x ∈ JS \H, then HD(JS \H) ≤ hk.

Proof. Fix t > hk. Then P(t) < 0 and therefore

(3.1)
∑
|ω|=n

||φ′
ω||tk−n ≤ e

1
2P(t)n

for all n ≥ 1 large enough, say n ≥ n0. For every ω ∈ En consider the smallest
closed ball Bω containing φω(X). Then

(3.2) diam(Bω) ≤ 2diam(φω(X)) ≤ 2D̃diam(X)||φ′
ω||.
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Since {Bω}ω∈En is a cover of the set JS \ H by closed balls, in virtue of the 4r-
Covering Theorem (see [3]), there exists a set I1 ⊂ En with the following properties.

(a) Bω ∩Bτ = ∅ for all ω, τ ∈ I1 with ω 	= τ .
(b)

⋃
ω∈I1

4Bω ⊃ JS \H.

Suppose now by induction that the sets I1, I2, . . . , Il, 1 ≤ l < kn have been defined
with the following properties:

(c) Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ l.
(d) ∀(1 ≤ j ≤ l) ∀(ω, τ ∈ Ij) ω 	= τ ⇒ Bω ∩Bτ = ∅.
(e) ∀(1 ≤ j ≤ l)

⋃
ω∈Ij

4Bω ⊃ JS \H.

Because of (c) and (d), each point of JS \H belongs to at most l elements of the
family {Bω : ω ∈ I1 ∪ . . . ∪ Il}. But, as d ≥ k, and the set H is S-invariant, each
element of JS\H belongs to at least kn > l elements of the family {φω(J) : |ω| = n},
and thus, to at least kn > l elements of the family {φω(X) : |ω| = n}, and eventually
to at least kn > l elements of the family {Bω : |ω| = n}. Thus, the family
{Bω : ω ∈ En \ (I1 ∪ . . . ∪ Il)} covers JS \ H, and it therefore follows from the
4r-Covering Theorem (see [3]) that one can find a set Il+1 ⊂ En \ (I1 ∪ . . . ∪ Il)
such that

(f) If ω, τ ∈ Il+1 and ω 	= τ , then Bω ∩Bτ = ∅.
(g)

⋃
ω∈Il+1

4Bω ⊃ JS \H.

So, we have constructed by induction a family of sets I1, I2, . . . , Ikn ⊂ En such that
the conditions (c), (d), and (e) hold with l = kn.

Choose now 1 ≤ j ≤ kn so that the sum
∑

ω∈Ij
diamt(Bω) is the smallest.

Then by (3.2), (3.1) and (c), (d), (e), we get that

∑
ω∈Ij

diamt(4Bω) = 4t
∑
ω∈Ij

diamt(Bω) ≤
4t

kn

kn∑
i=1

∑
ω∈Ii

diamt(Bω)

≤ 4tk−n
∑
|ω|=n

diamt(Bω) ≤ (8D̃diam(X))t
∑
|ω|=n

||φ′
ω||tk−n

≤ (8D̃diam(X))te
1
2P(t)n.

Denoting by Ht the t-dimensional Hausdorff measure, because of (e) and since
P(t) < 0, we thus conclude that Ht(JS \ H) = 0; so HD(JS \ H) ≤ t. By the
arbitrariness of t > hk, this yields HD(JS \H) ≤ hk. We are done. �

Substituting H = ∅ in this theorem, we get the following.

Corollary 3.2. Let S = {φe}e∈E be a conformal iterated function system. If
k ≥ 1 is an integer satisfying d(x) ≥ k for all x ∈ JS , then HD(JS) ≤ hk.

4. Lower Bound

In this section we prove the lower bound for the Hausdorff dimension. Although we
also follow rather closely the proof of the corresponding result in [4], the difference
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in the formulation and in the proof is even larger than the one pertaining to the
upper bound.

Theorem 4.1. Let S = {φe}e∈E be an irreducible conformal iterated function
system which is small at infinity. If κ̂ : JS → [1,+∞) is a Hölder continuous
function such that d(x) ≤ κ̂(x) for all x ∈ JS \ (∂∞X ∪ S+(∞)), then HD(JS \
(∂∞X ∪ S+(∞))) ≥ hκ, where κ = κ̂ ◦ π : E∞ → R.

Proof. Since the system S is irreducible, there exists a non-empty finite set
H0 ⊂ E such that JH0

	⊂ ∂X. Fix H, an arbitrary finite subset of E containing
H0. We first shall prove that

(4.1) HD(JH \ (∂∞X ∪ S+(∞))) ≥ hκ(H),

where, we emphasize, the set ∂∞X is understood with respect to the full original
system S. Given F , a finite family of mutually incomparable elements of H∗, set

F(∅) = F ,

where ∅ stands here for the empty word, and define

F1 := {ω1 ∈ H : ω ∈ F},
and then, for all e ∈ F1,

F(e) := {ω ∈ H∗ : eω ∈ F}.
Observe that

F(e) 	= ∅ ⇔ e ∈ F1.

Notice also that for each e ∈ F1, the family F(e) consists of mutually incomparable
words. Define further by induction,

F(ω) := F
(
ω||ω|−1

)
(ω|ω|).

Of course,
F(ω) 	= ∅ ⇒ F(ω|n) 	= ∅ ∀n ≤ |ω|.

Since HD(JH \(∂∞X∪S+(∞))) ≥ 0, we may also assume without loss of generality
that hκ(H) > 0. Then, fix an arbitrary t ∈ (0, hκ(H)). So, PH(t) > 0, where
PH(t) is the pressure function generates by the iterated function system SH =
{φe}e∈H . Let μH,t be the corresponding measure produced in (2.3) for the system
SH . Since the topological support of the measure μH,t is equal to JH and since
JH 	⊂ ∂X, we conclude that μH,t(∂X) < 1. It therefore follows from Lemma 2.3
that μH,t(∂∞X) = 0. Since the systems S is small at infinity, we thus conclude
that

(4.2) μH,t(∂∞X ∪ S+(∞)) = 0.

Consider the restricted function

κ̂H =: κ̂|JH
: JH → [1,+∞).

It is obviously Hölder continuous. In particular, the function 1/κ̂H : JH → (0, 1] is
uniformly continuous, whence there exists η > 0 so small that

1

κ̂(y)
≤ ePH(t) 1

κ̂(x)

for all x, y ∈ JH with ||y− x|| < η. Since the set H is finite, for every z ∈ JH there
exists R(z) ∈ (0, η) such that if B(z,R(z)) ∩ φe(JH) 	= ∅, then z ∈ φe(JH). Since
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the set JH is compact and {B(z,R(z)/2) : z ∈ JH} is an open cover of JH , there
exists a finite set F ⊂ JH such that

(4.3) JH ⊂
⋃
z∈F

B(z,R(z)/2).

Let

R∗ :=
1

5
min {diam(J),min{R(z) : z ∈ F}} .

Now fix an arbitrary x ∈ JH and 0 < r < R∗. By (4.3) there exists zx ∈ F such
that x ∈ B(zx, R(zx)/2). Given a set B ⊂ B(x, r), we say that a family F ⊂ E∗

consisting of mutually incomparable words is properly placed with respect to the
triple (x,B, r), if for all ω ∈ F we have that

(4.4) B ∩ φω(JH) 	= ∅.
It immediately follows from this definition, the definition of R∗ and the restriction
on r > 0, that

(4.5) zx ∈ φω1
(JH)

for all ω ∈ F . In other words

(4.6) F1 ⊂ {e ∈ H : zx ∈ φe(JH)}.
Now fix an arbitrary τ ∈ H∞, and a family F ⊂ E∗ which is properly placed with
respect to (x,B, r) for some B ⊂ B(x, r). We then have

(4.7)

Σ(F) : =
∑
ω∈F

e−PH(t)|ω| 1

κ(ωτ )
· 1

κ(σ(ωτ ))
· . . . · 1

κ(σ|ω|−1(ωτ ))

≤
∑
ω∈F

e−PH(t)|ω|ePH(t) 1

κ̂(zx)
· 1

κ(σ(ωτ ))
· . . . · 1

κ(σ|ω|−1(ωτ ))

≤
∑
ω∈F

e−PH(t)(|ω|−1) 1

d(zx)
· 1

κ(σ(ωτ ))
· . . . · 1

κ(σ|ω|−1(ωτ ))

=
∑
e∈F1

1

d(zx)
·
∑

γ∈F(e)

e−PH(t)|γ| 1

κ(γτ )
· 1

κ(σ(γτ ))
· . . . · 1

κ(σ|γ|−1(γτ ))

=
∑
e∈F1

1

d(zx)
· Σ(F(e)).

If ω ∈ F(e), then we have

∅ 	= φ−1
e (φeω(JH) ∩B) = φω(JH) ∩ φ−1

e (B)

and
φ−1
e (B) ⊂ B

(
φ−1
e (xB,e), diam

(
φ−1
e (B)

))
,

where xB,e is an arbitrary point in φe(JH)∩B, independent of ω. We say that the
letter e is B-proper if

diam
(
φ−1
e (B)

)
< R∗.

We say further by induction that a word ω ∈ H∗ with |ω| ≥ 2 is B-proper if ω||ω|−1

is B-proper, ω|ω| ∈ F
(
ω||ω|−1

)
1
, and F(ω) is properly placed with respect to the

triple(
φ−1
ω|ω|

(
x
φ−1
ω|ω|

(
φ−1
ω||ω|−1

(B),ω|ω|

)), φ−1
ω|ω|

(
φ−1
ω||ω|−1

(B)
)
, diam

(
φ−1
ω|ω|

(
φ−1
ω||ω|−1

(B)
)))

.
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Let FB ⊂ H∗ be the family of all finite words ω ∈ H∗ such that ω is not B-proper
but ω||ω|−1 is and ω|ω| ∈ F

(
ω||ω|−1

)
1
. Clearly, FB ⊂ H∗ is a maximal antichain,

meaning that all it elements are mutually incomparable and their union is equal to
H∞. Expanding (4.5) we get that

Σ(F) =
∑

ω∈FB

1

d
(
zφ−1

ω1
(xω1

)

) · 1

d

(
z
φ−1
ω2

(
xω1ω2

)) · . . . · 1

d

(
z
φ−1
ω|ω|−1

(
xω||ω|−1

))Σ(F(ω)),

where we abbreviated

xω|k := xφ−1
ω|k−1

(B),ωk
.

Now, we shall prove the following.

Claim: If Σ(F(ω)) ≤ M for some M ≥ 0 and all ω ∈ FB , then Σ(F) ≤ M .

Proof. Let n ≥ 1 be the longest word in FB. For every 0 ≤ k ≤ n− 1 define

F k
B := {ω|k : |ω| ≥ k} ∪ {ω ∈ FB : |ω| < k}.

In particular, F0
B = ∅. Then for every 0 ≤ k ≤ n− 1 put

S(k) :=
∑

ω∈FB

1

d(zx)

|ω|∏
j=1

1

d
(
zφ−1

ωj
(xω|j )

) .
If 0 ≤ k ≤ n− 2, then by (2.1) and (4.6) we get that

S(k + 1) =
∑

ω∈FB
|ω|≤k

1

d(zx)

|ω|∏
j=1

1

d
(
zφ−1

ωj
(xω|j )

) +
∑

ω∈Fk+1
B

|ω|=k+1

1

d(zx)

k+1∏
j=1

1

d
(
zφ−1

ωj
(xω|j )

)

=
∑

ω∈FB
|ω|≤k

1

d(zx)

|ω|∏
j=1

1

d
(
zφ−1

ωj
(xω|j )

) +

+
∑

γ∈Fk
B

1

d(zx)

k∏
j=1

1

d
(
zφ−1

γj
(xγ|j )

) ∑
e∈F(γ)1

1

d
(
zφ−1

e (xγe)

)

≤
∑

ω∈FB
|ω|≤k

1

d(zx)

|ω|∏
j=1

1

d
(
zφ−1

ωj
(xω|j )

) = Sk.

Thus,

Sn−1 ≤ S0 =
∑

ω∈F0
M

1

d(zx)
≤ 1.

Therefore, Σ(F) ≤ MSn−1 ≤ M . The claim is proved. �

Now we define a special family, which is properly placed with respect to the triple
(x,B(x, r), r), with r ∈ (0, R∗), namely:

F∗(x, r) :=
{
ω ∈ H∗ :B(x, r) ∩ φω(JH) 	= ∅, φω(JH) ⊂ B(x, 2r), and

φω||ω|−1
(JH) 	⊂ B(x, 2r)

}
.
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Aiming to apply the claim, we want to estimate from above the number of elements
of F∗(x, r)(ω) for every ω ∈ F∗(x, r). So, fix such ω and consider an arbitrary word
γ ∈ F∗(x, r)(ω). Then ωγ ∈ F∗(x, r), and, by the definition of F∗(x, r), this yields

(4.8) ||φ′
ωγ || ≤ C1r and ||φ′

ωγ||ωγ|−1
|| ≥ c−1

2 r

with some C1, C2 ∈ (0,+∞) independent of x and r. On the other hand since ω|n−1

is B(x, r)-proper (with n = |ω|) but ω is not, and since ωn ∈ F∗(x, r)
(
ω|n−1

)
, we

must have that diam(φ−1
ω (B(x, r)) ≥ R∗. This implies that 2Kr||φ′

ω||−1 ≥ R∗.
Along with (4.8), this gives,

||φ′
ω|| ≤ 2KR−1

∗ r ≤ 2C2KR−1
∗ ||φ′

ωγ||ωγ|−1
|| ≤ 2C2KR−1

∗ ||φ′
ω|| · ||φγ |′|γ|−1||.

Hence,

||φ′
γ||γ|−1

|| ≥ (2C2K)−1R∗.

Consequently, #{γ||γ|−1 : γ ∈ F∗(x, r)(ω)} is bounded above by a constant M1

depending only on the system SH and the number (2C2K)−1R∗. Since the set H
is finite, we thus conclude that #F∗(x, r)(ω) ≤ M2, a constant which also depends
only on SH and (2C2K)−1R∗. In conclusion, there exists a constant M > 0 such
that

ΣF∗(x, r)(ω) ≤ M

for all x ∈ JH , all r ∈ (0, R∗) and all ω ∈ F∗,B(x,r)(x, r). Therefore, applying the
above Claim, we get that

(4.9) ΣF∗(x, r) ≤ M.

Since F∗(x, r) consists of mutually incomparable words and

π−1(B(x, r)) ⊂
⋃

ω∈F∗(x,r)

[ω],

we get from (2.4), (2.2), the very first line of (4.7), the first formula of (4.8) (with
ωγ being now ω), and (4.9) that

μt(B(x, r)) �
∑

ω∈F∗(x,r)

e−PH(t)|ω|||φ′
ω||t

|ω|−1∏
j=0

1

κ(π(σj(ωτ )))

≤ Ct
1r

t
∑

ω∈F∗(x,r)

e−PH(t)|ω|
|ω|−1∏
j=0

1

κ(π(σj(ωτ )))

= Ct
1r

tΣ(F∗(x, r))

≤ MCt
1r

t.

Therefore, invoking also (4.2), it follows from the Converse Frostman Lemma (see
for example [3]) that Ht(JH \ (∂∞X ∪S+(∞))) > 0; consequently HD(JH \ (∂∞X ∪
S+(∞))) ≥ t. Since t > 0 was an arbitrary number smaller than hκ, we thus
conclude that formula (4.1) holds.

For the general case fix 0 < t < hκ arbitrary. Then P(t) > 0. It then follows from
Theorem 2.1.5 in [2] that

0 < P(t) = sup{PH(t) : H0 ⊂ H, finite}
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Therefore, there exists a finite set H0 ⊂ H ⊂ E such that PH(t) > 0. But this
means that t < hκ(H), and further, by (4.1),

HD(JS \ (∂∞X ∪ S+(∞))) ≥ HD(JH \ (∂∞X ∪ S+(∞))) ≥ hκ(H) > t.

Because of arbitrariness of t < hκ, we thus get that

HD(JS \ (∂∞X ∪ S+(∞))) ≥ hκ.

The proof is complete. �

If the alphabet E is finite, then S(∞) = ∅ and therefore a simplified version of the
above proof gives this.

Theorem 4.2. Let S = {φe}e∈E be a conformal iterated function system with
a finite alphabet E. If κ̂ : JS → [1,+∞) is a Hölder continuous function such that
d(x) ≤ κ̂(x) for all x ∈ JS , then HD(JS) ≥ hκ, where κ = κ̂ ◦ π : E∞ → R.

5. Exact Dimensions

The first main theorem in this section is the following.

Theorem 5.1. Let S = {φe}e∈E be an irreducible conformal iterated function
system which is small at infinity. Assume that

D := sup{d(x) : x ∈ JS \ (∂∞X ∪ S+(∞))}
is finite; in particular the supremum becomes a maximum. Then we obtain:

HD(JS \ (∂∞X ∪ S+(∞))) = hD ⇔ d(x) = D, ∀ x ∈ JS \ (∂∞X ∪ S+(∞)).

Proof. Assume first that d(x) = D forall x ∈ JS \ (∂∞X ∪ S+(∞)). Since
∂∞X ∪ S+(∞) is a closed set, it follows from Theorem 3.1 that

(5.1) HD(JS \ (∂∞X ∪ S+(∞))) ≤ hD.

On the other hand, it directly follows from Theorem 4.1 that HD(JS \ (∂∞X ∪
S+(∞))) ≥ hD. Along with (5.1) this gives that HD(JS \ (∂∞X ∪ S+(∞))) = hD

completeing this part of the implication.

Now assume that

HD(JS \ (∂∞X ∪ S+(∞))) = hD.

Seeking contradiction assume that d(z) ≤ D−1 for some z ∈ JS \ (∂∞X ∪S+(∞)).
Since z /∈ S+(∞), there thus exists an open neighborhood V ⊂ R

q of z such that
d(x) ≤ D − 1 for all x ∈ V . Now, by a refined version of Urysohn’s Lemma, there
exists a Lipschitz continuous function κ̂ : X → [D − 1, D] such that

(5.2) κ̂(z) = D − 1

and κ̂(x) = D for all x ∈ X \ V . Note that by the definition of κ̂, we have

(5.3) d(x) ≤ κ̂(x) ≤ D

for all x ∈ JS \ (∂∞X ∪ S+(∞)) and

(5.4) κ ≤ D
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on E∞. Thus, by Theorem 4.1, we get that

hD = HD(JS \ (∂∞X ∪ S+(∞))) ≥ hκ ≥ hD.

Hence,

(5.5) hκ = hD.

Let μ̃D be the unique equilibrium (Gibbs) state on E∞ of the potential hdψ−logD.
Since P(hDψ − logD) = 0, we have

(5.6)

∫
E∞

(hDψ − logD)dμ̃D + hμ̃D
(σ) = 0,

where hμ̃D
(σ) is the Kolmogorov-Sinai metric entropy of the dynamical system

σ : E∞ → E∞ with respect to the σ-invariant measure μ̃D. In virtue of the
Variational Principle, we also have,∫
E∞

(hDψ−log κ)dμ̃D+hμ̃D
(σ) =

∫
E∞

(hκψ−logD)dμ̃D+hμ̃D
(σ) ≤ P(hκψ−log κ) = 0.

This combined with (5.6), imply that

(5.7)

∫
E∞

(logD − log κ)dμ̃D ≤ 0.

Since the function logD − log κ is continuous and since the equilibrium state μ̃D

(as a Gibbs state of a Hölder continuous function) is positive on non-empty open
subsets of E∞, it follows from (5.7) and (5.4) that log κ = logD on E∞. So, κ̂ = D
on J and this contradiction finishes the proof.

�
As an immediate corollary of this theorem we get the following.

Corollary 5.2. Let S = {φe}e∈E be an irreducible conformal iterated func-
tion system which is small at infinity. Assume that

HD(JS \ (∂∞X ∪ S+(∞))) < HD(JS).

Then:

HD(JS \ (∂∞X ∪ S+(∞))) = hD ⇔ d(x) = D ∀ x ∈ JS \ (∂∞X ∪ S+(∞)).

A slightly more involved proof is required to get this.

Theorem 5.3. Assume that S = {φe}e∈E is a conformal iterated function
system such that the function d : JS → [1,+∞] is upper semi-continuous at all
points of JS ∩ S(∞). Let

D := max{d(x) : x ∈ JS}.

Then, with D as above:

HD(JS) = hD ⇔ d(x) = D ∀ x ∈ JS .
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Proof. If d(x) = D forall x ∈ JS , then it directly follows from Theorem 3.1
that

HD(JS) ≤ hD.

On the other hand, we get from Theorem 4.1 that HD(JS) ≥ hD. So, HD(JS) = hD,
and the proof of this part of the implication is complete.

So, assume that

HD(JS) = hD.

Seeking to obtain a contradiction, assume that d(z) ≤ D−1 for some z ∈ JS . Since
the function d : X → [0,+∞] is upper semi-continuous at all points of JS ∩ S(∞),
there thus exists an open neighborhood V ⊂ R

q of z such that d(x) ≤ D − 1 for
all x ∈ V . Now, by a refined version of Urysohn’s Lemma, there exists a Lipschitz
continuous function κ̂ : X → [D − 1, D] such that

(5.8) κ̂(z) = D − 1

and κ̂(x) = D for all x ∈ X \ V . Note that by the definition of κ̂, we have

(5.9) d(x) ≤ κ̂(x) ≤ D

for all x ∈ JS and

(5.10) κ ≤ D

on E∞. Thus, by Theorem 4.1, we get that

hD = HD(JS) ≥ hκ ≥ hD.

Hence,

(5.11) hκ = hD.

Now, the rest of the proof is exactly the same as the corresponding part of the
proof of Theorem 5.1. �

Although Corollary 5.2 looks clumsier and more technical than elegantly formulated
Theorem 5.3, it is Corollary 5.2 which frequently brings more information. Indeed,
let us consider the following two examples supporting this claim.

Example 5.5. Let X = [0, 1] and let S = {φ1, φ2}, where φ1(x) = x/2 and φ1(x) =
(x+ 1)/2. Then S is obviously irreducible small at infinity as it satisfies condition
(d) of Observation 2.4. Moreover, JS = [0, 1], d(x) = 1 for all x ∈ JS \ {1/2} and
d(1/2) = 2. So, Theorem 5.3 tells us only that HD(JS) 	= h2 whereas Corollary 5.2
tells us that HD(JS) = h1.

Although we immediately see anyway that HD(JS) = 1, this example has its value.
Indeed, compare with the following.

Example 5.6. Let X = [−1, 1]. For every n ∈ Z \ {0} let φn : [−1, 1] → [−1, 1] be
given by the following formula.

φn(x) =
n

|n|

(
x

4n2
+ 1− 1

|n|

)
.

Then φn([−1, 1]) ⊂ [−1, 1], the system S := {φn}n∈Z\{0} is irreducible, S(∞) =
{−1, 1}, so S is small at infinity as it satisfies condition (c) of Observation 2.4, and



HAUSDORFF DIMENSION OF THE LIMIT SET 15

d(x) = 1 for all x ∈ JS \ {0} while d(0) = 2. Therefore, Theorem 5.3 tells us only
that HD(JS) 	= h2 whereas Corollary 5.2 tells us that HD(JS) = h1.

The next examples exhibits some strange unexpected phenomena, which may occur
when overlaps are allowed, and indicates how our theorem can be used to estimate
Hausdorff dimensions of the corresponding limit sets.

Example 5.7. Let X = I = [0, 1]. Let φ1 : X → X be a strictly increasing
differentiable (ex. linear) contraction such that

φ1(0) = 0 and φ1(1) < 1/2.

Then define recursively φ2(n+1) : X → X to be a strictly increasing differentiable
(ex. linear) contraction such that

φ2(n+1)(0) = φ2n+1(1) and φ2(n+1)(1) < 1/2.

and

φ2n+1(0) > φ2n(1) and φ2n+1(1) < 1/2.

Similarly, let φ−1 : X → X be a strictly increasing differentiable (ex. linear)
contraction such that

φ0(1) = 1 and φ0(0) > 1/2.

Then define recursively φ2(n+1) : X → X to be a strictly increasing differentiable
(ex. linear) contraction such that

1/2 < φ−(n+1)(1) < φ−n(0).

Consider the system

S = {φn : n ∈ Z}.
Notice that both points 0 = πS(1

∞) and 1 = πS(0
∞) belong to JS . Thus all the

points of type φj(0), φj(1), j ∈ Z, belong to JS . But for the contact points of type
φ2j+1(1), j > 0 we see that the preimage counting function d is equal to 2, whereas
for all other points in JS it is equal to 1. Also notice that S(∞) is countable, thus
the system is small at infinity. Moreover, clearly S is irreducible since JS 	⊂ ∂X.
Thus since these contact points are in ∂∞(X), we can apply Corollary 5.2 and
obtain that HD(JS) = h1.

Example 5.8. Let X = B(0, 1) be the closed unit disk in the complex plane. For
every n ∈ Z let φn : B(0, 1) → B(0, 1) be a contracting similarity of the form
z �→ anz + bn, where both an and bn are real and 0 < an < 1. Then

φn([−1, 1]) ⊂ (−1, 1)

and therefore

JS ⊂ [−1, 1],

where S = {φn : n ∈ Z}. We may select the numbers an and bn, n ∈ Z, so that
φn([−1, 1]) ∩ φk([−1, 1]) 	= ∅ if and only if |n − k| = 1, and when this does hold
then in addition φn((−1, 1))∩φk((−1, 1)) 	= ∅. We further require that |an| →

n→∞
0;

moreover assume that the sequence (φn(0))n∈Z is increasing and

lim
n→+∞

φn(0) = 1
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while

lim
n→−∞

φn(0) = −1

In this example S(∞) being the doubleton {−1, 1}, it is of course countable, hence
the system is small at infinity. From the conditions above we obtain also that
(−1, 1) ⊂ JS . However the function d(·) is jumping in (−1, 1) from the value 1 to
2, and therefore it is not continuous on JS .

By fitting now a well chosen Hölder continuous function κ̃ such that d(x) ≤ κ̃(x),
we obtain from Theorem 4.1 that HD(JS) = 1 ≤ hκ.

Example 5.9. Take X = [0, 1]. φ−2 : X → X be an increasing contraction with
φ−2(0) > 1/2 and φ−2(1) = 1. Let φ−1 : X → X be an increasing contraction
with φ−1(0) = 0 and φ−1(1) < 1/2. Then for every n ≥ 0 let φ2n : X → X
and φ2n+1 : X → X be two increasing contractions defined inductively such that
φ−1(1) < φ0(0) and

φ2n−1(1) < φ2n(0) < φ2n+1(0) < φ2n(1) = φ2n+1(1) < 1/2.

We can arrange this construction so that limn→∞ bn = 1/2, where bn := φ2n(1) =
φ2n+1(1). Let

S = {φk : k ≥ −2}.
Then 0, 1 ∈ JS ,

1
2 = φ−2(0) ∈ JS , and therefore bn ∈ JS . The function d : JS →

[1,∞] takes then on the following form

d(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ JS ∩ [0, φ−1(1)]

1 if x ∈ JS ∩ [φ2n(0), φ2n+1(0))

2 if x ∈ JS ∩ [φ2n+1(0), φ2n+1(1)]

1 if x = 1/2

1 if x ∈ JS ∩ [φ−2(0), 1].

In particular d(bn) = 2 for all n ≥ 0 and d(1/2) = 1. Since limn→∞ bn = 1/2 this
implies that the function d : JS → [1,∞) is not upper semi-continuous. Taking a
Hölder continuous function κ̃ : JS → [1,∞) such that d(x) ≤ κ̃ for all x ∈ JS , we
obtain HD(JS) ≥ hκ in virtue of Theorem 4.1.

Example 5.10. In this example we construct an IFS S where the function d(·)
increases indefinitely on JS , but the set JS is not compact, as frequently is the
case for infinite alphabets. Just modify first Example 5.8 by requiring that the
sets {φn([−1, 1])}n∈Z are mutually disjoint rather then having some intersections;
everything else stays the same. Now form the system S by repeating each copy of
φn n times, for n > 0.

As in Example 5.8, S(∞) = {−1, 1}, so in this case the system is small at
infinity. It is irreducible since JS 	⊂ ∂X. However in this example the function
d(·) increases indefinitely on JS , thus in Theorem 4.1 we have to take a function κ̃
which increases indefinitely on JS .

Note that this example serves simultaneously as one on the unit disk B(0, 1),
as well as just on [0, 1]. Generalizations to higher phase spaces are obvious.

Example 5.11. As above letX = B(0, 1) be the closed unit disk and for every integer
n ≥ 1 let Cn be the circle centered at the origin (0, 0) with some radius rn ∈ (0, 1).
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We chose these radii so that they form an increasing sequence converging to 1.
Cover then for each n ≥ 1 the circle Cn with closed disks Dn(i)i∈Kn

, of the same
small radius r′n, where Kn is a finite set such that each disk Dn(i) intersects only
two other disks of the form Dn(j). Assume in addition that for any m 	= n the
families {Dm(i)}i∈Km

and {Dn(i)}i∈Kn
consist of mutually disjoint disks.

Our iterated function system S is obtained by taking contracting similarities
{φn,i : X → X : n ≥ 0, i ∈ Kn} whose respective images of X are the disks
Dn(i), i ∈ Kn, n ≥ 0.

In this case the limit set JS is non-compact and S(∞) ⊂ ∂(X). Thus the
infinite IFS S is small at infinity. Also clearly S is irreducible.

We may have points x in JS with d(x) = 2 and points y with d(y) = 1, and
this will strongly influence the choice of the upper bounding function κ̃.
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