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Abstract. We prove that a manifold in the Fujiki class C which
supports a i∂∂̄-closed metric is Kähler. This result implies that
on a compact complex manifold in the Fujiki class C which is not
Kähler there exists a nonzero i∂∂̄-exact, positive current of bidi-
mension (1, 1).

Introduction

In [HaLa], Harvey and Lawson proved that the obstruction to the
existence of a Kähler metric on a given compact complex manifold X
of dimension n is a positive, non-zero current of bidegree (n− 1, n− 1)
which is the (n − 1, n − 1) component of a d-exact current on X. In
general, such currents are not d-closed, therefore the theory of closed
positive currents cannot be used to study them (although some results
extending this theory to the case of i∂∂̄-closed, positive currents do
exist). The main result of this paper is that, in case when X is a
manifold in the Fujiki class C, the obstruction current can be chosen
to be d-closed:

Theorem 0.1. Let X be a compact complex manifold of dimension
n in the Fujiki class C and which is not Kähler. Then there exists a
positive, nonzero current T of bidegree (n−1, n−1), which is i∂∂̄-exact.

Theorem 0.1 follows immediately from

Theorem 0.2. Let X be a compact complex manifold of dimension n
in the Fujiki class C and suppose there exists ω a strictly positive (1, 1)
form on X such that i∂∂̄ω = 0. Then X is a Kähler manifold.

The two theorems are generalizations to the analytic case of the
algebraic case which was proved by Peternell [Pe]. Theorem 0.2 is
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similar to Moishezon’s theorem which states that a Moishezon manifold
which is Kähler is in fact projective.

A (1, 1)-form ω as in Theorem 0.2 (i.e., positive defined, and i∂∂̄-
closed) is called a strong Kähler with torsion (SKT ) metric. See for
instance [FiTo] for an introduction to SKT metrics. Therefore, Theo-
rem 0.2 states that a manifold in Fujiki class C which supports a SKT
metric is in fact Kähler.

On surfaces the two Theorems 0.1 and 0.2 are vacuous since any
surface in the Fujiki class C is Kähler. But on 3-folds, Theorem 0.1
implies that any closed obstruction contains a nonzero curve:

Theorem 0.3. Let X be a compact complex 3-fold in class C which
is not Kähler and let T be a positive, nonzero (2, 2) current which is
i∂∂̄-exact. Then there exists C an irreducible curve in X, λ > 0 and
R a closed positive (2, 2) current on X such that T = λ[C] +R.

Theorem 0.1, combined with a result of Lamari [La], Théorème 3.2
(see Theorem 1.5 below) implies the following general existence theo-
rem, which is a refined version of Harvey and Lawson theorem:

Theorem 0.4. Let X be a compact complex manifold of dimension n
such that

(i) there is no non-trivial nef pluriharmonic current on X of bide-
gree (n − 1, n − 1), which is the (n − 1, n − 1) component of a
boundary

(ii) there is no non-trivial positive, ∂∂̄-exact current of bidegree (n−
1, n− 1) on X

Then X is Kähler.

Therefore, on a non-Kähler manifold, the obstruction is either nef
(when the manifold is not in C) or closed (when the manifold is in the
Fujiki class C).

For the proof of Theorem 0.2, we first show that the cohomology class
of the i∂∂̄-closed form satisfies the numerical conditions of a Kähler
class. The main result of [DePă] then implies that the cohomology
class contains a Kähler current. We then proceed by induction on the
dimension of the manifold to show that the cohomology class contains
a Kähler form.

Theorem 0.1 follows at once from Theorem 0.2 by using a result of
Harvey and Lawson [HaLa].

1. Preliminaries

In this section we gather some results needed for the proof of the
above results.
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1.1. Intrinsic characterization of Kähler manifolds. The main
result of [HaLa] is the following

Theorem 1.1. Let X be a compact manifold of dimension n. Then
X is non-Kähler iff there exists a nonzero positive current which is the
(n− 1, n− 1) component of a boundary.

In the same paper, the authors prove that the obstruction to the
closedness of the obstruction current involves a strictly positive, i∂∂̄-
closed (1, 1) form:

Theorem 1.2. Suppose X is a compact manifold of dimension n. Then
X admits a closed real (1, 1)-form η = ∂̄α+ω+∂ᾱ where ω is a strictly
positive (1, 1) form and α is a (1, 0) form on X iff X does not support a
nonzero, d-closed, positive current which is the (n−1, n−1) component
of a boundary

1.2. Positive classes on compact manifolds. The main result of
[DePă] is the following

Theorem 1.3. Let (X,λ) be a compact Kähler manifold and let {η}
be a (1, 1) cohomology class on X. Then {η} is a Kähler cohomology
class iff for every irreducible analytic set Z ⊂ X, dimZ = p, and every
k = 1, p, ∫

Z

ηk ∧ λp−k > 0 (1.1)

In order to construct a Kähler metric, we will need the following
result from [DePă]:

Theorem 1.4. Let X be a compact complex space and let {η} be a
cohomology class of type (1, 1) on X. Assume that {η} contains a
Kähler current T and that the restriction {η}|Y to every irreducible
component Y in the Lelong sublevel sets Ec(T ) is a Kähler cohomology
class. Then {η} is a Kähler cohomology class on X.

1.3. Manifolds in the Fujiki class C. The manifolds in class C were
first introduced by Fujiki as manifolds which are meromorphic images
of Kähler manifolds [Fu]:

Definition 1.1. A compact complex manifold X is in class C if there
exists a complex Kähler space Y and a surjective meromorphic map
h : Y → X.

There are several other ways of characterizing the manifolds in the
Fujiki class. A current T of bidegree (n−1, n−1) on a compact complex
manifold X of dimension n is nef pluriharmonic if it is weak limit of
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Gauduchon metrics. A closed current of bidegree (1, 1) is a Kähler
current if it dominates some strictly positive, smooth (1, 1)-form. Then
we have:

Theorem 1.5. Let X be a compact complex manifold of dimension n.
Then the following are equivalent:

i) X is in the Fujiki class C
ii) there exists Y a Kähler manifold and h : Y → X a proper trans-

form of X ([Va])
iii) there exists T a Kähler current on X ([DePă])
iv) if R is a (n−1, n−1) nef pluriharmonic current on X which is

the (n− 1, n− 1) component of a boundary, then R = 0 ([La])

The Fujiki class C is stable under most natural operations, except
under small deformations. The Hodge decomposition is valid on man-
ifolds in the Fujiki class C, in particular the ∂∂̄ lemma is valid on such
manifolds.

2. Non-Kähler manifolds in the Fujiki class C

In this section we prove the two Theorems 0.1 and 0.2. We first need
the following lemma which will be used later to show that a certain
cohomology class satisfies the numerical inequalities of a Kähler class:

Lemma 2.1. Let X be a compact complex manifold of dimension n,
η = ∂ᾱ + ω + ∂̄α be a closed (1, 1) form where α is a (1, 0) form on
X and ω is a strictly positive (1, 1) form on X, and λ be a closed real
(n− k, n− k) form on X. Then

∫
X

ηk ∧ λ =
∑

2i+j=k

(
k
j

)(
2i
i

)∫
X

ωj ∧ (∂α ∧ ∂̄ᾱ)i ∧ λ (2.1)

Proof. Since η is closed, it follows that ∂ω = ∂̄∂α and ∂̄ω = ∂∂̄ᾱ. We
prove the statement by induction on k. For k = 1, the above equation
becomes ∫

X

η ∧ λ =

∫
X

ω ∧ λ
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and it follows from Stokes’ theorem since λ is closed. Suppose the
formula is true for k. Then for k + 1 we have∫

X

ηk+1 ∧ λ =

∫
X

ηk ∧ η ∧ λ =∑
2i+j=k

(
k
j

)(
2i
i

)∫
X

ωj ∧ (∂α ∧ ∂̄ᾱ)i ∧ (∂̄α + ω + ∂ᾱ) ∧ λ =

∑
2i+j=k

(
k
j

)(
2i
i

)∫
X

ωj+1 ∧ (∂α ∧ ∂̄ᾱ)i ∧ λ+

∑
2i+j=k

(
k
j

)(
2i
i

)∫
X

∂̄α ∧ ωj ∧ (∂α ∧ ∂̄ᾱ)i ∧ λ+

∑
2i+j=k

(
k
j

)(
2i
i

)∫
X

∂ᾱ ∧ ωj ∧ (∂α ∧ ∂̄ᾱ)i ∧ λ

The third term in the above sum is the conjugate of the second term,
so we focus only on the second term. Stokes’ theorem implies that it
is equal to∑

2i+j=k

j

(
k
j

)(
2i
i

)∫
X

α ∧ ∂∂̄ᾱ ∧ ωj−1 ∧ (∂α ∧ ∂̄ᾱ)i ∧ λ+

∑
2i+j=k

i

(
k
j

)(
2i
i

)∫
X

α ∧ ∂ω ∧ ωj ∧ ∂̄ᾱ ∧ (∂α ∧ ∂̄ᾱ)i−1 ∧ λ

where we have used ∂̄ω = ∂∂̄α and ∂̄∂α = ∂ω. Now

∂

[ ∑
2i+j=k−1

j + 1

i+ 1

(
k

j + 1

)(
2i
i

)
∂̄ᾱ ∧ ωj ∧ (∂α ∧ ∂̄ᾱ)i

]
=

∑
2i+j=k

j

(
k
j

)(
2i
i

)
∂∂̄ᾱ ∧ ωj−1 ∧ (∂α ∧ ∂̄ᾱ)i+

∑
2i+j=k

i

(
k
j

)(
2i
i

)
∂ω ∧ ωj ∧ ∂̄ᾱ ∧ (∂α ∧ ∂̄ᾱ)i−1

and again Stokes’ theorem implies that the second term is equal to∑
2i+j=k−1

j + 1

i+ 1

(
k

j + 1

)(
2i
i

)∫
X

ωj ∧ (∂α ∧ ∂̄ᾱ)i+1 ∧ λ

Now the formula for k + 1 follows from rearranging the terms of the
sums, along with some trivial combinatorial identities. �

Now we can prove
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Theorem 2.2. Let X be a compact complex manifold of dimension n
in the Fujiki class C and suppose there exists ω a strictly positive (1, 1)
form on X such that i∂∂̄ω = 0. Then X is a Kähler manifold.

Proof. Note that since X is in the Fujiki class C, the ∂∂̄ lemma is valid
on X, and therefore the condition i∂∂̄ω = 0 implies the existence of
α and η as in Lemma 2.1 (apply the i∂∂̄-lemma to the d-closed and
∂-exact form ∂ω). We prove by induction on n that {η} is a Kähler
cohomology class.

First assume that X can be made Kähler by a single blow-up along

a smooth submanifold Y ⊂ X, dimY ≤ n− 2. Denote by π : X̃ → X

the blow up of X along Y and denote by Ỹ ⊂ X̃ the exceptional divisor

and suppose that λ̃ is a Kähler form on X̃. It is well-known that there

exists a smooth d-closed (1, 1) form ũ on X̃, in the cohomology class

of [Ỹ ], such that ω̃ = π∗ω− εũ is strictly positive on X̃ for some small

ε > 0. Moreover, ũ = [Ỹ ] + i∂∂̄ψ̃, where ψ̃ is smooth on X̃ \ Ỹ . Set
α̃ = π∗α and η̃ = ∂ ¯̃α + ω̃ + ∂̄α̃. Then we can use Lemma 2.1 for η̃ on

X̃.
Note that

(∂α̃ ∧ ∂̄ ¯̃α)i = (∂α̃)i ∧ (∂̄ ¯̃α)i

is a weakly positive (2i, 2i)-form on X̃. Hence, when we multiply it

with the strongly positive form ω̃j ∧ λ̃k, we obtain a positive multiple
of the volume form. Therefore we obtain that∫

Z̃

η̃k ∧ λ̃p−k > 0 (2.2)

for every irreducible analytic subset Z̃ ⊂ X̃, dim Z̃ = p and every k =

1, p. Indeed, when Z̃ is smooth, this follows from Lemma 2.1.

In case when Z̃ is not smooth, we use Hironaka’s resolution of singu-

larities, and we obtain a manifold X̃ ′ which is a sequence of blow-ups

with smooth centers of X̃, and a smooth submanifold Z̃ ′ which resolves

the singularities of Z̃. It is clear the integral in (2.2) is equal to the

corresponding integral over Z̃ ′, and hence is non-negative.

Theorem 1.3 implies that {η̃} is a Kähler cohomology class on X̃,

i.e., there exists ϕ̃ ∈ C∞(X̃,R) such that η̃ + i∂∂̄ϕ̃ > 0.
Now we push everything forward to X. At the cohomology level, we

have on X̃ that

{η̃} = π∗{η} − ε{[Ỹ ]}
The push-forward of [Ỹ ] is 0, so it follows that π∗{η̃} = {η} contains a
Kähler current which is smooth on X \ Y .
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Note that a smooth submanifold of a manifold in Fujiki class C is also
in Fujiki class C. Hence, by induction, we obtain that the restriction of
{η} to Y is a Kähler cohomology class, and by Theorem 1.4, it follows
that {η} is a Kähler cohomolgy class.

In general, suppose that X can be made Kähler by a sequence of
blow-ups with smooth centers Xr → Xr−1 → . . .→ X1 → X0 = X and
choose r to be minimal and suppose r ≥ 1. We can easily construct a
strictly positive (1, 1)-form ωr−1 on Xr−1 such that i∂∂̄ωr−1 = 0. Then
Xr−1 is Kähler, contradicting the minimality of r. �

On 3-folds we can prove a stronger result:

Theorem 2.3. Let X be a 3-fold in the Fujiki class C and ω a strictly
positive (1, 1)-form on X such that either i∂∂̄ω ≥ 0 or i∂∂̄ω ≤ 0. Then
X is Kähler.

Proof. Since X is in the Fujiki class C, there exists T ≥ γ a Kähler
current on X, where γ is a strictly positive (1, 1)-form on X. If i∂∂̄ω ≥
0, then

〈i∂∂̄ω, γ〉 ≤ 〈i∂∂̄ω, T 〉 = 〈ω, i∂∂̄T 〉 = 0 (2.3)

hence i∂∂̄ω = 0 and similarly when i∂∂̄ω ≤ 0. Therefore i∂∂̄ω = 0 and
the conclusion follows from Theorem 2.2. �

Now we can easily prove

Theorem 2.4. Let X be a compact complex manifold of dimension
n in the Fujiki class C and which is not Kähler. Then there exists a
positive, nonzero current T of bidegree (n−1, n−1), which is i∂∂̄-exact.

Proof. By Theorem 1.2, it is enough to prove that if X supports a
strictly positive, i∂∂̄-closed, (1, 1)-form, then X is Kähler. But this
is just the statement of Theorem 2.2. The i∂∂̄-exactness of T follows
immediately from the ∂∂̄ lemma. �

3. Non Kähler 3-folds

In this section we show that on any 3-fold in class C which is not
Kähler there exists a curve which is part of the obstruction.

Theorem 3.1. Let X be a 3-fold in class C which is not Kähler and
let T be a closed, positive, nonzero (2, 2) current which is i∂∂̄-exact.
Then there exists C an irreducible curve in X, λ > 0 and R a closed
positive (2, 2) current on X such that T = λ[C] +R.
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Remark 3.1. The above theorem is no longer true in higher dimen-
sions. For instance, let Y be the 3-fold constructed by Hironaka [Hi]
which is a proper modification of the projective space P3 and which
contains a positive linear combination of curves which is homologuous
to 0. Denote this obstruction by C. Let S be an arbitrary Riemann
surface and ωS a positive (1, 1)-form on S. Let X = Y × S and let p1
and p2 the two projections. Set T = p∗1C ∧ p∗2ωS. Then T is a closed
positive (3, 3) current, which is i∂∂̄-exact, and it is a residual current.

Remark 3.2. Theorem 3.1 states that on 3-folds, any closed obstruc-
tion contains a curve. The above example shows that in higher dimen-
sions there are obstructions which do not contain any curves. It’s not
clear whether on any manifold in class C there are obstructions which
contain curves.

Before we prove Theorem 3.1, we need the following

Proposition 3.2. Let X be a compact complex manifold of dimension

n in the Fujiki class C and let π : X̃ → X be the blow-up of X along a

smooth submanifold Y of dimension ≤ n− 2 and let Ỹ the exceptional
divisor. Let T be a closed positive (n−1, n−1) current on X such that

χY T = 0. Then there exists T̃ a closed positive (n−1, n−1) current on

X̃ such that χỸ T̃ = 0 and π∗T̃ = T . Moreover, {T̃} = π∗{T}−λ{[F ]},
where F is a curve in the fibre of π|Ỹ : Ỹ → Y and λ ≥ 0.

Proof. The existence of T̃ (the strict transform of T ) is proved in

[AlBa2]. Let F be a curve in a fibre of π|Ỹ → Y . We prove that

there exists λ ∈ R such that {T̃} = π∗{T} − λ{[F ]} by duality. Let

{α̃} ∈ H1,1(X̃); it is well-known that {α̃} = π∗{α} + γ{[Ỹ ]} where
{α} ∈ H1,1(X). Then

〈{T̃} − π∗{T} − λ{[F ]}, {α̃}〉 = γ
(
〈{T̃}, {[Ỹ ]}〉+ λ〈{[F ]}, {[Ỹ ]}〉

)
It follows that for

λ = − 〈{T̃}, {[Ỹ ]}〉
〈{[F ]}, {[Ỹ ]}〉

we have {T̃} = π∗{T}+λ{[F ]}. Since χỸ T̃ = 0, it follows (see [AlBa1])

that 〈{T̃}, {[Ỹ ]}〉 ≤ 0. Now 〈{[F ]}, {[Ỹ ]}〉 < 0 and therefore λ ≥ 0. �

Proof. of Theorem 3.1 By Siu’s decomposition theorem, T can be writ-
ten T =

∑
j λj[Cj] + R, where Cj are curves in X, λj > 0 and R is a

residual current, i.e., the Lelong sublevel sets Ec(R) are 0 dimensional
for every c > 0. So it is enough to prove that T cannot be residual.
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Suppose T is residual. Then, if Y is a submanifold of X of dimension
≤ 1, then χY T = 0. Now suppose that X can be made Kähler by a
sequence of blow-ups with smooth centers X = X0 ← X1 ← . . .← Xr

whereXr is Kähler. Denote by Ys the center of the blow-upXs+1 → Xs.
The centers of the blow-ups are either smooth curves or points. Start
off with the current T = T0 on X = X0. Clearly χY0T = 0. We
construct by induction i∂∂̄-exact, positive currents Ts on Xs such that
χYsTs = 0 and (πs)∗Ts = Ts−1. Suppose Ts has been constructed. From
Proposition 3.2 we obtain a closed positive current T ′s+1 on Xs+1 and
λs+1 ≥ 0 such that T ′s+1 + λs+1[Fs+1] is i∂∂̄-exact and its push-forward
is Ts. If Ys+1 6= Fs+1, we set Ts+1 = T ′s+1 + λs+1[Fs+1]. If Ys+1 = Fs+1,
we set Ts+1 = T ′s+1 + λs+1[F

′
s+1] where F ′s+1 6= Fs+1 is another curve in

the cohomology class {[Fs+1]}. It is clear that χYs+1Ts+1 = 0 and that
(πs+1)∗Ts+1 = Ts. On Xr we obtain a closed positive current Tr which
is i∂∂̄-exact. Since Xr is Kähler, it follows that Tr = 0 and therefore
T0 = T = 0. Contradiction. �
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[La] A. Lamari Courants kählériens et surfaces compactes, Ann. Inst. Fourier
(Grenoble), 49 no. 1 (1999), 263-285

[Pe] T. Peternell Algebraicity criteria for compact complex manifolds, Math.
Ann. 275 (1986), no. 4, 653–672

[Va] J. Varouchas Kähler spaces and proper open morphisms, Math. Ann. 283
(1989), no. 1, 13-52.

Address:
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