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Abstract

The present work is a collection of results in the study of nonlinear problems by means of three
variational approaches: a variational approach via Lagrange multipliers, a variational approach
via bipotentials and a variational approach via history-dependent quasivariational inequalities
on unbounded time intervals.

The study we present in this thesis has an interdisciplinary character and a strong appli-
cability feature, combining mathematical areas as PDEs, Nonlinear Analysis, Convex Analysis
and Calculus of Variations with Mechanics of Continua, Mechanics of Materials and Contact
Mechanics.

All the problems we discuss in this thesis are related to models in Contact Mechanics for
several types of deformable solid materials. The scientific results mentioned in the present thesis
represent a part of the scientific results of the candidate, published after obtaining the Ph.D.
degree in Mathematics. The results we focus on are presented without proofs; details can be
found in the papers mentioned in the Publications of the Thesis (just after the Abstract in
Romanian).

The thesis comprises SCIENTIFIC RESULTS, CAREER EVOLUTION AND DEVELOP-
MENT PLANS and BIBLIOGRAPHY.

The presentation of the SCIENTIFIC RESULTS is organized into three parts.

Part I, devoted to the study of a class of contact models by a wvariational approach with
Lagrange multipliers, is a collection of new mixed variational problems. The variational for-
mulations via Lagrange multipliers in non-smooth mechanics are suitable formulations to effi-
ciently approximate the weak solutions; this motivates the research in this direction. Structured
in seven chapters, Part I discusses slip-independent frictional contact problems/slip-dependent
frictional contact problems, contact problems for several types of nonlinearly elastic materials,
frictional contact viscoelastic problems, frictionless contact problems involving electro-elastic or
viscoplastic materials, contact problems involving multi-contact zones, unilateral frictional con-
tact problems, focusing on their weak solvability. Presenting new abstract results as nonlinear
analysis tools is also under attention. The abstract problems we consider herein are new abstract
variational systems. In order to solve them, the main techniques we use rely on saddle point or
fixed point techniques.

Part Il adopts a wvariational approach via bipotentials in the weak solvability of a class of
nonlinearly elastic contact problems. This second part comprises two chapters, Chapters 8-9. In
Chapter 8 it is analyzed a unilateral frictionless contact model while in Chapter 9 it is analyzed a
frictional contact model, both models leading to new variational systems. In order to solve these
systems, the main technique we use is a minimization technique. Using a separated bipotential
we get existence and uniqueness results suitable to discuss a simultaneous computation of the
displacement field and the Cauchy stress tensor. The results presented in Part II represent first
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steps in a new research direction, more complex models related to non-separated bipotentials
being also envisaged.

Part 111 discusses the variational analysis via history-dependent quasivariational inequalities
for a class of viscoplastic or electro-elasto-viscoplastic contact problems on unbounded time inter-
val. This third part comprises three chapters, Chapters 10-12. Some preliminaries are presented
in Chapter 10: a fixed point result and an existence and uniqueness result for an auxiliary
problem consisting of an abstract history-dependent quasivariational inequality formulated on
unbounded time interval. Using these preliminaries, we analyze in Chapter 11 two viscoplastic
problems and in Chapter 12 an electro-elasto-viscoplastic problem. The weak formulations we
deliver are new variational problems. Working on the interval [0,00), a continuation of the
research going to the Asymptotic Analysis in Contact Mechanics is envisaged.

The main contributions:
» the statement and the solution of three new classes of abstract problems

e stationary mized variational problems governed by nonlinear maps
e cvolutionary mized variational problems (with short-memory term)
e time-dependent mized variational problems (with long-memory term)

» the weakly solvability of contact models by new variational techniques

e for nonlinearly elastic, viscoelastic, viscoplastic or electro-elastic materials via a variational
approach with Lagrange multipliers

e for nonlinearly elastic materials governed by possibly set valued elastic operators by means
of a variational approach via bipotentials theory

e on unbounded time interval.

We end this thesis by presenting some CAREER EVOLUTION AND DEVELOPMENT
PLANS. The presentation is structured in two chapters, Chapters 13-14. Chapter 13 presents
further research directions such us: qualitative and numerical analysis in the study of mixed
variational problems or in the study of variational systems via bipotentials; variational for-
mulations in contact mechanics/ weak solutions via weighted Sobolev spaces or via Lebesgue
spaces with variable exponent; optimal control problems in contact mechanics; mathematical
techniques in the study of dissipative dynamic contact problems; asymptotic analysis in contact
mechanics, regularity results; convergence results; viscoelastic problems via fractional differential
operators/fractional calculus of variations. Chapter 14 presents further plans on the scientific,
professional and academic career such as: to do a research activity allowing to continue to pub-
lish in international journals of hight level, to participate to international meetings in order to
disseminate the best results, to organize scientific meetings, to extend the editorial activities
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for scientific journals, to continue the collaborations started in the past and to establish new
contacts, to apply for national /international /interdisciplinary research projects as manager or
member, to publish Lecture Notes and new monographs addressed to the students or researchers,
to extend the advising activity to Ph.D. theses.
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Rezumat

Prezenta lucrare este o colectie de rezultate in studiul unor probleme neliniare, studiu realizat
prin intermediul a trei abordari variationale: o abordare variationala cu multiplicatori Lagrange,
o abordare variationald via bipotentiali si a abordare variationala bazata pe teoria inegalitatilor
cvasivariationale cu termen istoric-dependent formulate pe interval de timp nemaéarginit.

Studiul prezentat prin intermediul acestei teze are atat caracter interdisciplinar cat si o
puternica trasatura aplicativa, imbinand domenii de matematica aplicata cum ar fi Ecuatii cu
derivate partiale, Analiza neliniard, Analiza convexa si Calcul variational cu Mecanica mediilor
continue, Mecanica materialelor si Mecanica contactului.

Toate problemele discutate in aceasta teza sunt in legatura cu modele in mecanica contac-
tului pentru mai multe tipuri de materiale solide deformabile. Rezultatele stiintifice mentionate
in prezenta teza reprezinta o parte dintre rezultatele stiintifice ale candidatei, publicate dupa
obtinerea titlului de Doctor in Matematica. Rezultatele focalizate sunt prezentate fara demonstra-
tii; detalii pot fi gasite in lista de lucrari intitulata " Publicatiile tezei”, lista ce apare in prezentul
manuscris imediat dupa rezumatul tezei in limba romana.

Teza cuprinde REZULTATE STIINTIFICE, PLANURI DE DEZVOLTARE SI EVOLUTIE
A CARIEREI si BIBLIOGRAFIE.

Prezentarea REZULTATELOR STIINTIFICE este organizata in trei parti.

Partea I, dedicata studiului unei clase de modele in mecanica contactului prin intermediul
unei abordari variationale via multiplicatori Lagrange, este o colectie de noi probleme variationale
mixte. Formularile variationale via multiplicatori Lagrange in mecanica neneteda sunt formulari
care permit o eficienta aproximare a solutiilor slabe; aceasta motiveaza cercetarea in aceasta
directie. Structurata in sapte capitole, Partea 1 analizeaza variational probleme de contact cu
frecare independenta sau dependenta de alunecare, probleme de contact pentru diferite tipuri de
materiale neliniar elastice, probleme vascoelastice de contact cu frecare, probleme de contact cu
frecare neglijabila pentru materiale electro-elastice sau vascoplastice, probleme ce implica mai
multe zone de contact, probleme de contact unilateral cu frecare. Se are in vedere de asemenea
prezentarea unor noi rezultate abstracte care pot fi considerate unelte utile de analiza neliniara.
Problemele abstracte discutate in aceasta parte a lucrarii sunt noi sisteme variationale abstracte.
Principalele tehnici utilizate in rezolvarea lor sunt tehnici de punct sa si tehnici de punct fix.

Partea a-II-a adopta o abordare variationala via bipotentiali in vederea rezolvarii in sens slab
a unei clase de probleme de contact pentru materiale neliniar elastice. Aceasta a doua parte
a lucrarii are doua capitole, Capitolele 8-9. In Capitolul 8 se analizeaza un model de contact
unilateral fara frecare in timp ce in Capitolul 9 se analizeaza un model de contact cu frecare,
ambele modele conducand la noi sisteme variationale. Principala tehnica utilizata in vederea
rezolvarii acestor sisteme este o tehnica de minimizare. Utilizandu-se un bipotential separat se
obtin rezultate de existenta si unicitate care permit un calcul simultan al campului deplasare si
al tensorului tensiune Cauchy. Rezultatele prezentate in aceasta parte a tezei reprezinta primi



pasi intr-o noua directie de cercetare, fiind vizate de asemenea modele mai complexe care implica
bipotentiali neseparat;i.

Partea a-Ill-a prezinta rezultate in analiza variationala, via inegalitati cvasivariationale cu
termen istoric-dependent, pentru o clasa de probleme de contact vascoplastice sau electro-elasto-
vascoplastice, formulate pe interval de timp nemarginit. Aceasta a treia parte are trei capitole,
Capitolele 10-12. In Capitolul 10 sunt prezentate cateva preliminarii: un rezultat de punct
fix si un rezultat de existenta si unicitate pentru o problema auxiliard ce constd dintr-o ine-
galitate cvasivariationald abstracta cu termen istoric-dependent, formulata pe interval de timp
nemarginit. Utilizand aceste preliminarii, in Capitolul 11 analizam doua probleme vascoplastice
si in Capitolul 12 o problema electro-elasto-vascoplastica. Formularile variationale obtinute sunt
noi probleme variationale. Lucrand pe intervalul [0, 00), se are in vedere o continuare a cercetarii
in directia Analizei Asimptotice.

Principalele contributii:

» formularea si rezolvarea a trei noi tipuri de probleme abstracte:

e probleme variationale mixte stationare guvernate de aplicatii neliniare
e probleme variationale mixte de evolutie (cu termen memorie scurtd)
e probleme variationale mixte dependente de timp (cu termen memorie lungd)

» studiul solutiilor slabe, prin intermediul unor noi tehnici de calcul variational, al unor
modele in mecanica contactului

e pentru materiale neliniar elastice, vascoelastice, vascoplastice sau electro-elastice prin in-
termediul unei abordar: variationale cu multiplicatort Lagrange

e pentru materiale neliniar elastice guvernate de operatori elastici posibil multivoci, prin
intermediul unei abordari variationale via bipotentiali

e pe interval de timp nemarginit.

Prezenta teza se incheie cu prezentarea unor PLANURI DE DEZVOLTARE ST EVOLUTIE
A CARIEREI. Aceasta prezentare este structuratda in doua capitole, Capitolele 13-14. In
Capitolul 13 sunt indicate directii de cercetare pe care candidata le are in vedere pentru pe-
rioada urmatoare, directii precum: analiza calitativa si numerica in studiul unor probleme
variationale mixte sau in studiul unor sisteme variationale via bipotentiali; formulari variationale
in mecanica contactului /solutii slabe prin intermediul spatiilor Sobolev cu pondere sau prin in-
termediul spatiilor Lebesgue cu exponent variabil; probleme de control optimal in mecanica con-
tactului; un studiu matematic pentru probleme de contact dinamice disipative, analiza asimp-
toticd In mecanica contactului, rezultate de regularitate, rezultate de convergenta, probleme
vascoelastice via operatori diferentiali fractionari/calcul variational fractionar. In Capitolul 14
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sunt prezentate planuri viitoare in cariera, atat din punct de vedere stiintific si profesional
cat si din punct de vedere academic, precum: desfagurarea unei activitati de cercetare de
calitate care sa conduca la publicatii in jurnale internationale de inalt nivel, participarea la
evenimente stiintifice in cadrul carora sa fie diseminate principalele rezultate obtinute, organi-
zarea de evenimente stiintifice, extinderea activitatii editoriale pentru jurnale stiintifice, con-
tinuarea colaborarilor incepute in trecut si stabilirea de noi contacte, aplicarea pentru proiecte
nationale/internationale/interdisciplinare ca director sau membru de echipa, publicarea de note
de curs sau monografii adresate studentilor sau cercetatorilor, extinderea activitatii de coor-
donare stiintifica, de la lucrari de licenta sau disertatii, la teze de doctorat.
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Preface

" FEach progress in mathematics is based on

the discovery of stronger tools and easier methods,
which at the same time makes it easier to

understand earlier methods. By making these stronger
tools and easier methods his own, it is possible for

the individual researcher to oriented

himself in the different branches of mathematics.”

David Hilbert, 1900

The present thesis is a collection of results in the weak solvability of a class of nonlinear
problems by means of three variational approaches: a variational approach via Lagrange multi-
pliers, a variational approach via bipotentials and a variational approach via history-dependent
quasivariational inequalities on unbounded time intervals.

The research from this thesis has an interdisciplinary character. New trends in Advanced
Applied Mathematics are required, combining mathematical areas as PDEs, Nonlinear Analysis,
Convex Analysis and Calculus of Variations with Mechanics of Continua, Mechanics of Materials
and Contact Mechanics; see e.g. [1, 24, 50, 57, 83, 92, 151, 160] for important mathematical
tools, [131, 162] for numerical approximation techniques, [48, 49, 59, 81, 124, 128, 130, 13§]
for applied mathematics in contact mechanics, [79, 88, 161, 166] for an engineering approach
in contact mechanics, [45, 73] for viscoplasticity and [76, 158] for piezoelectricity, to give just
a few examples of foundational books. It is worth to underline also the strong applicability
feature of the research from this thesis: all the problems we discuss are related to models in
Contact Mechanics for various kind of deformable solid materials. Solving contact problems for
nonlinearly materials is a challenging topic of non smooth mechanics. The contact models are
very complex. Most of them are analyzed by variational methods because of the difficulty of
finding strong solutions. After establishing the well-possedness of a contact model, the next
target is the approximation of the weak solution. Currently, obtaining variational formulations
which are suitable to an efficient approximation of the weak solutions is an issue of great interest.

The scientific results mentioned in the present thesis represent a part of the scientific results
of the candidate after obtaining the Ph.D. degree. The results we focus on are presented without
proofs; details can be found in the papers mentioned in the Publications of the Thesis, a list
placed just after the Abstract in Romanian.

The thesis comprises SCIENTIFIC RESULTS, CAREER EVOLUTION AND DEVELOP-
MENT PLANS and BIBLIOGRAPHY.

The presentation of the SCIENTIFIC RESULTS is organized into three parts.
PART I - A variational approach via Lagrange multipliers
PART II - A variational approach via bipotentials



PART III - A variational approach via history-dependent quasivariational inequalities on
unbounded time interval

Part I, devoted to the study of a class of contact models by a variational approach with La-
grange multipliers, is based on the papers [69, 68, 105, 109, 112, 99, 104, 100, 107, 101, 111, 98,
70, 11, 110, 113], specifying them in the order of their appearance in the present manuscript. In
this part of the thesis we discuss slip-independent or slip-dependent frictional contact problems,
contact problems for several types of nonlinearly elastic materials, frictional contact viscoelastic
problems, frictionless contact problems involving electro-elastic or viscoplastic materials, con-
tact problems involving multi-contact zones, unilateral frictional contact problems, focusing on
their weak solvability. Presenting new abstract results as nonlinear analysis tools is also under
attention. The abstract problems we consider herein are new abstract variational systems. After
presenting their solution, we show how these abstract results were used to solve contact problems
for different types of materials or different types of contact conditions, frictionless or frictional.
The main techniques we use rely on a saddle point technique and fixed point techniques. The
saddle point theory, who originates from Babusca-Brezzi works, was successfully developed and
applied in a large number of publications, see e.g. the books [22, 23, 61, 129] and the papers
[3, 63, 66, 67, 69, 132, 164] to give only a few examples. The first part of the thesis is a col-
lection of new mixed variational problems. The mixed variational formulations in non-smooth
mechanics are suitable formulations to efficiently approximate the weak solutions; this motivates
the research in this direction.

Part I is structured in seven chapters.

Chapter 1, which is concerned with the analysis of a class of slip-independent frictional
contact problems, comprises two sections: Section 1.1 based on the paper [69] and Section 1.2
based on the paper [68].

Section 1.1 focuses on an antiplane frictional contact model which is related to a saddle point
problem while Section 1.2 discusses an elasto-piezoelectric frictional contact problem whose vari-
ational formulation is related to a generalized saddle point problem with non-symmetric bilinear
form a(-,-). From the variational point of view both problems have the following form:

a(u,v) +b(v, ) = (f,v)x for all v € X,
b(u, pn— ) < 0 for all © e A.

Chapter 2, devoted to the analysis of a class of slip-dependent frictional contact problems,
comprises three sections: Section 2.1 and Section 2.2 are based on the paper [105] while Section
2.3 is based on the papers [109, 112].

Section 2.1 presents an abstract existence result in the study of the following mixed variational
problem with solution dependent-set of Lagrange multipliers, A = A(u).

Given f € X, f # Ox, find (u,\) € X XY such that A\ € A(u) CY and

a(u,v) +b(v, ) = (f,v)x for all v e X,
b(u, pn— A\) < 0 for all p e A(u).



The applicability of the abstract result we present is illustrated in Section 2.2 in the study of
an antiplane problem and in Section 2.3 in the study of a 3D slip-dependent frictional contact
problem.

Chapter 3, structured in three sections, is related to the analysis of a class of contact problems
for nonlinearly elastic materials leading to weak formulations governed, in Section 3.1, by a
strongly monoton and Lipschitz continuous operator, in Section 3.2 by a proper convex l.s.c
functional and in Section 3.3 by a nonlinear hemicontinuous generalized monotone operator.
Section 3.1 is based on the papers [99, 104], Section 3.2 is based on the papers [100, 104] and
Section 3.3 is based on the paper [107].

Section 3.1 analyzes the case of single-valued elastic operators; herein the mixed variational
formulation via Lagrange multipliers leads to a mathematical problem of the form below.

Gwen f, h € X, findu € X and A € A such that

(Au,v)x +b(v,\) = (f, v)x for all v € X
b(u, i — ) < blh,pu— M) for all p € A,

where A is a strongly monoton and Lipschitz continuous operator.

In Section 3.2 the constitutive law we use is expressed in a form of a subdifferential inclusion
governed by a proper convex lower semicontinuous functional. Thus, we focus on the case
of possibly multi-valued elastic operators. The mixed variational formulation via Lagrange
multipliers leads us to a mathematical problem having the following form.

Given f € X, find uw € X and X\ € A such that

J() = J(u) +b(v—u,\) > (f,v—u)x forallveX
blu,p—A) <0 for all p € A,

where J is a proper convex lower semicontinuous functional.

In Section 3.3 we study the weak solvability via Lagrange multipliers of a class of nonlinearly
elastic contact models leading to a mixed variational problem governed by a nonlinear, hemicon-
tinuous, generalized monotone operator. Using a fixed point theorem for set valued mapping, we
analyze here the existence of the solution of the following abstract mixed variational problem.

Given f € X', find (u, \) € X x A such that

(Au,v)x x +b(v,\) = (f, v)x x for all v e X,
blu, o — A) < 0

for all p € A,

where A is a nonlinear, hemicontinuous, generalized monotone operator. Then, we apply the
abstract result to the analysis of an antiplane contact problem involving a class of nonlinearly
elastic materials.



Chapter 4, devoted to a class of viscoelastic frictional contact problems has two sections,
treating the case of the viscoelasticity with long memory as well as the case of the viscoelasticity
with short memory. Section 4.1 is based on the paper [101] and Section 4.2 is based on the paper
[111].

In Section 4.1 we can see haw the viscoelastic model with long memory leads to a time-
dependent mixed variational problem involving an integral operator, which, in an abstract frame-
work, has the following form.

Given f :[0,T) = X, find u : [0,T] - X and A : [0,T] = Y such that, for allt € [0,T], we
have A\(t) € A and

(Au(t),v)x + (/0 B(t — s)u(s)ds,v)x +b(v, A(t)) = (f(t), v)x forallveX
b(u(t), p = At)) <0

In Section 4.2 we study a viscoelastic model with short memory leading to an evolutionary

for all u € A.

mixed variational problem having the form below.
Given f :[0,T] - X, g € W and ug € X, find uw : [0,7] - X and X : [0,T] — Al(g) C Y
such that for all t € (0,T), we have

a(u(t),v) +e(u(t),v) + b(v,\(t)) = (f(t),v)x forallve X,
b(u(t),p— A1) < 0 for all © € A(g),
u(0) = wup.

Chapter 5, who studies a class of frictionless contact problems, comprises two sections. Sec-
tion 5.1 is based on the papers [98, 70] and Section 5.2 is based on the paper [11].

Section 5.1 analyzes the case of electro-elastic materials, treating the case of nonconductive
foundation as well as the case of conductive foundation. Both weak formulations we deliver are
generalized saddle point problem. The variational formulation in the nonconductive case consists
of the following nonhomogeneous and nonsymmetric mixed variational problem. Given f, g € X,

g # 0x, find u € X and \ € A such that

a(u,v)x +b(v,\) = (f, v)x for all v € X,
b(u, p— ) < b(g,p—AN) for all € A.

In the conductive case, the weak formulation consists of the following coupled variational system.
Given f € X and q €Y, find (u,p,\) € X XY X A such that

a(u,v) +e(v,p) +b(v,\) = (f,v)x forallve X,

c(p, ) —e(w,¥) + i\ @, 9) = (¢¢)y forally €Y,
b(u, u— N) < 0 for all € A.



In Section 5.2, contact models involving viscoplastic materials are studied. The models lead
to a weak formulation via Lagrange multipliers which consists of a variational system coupled
with an integral equation; see the problem below.

Find a displacement field w : [0,T] — V, a viscoplastic stress field B : [0,T] — @Q and a
Lagrange multiplier X : [0,T] — A such that, for all t € [0,T],

(Lu(t), v)v + (B(t),e(v))q + (Pu(t),v)v + b(v,A(t)) = (f(t),v)y forallveV,
b(w(t), p — A(t)) < b(gf,  — A(t)) for all p € A,

B(t) = /0 G(Ee(u(s)) + B(s),e(u(s)))ds + oy — Ee(uy).

Chapter 6, divided in two sections, focuses on the weak solvability of a class of contact
problems involving two contact zones, for elastic materials. Section 6.1 is based on the paper
[110] and Section 6.2 is based on Sections 3 and 4 of the paper [113].

Section 6.1 focuses on the case of linearly elastic materials. To start, we present existence,
uniqueness and boundedness results for a class of abstract generalized saddle point problems, as
well as abstract convergence results for a class of regularized problems. The abstract problem
we analyze has the following form:

a(u,v —u) +b(v —u, \) + j(v) — j(u)
b(u, p— )

(f,v—u)x  forall velX,
0 for all p € A.

IN IV

Based on the abstract results we get two models are investigated. Every model is mathemat-
ically described by a boundary value problem which consists of a system of partial differential
equations associated with a displacement condition, a traction condition, a frictional contact
condition and a frictionless unilateral contact condition. In both models the unilateral contact
is described by Signorini’s condition with non zero gap. The difference between the models is
given by the frictional condition we use. Thus, in the first model we use a frictional condi-
tion with prescribed normal stress, while in the second one we use a frictional bilateral contact
condition.

Section 6.2 focuses on the case of nonlinearly elastic materials. Firstly, we present abstract
results in the study of a generalized saddle point problem having the following form:

J(v) = J(u) +b(v —u, \) + p(v) — p(u)
b(u, p— )

(f,v—u)x  forall velX,
0 for all p e A.

IN IV

Nextly, we apply the abstract results to the weak solvability of two contact models.
The study made in Chapter 7 goes to the weak solvability of an unilateral frictional contact
model. In Section 7.1 we study the existence and the uniqueness of the solution of an abstract



mixed variational problem governed by a functional J and a bifunctional j as follows:

J(v) — J(u) +b(v —u, \) + j(\v) — j(\ u)
b(u, pp— \)

v—u)x  forall veX,

> (f,
< 0 for all u e A.

Next, in Section 7.2, we apply the abstract results to the weak solvability of an unilateral
frictional contact model.

Part II, devoted to a variational approach via bipotentials for a class of contact problems for
nonlinearly elastic materials, relies on the papers [106, 108]. The presence of the bipotentials
in mechanics of solid was noticed quite recently, but the literature covering this subject is
growing. According to Buliga-Saxcé-Vallée, starting from an extension of Fenchel inequality, the
bipotentials were introduced as non-smooth mechanics tools used to model various multivalued
laws. Several bipotential functions are related to the Coulomb’s friction law [26], Cam-Clay
models in soil mechanics [134, 159], cyclic plasticity [16, 133], viscoplasticity of metals with non-
linear kinematical hardening rule [64], Lemaitre’s damage law [15], the coaxial laws [136, 155],
the elastic-plastic bipotential of soils [13]. For other important results related to the bipotential
theory we refer for instance to [25, 27, 28, 135]; see also the recent work [156].

Herein, two contact problems are focused: a unilateral frictionless contact problem and a fric-
tional contact problem with prescribed normal stress. In order to solve them, the main technique
we use is a minimization technique. Using a separated bipotential we investigate the existence
and the uniqueness of the solutions. The unknown is the pair consisting of the displacement
vector and the Cauchy stress tensor. The main advantage of this approach is that it allows to
compute simultaneously the displacement field and the Cauchy stress tensor. Also we discuss
the relevance of the approach reported to previous variational approaches: the primal varia-
tional formulation and the dual variational formulation. We recall that the primal variational
formulation is the weak formulation in displacements, and the dual variational formulation is
the weak formulation in terms of stress.

The problems we treat in this second part of the thesis lead to new variational systems
governed by bipotentials. The investigation on this direction can be extended to more complex
models governed by non-separated bipotentials attached to the constitutive map and its Fenchel
conjugate.

Part II comprises two chapters, Chapter 8 and Chapter 9.

In Chapter 8 we present the results in the study of a class of unilateral frictionless contact
problem obtained in the paper [106]. The variational approach we use leads us to a variational
problem having the following form.

Findu € Uy CV and o € A C L%(Q)**3 such that

b(v,0) —b(u, o)
b(u, ) — b(u, o)

AVARAY,

(f,v—u)y for all v € U,
0 for all p € A.



In Chapter 9 we present the results in the study of a class of frictional contact problem obtained
in the paper [108]. In this case, the variational approach via bipotentials leads to a variational
problem governed by a functional j as follows.

Findu €V and o € A C L*(Q)**3 such that

b(v,0) —blu,o)+ j(v)—ju) > (f,v—u)y forallveV
>0

b(u, ) — b(u, o) for all p € A.

Part IIT discusses the variational analysis via history-dependent quasivariational inequalities
of a class of viscoplastic or electro-elasto-viscoplastic contact problem on unbounded time in-
terval. Part III focuses on results obtained in the papers [10, 20]. The first study of a contact
problem on the unbounded interval [0, c0) was made in [144]. The next important contribution
was the paper [146], followed by [10, 20], and more recently by [148].

In this third part of the thesis we focus on new contact models related to quasivariational
inequalities defined on unbounded time interval and governed by two nondifferentiable convex
functional in which one depends on the history of the solution,

u(t) € K, (Au(t),v —u(t))x + o(Su(t), v) — o(Su(t), u(t))
+j(u(t),v) — j(u(t),u(t)) > (f(t),v —u(t))x for all v € K.

These inequalities have a special structure, involving a history-dependent term. In addition,
working on the time interval [0,00), a continuation of the research going to the Asymptotic
Analysis in Contact Mechanics is envisaged.

Part III comprises three chapters, Chapter 10-Chapter 12. Some auxiliary abstract results
are presented in Chapter 10: a fixed point result and an existence and uniqueness result.

In Chapter 11 we present results obtained in [10] in the study of two viscoplastic problems
and in Chapter 12 we present results obtained in [20] in the study of an electro-elasto-viscoplastic
problem.

The names of the three parts in the presentation of the SCIENTIFIC RESULTS indicate the
main research directions in which the candidate had original contributions. Let us nominee here
the main contributions:

» the statement and the solution of three new classes of abstract problems:

e abstract stationary mixed variational problems governed by nonlinear maps
e abstract evolutionary mized variational problems (with short-memory term)
e abstract time-dependent mized variational problems (with long-memory term)

» the weakly solvability of contact models (by new variational techniques)
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e for nonlinearly elastic, viscoelastic, viscoplastic or electro-elastic materials via a variational
approach with Lagrange multipliers

e for nonlinearly elastic materials governed by possibly set valued elastic operators by means
of a variational approach via bipotentials theory

e on unbounded time interval.

We end this thesis by presenting some CAREER EVOLUTION AND DEVELOPMENT
PLANS. The presentation is structured in two chapters, Chapters 13-14. Chapter 13 presents
further research directions such us: qualitative and numerical analysis in the study of mixed
variational problems or in the study of variational systems via bipotentials; variational for-
mulations in contact mechanics/ weak solutions via weighted Sobolev spaces or via Lebesgue
spaces with variable exponent; optimal control problems in contact mechanics; mathematical
techniques in the study of dissipative dynamic contact problems; asymptotic analysis in contact
mechanics, regularity results; convergence results; viscoelastic problems via fractional differential
operators/fractional calculus of variations. Chapter 14 presents further plans on the scientific,
professional and academic career such as: to do a research activity allowing to continue to pub-
lish in international journals of hight level, to participate to international meetings in order to
disseminate the best results, to organize scientific meetings, to extend the editorial activities
for scientific journals, to continue the collaborations started in the past and to establish new
contacts, to apply for national /international /interdisciplinary research projects as manager or
member, to publish Lecture Notes and new monographs addressed to the students or researchers,
to extend the advising activity to Ph.D. theses.
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The most frequent notation

e S? denotes the space of second order symmetric tensors on R3.

e Every field in R3 or S? is typeset in boldface.

e By - and | - || we denote the inner product and the Euclidean norm on R?® and S, respec-
tively.
e For each u,v € RY, w-v = ww;, ||[v|| = (v-v)/?; foreach o, 7 €S%, o -7 = 0y575, ||| =

(7 - 7)Y2; the indices i and j run between 1 and d and the summation convention over
repeated indices is applied.

e u = (u;) denotes the displacement field.

e u, = u - n denotes the normal displacement (n being herein the outward normal vector).
e u, = u — u, n denotes the tangential component of the displacement field.

e 0 = (0;;) denotes the Cauchy stress tensor.

e 0, = (on) - n denotes the normal component of the stress on the boundary.

e 0, =on — o, n denotes the tangential component of the stress on the boundary.

e O =QUoN T = o0.

o H(Q)? (d € {2,3}) denotes the standard Sobolev space.

o LP(N) (d € {2,3}, p> 1) denotes the standard Lebesgue space.

o v: HY(Q) — L*(Q) is Sobolev’s trace operator for scalar valued functions.

o v: HY Q)Y — L*(Q)? is Sobolev’s trace operator for vector valued functions (d € {2,3}).
e For each w € H(Q)?, w, = yw - v and w, = yw — w,v a.e. on I (d € {2,3}).

e Div denotes the divergence operator for tensor valuated functions.

e div denotes the divergence operator for vector valuated functions.

o &= (&ju) (or C = (Cijp)) denotes a fourth order elastic tensor.

e ¢ = g(u) is the infinitezimal strain tensor with components ¢;; = %(gg? + %) for all 7,7 €
J [
{1,2,3}.

o If £ = (&;;) is the piezoelectric tensor, ET denotes the transpose of the tensor £ given by
Eo-v=0-E"v, ogeS veRY and ET = (&) = (&) for all 4,5, € {1,...,d}.

e |.s.c = lower semicontinuous
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Part 1

A variational approach via Lagrange
multipliers

13



Chapter 1

Slip-independent frictional contact
problems

This chapter is based on the papers [69, 68]. Firstly, we study the antiplane shear deformation
of two elastic bodies in frictional contact on their common boundary. To model the friction, we
use Tresca’s law. Our study is based on a mixed variational formulation with dual Lagrange
multipliers, the well-possednes of this weak formulation being guaranteed by arguments in the
saddle point theory. This approach results in an efficient iterative solver for the nonlinear problem
with a negligible additional effort compared to solving a linear problem. Nextly, we study the
frictional contact between an elasto-piezoelectric body and a rigid foundation. Our study is
based on a non-symmetric mixed variational formulation involving dual Lagrange multipliers.
The well-posedness of this variational problem is justified by combining a fixed point technique

with a saddle point technique.

1.1 An antiplane problem

This section is based on the paper [69]. The mechanical model used in this section involves the
particular type of deformation that a solid can undergo, the antiplane shear deformation. For
a cylindrical body subject to antiplane shear, the displacement is parallel to the generators of
the cylinder and is independent of the axial coordinate. The antiplane shear (or longitudinal
shear, generalized shear) may be viewed as complementary to the plane strain deformation, and
represents the Mode 111, fracture mode for crack problems.

1.1.1 The model and its weak solvability

Let us consider two cylinders B™, B* C R? having the generators parallel to the xs-axis of a
rectangular cartesian coordinate system Oxyxoxs. We use a superscript £ to indicate that a
quantity is related to the cylinder B¥, k& = m,s. We assume that the bodies are homogeneous,

14



15

isotropic and elastic media; more precisely, we shall use the constitutive law
ot = Mtr(e(u") I + 2uFe(u”) in  BF (1.1)

where 0% = (0;) denotes the stress field, e(u*) = (g;;(u*)) the linearized strain tensor, A* > 0
and p* > 0 are the Lamé coefficients, tr(e(u*)) = S°_, e;(u*) and I is the unit tensor in
R3. Moreover, we assume that the generators are sufficiently long so that end effects in the
axial direction are negligible. Let us denote by QF a cross-section, which is a domain in R2.
Thus, B¥ = QF x (=00, +00). For each domain QF, we assume that its boundary I'* is Lipschitz
continuous and is divided into three disjoint measurable parts I'f, T's and T'4, with meas (T'¥) > 0.
We assume that the bodies are clamped on I'}, body forces of density f’g act on QF and surface
tractions of density fg act on I'5. Moreover, we assume that the bodies in the initial configuration
are in contact on their common boundary part I's = I'} = I'2 and that I3 is a compact subset

of GQk\flf, k =m, s. We load the solid in a special way, as follows,

’8 - (anaféc)a f§:f§($law2) :Qk%Ra (12)

I; = (070’f2k)> féﬁzféc(xlva) FQ%R (13)
The unit outward normal on I'* x (=00, +00) is denoted by n*, n* = (n¥,nk,0) and is defined
almost everywhere. We note that on I's,

n=n’"=-n", o’'n’=-0o"n", o,=0.=-0.

For a vector v*, we denote by v* and v” its normal and tangential parts on the boundary, given by

V¥ = v¥.nk and v* = vk

n —

—v*n* respectively. Furthermore, for a given stress field o*, we denote

by of and o* the normal and the tangential parts on the boundary, that is 0% = (a*n*) - n*

n
k_ pkok _ kok -
and o = o"n” — o, n", respectively.

The body forces (1.2) and the surface tractions (1.3) would be expected to give rise to a
deformation of the elastic cylinder B*, such that the displacement u* is of the form

ub = (0,0,u"), o =uf(z, 1) QF - R (1.4)
The Cauchy stress vector on I'* x (—oo, +00) is given by
a"n* = (0,0, p"o,u"),
where, as usual, 0,u* = Vu* - n*. In addition,
Divea* = (0,0, u* Aub). (1.5)
According to the physical setting, we have
Dive® + fE =0 in B,
ub =0 on I'* x (=00, +00),

aknt = fh on % x (—o0, 4+00).
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Finally, we have to describe the frictional contact condition on I's x (—oo,+00). Since uf =
urr =0, on I's x (—o0, +00) the contact is bilateral. The friction was modeled by using Tresca’s
law,

ol <g,
||0'TH <g = ’U/f_ — ’LLT = 0, on F3 X <—OO,+OO)7 (19)
lo-l=9 = or=—B(ul —ul"), B>0,

T

where g is the friction bound. We note that u* = (0,0, u"*) and a* = (0,0, %) with o = 1* 9, u".
In addition, we have
Opu=p*o,u’ =—p"o,u™ on I (1.10)

The mathematical description of the mechanical model is the following one.

Problem 1.1. Find the displacement fields u* : Q — R, k = m, s, such that

AR+ fE =0 in  QF (1.11)

ub =0 on rk, (1.12)

pko, uk = fk on s, (1.13)

|Opu| < g = u®—u™ =0, on Tj. (1.14)

|Opu| =g = Opu=—Fu®—u™), [>0,
In the study of Problem 1.1 we made the following assumptions.
Assumption 1.1. ff € L2(QF), fFe L*(T%).
Assumption 1.2. g € L*(T'3), ¢>0 a.c. onTls.
In order to write a weak formulation for Problem 1.1, we need the Hilbert space
vk = {vk € H'(OQ"|v" =0 a. e on F'f} k € {m,s} (v" = 0 in the sense of the trace)

endowed with the inner product

(u®, ") = Vut - Vot d, for all u¥ v € V¥,
Ok

and the associated norm,

[0¥][vr = [|V0*]| L2 qre, o e VE,
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We consider the product space V.=V x V* and let a : V x V' — R be the bilinear form
a(wo) = 3 At o)y,
ke{m,s}

This form is continuous with the continuity constant M, = pu™ + p® and V-elliptic, with the
V-ellipticity constant m, = min{u™, u*}.
We define f € V such that

(f,v)y = Z fook da + fiokds ).
ke{m,s} o rs

Next, we define a Lagrange multiplier A in D = (HY2(T'3))’, as follows:

(M w)ry, = — | Oyuwds (1.15)

s

where (-, '>r3 denotes the duality pairing. Furthermore, we introduce a nonempty closed convex

set,
A= {C €D : (¢, w)r, §/ glw|ds, we H1/2(F3)}. (1.16)
I's
We denote by [v] the jump on T3 :
[v] = v° — o™, v=(v"0v°) e V.

Let us denote by b: V x D — R, the bilinear and continuous form

b(v, ¢) = (G, [v])rs- (1.17)

The weak formulation of Problem 1.1 is as follows.

Problem 1.2. Find u € V and A € A such that

a(u, v) +b(v,\) = (f,v)v forallvelV,
b(u, ¢ —\) < 0 for all ¢ € A.

The well-possedness of Problem 1.2 is given by the following theorem.

Theorem 1.1. [Theorem 2.1 in [69]] If Assumptions 1.1-1.2 hold true, then there exists a unique
solution (u, \) € V-x A of Problem 1.2. Moreover, if fi, fo are elements in V' corresponding to
the data (fo, f2)1, (fo, f2)2, respectively, then we have the stability result,

a+mg+ M,
Jur = uslv + [|A = Ael[p £ —————

1f1 = fallv, (1.18)

a

where (uy, A1), (ug, Aa) are the solutions of Problem 1.2 corresponding to fi, fa € V, respectively.

The proof of Theorem 1.1, given in [69], is based on the saddle point theory (see for instance
[50]).
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1.1.2 Nonconforming discretization and optimal a priori error esti-
mates

In this subsection, we give the discretization of Problem 1.2, and we present an optimal a priori
error estimate for the discretization error. Let us assume that the bodies QF, k& = m, s, are
polygonal domains. To approximate V', we use lowest order finite elements on simplicial or
quadrilateral triangulations. The finite element space associated with the shape regular trian-
gulation 7, or is denoted by S1(QF, Thar). The meshsize h is defined by the maximal diameter
of the elements in 7, om and Ty qs. For simplicity, we assume that '}, k = m, s, and I'; can be
written as union of edges, I's both from the triangulation 7} os of the slave side and from the
triangulation 7, om of the master side. Before introducing the discrete spaces, we decompose
the set of all vertices into three disjoint sets S, M and N. By the first subset S, we denote
all vertices on I's of the triangulation Thos on the slave side, by M all vertices on T3 of the
triangulation 7, om on the master side. The set N contains all remaining ones. Then we have
for the discrete spaces V;F

V= {v’,ﬁ €S (Qk, ’Egk) cvy =0 on Flf} c vk,

and we define V;, = V;* x V}?. For the discretization of the Lagrange multiplier space we use
dual shape functions, introduced in [163]. In the case of linear or bilinear finite elements in
2D, the dual basis functions are associated with the vertices. We use discontinuous piecewise
linear functions having value two at the associated vertex and value minus one at the two
neighbor vertices as basis functions. We denote this discrete Lagrange multiplier space by
My, = span{v,, p € S}, where 1), denotes the basis function associated with the vertex p. Then
the biorthogonality of the basis functions yields

(Vp; g)ry = 5pq/ pq ds, p,q €S, (1.19)
I's

where ¢, are the standard nodal basis functions of S (Q2°, Tj, os) associated with the vertex g.
The finite element space Vj, can be written in terms of the standard finite element basis ¢ as
Vi, = span{y,, p € SUMUN}. Additionally to the basis ¢, we introduce the constrained
finite element basis ¢, see [165]. To introduce these basis functions, we define the entries of the
coupling matrices D and M between the finite element basis functions ¢, and the basis functions
for the Lagrange multiplier space 1, by

D[p7 q] = <wp7qu>l—‘37 p, q 6 S,
M[p, Q] = <wp7 (1011>F37 JAAS 87 q < M.
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Due to the biorthogonality (1.19), the matrix D is diagonal. In terms of M = DM, we obtain
the constrained basis ¢ of V}, from the nodal basis ¢ of V}, by the transformation

On Id 0 0 ON
e=lou| =10 I1d MT||oul|=0Qe (1.20)
bs 0 0 Id Ps

We note that only basis functions associated with a node p € M are changed, and that by
definition

b(Pg,¥p) =0, peS, ge M.

For simplicity of notation, we use the same symbol for a function in V,, and M, as for its
algebraic representation with respect to the nodal basis. Let v, be the algebraic representation
of an element v, € Vj, with respect to the basis ¢ and let v), be the corresponding algebraic
representation with respect to the constrained basis ¢. Then we have the relation vy, = Q' 0y,.
Now, after an easy computation, taking into account the biorthogonality (1.19), we get

b(vn, pin) = (o, ZUPSOP - Z UgPg)rs = (Hn, Zﬁp@pﬁg = (n, Z@p%))l“s'

pES geEM peS peS

Before introducing the discrete set Aj, for the admissible Lagrange multiplier, we define for
v, € Vj, the restriction to the slave side of the interface I's by

Uh7,5: E UPQOP.

peS

Now we define the discrete convex set Aj by

Ay = {Hh c M, : <,uh,Uh,s>r3 < / g|Uh,s|h ds, vy € Vh}v (1-21)

s

where the mesh dependent absolute value |vp, 5|, of the function vy, s is given by

onslh = [plpp-

peES

We remark that in general |vp, s|n # |vn.s|. Everywhere below in this subsection, we assume that
g is a strictly positive constant. In this case, the convex set Aj, can be equivalently written as

Ay = {uh EMy =Y Wy |wl<g pe S}- (1.22)

peES

The discrete formulation of Problem 1.2 is the following.
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Problem 1.3. Find u, € V,, and \, € Ay, such that
a(up, vn) + b(vn, An) = (f, vn)v, Up € Vh,

b(un, Ch — An) <0, Ch € Ap.

Using the discrete inf-sup property for the spaces M, and V}, see, e.g., [163], we get the
existence and the uniqueness of the solution. In order to obtain an optimal a priori error
estimate, several lemmas will be proved. We note that A, & A.

Before presenting the first lemma, we have to consider for a function v, € V}, the discrete
jump 7y, s on the interface I's in the constrained basis and its mesh dependent absolute value by

Uns = Z'&pSDW |On,sln = Z |0p|0p,

PES peES
respectively.
Lemma 1.1. [Lemma 3.1 in [69]] Let (u,\) be the solution of Problem 1.2 and (up, \n) the

solution of Problem 1.3. Then we have

b(u, ) = / gllullds,  blun An) = / glitn s ds.
3 3

Furthermore, the following result holds.

Lemma 1.2. [Lemma 3.2 in [69]] Let (u,\) € V x A be the solution of Problem 3.18 and let
(up, An) € Vi x Ay be the solution of the discrete Problem 1.3. Then there exists a positive
constant C' independent of the meshsize h, such that for all v, € V}, un € My,

[ = unlfy + A = Aallir < C {llw—valli + A = i} + 0w, An = N).
Let us denote 75 = supp [u] C I's, vt = I's\7s, and we introduce the sets
W' = Ju N7,
Wo = {w €Dy : [u)(w)=0and 3r >0 : [u(w—¢)[u](w+e) <0, 0< 6<r},
W o= Wun'
Everywhere below we will use the following assumption.
Assumption 1.3. The number of points in W is finite.
The minimum distance between the elements in W is denoted by a, i.e.,
a=inf{lw; —wi| : 1 <j#k <N},

where N, denotes the number of points in W. By Assumption 1.3, N,, < oo and thus a > 0.
For h < § =: hg, we find between two neighbor points in W at least two vertices in S. Then the
following lemma holds.
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Lemma 1.3. [Lemma 3.3 in [69]] Let (u,\) € V x A be the solution of Problem 1.2 and let
(up, An) € Vi x Ay, be the solution of Problem 1.3. Under Assumption 1.8 and the reqularity
assumption uF € H%+”(Qk), O<rv< %, k =m,s, we then have the a priori error estimate

b(u A= A) < CRE N = Ml D 03,0

k=m,s
for a positive constant C' independent of h < hy.

Based on the results obtained in Lemma 1.2 and Lemma 1.3 and using the well known
approximation properties for the spaces V}, and M, by applying Young’s inequality, the following
theorem holds.

Theorem 1.2 (Theorem 3.4 in [69]). Let (u,\) € V x A be the solution of Problem 1.2 and
let (up, A\n) € Vi, X Ay, be the solution of Problem 1.3. Under Assumption 1.3 and the reqularity
assumption u* € Hg+”(Qk), 0<rv< %, k = m,s, we then have the a priori error estimate

1
lu—=unlly + 1IN =Ml < CRZ™ D7 s,

k=m,s
for a positive constant C' independent of the meshsize h < hy.

Remark 1.1. The discrete nonlinear problem was solved by using an inexact primal-dual active
set strategy in Section 4 of the paper [69]. Numerical examples validating the theoretical result
and illustrating the performance of the algorithm are also presented in [69], see Section 5.

1.2 An elasto-piezoelectric problem

This section is based on the paper [68]. The piezoelectricity is the ability of certain crystals to
produce a voltage when subjected to mechanical stress. The word is derived from the Greek
piezein, which means to squeeze or press. Piezoelectric materials also show the opposite ef-
fect, called converse piezoelectricity; i.e., the application of an electrical field creates mechanical
stresses (distortion) in the crystal. Because the charges inside the crystal are separated, the
applied voltage affects different points within the crystal differently, resulting in the distor-
tion. Many materials exhibit the piezoelectric effect (e.g. ceramics: BaTiO3, KNbOjs, LiNbOs,
LiTaO3, BiFeO3). The first mathematical model of an elastic medium taking linear interac-
tion of electric and mechanical fields into account was constructed by W. Voigt, see [157], and
more refined models can be found for example in the works of R. Toupin [153, 154], R. Mindlin
[121, 122, 123], S. Kalinski and J. Petikiewicz [80] and T. Ikeda [76].
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1.2.1 An abstract auxiliary result

In this subsection we present the results in the study of the following abstract problem.

Problem 1.4. Given f € X, findu € X and A\ € Y such that \ € A CY and

a(u,v) +b(v,\) = (f,v)x forall veX,
b(u, i — A) < 0 for all i € A.

We underline that Problem 1.4 is not a classical saddle point problem, because af(-,-) is non-
symmetric. The study of this problem was made under the following assumptions.

Assumption 1.4. (X, (-, )x, || llx) and (Y, (-, )v, | - ||y) are two Hilbert spaces.

Assumption 1.5. a(-, -) : X x X — R is a non-symmetric bilinear form such that
(11) there exists My > 0: |a(u,v)| < M,||lul|x||v]lx for all u,v € X,
(ig) there exists my, > 0: a(v,v) > m,||v||%  for allv € X.

Assumption 1.6. b(-, -) : X X Y — R is a bilinear form such that
(j1) there exists My, > 0: [b(v, u)| < Myl|v||x||plly  for allve X, uey,
b
(j2) there exists o> 0:  inf sup b ) > .
neYuitoy vexuzox |[0llx(lully

Assumption 1.7. A is a closed convex subset of Y such that Oy € A.

Let ag(u, v) and c(u, v) be the symmetric, respectively the antisymmetric part of a(u, v),
that is

ap(u, v) = %(a(u, v) +a(v, u)), c(u,v) = %(a(u, v) — a(v, u)).

For a given r € [0, 1], we introduce the following bilinear form
a, (u, v) = ap(u, v) +re(u, v), wu,ve X, (1.23)

as a "perturbation” of ag(-, -). We underline that a;(u, v) = a(u, v) and for all r € [0, 1] a,(u, v)
is X-elliptic with the same ellipticity-constant m,. Moreover, the bilinear forms ao(-, -) and ¢(-, )
are continuous with the same continuity-constant M,.

Let us consider the following problem.

Problem 1.5. For a given f € X, findu € X and A\ € Y such that A € A and

ag(u,v) +bv,\) = (f, v)x for allv e X,
b(u, p— ) < 0 for all p € A.

Lemma 1.4. [Lemma 3.4 in [68]] Assumptions 1.4-1.7 hold true. Given f € X, there exists a
unique solution of Problem 1.5, (u, \) € X x A.
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Let £: X x A — R be the functional defined as follows:

£(0, 1) = a(v,v) — (f,0)x +b(v. ).

Using this definition, an equivalent formulation of Problem 1.5. is the following saddle point
problem: find v € X and A € A such that

Llu, 1) < L(u, ) < L0, ) veE X, peA.
We consider now the following ”perturbate” problem.
Problem 1.6. For a given f € X, findu € X and A € Y such that A € A, and

a, (u,v) +b(v,\) = (f,v)x forallveX, (1.24)
b(u, p— ) < 0 for all p e A. (1.25)

We have the following lemmas.

Lemma 1.5. [Lemma 3.2 in [68]] Assume that for every f € X there exists a unique solution of
Problem 1.6, (u, \) € X x A. If (uy, A1) and (ua, \y) are solutions of Problem 1.6 corresponding
to two given functions fi, fo € X, then

a+m,+2M,

lur — uallx + | A1 — Aafly < [f1 = fallx-
amg

Lemma 1.6. [Lemma 3.3 in [68]] Let 7 € [0,1]. Assume that for every f € X there exists a
unique solution of Problem 1.6 with r =7, (u, \) € X x A. Then, for every f € X there exists
a unique solution (u, \) of Problem 1.6 with r € [1,T + to|, where

am,
M, (a+mg+2M,)

to < (1.26)

Applying Lemma 1.6 and Lemma 1.5 we were led to the following result.

Theorem 1.3. [Theorem 3.1 in [68]] Let f € X. If Assumptions 1.4-1.7 hold true, then there
exists a unique solution of Problem 1.4, (u,\) € X x A. Moreover, if (uy, A1) and (ug, A2) are
two solutions of Problem 1.4, corresponding to two given functions fi, fo € X, then

a+m,+2M,

amg

Ifr = fallx.

llur — uallx + || A1 — Aefly <

The proof of Theorem 1.3 can be found in [68]. The main idea of this proof was to use the
results known in the saddle point theory, see, e.g., [22, 23, 50, 61], for the symmetric part of
a(+,-). The prove was completed by a fixed point technique. The reader can found a version of
this fixed point technique in [83], in the framework of the elliptic variational inequalities of the
first kind.
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1.2.2 The model and its weak solvability

In this subsection we study the weak solvability of an elasto-piezoelectric model in the following
physical setting. An elasto-piezoelectric body which occupies the bounded domain Q C R?
(d € {2,3}, is in frictional contact with a rigid foundation. We consider two partitions of the
boundary I' = 00 : firstly, we consider a partition given by the measurable parts I'y, 'y and I's,
such that meas I'y > 0 and I's is a compact subset of 8Q\F_1; secondly, we consider a partition
given by the measurable parts I'y, 'y, such that meas [, > 0. The unit outward normal to I'
is denoted by m and is assumed to be constant on I's, i.e. I's is a straight line or a face. We
associate the body with a rectangular cartesian coordinate system Oxizox3 such that e; = n..
We assume that the body is clamped on I'y, body forces of density f, act on 2, a surface
traction of density f, acts on I'y, a surface electric charge of density ¢y acts on I',, and the
electric potential vanishes on I',. Moreover, we assume that on I's the deformable body is in
bilateral contact with the rigid foundation. Herein ¢ denotes the electric potential.
The equilibrium equations are given by

Dive+f, = 0 in €, (1.27)
divD = g in €, (1.28)

where D = (D;) is the electric displacement field, and qq is the volume density of free electric
charges.
To describe the behavior of the material, we use the following constitutive law:

o = Ce(u) +E' Vo in Q, (1.29)
D = &e(u)—pBVyp in €, (1.30)
where C = (Cyj5) is the elastic tensor, &€ = (&;;;) is the piezoelectric tensor, and § is the

permittivity tensor. Note that (1.29) represents an electro-elastic constitutive law and (1.30)
describes a linear dependence of the electric displacement field on the strain and electric fields.
Such kind of electro-mechanic relations can be found in the literature, see, e.g., [157].

To complete the model, we have to prescribe the mechanic and electric boundary conditions.
According to the physical setting, we write

u = 0 on I'y, ( )
on = f, on Iy, (1.32)
v =0 on Iy, ( )
D-n = ¢ on I'. (1.34)
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Finally, we describe the frictional bilateral contact using Tresca’s law:

un =0, [lo-| < g,
ol <g=u,=0, on T3, (1.35)
lo-|l = g = there exists a > 0 such that o, = —au,

where the constant g > 0 represents the friction bound. When the strict inequality holds, the
material point is in the sticky zone; when the equality holds, the material point is in the slippy
zone. The boundary of these zones is unknown a priori.

To resume, we have the following problem:

Problem 1.7. Find the displacement field w : Q@ — R? and the electric potential field o :  — R
such that (1.27)—(1.35) hold.
In the study of Problem 1.7, we made the following assumptions.

Assumption 1.8. C= (Cijls) Q) x Sd — Sd; Cijls = Cijsl = Clsij S LOO(Q),
There exists me > 0 such that Cijis i €15 > me ||€||?, for alle € S?, a.e. on Q.

Assumption 1.9. £ = (Sljk) QxS — Rd; Sijk: = gikj € LOO(Q)

Assumption 1.10. 5 = (ﬁ”) Q) x Rd — Rd, ﬁij = 6]'1' S LOO(Q),
There exists mg >0 such that B;;(x)D;D; > mg||D|?>,D € R, a.e. € Q.

Assumption 1.11. f, € L*(Q)¢, f, € L*(I'y)“.
Assumption 1.12. ¢y € L*(2), ¢ € L*(T}).

Let us introduce the following Hilbert spaces:
Vv = {vEHl(Q)dMJ:OonFl},
V, = {v€V|vn:OonF3},
o = {QeHl(Q)\G:OonFa}.

We introduce the functional space V.= V x ®, that is a Hilbert space endowed with the
inner product

(ﬁ7’l~7)\~/ = ('u’?v)Hl(Q)d + (@79)H1(Q)a u = (’Ll,, 90)7 v = (’0,9) € ‘77

the corresponding norm is denoted by || - |- Let a : V' x V — R be the bilinear form given by:
a(u, v) = /Cs(u) -e(v)dr + / Ee(v)-Vodr (1.36)
0 0

—/86(u)-V9d2:+/ﬁVgo~V6dx.
Q Q
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Moreover, using Riesz’s representation theorem, we define f € V such that for all ¥ € V,

(f, @)V:/fovdx+ f2vdr—/ q20dF+/q00dx.
Q Iy Ty Q

Let D be the dual space of the space § = {w =v|p, v e V,}.
We define

A={weD|(uvi)r, < [ gloldr.  wev,}. (137)

I's
where (-, -)r, denotes the duality pairing between D and S.
We suppose that the stress o is a regular enough function to define A € D as follows

(X, C>F3:—/ or -(ds, ¢es.
I's

Furthermore, we introduce a bilinear and continuous form as follows:

bV x DR, b(®, 1) = (vl (1.38)
The mechanical model leads us to the following variational formulation.

Problem 1.8. Find @ e V and A € A such that
a(@, ¥) +b(0,\) = (f,0)y, VEV,
b(a, p—A) < 0, pEA

Theorem 1.4. [Theorem 2.1 in [68]] If Assumptions 1.8-1.12 hold true, then, Problem 1.8 has
a unique solution (@, A) € V x A. Moreover, if (@, A1) and (s, Xs) are two solutions of
Problem 1.8 for two functions }'1, fQ eV, corresponding to data {f,, fa, qo, g2}1, respectively
{fo, 2> G, q2}2, then we have

@ = @s [y + 1A = Xallp < C I F1 = Follys
where C' > 0 is a constant that depends of C, £ and f.
The proof of Theorem 1.4, given in [68], is based on the abstract result we presented before,

Theorem 1.3.

1.2.3 Discretization and an optimal a priori error estimate

In this subsection, we discuss the discrete 2D case. Let us assume that Q C R? is a polygonal
domain and that I'y, I'3 and I', can be written as union of edges of the triangulation. Further-
more, let us denote by 7 a unit vector such that n - 7 = 0. We refer the body to a rectangular
cartesian coordinate system Oxizo such that e; = n., and e, = Ty, To simplify the writing,
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eyerywhere below we will write n and 7 instead of n, and 7, respectively. To approximate
V', we use standard conforming finite elements of lowest order on quasi-uniform simplicial tri-
angulations, and we denote by Si(€2, 7rq) the finite element space associated with the shape
regular triangulation 7, o. The meshsize h is defined by the maximal diameter of the elements
in 7. Let us consider the discrete spaces

Vh = {Uh € [Sl (Q, 77L7Q)]2 : ’Uh|Fl = 0} C V,
(Vin = {Uh eVy: (Uh>n|r3 = 0} CVa,
Dy, = {Gh €S (Q, 77119) : 9h|1"a = 0} cC o.

Let us denote
Vh = Vh X (I)h cV

and
N, Ny,

My = {Hh EM | p,= Z%‘%"n‘i‘ Z%‘@/Jﬂ'},
i=1 i=1

where N, is the number of vertices on T3 and for everyi =1,..., N M, Yi is the i-th. scalar dual
basis function of the standard nodal Lagrange finite element basis function and ~;, «; are real
coefficients. According to [163], we consider the dual basis such that the following biorthogonality
relation holds

<¢i790j>1"3 = (Sz]/ ng dS, Z,j = 1, .. .,NMh, (139)
I's

where ¢,,, m = 1,..., Ny, , are the standard scalar nodal basis functions of Sy (2, Tnq), re-
stricted to ['s. Furthermore, every element v, of (V,),, can be written on I's as a combination
of standard basis functions ¢; as follows

Ny,

Uy = ZC]'QDJ"T, Cj GR, jzl,...,NMh.
j=1

Defining a mesh dependent absolute value of an element v, € (V,), by

Ny,

onln = > 1¢les,
j=1
we set Ay, as follows

Ay = {Mh € My, | {py, vn)r; < / gloplnds, vy € (Vh)n}-

I's

We now consider the following discrete problem.
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Problem 1.9. Find @, € V), and A\, € A}, such that
CL(ﬁ'ha ,bh) + b(fi}hy Ah) = (}7 ri]h)f/a {7h S Vh

b(@n, py, — An) <0, My € Ap.

Existence and uniqueness of a solution follows from a discrete inf-sup condition for the spaces
V5, and My, see, e.g., [163].

Let us denote by P = {p; : 1 <i < Ny, } the set of vertices on Ts.

The following result takes place.

Lemma 1.7. [Lemma 4.2 in [68]] Let (@ = (u,©),A) € V x A be the solution of Problem 1.8
and let (@, = (up,on), A\n) € Vi x Ay, be the solution of Problem 1.9. Then, the following
equalities hold

b, A) = /Fg|u|ds, (1.40)

b(’&,h,Ah) = / g|uh|hds. (141)
I's

Using this lemma we have got the following result.

Lemma 1.8. [Lemma 4.3 in [68]] Let (,A) € V x A be the solution of Problem 1.8 and let
(wp, Ap) € f/h X Ay, be the solution of Problem 1.9. Then, there exists a positive constant C
independent of the meshsize h, such that for all v, € V7, u, € My,
I = @l + 1A= Ay, < C{la = ol + 1A=l p, )
+o(w, Ay — A).

Let us denote 7, = supp('u,|FB 1) and vg = I3\ Vg
We made the following assumption.

Assumption 1.13.
o 7y is a compact subset of I's such that the number of points in Vg N7y is finite;

o Yot = Vi

Let We = {w; : 1 < j < N,} be the set of points in ¥;;N¥s. The minimum distance between
the elements in We is denoted by a, i.e., a = inf{|lw; —wy| : 1 < j # k < N,}, where | - |
denotes the Euclidean norm. By Assumption 4.1, N,, < oo and thus a > 0. For h < § =: hg, we
find between two neighbor points in W at least two vertices in Pc.



29

Let us denote by I, the standard interpolation operator restricted on I's, i.e.,

Ny,

L= u(pi)es,

i=1
and let us define the following modified interpolation operator by
u(p;) if suppy; C ¥,

(Inw)(p;) =
0 else,

for each i =1, ..., Ny, .
We underline that, under Assumption 1.13, we can write on I's the following identities
Dl = [Tyl (1.42)

sgn(u-7) = sgn(lu- 7).
The following lemma holds.

Lemma 1.9. [Lemma 4.4 in [68]] Let (i, ) € V x A be the solution of Problem 1.8 and let
(tn, An) € Vi X Ay, be the solution of Problem 1.9. Under the additional reqularity assumption

u € [H%J“’(Q)]Q, 0<rv< %, and Assumption 1.13, we then have the estimate

b, An—A) < Chauls o A= My,
for a positive constant C' independent of h < hy.

A straightforward consequence of the results obtained in Lemmas 1.8-1.9 is the following
theorem.

Theorem 1.5. [Theorem 4.1 in [68]] Let (@, ) € V x A be the solution of Problem 1.8 and let
(tp, Ap) € V. x Ay, be the solution of Problem 1.9. Under the additional reqularity assumption
u € [H%+”(Q)]3, 0<v< % and Assumption 1.13, we then have the following optimal a priori
error estimate

- 1oy~
i —anlly + 1A= Mll_up, < ChE*laly g
for a positive constant C' that is independent of the meshsize h < hy.
Remark 1.2. The a priori results can be extended to the 3D case. The results also hold in

the multibody case with nonconforming meshes at the contact interface, see e.g. [62, 66] for the
necessary techniques. A numerical example was given in Section 5 of the paper [68].



Chapter 2

Slip-dependent frictional contact
problems

This chapter is based on the papers [105, 109, 112]. A slip-dependent frictional contact law is a
law in which the friction bound depends on the slip. The first mathematical results on contact
problem with slip displacements dependent friction in elastostatics were obtained in [72]. For
other mathematical results in the study of slip-dependent frictional contact models see, e.g.,
[36, 65, 97, 103, 145] for a treatment in the frame of quasivariational inequalities or, see e.g,
[115, 116, 117] for a treatment in the frame of hemivariational inequalities. In the present work,
the interest lies into a variational approach involving dual Lagrange multipliers which allows to
apply modern numerical techniques (see e.g. [162]) in order to approximate the weak solution.

2.1 An abstract result

This section presents the results obtained in Section 2 and Section 3 of the paper [105]. In this
section we consider an abstract mixed variational problem, the set of the Lagrange multipliers
being dependent on the solution.

Problem 2.1. Given f € X, f # Ox, find (u,\) € X XY such that A € A(u) CY and

a(u,v) +b(v,\) = (f, v)x for all v e X, (2.1)
b(u, pp— ) < 0 for all p e A(u).

We shall discuss the existence of the solution based on a fixed point technique for weakly
sequentially continuous maps.
Let us make the following assumptions.

Assumption 2.1. (X, (-, )x, || - llx) and (Y, (-, )y, || - |ly) are two Hilbert spaces.

Assumption 2.2. a(-, -) : X x X — R is a symmetric bilinear form such that

30
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(11) there exists M, > 0: |a(u,v)| < M,||lul|x||lv]|x for all u,v € X,
(ig) there exists mg, > 0: a(v,v) > m, |[v||%  for allv € X.

Assumption 2.3. b(-, -) : X X Y — R is a bilinear form such that
(j1) there exists My, > 0: |[b(v, u)| < Myl|v||x||plly  for allve X, pey,
b
(j2) there exists o> 0:  inf sup b ) > .
neYuity vexozox |[0llx|llly

Assumption 2.4. For each ¢ € X, A(p) is a closed convezr subset of Y such that Oy € A(p).

Assumption 2.5. Let (n,), C X and (un), C X be two weakly convergent sequences, 1, — 1
i X and u, — u in X, as n — oo.
(k1) For each p € A(n), there exists a sequence (), CY such that p, € A(n,) and
liminf,, o0 b(wy, p, — p) > 0.
(ko) For each subsequence (A(nn))n of the sequence (A(nn))n, if () CY such that
tn € N(npr) and py — pin'Y as n’ — oo, then p € A(n).

Theorem 2.1. [Theorem 2.1 in [105]] If Assumptions 2.1-2.5 hold true, then Problem 2.1 has
a solution. In addition, if (u, \) € X x A(u) is a solution of Problem 2.1, then

(u,\) € Ky x (A(u) N K,), (2.3)
where 1
Ki={veX||lx <—I|flx}
Mg
and + M
m(l a
Ky={peY||uly < WWHX}-

The proof of Theorem 2.1, which can be found in [105], is based on the saddle point theory,
see [50], and a fixed point result for weakly sequentially continuous maps, see [5].

Theorem 2.1 is a new result which improves and extends the existence results of solutions for
mixed problems which are equivalent to saddle point problems, see e.g. [61]. The main difficulty
here it was generated by the dependence A = A(u). A convergence of Mosco type for the convex
sets of Lagrange multipliers it was required; Assumption 2.5 it was crucial.

2.2 An antiplane problem

This section is based on Section 4 of the paper [105]. In this section we apply the abstract result
obtained in Section 2.1 to the weak solvability of a slip-dependent frictional antiplane contact
problem.

Let us consider the following mechanical model.



32

Problem 2.2. Find a displacement field v : Q — R such that

div (u(x) Vu(x)) + fo(x) = 0 in Q, (2.4)
ux) = 0 on I'y, (2.5)
wlx)ou(x) = folx) on Iy, (2.6)

on I's. (2.7)

p(@) 0,u(@) = ~g(a. lu(@)]) 43 i u(e) £0

Herein Q@ C R? is a bounded domain with Lipschitz continuous boundary I' partitioned in
three measurable parts I'y, I's, I's such that the Lebesgue measure of I'; is strictly positive, for
every i € {1,2,3}. Problem 2.2 models the antiplane shear deformation of an elastic, isotropic,
nonhomogeneous cylindrical body, in frictional contact on I'3 with a rigid foundation. Referring
the body to a cartesian coordinate system Oxixox3 such that the generators of the cylinder are
parallel with the axis Ox3, the domain 2 C Ox x5 denotes the cross section of the cylinder. The
function p = p(x1, 29) :  — R denotes a coefficient of the material (one of Lamé’s coefficients),
the functions fo = fo(z1,22) : Q@ = R, fo = fo(z1,29) : 'y — R are related to the density of
the volume forces and the density of the surface traction, respectively and g : I's x Ry — R,
is a given function, the friction bound. Here v = (v1,15), v; = v;i(x1,x9), for each i € {1,2},
represents the outward unit normal vector to the boundary of 2 and 0, u = Vu - v.

The unknown of the problem is the function v = wu(xy,29) : Q — R that represents the
third component of the displacement vector w. We recall that, in the antiplane physical setting,
the displacement vectorial field has the particular form w = (0,0, u(z1,x2)). Once the field u is
determined, the stress tensor o can be computed:

ou

0 0 —_—

N%xl

U

oo
M@xl M&SL’Q

The mechanical problem has the following structure: (2.4) represents the equilibrium equa-
tion, (2.5) is the displacement boundary condition, (2.6) is the traction boundary condition and
(2.7) is a frictional contact condition. The condition (2.7) is Tresca’s law of dry friction with
slip-dependent friction bound g. To give an example of such a function g we can consider

g(x,r) =k(1+de"); k,d > 0. (2.8)

The slip-dependent friction law (2.7) with the friction bound g given by (2.8) describes the slip
weakening phenomenon which appears in the study of geophysical problems, see for example
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[29, 30, 74, 75, 137]. For details concerning the frictional antiplane model we send the reader to
[145] and to the references therein.
We are interested on the weak solvability of Problem 2.2 under the following assumptions.

Assumption 2.6. fo € L*(Q), fy € L*(Ty).
Assumption 2.7. € L*(Q), p(z)>pu* >0 a.e. in Q.

Assumption 2.8. There exists L, > 0 such that
lg(x, 1) — g(x,7m2)| < Ly |ry — 12| 11,72 € Ry, ace. & €Tg;
The mapping x — g(x, ) is Lebesque measurable on I's, for all r € R;
The mapping © — g(x,0) belongs to L*(T'3).
Let us describe the functional setting. To start, we introduce the space
X:{veHl(Q)Mv:O a.e. on Fl}. (2.9)
The space X is a Hilbert space endowed with the inner product given by

(u,v)X:/Vu-Vvdx for all u,v € X,
Q

and the associated norm
||U||X = ||VU||L2(Q)2 for all v € X.

Let a : X x X — R be the bilinear form
a(u,v) = / uVu-Vodr forall u,v € X (2.10)
Q

and f € X defined as follows

(f,v)X—/fovd$+/ fayvdl. (2.11)
Q Ts
Let I's C I' such that I's N I'y = &. We consider the space

S={v=~v|r, veX} (2.12)

endowed with the Sobolev-Slobodeckii norm

)2 1/2 _
|2]|r, = /1“ /1“ Hw — yHQ ds, dsy> forallv € S.
3 3

We can introduce now a second Hilbert space, the dual of the space .5,

Y =49. (2.13)
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Also, we can define a second bilinear form b : X x Y — R,

b(v, ¢) = ((,7vlry), (2.14)

where (-, -) denotes the duality pairing between the spaces Y and S.
We define a Lagrange multiplier A € Y,

(N z) = —/ wouzdl  forall z €S, (2.15)
I's

where the space Y is defined in (2.13) and the space S is defined in (2.12).
Furthermore, for each ¢ € X, we introduce a subset of the space Y,

M) ={cev s (¢ i) < |

I's

g(x, |[ve(x)]) |yw(x)| dl'  for all w € X}. (2.16)

Problem 2.2 has the following weak formulation.

Problem 2.3. Findu € X and A € A(u) CY such that
a(u, v) +b(v,\) = (f,v)x forallve X; (2.17)
b(u,( —A) <0 for all ¢ € A(u). (2.18)

Each solution of Problem 2.3 is called weak solution of Problem 2.2.
Notice that for each 1 € Y we have

<y yw|r, >
ly = s SR>
yw|rg €S, ywlr;#0s [ywlrs [Irs
b
< ¢ sup (v, 1)

vex,vzox [|0llx
where ¢ > 0.
Theorem 2.2. [Theorem 4.3 in [105]] If Assumptions 2.6-2.8 hold true, then Problem 2.2 has

a weak solution. In addition, if (u,\) is a weak solution of Problem 2.2, then (u,\) € K; X
(A(u) N Ky), where Ky = {v € X||vlx < o-lfllx} Ko ={n € Y[|ully < =% fllx}, X

amg
1

given by (2.9), Y given by (2.13), f given by (2.11), My = [|ut| (), Ma = p* and a = .

The proof of Theorem 2.2 was based on the previous abstract result, Theorem 2.1. The main
difficult part of the proof consists in the verification of Assumption 2.5. The crucial point was
the construction of an appropriate sequence (py,), C Y :

(s ) = / 9(, |a(@)]) s80 Yun(@)C () dT

- / gle. [n(@)]) i (@)] T

+</~L>7un‘F3> for all C € S.
For details, see [105].
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2.3 A 3D slip-dependent frictional contact problem

This section, devoted to the weak solvability of a 3D slip-dependent frictional contact problem,
is based on the papers [109, 112]. The model we focus on was previously analyzed into the
framework of quasi-variational inequalities in [36]. The novelty herein consists in the variational
approach we use. Thus, we propose a mixed variational formulation in a form of a generalized
saddle point problem, the set of the Lagrange multipliers being solution-dependent.

The physical setting is as follows. We consider a deformable body that occupies the bounded
domain Q C R3 with smooth (say Lipschitz continuous) boundary T' partitioned into three
measurable parts, I'y, I'; and I's, such that meas(I'y) > 0. The unit outward normal vector to
I' is denoted by v and is defined almost everywhere. The body is clamped on I';, body forces
of density f, act on € and surface traction of density f, acts on I's. On I's the body is in
slip-dependent frictional contact with a rigid foundation.

The 3D slip-dependent frictional contact model is mathematically described as follows.

Problem 2.4. Findu :Q — R? and o : Q — S® such that

Dive(x)+ fo(x) =0 in €, (2.19)
o(x) =Ee(u(x)) in 2, (2.20)
u(x)=0 on I'y, (2.21)
ov(xz) = fy(x) on Ty, (2.22)
u,(x) =0 on I's, (2.23)
lo-(@)[| < g(@, [lu-(2)]),

(@) = —g(x, |u-(@)|) fa=Ey

if u(x) #0 on I's. (2.24)

Problem 2.4 has the following structure: (2.19) represents the equilibrium equation, (2.20)
represents the constitutive law for linearly elastic materials, (2.21) represents the homogeneous
displacements boundary condition, (2.22) represents the traction boundary condition and (2.23)-
(2.24) model the bilateral contact with friction, the friction law involving a slip-dependent friction
bound g.

For more details on this model see e.g. [36] and the references therein.

In order to weakly solve Problem 2.4 we made the following assumptions.

Assumption 2.9. £ = () 1 Q2 x S* — S,
o Eijis = Eijs = Eisij € LX(Q),

o There exists mg > 0 such that Ejiseijers > me ||€]|?, € € S?, a.e. in Q.

Assumption 2.10. f, € L*(Q)*, f, € L*(I2)>.
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Assumption 2.11. g: I's x Ry — R,
o there exists Ly > 0: |g(x,r1) — g(x,r2)| < Ly|r1 —ra| 11,12 € Ry, ace. @ €l'y;
e the mapping © — g(x, r) is Lebesque measurable on I's, for allr € Ry;
e the mapping x — g(x,0) belongs to L*(T3).
Let us introduce the following Hilbert space.
V={ve H(Q)?|lyv=00onTy, v, =0on I's}. (2.25)

Define f € V using Riesz’s representation theorem,
(F.ol = [ Fol@)-v@)des [ (@) yola)dr (226)
Q I

forallv e V.
Also, we introduce the space

S={yw|r, weV} (2.27)

where yw|r, denotes the restriction of the trace of the element yw € V to I's. Thus, S C
H'Y2(T'3; R?) where H'/?(T'3;R?) is the space of the restrictions on I's of traces on I' of functions
of H'(Q)3. Tt is known that S can be organized as a real Hilbert space, see for instance [1, 92].
We use the Sobolev-Slobodeckii norm

““‘<ﬁ3mM@%{@wu%“Om-

lz —yl®
Let us introduce now the following real Hilbert space,

D = S’ (the dual of the space S). (2.28)

The duality paring between D and S will be denoted by (-, -).
For each ¢ € V we define

A(p) = {p € D|{p,vvlr;) < / 9(@, |l (@)[Dllv-(2) || d v eV},

T's

Let us define a Lagrange multiplier A € D,

<xo:—£amw<mmr (2.20)

for all ¢ € S.
Notice that XA € A(u).



We also define

a:VxV =R alu,v) = / Ee(u) - e(v) dz;
Q
b:VxD—=R b(v,p) = (m,y0lrs).
Therefore, Problem 2.4 has the following weak formulation.

Problem 2.5. Findu € V and A € A(u) C D such that

a(u, v) +b(v,\) = (f,v)y forallveV
b(u,{ —A) <0 forall ¢ € A(u).

Each solution of Problem 2.5 is called weak solution of Problem 2.4.
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(2.30)
(2.31)

Theorem 2.3. [An existence result (Theorem 2 in [112])] If Assumptions 2.9 -2.11 hold true,

then Problem 2.4 has a weak solution.

The idea of the proof was to use the abstract result, Theorem 2.1; for details of the proof

of Theorem 2.3 we send the reader to the paper [112] or to the conference paper [109] (the

paper [112] is an revised/extended version of the conference paper [109]). However, it is worth

to mention here the crucial point of the proof: to construct an appropriate sequence (u,,), in

order to verify Assumption 2.5. Let us give an example: for each n > 1,

< g, € 5= / 92, 117 ()19 (s () - () dT

- / 9(, [n.(2)|Dllwn-(@)] dl' + (1, Yn|r;),

I's

for all ¢ € S, where

N i if r # 0;

Il ! ’
P(r) =

0 ifr=0.

Notice that the form a(-,-) defined in (2.30) verifies Assumption 2.2 with
M, = ||€|| and m, = meg,

where

[€]|oc = o IAX | Eijrill 2o (02)-

Also, we note that for each u € D, there exists ¢ > 0 such that

b(v,
llp<c sup COH
vev,v20, lIvllv

(2.34)
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and we can take

1
= —. 2.35
a=- (2:35)
Let us introduce now
1

K, = {veVllvlv = —Ilflv}; (2.36)

mg + M,
Ky, = {peDl|plp < [ £llv} (2.37)

amg

Theorem 2.4. [A boundedness result (Theorem 3 in [112])] If (u,A) is a weak solution of
Problem 2.4, then

(u,A) € Ky x (A(u) N Ky)

where K1 and Ko are given by (2.36)-(2.37), V' given by (2.25), D given by (2.28), f given by
(2.26), m, and M, being the constants in (2.34) and a being the constant in (2.35).

The proof of Theorem 2.4 uses the abstract result, Theorem 2.1.



Chapter 3

Contact problems for nonlinearly
elastic materials

This chapter is based on the papers [99, 100, 104, 107]. In this chapter we discuss a class of
problems which model the contact between nonlinearly elastic bodies and rigid foundations,
under the small deformation hypothesis, for static processes. The contact between the body and
the foundation can be frictional bilateral or frictionless unilateral. For every mechanical problem
we discuss a weak formulation consisting of a system of a nonlinear variational equation and a
variational inequality, involving dual Lagrange multipliers. The weak solvability of the models
is based on the saddle point theory and fixed point techniques.

3.1 Problems governed by strongly monotone and Lips-
chitz continuous operators

This section presents some results obtained in the papers [99, 104] drawing the attention to the
weak solvability via dual Lagrange multipliers for a class of contact problems leading to mixed
variational problems governed by strongly monotone and Lipschitz continuous operators.

3.1.1 Abstract results

In this subsection we present results obtained in Section 5 of the paper [99] and some results
obtained in Section 2 of the paper [104], focusing on the following abstract problem.

Problem 3.1. Given f, h € X, findu € X and \ € A such that

(Au,v)x +b(v,A) = (f, v)x forallv e X, (3.1)
b(u, p — N) < b(hypu—A) for all p € A. (3.2)

The study was made under the following hypotheses.

39
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Assumption 3.1. (X, (-, ")x, || - ||x) and (Y, (-, -)y, || - ||v) are two Hilbert spaces.

Assumption 3.2. A: X — X is a nonlinear operator such that:
there exists ma > 0: (Au — Av, u —v)x > mal|lu — v||% for all u,v € X,
there exists Ly > 0: [[Au — Av||x < La||lu — v||x for all u,v € X.

Assumption 3.3. b: X XY — R is a bilinear form such that:
there exists My > 0: |b(v, u)| < Mp||v||x |||y for allve X, p ey,
b
there exists o« > 0: iInf sup M > .
neVnry vexpox [|Vllxllplly

Assumption 3.4. A CY is a closed conver set such that Oy € Y.

Under these assumptions, Problem 3.1 is not a saddle point problem. This is a new variational
problem, a mized variational problem governed by a nonlinear operator A.
The following existence and uniqueness result holds.

Theorem 3.1. If Assumptions 3.1-3.4 hold true, then there exists a unique solution of Problem
3.1, (u,A\) € X x A.

The proof of Theorem 3.1 is based on Theorem 5.2 in [99] if A is an unbounded set and on
Theorem 2.1 in [104] if A is a bounded set.

3.1.2 Contact models

This subsection, based on Section 3, Section 4 and Section 6 in [99] and, on a part of Section
3 in [104], presents results in the weak solvability of frictionless unilateral or frictional bilateral
contact problems, for nonlinearly elastic materials, by using a technique involving dual Lagrange
multipliers and applying the abstract results presented in Section 3.1.1.

Physical setting and mathematical description of the models

We consider a body that occupies the bounded domain  C R3, with the boundary partitioned
into three measurable parts, I'y, 'y and I's, such that meas(I';) > 0. The unit outward normal
vector to I' is denoted by m and is defined almost everywhere. The body €2 is clamped on I'y,
body forces of density f, act on 2 and surface traction of density f, acts on I'y. On I's the body
can be in contact with a rigid foundation.

In order to describe the behavior of the materials, we use the constitutive law,

o=F(E(u) in Q (3.3)

where F denotes a nonlinear elastic operator. This kind of constitutive law can be found in the
literature, see for example [59] and the references therein. As an example, we may consider

o = N\(tre)ls + 2upe + (e — Pke) (3.4)
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where \g and po denote Lame’s constants, tre(u) = eg, I3 = (0;;) is the unit in S?, K denotes
a closed convex subset of S that contains the zero element Ogs, Px : S* — K is the projection
operator onto K, and [ is a strictly positive constant. A second example is the following
constitutive law,

o = k(tre)I; +¥(||eP]?)e”, (3.5)

where & > 0 is a coefficient of the material, 1 : R — R is a constitutive function and e? =
e — 3(tre)Is, is the deviator of the tensor €.

Assuming that on I's the body is in frictional bilateral contact with a rigid foundation, we
use Tresca’s law to state the following mechanical problem.

Problem 3.2. Findu:Q — R3 and o : Q — S? such that

Dive+f, = 0 in €2,
o F(e(u)) in §,

u 0 on Iy,

on = f, on Iy,

un =0, flo-]| <¢,
(C) { if |los|| < ¢ then u, =0, on I's,
if |lo+|| = C then there exists v > 0: o, = = u,
where ¢ > 0 denotes the friction bound.
If we assume that on I's, the body can be in frictionless unilateral contact with a rigid

foundation, we can model the contact by Signorini’s condition with zero gap, yielding the second
problem.

Problem 3.3. Findu :Q — R? and o : Q — S® such that

Dive+f, = 0 in 2, (3.6)

o = Fl(e(u)) in 2, (3.7)

u = 0 on I'y, (3.8)

on = f, on Iy, (3.9)
c,=0,0,<0,u, < 0, o,u,=0 on I's. (3.10)

Finally, if we model the contact on I's by Signorini’s condition with non zero gap, we have
to replace (3.10) with the following contact condition,

0.,=0,0,<0,u,—g < 0, 0p(u,—g)=0 on I's, (3.11)
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where g : I's — R is the gap between the deformable body and the foundation, measured along
the outward normal n. Thus, we can formulate the third problem.

Problem 3.4. Find u: Q — R3 and o : Q — S? such that (3.6)-(3.9) and (3.11) hold.

Additional details on this subsection, including a description of the physical significance for
the contact conditions (C), (3.10) and (3.11), can be found for instance in [59].

Once the displacement field u is determined, the stress tensor o can be obtained via relation
(3.3).

Hypotheses and weak formulations

Herein we state the hypotheses and present the weak formulations with dual Lagrange multipliers
for each of the models described in the previous section.

Assumption 3.5. F: Q x S? — S3;
there exists M > 0 such that ||F(x,e1)—F(x, €5)| < M||le1—es| for alle1,e5 € S?, a.e. in Q;
there exists m > 0 such that for all €1,e5 € S®, and almost everywhere in ) :
(F(z,€1) = F(x,€2)) - (1 — €2) = mller — &%
foralle € S, x — F(x,¢€) is Lebesque measurable in §;
x — F(x,0g3) belongs to L*(2)3*3.

Referring to (3.4), we note that, using the property of the non-expansivity of the projection
map, it can be proved that the map

F:OxSP = 8% F(x,e) = Nl(tre)ls + 2uoe + B(e — Pxe)

satisfies Assumption 3.5. Moreover, referring to (3.5), under appropriate assumptions on the
constitutive function 1, see [59] p.125, the map

F QxS S Fla,e) = k(tre)l; + o(|eP|?)e?,

satisfies Assumption 3.5.
Moreover, we made the following assumptions.

Assumption 3.6. f, € L?(Q2)3, Iy € L3(Ty)3.

Assumption 3.7. There exists gegt : @ — R such that geys € H (), Ygewr = 0 almost every-
where on T'1, YGexr > 0 almost everywhere on T'\ T'1, g = Ygexr almost everywhere on T's.

Assumption 3.8. The unit outward normal to I's, denoted by mg3, is a constant vector.
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Weak formulation of Problem 3.2. Let us introduce the space
={ve H'(Q)?|lv=0ae onTy, v, =0ae onls}.

We define an operator A : V; — V; such that, for each u € V;, Au is the element of V; that
satisfies,

(Au, v) /]-"s v)dx for all v € V. (3.12)

Also, we define f € V; such that,
(f, v) /fo vdr + fo-yvda for all v € V.
Ty

Let DT be the dual of the space v(Vi) = {yv v € V;}. We define A € DT such that
(A, yv)r = —/ o, v,da, for all yv € v(V1),
I's

where (-, -)7 denotes the duality pairing between DT and ~(V}). Furthermore, we define a bilinear
form as follows,

b: Vi x DT =R, b(v, u) = (u,yv)r, forallveVy, ue D’ (3.13)

Let us introduce the following subset of DT,

A= {u € DT : (u, yv)r (|lv.]|dT for all yv € 'y(Vl)}. (3.14)

I's

We have the following weak formulation of Problem 3.2.

Problem 3.5. Find u € V; and X € A, such that

(Au,v)y, +b(v,A) = (f, vy for all v € Vi,
blu,p—A) < 0 for all p € A.

A solution of Problem 3.5 is called a weak solution to Problem 3.2.

Weak formulation of Problem 3.3. We introduce the space
V={ve H(Q)?|v=0ae onl}.

We define an operator A : V' — V such that, for each u € V, Au is the element of V' that
satisfies,

(Au, v)y = /ﬂ]—"s(u) -e(v) dx forallv e V. (3.15)
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Next, we define f € V such that

(f, v)vz/fo-'vd:c—i- fo-yvda forallv e V. (3.16)
Q

1)

Let D® be the dual of the space «(V) and let us denote by (-, -)s the duality pairing between
DS and (V). We define A € D? such that

(A, yv)s = —/ on Uy da for all yv € (V). (3.17)
I's
In addition, we define a bilinear form as follows
b:V xD° =R, blv,p)={(u~yv)s, forallveV, uec D’ (3.18)
We introduce the following subset of D,
A= {ueDS : (p, yv)s <0 for all 7velC}, (3.19)

where
K={vyve~vV): v, <0 almost everywhere on I's}. (3.20)

We arrive to the following weak formulation of Problem 3.3.

Problem 3.6. Findu € V and A € A, such that

(Au,v)y +b(v,A) = (f, v)y forallv eV,
bu,p—A) < 0 for all p € A.

A solution of Problem 3.6 is called a weak solution to Problem 3.3.

Weak formulation of Problem 3.4. We can keep (3.15)-(3.20). Thus, we can write the
following weak formulation of Problem 3.4.

Problem 3.7. Findu € V and X € A, such that

(Au,v)y +b(v,A\) = (f, v)v for allv €V,
bu,p —A) < b(Gewtms, o — X)) for all p € A.

A solution of Problem 3.7 is called a weak solution to Problem 3.4.
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Weak solvability of the models

The well-posedness of Problem 3.5 is given by the following theorem.

Theorem 3.2. [Theorem 6.1 in [99]] If Assumptions 3.5-3.6 and 3.8 hold true, then Problem
3.5 has a unique solution (u,X) € Vi x A. Moreover, if (u,A) and (u*, X*) are two solutions of
Problem 3.5 corresponding to the data f € Vi and f* € Vi, there exists Cp > 0 such that

lw— vy +[|A = A%[pr < Crllf = Fllvi- (3.21)
The well-posedness of Problem 3.6 is given by the following theorem.

Theorem 3.3. [Theorem 6.2 in [99]]If Assumptions 3.5-3.6 and 3.8 hold true, then Problem
3.6 has a unique solution (u,X\) € V- x A. Moreover, if (u,X) and (u*, X\*) are two solutions of
Problem 3.6 corresponding to the data f € V and f* € V, there exists CY > 0 such that

lw —uflv + 1A = X[[ps < CFIIf = v (3.22)
Finally, we discuss the well-posedness of Problem 3.7.

Theorem 3.4. [Theorem 6.3 in [99]]If Assumptions 3.5-3.8 hold true, then Problem 3.7 has a
unique solution (u,X) € V-x A. Moreover, if (u,A) and (u*,X") are two solutions of Problem
3.7 corresponding to the data (f, gewimis) € V XV and (f*, gi,m3) € V x V, there exists C§ > 0
such that

=l + A= Nllps < C5(IF = £ llv + lgewems — gimslly). (3:23)

The proofs of Theorems 3.2, 3.3 and 3.4 are based on Theorem 3.1; for details see [99] and
[104].

3.2 Problems governed by proper convex l.s.c functionals

The results we present in this section were obtained in the papers [100, 104]. This section focuses
on the weak solvability of a class of contact models, under the small deformations hypothesis, for
static processes, for materials whose behavior is described by a constitutive law stated in a form
of a subdifferential inclusion. The weak solvability of the models is based on weak formulations
with dual Lagrange multipliers.

3.2.1 An abstract result

This subsection, based on Section 4 in [100] and on a part of Section 2 in [104], delivers abstract
results in the study of the following problem.



46
Problem 3.8. Findu € X and X\ € A such that

JW) = J(u) +bv—u,\) > (f,v—u)x forallveX
b(u,pp—A) <0 for all u € A.

This is a new variational problem, a mized variational problem governed by a functional J.
The analysis of this problem was made under the following hypotheses.

Assumption 3.9. (X, (-, )x, || - |lx) and (Y, (-, )y, | - |ly) are Hilbert spaces.

Assumption 3.10. J : X — [0,00) is a convex and lower semicontinuous functional such that
there exist my, my > 0: my||v||% > J(v) > ma||lv||% for allv € X.

Assumption 3.11. b: X XY — R s a bilinear form such that:
i) there exists My > 0 : |b(v, u)| < My||v||x]||plly for allv e X, u ey,

b
ii) there exists « > 0:  inf sup M >
HEY.u#0y yeX oy ||Vl x[lplly

Assumption 3.12. A is a closed conver subset of Y that contains Oy.
Theorem 3.5. If Assumptions 3.9-3.12 hold true, then Problem 3.8 has at least one solution.

For the proof of Theorem 3.5 see the proof of Theorem 3 in [100] if A is unbounded, and the
proof of Theorem 2.3 in [104] if A is bounded, respectively.

In order to study the uniqueness and the stability of the solution, the following additional
assumption it was used.

Assumption 3.13. J: X — [0,00) is a Gateauz differentiable functional such that,

there exists L >0 : [|[VJ(u) — VJ()||x < L||lu —v||x for all u,v € X,
there exists m > 0: (VJ(u) — VJ(v),u —v)x > m|u —v|% for all u,v € X.

Notice that a pair (u, A) is a solution of Problem 3.8 if and only if

(P) (VJ(u),v)x +b(v,\) = (f,v)x for all v € X,
b(u,p—A) <0 for all pn € A.

Theorem 3.6. Under Assumptions 3.9-3.13, Problem 3.8 has a unique solution, which depends
Lipschitz continuously on the data f.

For the proof of Theorem 3.6 see the proof of Theorem 4 in [100] if A is unbounded, and the
proof of Theorem 2.4 in [104] if A is bounded, respectively.
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3.2.2 3D contact models

This subsection is based on Section 3 and Section 5 in [100] and, on a part of Section 3 in [104].
In this subsection we apply the abstract results we have presented in the previous subsection,
to the weak solvability of two classes of contact problems.

A frictionless unilateral contact model

This model was analyzed in the paper [100]. The physical setting is as follows. We consider
a body that occupies the bounded domain Q C R3, with the boundary partitioned into three
measurable parts, I';, 'y and I's, such that meas(I';) > 0. The unit outward normal to I' is
denoted by v and is defined almost everywhere. The body €2 is clamped on I'y, body forces
of density f, act on 2 and surface traction of density f, act on I's. On I's the body can
be in contact with a rigid foundation. In order to describe the behavior of the materials, we
use a nonlinear constitutive law expressed by the subdifferential of a proper, convex, lower
semicontinuous functional and the contact will be modelled using Signorini’s condition with zero

gap.

Problem 3.9. Findu:Q — R3 and o : Q — S3, such that

Divo(z) + fo(x) =0 in €,
o(x) € w(e(u(x))) in Q,
u(x) =0 on I'y,
ov(x) = fy(x) on Iy,

o.(x)=0, u,(x) <0,0,(x) <0,0,(x)u,(x) =0 onls.
The study was made under the following assumptions.
Assumption 3.14. f, € L*(Q)% f, € L*(T1).

Assumption 3.15. w : S* — [0,00) is a convex, lower semicontinuous functional such that
there exist vy, an > 0: aq|€||* > w(e) > aqlle]|* for alle € SP.

To give an example of such a function w we can consider
Q3 _ 1 B 2
w:S = [0,00), w(e)= §A€ e+ EHE — Pxel| (3.24)

where A is a fourth order symmetric tensor satisfying the ellipticity condition, [ is a strictly
positive constant, K C S? denotes a closed, convex set containing the element Ogs and Py : S* —
K is the projection operator; see e.g. [59].
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Let us introduce the spaces
V={ve H(Q)?® : yv=0ae onl},
and

Li(Q)SXS ={p = (i) : pij € L*(9), pig = pg; for all 4,5 € {1,2,3}}.

We define a functional as follows,
W L2(Q)*3 = [0,00), W(T)= /Qw(r(a:))dx.
Next, we define the functional
J:V —10,00), J(v)=W(e(v)). (3.25)

Also, we define f € V as follows,

(f,v)v = f2-7vda+/f0"vda: for all v e V.
Q

1)

Let us denote by D the dual of the space (V). We define the following subset of D,
A={peD: (p~v) <0,foral yv € K}, (3.26)

where
K={yve~vV): v, <0ae onls};

(-,-) denotes the duality pairing between D and ~(V).
In addition, we define the bilinear form

b:VxD—=R, bv,pu) = {pu~yv) foralve V,ue D (3.27)

and the Lagrange multiplier A € D,
(A, yv) = —/ o,v, dT, for all yv € v(V).
I's

Problem 3.9 has the following weak formulation.

Problem 3.10. Findu € V and A € A such that

J(v) —J(u)+bv—u,A) > (f,v—u)y forallveV
blu,up—A) <0 for all p € A.
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Based on the previous abstract result, the following theorems take place.

Theorem 3.7 (An existence result (Theorem 5 in [100])). If Assumptions 3.14 and 3.15 hold
true, then Problem 3.10 has at least one solution.

Let us make now the following additional assumption.

Assumption 3.16. w is a Gateaux differentiable functional such that:
there exists L > 0: ||[Vw(e) — Vw(T)|| < L|le — 7| for all e, T € S,
there exists m > 0: (Vw(e) — Vw(T)) - (e —T) > mlle — 7||* for alle, T € S°.

An example of such a function is w in (3.24).

Theorem 3.8 (An existence, uniqueness and stability result, (Theorem 6 in [100])). If As-
sumptions 3.14, 3.15 and 3.16 hold true, then Problem 3.10 has a unique solution. Moreover, if
(w1, A1) and (ug, Ag) are two solutions of Problem 3.10 corresponding to the data f,, fo €V,
then there exists C' > 0 such that

|ur — ualv + [[A1 = Xel[p < C| f1 = Fallv.

The proof of Theorem 3.8, gave in [100], is based on the previous abstract result, Theorem
3.6.

A frictional contact model

The model we discuss now was analyzed in the paper [104]. The physical setting is the follow-
ing. A body occupies the bounded domain Q C R3, with the boundary partitioned into three
measurable parts, I'y, 'y and I's, such that meas(I'y) > 0. The unit outward normal vector to I'
is denoted by v and is defined almost everywhere. The body (2 is clamped on I';, body forces of
density f, act on (2 and surface traction of density f, acts on I';. On I's the body is in frictional
contact with a foundation.

According to the previous physical setting we state the following boundary value problem.

Problem 3.11. Findu : Q — R3 and o : Q — S? such that

Dive + fo = 0 in Q, (3.28)

o(x) € dw(e(u(x))) in Q, (3.29)

u=0 on I'y, (3.30)

ov=7F, on Iy, (3.31)

-0, =F, ||lo|| < klo,|, or = —k;|a,,|”g—:” ifur #0 onls, (3.32)
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where w : §* — [0,00) is a constitutive function, F': T's — R, is the prescribed normal stress
and k : I's — R, is the coefficient of friction.

Problem 3.11 has the following structure: (3.28) represents the equilibrium equation, (3.29)
represents the constitutive law, (3.30) represents the displacements boundary condition, (3.31)
represents the traction boundary condition and (3.32) models the frictional contact with pre-
scribed normal stress. For details on this model we send the reader to, e.g., [147].

We made the following assumptions.

Assumption 3.17. w : S? — [0,00) is a convex, lower semicontinuous functional. In addition,
there exist ay, ag > 0 such that aq||e]]?* > w(e) > aslle||? for all e € S.

Assumption 3.18. The density of the volume forces verifies f, € L*()® and the density of
the tractions verifies f, € L*(I'y)3.

Assumption 3.19. The prescribed normal stress verifies F' € L*(I'3) and F(x) > 0 a.e. © € I'3.
Assumption 3.20. The coefficient of friction verifies k € L>®(I's) and k(x) > 0 a.e. x € I's.

Let us replace now (3.32) with the following condition

u,r .
UV:O, ”O'TH SC, GT:—lefuT%O. (333)

This condition is a frictional bilateral contact condition where ¢ : I's — R denotes the friction
bound.

Now, a second model can be formulated as follows.

Problem 3.12. Find u: Q — R? and o : Q — S* such that (3.28)-(3.31) and (3.33) hold true.

We shall study Problem 3.12 under Assumptions 3.17-3.18, and in addition we shall make
the following assumption.

Assumption 3.21. The friction bound verifies ¢ € L*(I'3) and ((x) >0 a.e. © € I'3.

Weak solvability of Problem 3.11
Let us introduce two functional spaces

V={ve H(Q)?® : yv=0ae onl},

and
Li(Q)gxg = {p = (i) * iy € L2(Q); pij = pj; for all 4, j € {1,2,3}}

We now introduce the functional

W L2535 [0,00), W(r) = /Q w(r(@)) da. (3.34)
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Using the functional W we introduce a new one

J:V —=10,00), J(v)=W(e(v)). (3.35)
We define f € V such that, for all v € V,
(f, o)y = /Qfo(a:) @)+ [ fale) yolm)ar - /F F(@)v, () dT.
Next, let D be the dual of the Hilbert space
S={v=qv, veV}
We define A € D such that

(A, w) = —/ o.(x) w,(x)dl for all w € S,
I's

where (-, -) denotes the duality pairing between D and S. Furthermore, we define a bilinear form
as follows,

b:VxD—=R, bv,pu) = </,L,")”U‘F3>, forallv eV, ue D.

Let us introduce the following subset of D,

A= {u €D : {p, yvlr,) < / kFllv, ||dl ve v}. (3.36)
I's

We are led to the following weak formulation of Problem 3.11.

Problem 3.13. Findu € V and A € A, such that

Jw)—=Ju)+bv—-—u,A) > (f,v—u)y forallv eV,
blu,p—A) < 0 for all p € A.

A solution of Problem 3.13 is called a weak solution of Problem 3.11.

Theorem 3.9. [Theorem 3.1 in [104]] If Assumptions 3.17-3.20 hold true, then Problem 3.13 has
at least one solution (u,X) € V x A. If, in addition, Assumption 3.16 is fulfilled, then Problem
3.13 has a unique solution; moreover, there exists C' > 0 such that

lu—ullv + A =Xlp <CIf = Flv, (3.37)

where (u, X) and (u*, X*) are two solutions of Problem 3.13 corresponding to the data f € V
and f* e V.
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The proof of Theorem 3.9, given in [104], is based on Theorem 3.6.

Weak solvability of Problem 3.12
Herein we use the Hilbert space

Vi= {v € H'(Q)? |yv=0ae. on Ty, v, =0ae. on Fg}.

We define f, € V; such that, for all v € V;,

o = [ ffw) o@)do+ [ fifw) yole)ar
Q )
Next, we define the functional
Ji: Vi = [0,00),  Ji(v) = W(e(v)),

where W is the functional defined in (3.34).
Let D; be the dual of the Hilbert space

Sy ={v= YV, VE Vit
We define A € Dy such that

(A, w) = —/ o.(x) w,(x)dl, for all w € 5,
I's

where (-, -) denotes the duality pairing between D; and S;. Furthermore, we define a bilinear
form as follows,

b:Vix Dy =R, bi(v, p)=(p,yv,), forallveVi, peD.

Let us introduce the following subset of Dy,

M={meD: wyvl) < [ (@) o lar ven}.

s
Clearly, A € A;. Furthermore,
bi(u,A) = [ ((@)]u ()] dL,
I's
bi(u,p) < ((x)||u ()| dT for all g € Ay.
I's

Consequently, we are led to the following weak formulation of Problem 3.12.
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Problem 3.14. Find uw € V; and A € Ay, such that

Ji(w) = S(u)+b(v—u,A) > (f,v—u)y for all v € Vi,
bi(u,p—A) < 0 for all p € A;.

Theorem 3.10. [Theorem 3.2 in [104]] If Assumptions 3.17-3.18 and 3.21 hold true, then Prob-
lem 3.14 has a unique solution; moreover, there exists C' > 0 such that

lu —ully, + 1A = Xp, <CIIf = flv,

where (u, A) and (u*,X*) are two solutions of Problem 3.14 corresponding to the data f € Vi
and f* € V.

A solution of Problem 3.14 is called a weak solution of Problem 3.12.
The proof of Theorem 3.10, given in [104], is based on Theorem 3.6.

3.3 Problems governed by a nonlinear, hemicontinuous,
generalized monoton operator

This section, based on the paper [107], focuses on a new theoretical result which will allow to
explore contact models for a class of nonlinearly elastic materials leading to mixed variational

problems governed by nonlinear, hemicontinuous, generalized monoton operators. The key herein
is not the saddle point theory; the key here is a fixed point theorem for set valued mapping.

3.3.1 An abstract result

This subsection is based on the Sections 2-4 of the paper [107]. In this subsection we focus on
the following mixed variational problem.

Problem 3.15. Given f € X', find (u,\) € X x A such that
(Au,v)x x +b(v,\) = (f, v)x x for all v e X, (3.38)
b(u, i — A) <0 for all 1€ A. (3.39)
Here and everywhere below X’ denotes the dual of the space X and A is a subset of a space Y.
Assumption 3.22. (X, (-, )x, || ||x) and (Y, (-, )y, || - [|[y) are two real reflexive Banach spaces.
Assumption 3.23. A is a closed convexr bounded subset of Y such that Oy € A.

Assumption 3.24. There exists a functional h : X — R such that:
e (i1) h(tw) = t"h(w) for allt >0, w € X and r > 1;
o (iy) (Av— Au,v —u)x x > h(v —u) for all u,v € X;
o (i3) If (x,)n C X is a sequence such that x,, — x in X asn — oo, then h(x) < limsup h(z,).

n—oo
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Notice that (1) and (i) in Assumption 3.24 express a generalized monotonicity property for
the operator A : X — X’. According to the literature, the operator A is a relaxed h—monotone
operator, see for example [42] and the references therein.

Assumption 3.25. The operator A : X — X' is hemicontinuous, i.e., for all u,v € X, the

mapping f : R — (—o0, +00), f(t) = (A(u + tv),v)x x is continuous at 0.

(Au7u>X’,X
[[ul| x

Assumption 3.27. The form b: X xY — R is bilinear. In addition,
e for each sequence (uy,), C X such that u, — u in X as n — oo we have b(u,, i) — b(u, p)

Assumption 3.26. — 00 as ||ul|x — oc.

as n — oo, for all p € A.
e for each sequence (A\,)n, CY such that \, = X in'Y as n — oo, we have b(v, \,,) — b(v, \)
asn — oo, for all v e X.

Under Assumptions 3.22-3.27, Problem 3.15 has at least one solution. Assumptions 3.22-
3.27 impose a new technique in order to handle Problem 3.15, namely a fixed point technique
involving a set valued mapping, instead of a saddle point technique. Let us mention here the
main tool.

Theorem 3.11. Let K # () be a convex subset of a Hausdorff topological vector space €. Let
F: K — 28 be a set valued map such that

(hy) for each u € KC, F(u) is a nonempty convex subset of K;

(hy) for eachv e K, F~Y(v) ={u e K: v e F(u)} contains an open set O, which may be
empty;

(hs) U O, =K;

vek
(hy) there exists a nonempty set Vy contained in a compact convezr subset Vi of K such that

D = () Of is either empty or compact.
vEVD
Then, there exists ug € IC such that uy € F(up).

We note that 2X denotes the family of all subsets of K, and OF is the complement of O, in
KC. For a proof of this theorem we refer to [152].
Let us construct a bounded convex closed nonempty subset of X as follows,

K,={veX : |vl|x <n}
where n is an arbitrarily fixed positive integer. We consider the following auxiliary problem.

Problem 3.16. Given f € X', find (u,, \n) € K,, X A such that

(Auna U= un)X’,X + b(va An) - b(una M) > (f? U= un)X/,X (34[))
for all (v, p) € K, x A.
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Lemma 3.1. [Lemma 1 in [107]] A pair (u,, A\,) € K, X A is a solution of Problem 3.16 if and
only if it verifies

(AU, v — un)X’,X + b('U, )\n) - b(u’ru ,LL) Z (fa U — un)X’,X + h(U - un) (341)
for all (v, ) € K, x A.

Let us define a set valued map F : K, x A — 252*A ag follows,
F(“’? )\) = {(U7M> € Ky, xA: (AU,U - U)X',X + b(U,/\) - b(unu) < (f7 U= U)X’,X}-

Arguing by contradiction, using the map F'(-,-) and Theorem 3.11, the following existence result
was delivered.

Theorem 3.12. [Theorem 2 in [107]] If Assumptions 3.22-3.25 and Assumption 3.27 hold true,
then Problem 3.16 has at least one solution (un, A\,) € K, x A.

Based on Theorem 3.12 we have got the following existence result.

Theorem 3.13. [Theorem 3 in [107]] If Assumptions 3.22-3.27 hold true, then Problem 3.15
has at least one solution.

The proofs of Lemma 3.1, Theorems 3.12-3.13 can be found in [107].

Let us present an example of spaces X, Y, subset A, operator A and form b(-, -) which verify
Assumptions 3.22-3.27.

Let  be a bounded domain in R? with smooth boundary I'. Let p be a real number such
that oo > p > 4. We define a subspace of W'?(Q) as follows,

X={v:veW"(Q),yw=0ae onIlp} (3.42)

where T'p is a part of ' with positive Lebesgue measure and « : WP(Q) — LP(T') is the Sobolev
trace operator. It is known that the space X is a Banach space endowed with the norm

lullx = VUl o)
Let p’ be the conjugate exponent of p, i.e. % + z% = 1. We now consider I'¢c a part of I' such

that meas('¢) > 0 and T NT'p = 0. Then, we can take
Y = LP(Te). (3.43)

Next, we define a subset of Y as follows,

A={peY : (uyv,,) < / glyv(x)|dl'  for all v € X}, (3.44)

e

where ¢ is a positive real number.
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We define A : X — X’ as follows: for each u € X, Au is the element of X’ such that
(Au,v)x x = / pl|Vu(x) [P *Vu(z) - Vo(z)dr  forallve X (3.45)
Q

where p is a positive real number. The operator A is hemicontinuous and relaxed h—monotone
with h = 0 being in fact Lipschitz continuous and monotone. Besides, for each u € X, u # Oy,
we have

Finally, we define b : X x L? (I'c) — R as follows

b(”? /“L) = <:U’7 7U|rc>7 (346)

where (-,-) is the duality pairing between L” (I'¢) and LP(T'¢).

3.3.2 An antiplane frictional contact problem

This subsection is based on Section 5 of the paper [107]. Herein we apply the abstract existence
result, Theorem 3.13, to the weak solvability of the following boundary value problem.

Problem 3.17. Find u : Q — R such that

div (|| Vu(z)||P*Vu(z)) + fo(x) = 0 in Q, (3.47)
u(x) = 0 on I'p, (3.48)
plVu(@)|F* ou(@) = fo) on I'y, (3.49)

| [[Vu(@) P72 0, u(@)| < g,
on I'c. (3.50)

IV u(@) 2 O,ul) = —g (48 it u(w) £ 0

This problem models the antiplane shear deformation of a nonlinearly elastic cylindrical
body, in frictional contact on I'c with a rigid foundation. See [145] for details on the antiplane
contact models. We also refer to the works [114, 115, 116, 117] for a treatement of some antiplane
contact problems in a general setting of the hemivariational inequalities.

Herein Q0 C R? is a bounded domain with smooth boundary I" partitioned in three measurable
parts I'p, I'y, I'c with positive Lebesgue measures. Referring the body to a cartesian coordinate
system Oxixox3 such that the generators of the cylinder are parallel with the axis Oxs, the
domain ©Q C Oz, denotes the cross section of the cylinder. The functions fo = fo(xy,z2) :
Q= R, fo = fo(x1,22) : Ty — R are related to the density of the volume forces and the density
of the surface traction, respectively, and g > 0 is the friction bound. The vector v = (v1,14),
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v; = v;(x1, 9), for each ¢ € {1,2}, represents the outward unit normal vector to the boundary
of Q and 9, u = Vu - v. The behavior of the nonlinearly elastic material is described by the
following constitutive law:

o(x) = ktre(u(x)) I + plle” (u(@)) ["~*e” (u(z)) (3.51)

where o is the Cauchy stress tensor, tr is the trace of a cartesian tensor of second order, € is the

infinitesimal strain tensor, w is the displacement vector, I3 is the identity tensor, k, u > 0 are

material parameters, p is a constant such that 4 < p < oo, e denotes the deviator of the tensor

g, defined by e” = € — 5 (tr ) I'5. The constitutive law (3.51) is a Hencky-type constitutive law.
The mechanical problem has the following structure: (3.47) represents the equilibrium equa-

tion, (3.48) is the displacement boundary condition, (3.49) is the traction boundary condition

and (3.50) is Tresca’s law of dry friction; see e.g. [145, 147] for more details on frictional laws.
We shall study Problem 3.17 assuming that

foe LP (), fye L (Iy). (3.52)

We define f € X’ as follows

(f,v)x x = /Q folx)v(x)dx + fo(x)yv(x)dl'  for all v € X. (3.53)

I'p

Next, we define a Lagrange multiplier A € Y as follows
(A z) = —/ w]|Vu(z)||P20,u(z) z(x)dl  for all z € LP(T'¢), (3.54)
INe;
where Y is the space defined in (3.43).

Problem 3.17 has the following weak formulation.

Problem 3.18. Findu € X and A € A CY such that
(Au, v)x' x +b(v,\) = (f,v)x x forallve X. (3.55)

and
b(u, —A) <0 forall  €A. (3.56)

Theorem 3.14. [Theorem 4 in [107]]If 4 < p < 00, k, 1,9 > 0, fo € L¥(Q), and f, € L¥ (T'y),
then Problem 3.18 has at least one solution.

The proof of Theorem 3.14, given in [107], is based on Theorem 3.13.
As each solution of Problem 3.18 is called weak solution of Problem 3.17, Theorem 3.14
ensures us that Problem 3.17 has at least one weak solution.



Chapter 4

Viscoelastic frictional contact problems

This chapter is based on the papers [101, 111]. We discuss antiplane models which describe
the contact between a deformable cylinder and a rigid foundation, under the small deformation
hypothesis, for quasistatic processes. The behavior of the material is modelled using viscoelastic
constitutive laws and the frictional contact is modelled using Tresca’s law. We draw the attention
to the weak solvability of the models based on a weak formulation with dual Lagrange multipliers
in the case of viscoelastic materials with long memory as well as in the case of viscoelastic
materials with short memory. The results we have got are based on new abstract results in the
study of new classes of mixed variational problems: a class of time dependent mixed variational
problems and a class of evolutionary mixed variational problems.

4.1 The case of viscoelasticity with long-memory term

In this section we present the results obtained in the paper [101], discussing the weak solvability
of a contact model for viscoelastic materials with long memory, by using arguments which involve
dual Lagrange multipliers; for a classical approach of such kind of models we refer to, e.g. [143].
The weak solvability of the proposed model through an approach with Lagrange multipliers is
related to the solvability of a new abstract variational problem.

4.1.1 An abstract result

In this subsection we shall present an abstract result obtained under the following assumptions.
Assumption 4.1. (X, (-, )x, || - llx) and (Y, (-, )v, | - ||y) are two Hilbert spaces.

Assumption 4.2. A: X — X is an operator such that:
there exists ma > 0: (Au— Av, u — v)x > mal|lu —v||% for all u,v € X,
there exists Ly > 0: [|[Au — Av||x < La||lu —v||x for all u,v € X.

o8
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Assumption 4.3. b: X XY — R s a bilinear form such that:
there exists My > 0 : |b(v, p)| < My||v||x |||y for allv e X, p €Y,

b
there exists a > 0:  inf sup (v—,,u) > a.

neVA0y vexozox ||Vlxllully ~

Assumption 4.4. A CY is a closed convex set such that Oy €Y.
Assumption 4.5. f € C([0,T]; X).
Assumption 4.6. B € C([0,7]; L(X)).
Problem 4.1. Given f :[0,T] = X, findu : [0,T] = X and X : [0,T] = Y such that, for every
t €10, T], we have A(t) € A and
(Au(t),v)x + (/t B(t — s)u(s)ds,v)x + b(v,\(t)) = (f(t), v)x forallve X (4.1)
’ b(u(t),n — A(t)) <0 for all p € A. (4.2)

This is a new variational problem, a time dependent mized variational problem with long-
memory (a mixed variational problem governed by an integral term).
Let n € C([0,T],X) and ¢ € [0, T]. We consider the following auxiliary problem.

Problem 4.2. Find u,(t) € X and \,(t) € A such that

(Auglt), 0)x + b 0(0) = (f() —n(t)ho)x  for all ve X
bluy(t), p— Ay(t)) < 0 forall p € A.

Problem 4.2 has a unique solution, (u,(t), \,(t)) € X x A. In addition,
u, € C([0,7],X) and X\, € C([0,T],Y). (4.3)

Let us define
T:C(0, 7], X) — C([0,T], X), (Tn)(t) = /0 B(t — s)u,(s)ds.

The operator 7T is a contraction.

Let n* € C([0,7T]; X) be the unique fixed point of the operator 7 and (u,-,\,+) be the
solution of Problem 4.2 for n = n*. Let ¢t € [0,7]. Notice that the pair (u,«(t), \,«(t)) verifies
(4.1) and (4.2). It was proved the following theorem.

Theorem 4.1. If Assumptions 4.1—4.6 hold true, then there exists a unique solution of Problem
4.1, (u, A), such that (u(t),A(t)) € X x A for all t € [0,T] and

uwe C([0,T]; X), A e C([0,T];Y).
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Moreover, given f1, fo € C([0,T]; X), there exists C > 0 such that

|ur — uallcqorix) + 1A = Xelleqomyy < Cllfi = falleqor:x),

(u1, A1) and (ug, A2) being the solutions of Problem 4.1 corresponding to the data f1 and fo,
respectively.

The proof of Theorem 4.1 can be found in [101] if A is unbounded (see Theorem 2 in [101]),
and it follows from Theorems 2.1 and 2.2 in [104], combined with the Banach’s fixed point
theorem, if A is a bounded set.

4.1.2 A mechanical model and its weak solvability

In this subsection we discuss the weak solvability of the following contact model.

Problem 4.3. Find u : Q x [0,T] — R such that, for every t € [0,T],

div (a(m,Vu(ac,t))+/Ot9($,t—s)Vu(ac,s)ds> ¥ fol@, ) =0  inQ

0
u(x,t) =0

on I’y
a(x, Vu(z,t)) - v(x) + /t O(x,t — s)0,u(x,s)ds = fo(x,t) on Ty
0

)

oo Vata.) vi@)+ [ 0ot~ 0u(e.5)ds] < glo);
oo Vata,) - vl@)+ [ 0ot~ 0u(e.5)ds] < g(z)
= u(m,t) = 0:

la(x, Vu(z,t)) - v+ /0 t 0(x,t — s)du(x, s)ds| = g(x) onls, (4.4)
= there exists 8 > 0 such that

a(z, Vu(z, 1) - v(@) + /Ot O(z,t — )0, u(w, s)ds

= —fu(x,t)

/

where 0 C R? is an open, bounded, connected subset, with Lipschitz continuous boundary I'
partitioned in three measurable parts I'y, I';, I's such that the Lebesgue measure of I'y is positive.
This problem models the antiplane shear deformation of a cylindrical body in bilateral frictional
contact on I's with a rigid foundation. The domain €2 denotes the cross section of the cylinder,
the unknown u = u(xy,79) : Q x [0,7] — R represents the 3" component of the displacement
vector, a : ) x R? — R? is a constitutive function, 6 : Q x [0, 7] — R is a coefficient of relaxation,
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g : I's = R is the friction bound and the functions fy: Q x [0,7] = R, fo: Ty x [0,7] — R are
related to the density of the volume forces and the density of the surface traction, respectively.
Here v is the unit outward normal vector on the boundary I', defined almost everywhere, and
0, u = Vu-v. Notice that v = (v, 1), v; = v;(x1, z3), for each i € {1, 2}.

Assumption 4.7.
o there exists L, > 0: |la(x, &) —a(x,&)|| < Lo||&; — &5l for all €1, &, € R?) a.e. @ € Q;

o there exists M, > 0 : (a(x,&;) — a(x,&,)) - (& — &) > M,l|§, — &%, for all §,,§, €
R2, a.e. ¢ € Q;

o For each € € R?, © — a(x, &) is measurable in ;
e The mapping ¢ — a(x,0) € L*(2)2.
Let us give three examples of constitutive laws related to three examples of such functions a.

Example 4.1. We can describe the behavior of the material with the following constitutive law
t
o(xz,t) = \Nx)(tre(u(x, t)))Iss + 2u(x)e(u(x, t)) + / O(x,t — s)e(u(x, s))ds
0
t
+/ C(x,t — s)tr(e(u(zx, s)))lssds,
0

where A and p are coefficients of the material, tr e(u) = egx(w), Igs is the unit tensor and 0, ¢
are coefficients of relaxation. In the antiplane context, the equilibrium equation reduces to

t
div (u(m)Vu(a:,t) +/ O(x,t — s)Vu(zx, s)ds) + fo(x,t) =0 in Q x (0,7),
0
see for example [145]. In this situation we define
a(z, &) = p(x) &

Assuming p € L*(Q), p(x) > p* > 0 a.e. x €2, then Assumption 4.7 is fulfilled.

Example 4.2. Let us describe the behavior of the material with the viscoelastic constitutive law

o(x,t) = Az)(tre(u(e,1)))ls + 2u(x)e(u(w, 1))
+25(x)(e(u(x, 1)) — Pre(u(w,1)))

+/0 O(x,t — s)e(u(zx, s))ds
+/O C(x,t — s)tr(e(u(x, s)))Igsds,
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where X\, p and B are coefficients of the material, IC is the non-empty, closed and conver von

Mises set 1
K:{0€S3|50D-0D§k2, k> 0} (4.5)

and Py : S* — K represents the projection operator on K. We recall that oP is the deviator of
o, e, o =0 —i(tro)ls.
The equilibrium equation reduces to the following scalar equation
1 t
div ((,u(:c) + 8())Vu(@.t) - 25(2) P 5 Vu(@. +/ Oz, t — s)Vu(m,s)ds)
0
+fo(x,t) =0 in Qx(0,7),

where K = B(Oge, k), (k given by (4.5)) and Pz :R* — K s the projection operator on K.
We define

ol &) = [u(x) + f(x)]€ — 26(x) Prt.

Let us assume that p € L>®(Q), p(x) > p* >0 a.e. € Q, and € L>®(Q). Taking into account
the non-expansivity of the projection map Pg, Assumption 4.7 is verified.

Example 4.3. The behavior of the material is described now as follows,
o (x,t) = ko(tr e(u(,1)))Iss + ¥(|e” (u(x, 1)))])e” (u(, 1))
t ¢
+/ O(x,t — s)e(u(x,s))ds + / C(x,t — s)tr(e(u(x, s)))lssds,
0 0
where kg > 0 is a coefficient of the material, €P(u) is the deviatoric part of € = e(u) and

¥ : R — R is a constitutive function. In the antiplane context the equilibrium equation reduces
to

div <%¢ (%]Vu(w, t)h%p) Vu(x,t) + /0 O(x,t — s)Vu(zx, s)ds)
+folx,t) =0 in Qx(0,7).
Thus, we can consider
ofe,) = 30 (et ) €

Assume that ¢ : R — R s a piecewise continuously differentiable function such that there exist
positive constants ¢i, co, di and do which verify the following inequalities

Y(E) S, —a SP(E) <0, e <Y(e7) +20(67)8 < dy;
see [59], page 125. In this case Assumption 4.7 is fulfilled, too.

In addition to Assumption 4.7, we made the following assumptions.
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Assumption 4.8. 0 € C([0,T7]; L>°(f2)).
Assumption 4.9. f, € C([0,T]; L*()); fo € C([0,T]; L*(Ty)).
Assumption 4.10. g € L*(T'3), g(x) >0 a.e. on ;.

Let us introduce the space V = {v € H'(Q) v =0 a.e. on 1} (v =0 in the sense of the trace).
We define A : V — V as follows: for each u € V, Au is the unique element of V' such that

(Au, v)y = / o(@, Vu(w, 1)) - Vo(z) dr.
Q
Besides, we define a function f as follows,

£100,7] = V., (f(t),v)yz/ﬂfo(t)vdx+ [ pvds, forallvev.

In addition, we define an operator B : [0,T] — L(V') such that, for ¢t € [0,7] and v € V, B(t)u
is the element of V' which verifies

(B(t)u,v)y = / O(t)Vu-Vodr forallveV.
Q

We note that
fec(0,T}V)
B e C([0,T]; L(V)).

Let D = (y(V))’ be the dual of the space v(V) = {w =v|r v € V}. For every t € [0,T] we
define A(¢) € D as follows

(A(t),yw) = —/ a(x, Vu(x,t)) - v(x)yw(x)dl

I's

_ /F /O 0(t — 5)(@)dyu(w, s)dsyw(@)dl  for all yw € (V),

where (-, -) is the duality pairing between (v(V))" and v(V'). Also, we introduce A C (y(V))" as
follows,

A={peD|{uyw) < / g(@)yw(x)[dD for all yw € (V)}. (4.6)

I's
Next, we define
b:VxD—=R blv,pu) = (uyv). (4.7)

We have the following weak formulation of Problem 4.3.
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Problem 4.4. Given f:[0,7] =V, find uw: [0,T] =V and X : [0,T] — D such that, for every
t €10, T], we have A(t) € A and

(Au(t),v)y + (/o B(t — s)u(s)ds,v)y +b(v,A(t)) = (f(t),v)y foralveV
bu(t),p— A1) < 0 for all p € A.

Theorem 4.2. [Theorem 1 in [101]] If Assumptions 4.7-4.10 are fulfilled, then Problem 4.4 has
a unique solution (u, \) with the reqularity

uwe C([0,T];V), A € C([0,TT; D).
Moreover, given f', f2 € C([0,T];V), there exists C > 0 such that

HUI - u2||C([0,T];V) + ||)\1 - )‘QHC([O,T];D) < CHfl - f2|’C([07T];V)’ (4.8)

(u', \Y) and (u*, \?) being the solutions of Problem 4.4 corresponding to the data f' and f?
respectively.

The proof of Theorem 4.2 is based on the abstract result, Theorem 4.1.

4.2 The case of viscoelasticity with short-memory term

This section is based on the paper [111]. We discuss herein an abstract mixed variational
problem which consists of a system of an evolutionary variational equation in a Hilbert space
X and an evolutionary inequality in a subset of a second Hilbert space Y, associated with an
initial condition. The existence and the uniqueness of the solution is proved based on a fixed
point technique. The continuous dependence on the data was also investigated. The abstract
results we obtain can be applied to the mathematical treatment of a class of frictional contact
problems for viscoelastic materials with short memory. In this section we consider an antiplane
model for which we deliver a mixed variational formulation with friction bound dependent set of
Lagrange multipliers. After proving the existence and the uniqueness of the weak solution, we
study the continuous dependence on the initial data, on the densities of the volume forces and
surface tractions. Moreover, we prove the continuous dependence of the solution on the friction
bound.

4.2.1 An abstract result

Let T be a positive real number. In this subsection we study the following abstract problem.
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Problem 4.5. Given f :[0,T] - X, g € W and up € X, find u : [0,T] = X and X : [0,T] —
A(g) C Y such that for each t € (0,T), we have

a(u(t),v) +e(u(t),v) +b(v,\(t)) = (f(t),v)x forallve X, (4.9)
b(u(t),p—A(t)) < 0 for all i € A(g), (4.10)
u(0) = wup. (4.11)

This is an evolutionary mized variational problem with short-memory term.
Problem 4.5 was studied under the following assumptions.

Assumption 4.11. (X, (-, )x, | - llx), (Y5C )y, |- |ly) and (W, (-, )w, || - ||w) are three Hilbert
spaces.

Assumption 4.12. a(-, -) : X x X — R is a symmetric bilinear form such that
(a1) there exists M, > 0: |a(u,v)| < M||lul|x]||v||x for all u,v € X;
(ag) there exists m, > 0 : a(v,v) > m, ||v||% for all v € X.

Assumption 4.13. e(-, -) : X X X — R is a symmetric bilinear form such that
(e1) there exists M, > 0 : |e(u,v)| < M,||u||x||v||x for all u,v € X;
(e2) there exists m. > 0: e(v,v) > m, ||v||% for allv € X.

Assumption 4.14. b(-, -) : X XY — R is a bilinear form such that
(b1) there exists My > 0 : |b(v, p)| < My||v||x||plly for allv e X, €Y,
. . b(v,
(bo) there exists a > 0 1 inf ey 20, SUP,ex vr0y m > a.

Assumption 4.15. f € C([0,7]; X).
Assumption 4.16. For each ¢ € W, A(p) is a closed convex subset of Y such that Oy € A(yp).

Assumption 4.17. If (n,), C W and (w,), C X are two sequences such that n, — n in W
and w, — w n X, as n — oo, then:

(k1) for each p € A(n) CY, there exists a sequence (i), CY such that p, € A(n,)
for alln > 1, and limsup b(wy,, it — ,) < 0;

n—oo
(ko) For each subsequence (A(ny:))n of the sequence (A1), of (pn)n CY such that
t € N(npr) and pi — poin'Y asn' — oo, then p € A(n).
Let n € C([0,T]; X) be given and let us consider the following intermediate problem.

Problem 4.6. Given f : [0,7] = X andg € W findw, : [0,T] = X and A\, : [0,T] = A(g) CY
so that, for each t € [0,T], we have

a(wy(t),v) +e(n(t),v) +blv, N\, () = (f(t),v)x forallve X, (4.12)
b(wy(t), n—Ay(t)) < 0 for all i € A(g). (4.13)

~—
~—
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The existence and the uniqueness of the solution of this problem is provided by the following
lemma.

Lemma 4.1. [Lemma 2 in [111]] Problem 4.6 has a unique solution with the reqularity

Let us associate with Problem 4.6 the following functional.

£ X x Alg) 2B, Lo, 1) = galv,0) = (fo(t), 0)x +b(o, o). (4.15)

It was proved that a pair (w,(t), A\,(t)) verifies (4.12) and (4.13) if and only if it is a solution
of the following saddle point problem.

Find (wy(t), (1)) € X x A(g) so that (4.16)

Ly (wy(t), p) < Ly (wy(t), \y(t) < Ly (v, Ay(t))  forallv e X, pe Ag).

Following [50, 61}, it was proved that the Problem 4.16 has a solution.
Let us consider the operator 7 : C([0,7]; X) — C(]0,T]; X) defined as follows: for each
n € C([0,T]; X),

t
T(t) = /0 wy(s)ds+uo  for all £ € [0, T]. (4.17)

Lemma 4.2. [Lemma 3 in [111]] The operator T has a unique fized point n* € C([0,T]; A(g)).
The main abstract result in this subsection is the following one.

Theorem 4.3. [Theorem 4 in [111]] If Assumptions 4.11-4.17 hold true, then Problem 4.5 has
a unique solution with the reqularity

we C(0, T X), A e C(0,T):A)).

The proof of Theorem 4.3, which can be found in [111], is based on the saddle point theory
and Banach’s fixed point theorem.

In addition to this theorem it is worth to mention the following three results.

Let us start with the following stability properties.

Proposition 4.1. [Proposition 5 in [111]] If Assumptions 4.11-4.17 hold true, then:
(p1) given f € C([0,T); X), g € W and two initial data u}, u3 € X, there exists c; > 0 such
that

lur = wzllerqomx) < eallug — gl x, (4.18)
where uy, us are the corresponding solutions of Problem 4.5;
(p2) given g € W, f1, fo € X and two initial data ul, u3 € X, there exists co > 0 such that

lur = waller oy < calllfi = follx + llug — ugllx), (4.19)

where uy, us are the corresponding solutions of Problem 4.5.
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Next, we mention a boundedness property.

Proposition 4.2. [Proposition 6 in [111]] If Assumptions 4.11-4.17 hold true, then there exist
two positive friction bound independent constants K, and Ky such that

Ki: (4.20)
K, (4.21)

lullcrorx) <
[Meqmyy <

where (u, A) is the solution of Problem 4.5.
Finally, let us indicate some convergence properties.

Proposition 4.3. [Proposition 7 in [111]] If Assumptions 4.11-4.17 hold true and (g,), C W
is a sequence such that g, — g in W as n — oo, then for all t € [0,T],

Un(t) = u(t) in X as n — oo; (4.22)
Un(t) — 0(t) in X as n — oo; (4.23)
An(t) = A(t) inY asn — oo, (4.24)

where (u, \) and (u,, \,) denote the solutions of Problem 4.5 associated with the data (f, g,uo) €
C(0,T]; X) x W x X and (f, gn,uo) € C([0,T]; X) x W x X, n > 1.

Propositions 4.1, 4.2 and 4.3 have been proved in [111].

4.2.2 A mechanical model and its weak solvability

In this subsection we discuss the weak solvability of the following model.

Problem 4.7. Find a displacement field u : Q x [0, T] — R such that, for allt € (0,T), we have

div (0(z) Vi(x,t) + p(x) Vu(z,t)) + folz,t) =0 in Q, (4.25)
u(x,t) =0 on Iy, (4.26)
O(x) 0, u(x,t) + p(x) Oyu(x,t) = fa(x,t) on Iy, (4.27)
|0(z) Oy, t) + p(x) ulz, )| < g(x),
. on Ty, (4.28)
0(x) 0,0, 1) + p(x) Dyu(wm, 1) = —g(x) G if i(a,t) #0
u(0) =up in Q. (4.29)

Herein [0, 7] is the time interval and Q C R? is a bounded domain with Lipschitz continuous
boundary. The boundary will be denoted by I' and will be partitioned in three measurable parts
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I'y, 'y, I's such that the Lebesgue measure of I'; is positive. Problem 4.7 models the antiplane
shear deformation of a viscoelastic, isotropic, nonhomogeneous cylindrical body in frictional
contact on I's with a rigid foundation. Referring the body to a cartesian coordinate system
Oxyxoxg such that the generators of the cylinder are parallel with the axis Oxj3, the domain
Q) C Ox175 denotes the cross section of the cylinder. The function 6 = 6(zy, z5) :  — R is the
viscoelastic coefficient, = u(z1, 72) : © — R denotes a coefficient of the material (one of Lamé’s
coefficients), the functions fy = fo(x1,29,t) : A x (0, T) = R, fo = fo(x1,29,t) : Tax (0,7) - R
are related to the density of the volume forces and the density of the surface traction, respectively
and g : I'y — R is the friction bound, a given function. Here v = (v1,1s) (v; = vi(z1, x9), for
each i € {1,2}), represents the outward unit normal vector to the boundary I" and 0, u = Vu-v.

The unknown of the problem is the function u = u(zy, x2,t) : 2x [0, T] — R which represents
the third component of the displacement vector wu.

In the study of Problem 4.7 we assume that the elasticity and the viscosity coefficients fulfill
the following assumptions.

Assumption 4.18. p € L>*(Q2), and there exists pi* > 0 such that p(x) > p* a.e. € € Q.
Assumption 4.19. 6 € L>=(Q), and there exists 0* > 0 such that 0(x) > 0* a.e. x € Q.
Assumption 4.20. f, € C([0,T]; L*(Q)), f. € C([0,T]; L*(T3)).
Assumption 4.21. g € L*(T's) such that g(x) >0 a.e. € ['s.

Finally, we made the following assumption for the initial displacement.
Assumption 4.22. uy € X.

Let us introduce the Hilbert space

X={ve H(Q) |y =0ae. onI}. (4.30)

We define the bilinear forms a : X x X — R and e : X x X — R by equalities
a(u,v) = /Q OVu-Vodr forall u,veV; (4.31)
e(u,v) = /Q uVu-Vodr forall u,veV. (4.32)
Let ¢t € [0,T]. We define f(t) € X as follows
(f(t),v)x = /Q fot)vdx —l—/F fo(t)yvdl'  for all v e X. (4.33)
>

We consider the space
S={v=~v|r, veX} (4.34)
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and we denote its dual by D. Also, we define a bilinear form b: V x D — R as follows

b(”? C) = <<77U|F3>) (435)

where (-,-) denotes the duality pairing between the spaces D and S.
Next, for each ¢ € L?(T'3) we define A(p) as follows:

Alp) = {Q €D : (¢, ywlr,) < lp(@)||yw(x)|dT  for all w € X}. (4.36)

I's

Let us define now a Lagrange multiplier A, such that at each ¢t € [0,7], A(t) € Y and
(A(t),2z) = —/ (00,4(t) + po,u(t)) zdl'  for all z € S, (4.37)
s
where S is defined in (4.34).

We delivered the following mixed variational formulation of Problem 4.7.

Problem 4.8. Find u: [0,T] = X and X : [0,T] — A(g) C D such that, for all t € (0,T),
a(ift), v) + eu(t),0) + b AD) = (fB),v)x forallve X,

b(u(t), ¢ — A(t)) < 0 Jor all ¢ € A(g),
u(0) = wup.

Theorem 4.4. [Theorem 8 in [111]] If Assumptions 4.18-4.22 hold true, then Problem 4.8 has
a unique solution (u, \) with the regularity

we C([0,T):X), A e C(0,T]Alg)).

The proof of Theorem 4.4 is based on the previous abstract result, Theorem 4.3, see [111]
for details. In addition, the following propositions hold true.

Proposition 4.4. [Proposition 9 in [111]] if Assumptions 4.18-4.22 hold true, then:
(i1) given fo € C([0,T]; L*(2)), f2 € C([0,T]; L*(T)), g € L*(T'3) and two initial data u},
u? € X, there exists ¢; > 0 such that

lur = wzller o,y < enllug — ugllx (4.38)

where uy, us are the corresponding solutions of Problem 4.8.
is) given fi, f2 € L2(Q), fi, f2 € L?(Iy), g € L*(I'3) and two initial data u}, u2 € X, there
0:Jo 25 J2 0s o
exists cg > 0 such that

lur = usllcromx) < c2(lfo = follza) + 112 = F3llrzs) + llug — ugllx) (4.39)

where uy,us are the corresponding solutions of Problem 4.8.
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Besides, we have the following boundedness result.

Proposition 4.5. [Proposition 10 in [111]] If Assumptions 4.18-4.22 hold true, then the solution
(u, \) of Problem 4.8 is bounded.

Finally, we have the continuous dependence of the weak solution on the friction bound.

Proposition 4.6. [Proposition 11 in [111]] If Assumptions 4.18-4.22 hold true, then if (gn)n C
L*(T'3) is a sequence of friction bounds such that g, > 0 a.e. on Tz, for alln > 1, and g, — ¢
in L*(T'3) as n — oo, we have, for all t € [0,T],

up(t) — wu(t) in X asn — oo;
Un(t) — a(t) in X asn — oo;
A(t) — At) inY asn — oo,

where (u, A) and (up, A) are solutions of Problem 4.8 associated with the friction bounds g and
Gn, for alln > 1.

The proof of these three propositions are based on the previous abstract results, Proposition
4.1, Proposition 4.2 and Proposition 4.3.



Chapter 5

Frictionless contact problems

This chapter is based on the papers [98, 70, 11]. Firstly, we focus on a mechanical model which
describes the frictionless unilateral contact between an electro-elastic body and a rigid electrically
nonconductive foundation. For this model, a mixed variational formulation is provided. Using
elements of the saddle point theory and a fixed point technique, an abstract result is proved.
Based on this abstract result, the existence of a unique weak solution of the mechanical problem
is established.

Next, we analyze the frictionless unilateral contact between an electro-elastic body and a
rigid electrically conductive foundation. On the potential contact zone, we use the Signorini
condition with non-zero gap and an electric contact condition with a conductivity depending on
the Cauchy vector. We provide a weak variationally consistent formulation and show existence,
uniqueness and stability of the solution. Our analysis is based on a fixed point theorem for
weakly sequentially continuous maps.

Finally, we consider a mathematical model which describes the frictionless contact between
a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic and
the contact is modeled with normal compliance and unilateral constraint. We provide a mixed
variational formulation of the model which involves dual Lagrange multipliers, then we prove its
unique weak solvability. We also prove an estimate which allows us to deduce the continuous
dependence of the weak solution with respect to both the normal compliance function and the
penetration bound.

5.1 The case of electro-elastic materials

In this section, based on the papers [98, 70|, we discuss the weak solvability via dual Lagrange
multipliers of a class of electro-elastic contact models for linearly elastic materials.

71
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5.1.1 The case of nonconductive foundation

In this subsection, devoted to the case of nonconductive foundation, we present results obtained
in the paper [98]. Let us start with an abstract auxiliary result.

Assumption 5.1. (X, (-, )x, || - ||x) and (Y, (-, *)y, || - |ly) are two Hilbert spaces.

Assumption 5.2. a(-, -) : X x X = R, is a non-symmetric form such that
there exists M, > 0: |a(u,v)| < My||u||x||v||x for all u,v € X;
there exists my > 0 such that a(v,v) > m, ||v||% for allv € X.

Assumption 5.3. b(-, -) : X X Y — R is a bilinear form such that
there exists My > 0 : |b(v, )| < My||v||x|leelly, for allv e X, p €Y,
b
there exists o« > 0 such that  inf sup M > q.
neVuAy vexpzox [|0llxllplly

Assumption 5.4. A CY is a closed, convex set that contains Oy
Let us state the following abstract problem.

Problem 5.1. Given f, g € X, findu € X and A € A such that

a(u,v) +b(v,A) = (f, v)x, for allv € X,
b(u, i — ) < b(g,pp— ), for all p € A.

We emphasize that the bilinear form a(-,-) is non-symmetric. Consequently, Problem 5.1
is not a classical saddle point problem. Moreover, we are interested here in the case g # 0Ox.
An analysis of the particular case ¢ = Ox can be found in [68]; see also Subsection 1.2.1 in the
present manuscript.

Refereing to Problem 5.1, the following theorem takes place.

Theorem 5.1. [Theorem 2 in [98]] Let f,g € X. If Assumptions 5.1-5.4 hold true, then there
exists a unique solution of Problem 5.1, (u,\) € X x A. Moreover, if (ui, A1) and (ug, A2) are
two solutions of Problem 5.1, corresponding to the data fi1,g1 € X and fy,90 € X, then there
exists K = K(a, mg, M, M) > 0 such that

Jur — usl|x + [[Ar = Xally < K([[lf1 = follx + 1l91 — 92/lx)-

We proceed with the analysis of a mechanical model. We consider an elasto-piezoelectric body
that occupies the bounded domain € C R?, in contact with a rigid electrically nonconductive
foundation. We assume that the boundary I' is partitioned into three disjoint measurable parts
'y, I'y and I's, such that meas(I';) > 0 and '3 is a compact subset of I'\I';. Let us denote by 3
the restriction of n to I's. The body €2 is clamped on I'y, body forces of density f, act on {2 and
surface traction of density f, act on I's. Moreover, we assume that I's is the potential contact
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zone and we denote by g : I's — R the gap function. By gap in a given point of ['3 we understand
the distance between the deformable body and the foundation measured along of the outward
normal n. Let us consider a second partition of the boundary I' in two disjoint measurable parts
I, and I'y such that meas(I',) > 0 and I', 2 I'. On I', the electrical potential vanishes and on
I', we assume electric charges of density g». Since the foundation is electrically nonconductive,
and assuming that the gap zone is also electrically nonconductive, g must vanish on I's. By ¢y
we will denote the density of the free electric charges on €.
Let us write the universal equilibrium equations

Dive+ f,=0 in
divD=gq, in

and the constitutive law,

o=Ce(u)+E"Vy in Q, (5.3)
D=~E&e(u)—BVy in Q,

where C = (C;ji5) is the elasticity tensor, £ = (&;;;) is the piezoelectric tensor and 3 is the
permittivity tensor.

We prescribe the mechanical and the electrical boundary conditions, according to the physical
setting.

u=0 on IV, on=f, on Iy,

=0 on I D-n=qg on I}

To model the contact process, we use the Signorini condition with non-zero gap. In addition,
we assume that the contact is frictionless. Consequently, we can express mathematically the
frictionless contact condition as follows,

o, =0, o, <0, u, < g, on(tn, —g) =0, on I';. (5.7)

Knowing the displacement field u and the electric field ¢ we can compute the stress tensor o
and the electric displacement D using (5.3) and (5.4), respectively. Therefore, the displacement
field w and the electric field ¢ are called the main unknowns.

To resume, we consider the following problem.

Problem 5.2. Find the displacement field w : Q — R? and the electric potential field o : ) — R
such that (5.1)-(5.7) hold.

ASSllmptiOIl 5.5.C= (Cijls) Ox St — SS, Cz‘jls = Cijsl = Clsij € LOO(Q);
there exists me > 0 such that Cijseijers > me||€l|?, for alle € S?, a.e. on Q
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Assumption 5.6. £ = (&) : A xS* 5> R, & = Eixy € L(Q).

Assumption 5.7. 8= (8;;) : QO xR* = R*, B, =B, € L=(Q);
there exists mg > 0 such that B;; E;E; > mg||E||, for all E € R®, a.e. on Q

Assumption 5.8. f, € L*(Q)3, f, € L*(T9)*, qo € L*(R), ¢o € L*(T}).

Assumption 5.9. There exists Gzt : 2 — R such that gegr € HY (), Gewt =0 0n Ty, Gewt >0
on '\ T'1, g = gexr on T's.

Assumption 5.10. The unit outward normal to I's denoted by ns is assumed to be constant.

Based on these assumptions, we present a mixed variational formulation of this mechanical
problem, using the Hilbert spaces,

V = {’UEH1|’UZOOHF1},
W = {YeH(Q)|v=00nT,},

V = VxW.

We consider the inner products (-, )y : VxV = R, (-, )y : WxW = Rand (+,-)p : VXV = R
defined as follows,

(’U,, U)V = (6('11,), E(”))?‘h (@7 I/J)W - (VQO, qub)H
and

(Iaa Ib)f/ = (’U,, U)V + (@7 w)W (’58)
Let us consider @ : V x V — R the bilinear form,
a(u, v) = /Ce(u) -e(v)dr + / Ee(v) - Vydr (5.9)
Q Q

—/85(u)~V¢dx+/BVg0-Vz/zdm
Q Q

for all @ = (u, ), © = (v,¢) € V. Also, we define f € V such that for all & = (v,1) € V,
(}', ’Z))f/:/fo-vdm+ fQ-vda—/ q2¢da+/qowdx. (5.10)
Q Iy r, Q
/
We define a dual Lagrange multiplier A € D = (H 1/ 2(F3)3> such that

(A 0)r, = —/ oo vnds,  for all v € HY2(Ty), (5.11)
I's
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where H'/2(I's)® denotes the space of restrictions to I's of the traces of all functions belonging
to V and (-,-)p, denotes the duality pairing between D and H'/?(T'3)?. Moreover, we define a

bilinear form b : V x D — R, as follows
b(o, p) = (@, v)r,, foralld=(v,¥)eV, peD. (5.12)
Furthermore, we introduce a set as follows,
A:{ueD : (p, v)p, <0 for allveK}, (5.13)

where
K ={ve HY*Is)® : v, <0 on I's}.

We have the following weak formulation of Problem 5.2.

Problem 5.3. Find @ €V and X € A, such that

a(@, ®) +b(0,N) = (f, D)y, forallv eV,
b(fb,[,b—)\) < b(gext7u_A)7 fO’)” a”#’ €A

Theorem 5.2. [Theorem 1 in [98]] If Assumptions 5.5-5.10 hold true, then Problem 5.3 has a
unique solution (w, ) € V x A. Moreover, if (u A) and (", X*) are two solutions of Problem
5.3 corresponding to the data (_f Gont) €V XV and (f G’.) €V x V, respectively, then

Hﬁ - ﬁ*‘|‘7 + H)\ - >\*”D é C(H} - }.*Hf/ + ”gext - g:xt”f/>’
where C' = C(C, &, 3, a, M) > 0.

The proof of Theorem 5.2 can be found in [98].

5.1.2 The case of conductive foundation

This subsection, based on the paper [70] is dedicated to the analysis of a new contact model
involving piezoelectric materials. We consider an elasto-piezoelectric body which occupies the
bounded domain Q C R¢, d € {2,3} with smooth enough boundary I'. Also, we consider two
partitions of the boundary T'. The first one is I'y, T's and T's such that meas(I';) > 0. The
second one is Iy, I', and I'3 such that meas(I',) > 0. The partition I'y, 'y and I's applies to the
mechanical boundary conditions whereas the partition I'y, I', and I'3 to the electrical boundary
conditions. The body (2 is clamped on I'y, body forces of density f, act on €2, and a surface
traction of density f, acts on I's.

Moreover, we assume that on ['3 the body can be in contact with a rigid electrically conductive
foundation. We denote the gap by g. On I', the electrical potential vanishes, and on I', we assume
electric charges of density ¢,. By ¢o we denote the density of the free electric charges on §2.
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The model under consideration is obtained from the equilibrium equations

Dive+ f,=0 in £, (5.14)
div D=¢q in €, (5.15)
the constitutive laws
o=Ce(u)+E "V in Q, (5.16)
D =¢&e(u)—BVy in Q, (5.17)

the mechanical and the electrical boundary conditions

u=0 on IV, cv=1Ff, on Iy, (5.18)
=0 on I, D-v=gq, on I, (5.19)
o,=0, o, <0, u, < g, o,(u, —g)=0 on I's, (5.20)
D v =—k(o,)(¢ — o), (5.21)

where g : I's — R, is the gap function and —k(o,) > 0 is the conductivity.

The electric contact condition on I's is described by a nonlinear Robin type condition for ¢
which couples the mechanical stress with the electrical field.

The primary variables are the displacement field uw and the electric field ¢; the stress tensor
o and the electric displacement D can be computed from u and ¢ by the constitutive relations
(5.16) and (5.17).

To resume, we consider the following problem.

Problem 5.4. Find the displacement field w : Q — R? and the electric potential field ¢ : Q — R
such that (5.14)-(5.21) hold.

Assumption 5.11. (Elasticity tensor)

o C=(Cijis) : xS — 87,

o Cijis = Cijq = Cisij € L®(Q2),

o There exists me > 0 such that Cijiseijeis > me |[€|?, € € Se a.e. in Q.
Assumption 5.12. (Piezoelectric tensor)

o &= (&) + A xS - RY

o i =Eir; € L™(Q).

Assumption 5.13. (Permittivity tensor)
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e B3=(8y) : QxR =R By =B € L=(Q),

o There exists mg > 0 such that B;; E;E; > mg||E|?, E € RY, a.e. in Q.

Concerning the mechanical and the electrical data we assume
Assumption 5.14. f, € L*(Q)¢, f, € L*(I2)4, qo € L*(Q), q, € L*(T).

To simplify the presentation, we assume that ¢y = 0 and g = 0. The general situation can be
transferred to this case by a transformation u—g,,, < w and @ — ey — ©, where g,,, € H'(Q)
and @..; € H'(Q) are extensions of the data gv and .

We are interested in a variationally consistent formulation of this mechanical problem using
Lagrange multipliers.

The set of admissible functions for the displacement field is

X={veH(Q)?*|yv=0ae onI}.
For the electric potential, we have the admissible set
Y ={ye H(Q) |y =0ae onl,}.

The restriction of v to I'y is denoted by v3, and we restrict ourselves to geometries such that
the following assumption is satisfied.

Assumption 5.15. The vector vs is constant on I's.
Let us introduce the space
S={w|lw=uv, =vv, -v;, veX}

The dual space of S is denoted by Z and (-,-) stands for the duality paring between Z and

: Let us define the bilinear forms,
a: X xX—>R a(u, U)Z/QCE(U)-S(U)diL', u,v € X, (5.22)
e: X xY SR e<v,¢):/gga(v).wdx, veX pey, (5.23)
c:Y XY >R c(go,@[))z/ﬂ,@ch-dex, PRINDE (5.24)

Moreover, we define f € X and ¢ € Y such that

(f?v)X:/s;fO'vdx—i_ f2'7'vdr7 ’UGX, (q7¢)Y:/QQO¢d$_/F QbW/}dF; ¢EY

I
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In order to obtain a well defined formulation, the conductivity operator has to have suitable
properties. Moreover, the proof of possible existence and uniqueness results depends crucially
on the properties of the conductivity operator.

We recall that f : Ec — FE¢ is called a weakly sequentially continuous map if, for all
sequences (z,), C E¢, such that x, — x in F then f(z,) — f(z) in E. Let X be a real reflexive
Banach space, then an operator A : X — X' is called completely continuous if, for all sequences
(tn)n C X such that u, — win X then Au,, — Au in X’. We also recall the following embedding
results.

Lemma 5.1. Let Q C R? be a bounded domain with Lipschitz continuous boundary 00, d > 1.
(1) If 1 <p <d then for1 < g < %, the operator v : WHP(Q) — L1(0R) is completely
continuous.
(it) If p > d then for any q € [1,00), the operator v : W'P(Q) — L(0R) is completely
continuous.

For a proof of this result, we refer the reader to [87].
We set K () = —k(—p) and require the following assumption to be true.

Assumption 5.16. (Conductivity operator I)
o K:Z— L¥1H(Ty), for e > 0 fized;
e Foreach pe€ Z, K(u) >0;

o If (n)n C Z and pu € Z such that p, — pin Z as n — oo, then K(u,) — K(u) in
LA=17(T3) as n — oo.

Example 5.1. Let R : Z — L41%('3) be a linear continuous map and k* > 0. Then, we set

K (1) = KR, (5.25)
Example 5.2. Let oz (y) = o(y — ) with ¢ being a mollifier such that p € C*(RY), o(x) =
o(—x), ¢ >0, [pap(x)de =1, suppy is compact. Then, we define

K(p)(x) = - k* > 0,7y > 0. (5.26)

Now we define a functional 7 : Z x Y x Y — R and a bilinear form b : X x Z — R by

o) = | Kp)ypeydl peZpbeY,  blv,p)=(v), veX peZ

s
(5.27)
and note that both are well-defined under our assumptions. Introducing the dual cone A

A:{HEZ:W,U}zO veSv>0} (5.28)

and the Lagrange multiplier A\ = —o,|r,, the weak formulation of Problem 5.4 is the following
one.
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Problem 5.5. Find (u,,\) € X xY x A such that

a(u,v) +e(v,p) +b(v,\) = (f,v)x, veX,
c(p, ) —e(uw, ) + i\ o, ¥) = (¢, ¢)y, Y ey,
b<u> m—= )‘) S 07 1% € A.

Notice that the spaces (X, (-, “)x, || llx), (Y, (-, )y, ||-|ly) and (Z, (-, )z, || ||z) are Hilbert
spaces and A is a closed, convex cone. The form a(-, -) : X x X — R is a symmetric bilinear
form such that

e (ay) there exists M, > 0: |a(u,v)| < M,||ul|x||v|x, u,veEX;
o (@) a(v,v) > me ol veX.

We can take M, = d||C||o Where ||C||oc = max; ;i ||Cijkill L)
Also, it is worth to mention that ¢(+, -) : Y x Y — R is a symmetric bilinear form such that

e (c1) there exists M, > 0: |c(u,v)| < M.||u|ly||v]y, u,veY;
o (c2) c(v,0) Zmg o]}, veY

We can take M. = d |||l where |3l = max;; |8l )
Moreover, the form b: X x Z — R is a bilinear form such that

e (by) there exists My, > 0 : [b(v, p)| < My||v||x||pllz v e X, pe€ Z;

b
e (by) there exists a > 0: inf sup M > .

HEZF0 VeX, V40 vl xlullz ~

Next, e : X XY — R is a bilinear form and there exists M, > 0 such that |e(v, )| <
M.||v| x|¢lly forallv € X, ¢ € Y. We can take M, = d ||€|| where ||€||oc = max; ;i ||Ejk|l o)
The functional j(-,-, ) verifies the following properties:

e (j1) for each fixed ¢ € Z, j((,-,-) is a continuous bilinear form on ¥ x Y

o (j2) (i) >0 peZyYey;
e (j3)if (C)n C Z,¢ —Cin Z asn — oo and (¢,), C Y, 0, — ¢, in Y as n — oo then:

J(Cny o, ) = Jj(C,0) asn — oo for all ¢ € Y, and j(Cy, 0n, 0n) — J(C 0, 0) asn —
.

Theorem 5.3. (An existence result)[Theorem 3.1 in [70]] If Assumptions 5.11-5.16 hold true,
then Problem 5.5 has at least one solution, (u,p,\) € X XY X A.

The proof of Theorem 5.3 was given in [70]. The key of the proof is the following fixed point
result.
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Lemma 5.2. Let E be a metrizable locally convex topological vector space and let E¢ be a weakly
compact convex subset of E. Then, any weakly sequentially continuous map f : Ec — E¢ has a
fix point.

For the proof of Lemma 5.2, we refer to [5].
To obtain uniqueness of a solution we have to make one more assumption on the conductivity.

Assumption 5.17. (Conductivity operator II)

| K (p1) — K (p2)|| pa-14ery) < Licllpn — p2llz, g1, 12 € Z and L < 00 fized.

Taking into consideration Assumption 5.17, in addition to (j1)-(js), the functional j has the
following property: for each pair (p,1) € Y x Y, there exists L > 0 such that

’j(Clvgpaw) —](42790,7?)’ S LHCI - CZHZ”SOHYHwHYa Cl?CQ € Z7 (529)

where L = ¢3 Lx and ¢y > 0 is the continuity constant of the trace operator  associated with
Lemma 5.1 and p=2,g=2(d—1+¢€)/(d —2+¢).

Theorem 5.4. (A uniqueness result)[Theorem 3.6 in [70]] Let Assumptions 5.11-5.16 and As-
sumption 5.17 be true. Additionally, we assume that

4L2 M2 4L2 M2
% kB “>0and@—co K BM;

m
¢ mpa? 2 mpa?

> 0. (5.30)

Then Problem 5.5 has a unique solution.
The third result is the following one.

Theorem 5.5. (A stability result)[Theorem 3.7 in [T70]] If Assumptions 5.11-5.17 and the hy-
pothesis (5.30) hold true, then there exists S > 0 such that

lur —ualx + llor — @2lly + M = Xellz S S f1 = Fallx + e — q2lly),

where (wq,p1, A1) and (ug, a2, A2) are the solutions of Problem 5.5 corresponding to the data
(f1,q1) € X XY and (f,y,q) € X XY, respectively.

The proofs of Theorems 5.4 and 5.5 can be found in [70]. See also [70] for a numerical
example.
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5.2 The case of viscoplastic materials

This section is based on the paper [11]. Here, we consider a frictionless contact problem with
normal compliance and unilateral constraint and we investigate the behavior of the weak so-
lution with respect to the normal compliance function and the penetration bound. After the
description of the contact problem, we derive a new variational formulation which involves a
dual Lagrange multiplier. Then we provide the unique weak solvability of the problem, which
represents the first trait of novelty. The second trait of novelty consists in the fact that we prove
the continuous dependence of the weak solution with respect to the normal compliance function
and the penetration bound.

5.2.1 The model and its weak solvability

We consider a viscoplastic body that occupies the bounded domain Q C R? (d = 1,2,3), with
the boundary 992 = I' partitioned into three disjoint measurable parts I'y, I'y and I's, such that
meas(I'1) > 0. We assume that the boundary I' is Lipschitz continuous and we denote by v its
unit outward normal, defined almost everywhere. Let T' > 0 and let [0, 7] be the time interval.
The body is clamped on I'; x (0,7) and therefore the displacement field vanishes there. A
volume force of density f, acts in  x (0,7"), surface tractions of density f, act on I'y x (0,7)
and, finally, we assume that the body is in contact with a deformable foundation on I's x (0, 7T").
The contact is frictionless and we model it with a normal compliance and unilateral constraint
condition.
Then, the classical formulation of the contact problem is the following.

Problem 5.6. Find a displacement field u : Qx [0, T] — R and a stress field o : Qx[0,T] — S%
such that

oc=Ce(u)+G(o,e(u)) in Qx(0,7), (5.31)

Dive+ f,=0 in Qx(0,7), (5.32)

wu=0 on Tx(0,T), (5.33)

ov=Ff, on Iyx(0,7), (5.34)

ty < 9, v+ pluw) 20, on I3 x (0,T), (5.35)
(uy — 9) (00 + p(uy)) =0

o, = on Ty x(0,7), (5.36)

u(0) = ug, o(0) = oy in Q. (5.37)
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Equation (5.31) represents the viscoplastic constitutive law of the material. Equation (5.32)
is the equilibrium equation and we use it here since the process is assumed to be quasistatic.
Conditions (5.33) and (5.34) are the displacement and traction boundary conditions, respectively,
and condition (5.35) represents the normal compliance condition with unilateral constraint,
introduced in [78]. Recall that here g > 0 is a given bound for the penetration and p represents
a given normal compliance function. Condition (5.36) shows that the tangential stress on the
contact surface, denoted o, vanishes. We use it here since we assume that the contact process
is frictionless. Finally, (5.37) represents the initial conditions in which uy and o denote the
initial displacement and the initial stress field, respectively.

In the study of the mechanical problem (5.31)—(5.37) we made the following assumptions.

Assumption 5.18. £ = (i) © Q X S¢ — s
Eijit = Eniij = Ejim € L=(Q), 1 <4,5,k,1 < d;
There exists mg > 0 such that E7 -7 > mg||7||*> for all 7 € S¢, a.e. in Q.

Assumption 5.19. G:Q x S% x S — S§%

There exists Lg > 0 such that |G(x,01,€1) — G(x,09,€9)|| < Lg (||oy — o2 + ||ler — €2]|)
for all o1,04,€1,65 €S%, a.e. & € Q.

The mapping « — G(x, 7, €) is measurable on Q, for all o, € S°.

The mapping  — G(x,0,0) belongs to Q.

Assumption 5.20. p:R — R, such that:
there exists L, > 0 |p(r1) — p(ra)| < Ly|ry — ro| for all rq, ry € R;
(p(r1) — p(r2))(r1 —re) >0 for all r, ry € R;
p(r) =0 forallr < 0.

Assumption 5.21. f, € C([0,T]; L*()9), £, € C([0,T]; L*(T'y)%).
Assumption 5.22. ug €V, oy € Q.
Assumption 5.23. There ezists 0 €V such that 0 -v =1 almost everywhere on I's.

We consider the space

V={ve H(Q)":v=0o0nT,}.
We also consider the Hilbert space
S={w=vp, velVl},

where v, denotes the restriction of the trace of the element v € V to I's. Thus, S C HY?(T'3;R?)
where H'/2(T'3;R?) denotes the space of the restrictions on I's of traces on I' of functions of
H(Q)4. The dual of the space S will be denoted by D and the duality paring between D and
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S will be denoted by (-, -)r,. For more details on trace operators and trace spaces we refer to
[1, 92], for instance.
We define the operators L : V — V| P : V — V and the function f : [0,7] — V by equalities

(Lu, v)y = /Qé's(u) -e(v) dx, (5.38)
(Pu,v)y :/r p(u,)v, da, (5.39)
s

(F(t),0)y = /Qfo(t)~vdx+ [ u(t)-vda (5.40)

for all w, v € V and t € [0, T]. Also, let b: V x D — R denote the bilinear form defined by
b(v, p) = (p,v)r, (5.41)

for all v € V and p € D and consider the sets
K={veV :v,<0 ae onls}, (5.42)
A={pneD : (p, vy, <0 forall ve K} (5.43)
Notice that

feC(o,1];V). (5.44)

Also, it is worth to mention that the bilinear form b(-,-) is continuous and satisfies the “inf-sup”
condition, i.e. there exists a > 0 such that

inf sup _blo.p) > . (5.45)

pep, p£0n  pev, v20, PlvIElD
Denote by 3(t) and A(t) the viscoplastic stress and the Lagrange multiplier given by

B(t) =o(t) — Ee(u(l)), (5.46)
(), V), = — /F (0(8) + plus(®))vnda  for all v € V. (5.47)

The weak formulation of the model is the following one.

Problem 5.7. Find a displacement field w : [0, T] — V, a viscoplastic stress field 3 : [0,T] — Q
and a Lagrange multiplier X : [0,T] — A such that, for all t € [0,T],

(Lu(t),v)v + (B(1),€(v))q + (Pu(t),v)v (5.48)
+b(v, A(t)) = (f(t),v)y forallveV,

b(u(t), p— A(t)) < b(gh, — X(t)) for all € A, (5.49)

/ G(E e(uls)) + B(s), e(u(s))) ds + o — Ee(uq). (5.50)
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Let  be an arbitrary element of the space C([0,T]; V') and consider the following auxiliary
problem.

Problem P,. Find a displacement field w, : [0, T] — V and a Lagrange multiplier X, : [0, T] —
A such that, for allt € (0,77,

(Luy(t), v)v + (Puy(t), v)y + b(v, Ay(t)) (5.51)
=(f(t) —n(t),v)y forallveV,
by (t), e — An(t)) < b(gB, . — A (t)) for all p € A. (5.52)

In the study of Problem 77% we have the following result.

Lemma 5.3. [Lemma 4.1 in [11]] There exists a unique solution (w,, A,) of Problem P, which
satisfies

u, € C([0, T V), A, € C(0,T]; A). (5.53)

Moreover, if (w;, \;) represents the solution of Problem P} forn =mn, € C([0,T];V), i = 1,2,
then there exists ¢ > 0 such that

[ () — w2 (t)llv + (| AL(E) = Ae(®)l[p < clmy(t) — ma(E)]lv  for all £ € [0,T7]. (5.54)

In the next step we construct the following auxiliary problem for the viscoplastic stress field.

Problem Pg. Find a viscoplastic stress field B, : [0,T] — Q such that

_ /0 G(Ee(uy(s)) + By (5), elty(s))) ds + oo — Eelug) (5.55)

for all t €10, 7).
In the study of this problem we have the following result.

Lemma 5.4. [Lemma 4.2 in [11]] There exists a unique solution of Problem P; which satisfies

B, € C(0,T); Q). (5.56)

Moreover, if B, represents the solution of Problem 7731, form=m, € C([0,T);V), i = 1,2, then
there exists ¢ > 0 such that

1B:(t) = Ba(B)ll < C/O [m1(s) = ma(s)llvds  forall £ € [0,T]. (5.57)
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We now introduce the operator © : C([0,T];V) — C([0,T]; V) which maps every element
n € C([0,T]; V) to the element ©n € C([0,T]; V) defined as follows: for each n € C([0,7T];V)
and for each moment ¢ € [0, 7], ©On(t) is the unique element in V' which satisfies the equality

(On(t),v)v = (B8,(1),e(v))q for all v € V; (5.58)

here 3, represents the viscoplastic stress obtained in Lemma 5.4.

We proceed with the following property of the operator ©.
Lemma 5.5. The operator © has a unique fized point n* € C([0,T]; V).

The unique solvability of Problem 5.7 is given by the following result.

Theorem 5.6. [Theorem 3.1 in [11]] If Assumptions 5.18-5.23 hold true, then Problem 5.7 has
a unique solution (w, 3, X) which satisfies

uwe C(0,T);V), BeC(0,T;Q), XeC(0,T];A). (5.59)

The proof of Theorem 5.6 was given in [11].

A triple of functions (u, 3, A) which satisfies (5.48)—(5.50) is called a weak solution of Problem
5.6. We conclude that, under Assumptions 5.18-5.23, Problem 5.6 has a unique weak solution
with regularity (5.59). Moreover, we note that, once the weak solution is know, then the stress
field o can be easily computed by using equality (5.46). And, using standard arguments, it can
be shown that o € C([0,T]; Q1).

5.2.2 A convergence result

In this subsection we discuss the behavior of the solution with respect to a perturbation of the
normal compliance function p and the bound g. To this end, we assume in what follows that
Assumptions 5.18-5.23 hold and we denote by (u, 3, A) the solution of Problem 5.7. Also, for
each p > 0 let g > 0 and consider a function p” which satisfies

Assumption 5.24. p”: R — R, such that
There exists Lb > 01 |pP(ry) — p?(ro)| < Lh|ry — 1o for all ry, ry € R;
(p(r1) —pP(r2))(r1 —12) >0 for all r, ro € R.
p?(r) =0 forallr <O.

We define the operator P? : V' — V by equality

(PPu,v)y = / p’(u,)v, dl' for all u, v € V. (5.60)
I's

Then, we consider the following perturbation of the variational problem Py, .
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Problem 5.8. Find a displacement field u” : [0, T] — V', a viscoplastic stress field 3° : [0, T] —
Q and a Lagrange multiplier A? : [0, T] — A such that, for all t € [0,T],
(Lu’(t),v)v + (B°(1), €(v))q + (P u’(t),v)v (5.61)
+b(v, N°(t)) = (f(t),v)y forallv eV,

b(ul(t), o — N°(1)) < b(g”0, p — N°(t)) for all p € A, (5.62)

B°(t) = /0 G(Ee(u(s)) +B°(s),e(u’(s)))ds + oo — Ee(uy). (5.63)

It follows from Theorem 5.6 that Problem 5.8 has a unique solution (u”,3”, A”) with the
regularity expressed in (5.59). Consider now the following assumption on the normal compliance
functions p” and p.

Assumption 5.25. There exists G : Ry — R such that |p°(r) — p(r)| < G(p)(|r| + 1) for all
reR and p > 0.

Then, we have the following estimate, which represents the main result in this subsection.

Theorem 5.7. [Theorem 5.1 in [11]] If Assumptions 5.18-5.25 hold true, then there exists ¢ > 0
which depends on Q, I'y, I's, €, G, fo, fa, 9, D, U, ¢ and T, but does not depend on p, such
that

[w” = ullcoriv) + 18° = Blleqorie) + 1A = Mleqorin) (5.64)
< c(G(p) + 1) [(G(p) + Dg” — gl + G(p)].

Corollary 5.1. [Corollary 5.2 in [11]] If Assumptions 5.18-5.25 hold true, and moreover, assume
that
=g, G(p)—0 as p—0, (5.65)

then the solution (u”, N’ B”) of Problem 5.8 converges to the solution (u, X, 3) of Problem 5.7,
i.e.
v’ — win C([0, T];V), B”— Bin C([0,T];Q), A — Xin C([0,T]; D),
as p — 0.
The proofs of Theorem 5.7 and Corollary 5.1 were given in [11]. In addition to the mathe-

matical interest, the convergence result in Corollary 5.1 is important from the mechanical point
of view, since it shows that the weak solution of the viscoplastic contact problem P depends
continuously on both the normal compliance function and the penetration bound.

Remark 5.1. In [11] it was provided a numerical validation of this convergence result.



Chapter 6

Contact problems involving
multi-contact zones

This chapter is based on the papers [110, 113]. We are interested on the weak solvability of a class
of contact models for elastic materials. Every model we propose is mathematically described by
a boundary value problem which consists of a system of partial differential equations associated
with four boundary conditions (the boundary being partitioned in four parts): a displacement
condition, a traction condition and two contact conditions. The weak solvability of the boundary
value problems we propose herein relies on new abstract results in the study of some generalized
saddle point problems.

6.1 The case of linear elastic operators

This section presents the results we have got in the paper [110]. In this section we firstly prove
abstract existence, uniqueness and boundedness results as well as abstract convergence results.
Next, we discuss the existence, the uniqueness, the boundedness and the approximation of the
weak solutions based on the abstract results.

6.1.1 Abstract results

Let (X, (-, )x, | - llx) and (Y, (-,)y, || - |ly) be two real Hilbert spaces and A C Y. We consider
the following problem.

Problem 6.1. Given f,h € X, find (u,\) € X XY such that A € A and

(fv—u)x  foralveX, (6.1)
b(h, . — X) for all 1€ A. (6.2)

Assumption 6.1. a(-, -) : X x X — R is a symmetric bilinear form such that

87
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o (iy) there exists M, > 0: |a(u,v)| < M,||u|x||vllx for all u,v € X;
o (iy) there exists m, > 0: a(v,v) > mq|v||% for allve X.

Assumption 6.2. The functional j : X — R is convex. In addition, there exists L; > 0 such
that

lj(v) —j(u)| < Ljljv —ul|x  for all u,v € X.
Assumption 6.3. b(-, -) : X x Y — R is a bilinear form such that
o (1) there exists My > 0: |[b(v, p)| < My||v||x||plly  for allv e X, pe€Y;

b
® (j2) there exists « > 0: inf sup BUCYD > .

peY,u#0y yeX v£0x HUHXHNHY B

Assumption 6.4. A is a closed convex subset of Y such that Oy € A.

We can associate to Problem 6.1 the following functional:
1
L:XXAN=R, Llv,p) = Ea(v,v) +j(v) +b(v —h,pu) — (f,v)x. (6.3)

According to the saddle point theory in [50], this functional £ admits at least one saddle point
(u, ) € X x A.

Theorem 6.1 (An existence and uniqueness result). [Theorem 2 in [110]] If Assumptions 6.1-6.4
hold true, then Problem 6.1 has at least one solution, unique in the first argument.

Proposition 6.1. [A boundedness result][Proposition 2 in [110]] Assumptions 6.1-6.4 hold true.
If (u,\) € X x A is a solution of Problem 6.1, then there exist K1, K3 > 0 such that

lullx < Ky [[Ally < Ka. (6.4)
Setting h = Ox, then Problem 6.1 leads us to the following semi-homogeneous problem.
Problem 6.2. Given f € X, find (u,\) € X XY such that A € A and

a(u,v —u) + j(v) — j(u) + b(v — u, A)
b(u, p— A)

Corollary 6.1. [Corollary 1 in [110]] If Assumptions 6.1-6.4 hold true, then Problem 6.2 has
at least one solution, unique in the first argument. In addition,

(fyv—u)x  forall veX,

>
< 0 for all pe A.

1
fullx < m—(||f||X-FLj);

1 M,
Al < (1) (Ul + 20)

a
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The proofs of Theorem 6.1, Proposition 6.1 and Corollary 6.1 were delivered in [110].

Let p be a real positive number and j, : X — R be a functional which fulfills the following

assumption.
Assumption 6.5. The functional j, : X — R is convex. In addition,
e there exists a positive real number L, which is independent of p, such that

17,(v) = j,(u)] < Lljv —ul|x for all u,v € X.

o j, is a Gateauz differentiable functional.

We denote by Vj, the Gateaux differential of j,.
Assumption 6.6.

o There erists Ly;, > 0 such that

IVip(v) = Vip(w)llx < Lyj,[lv —wlx for all v,w € X.

o There exists my;, > 0 such that

(Vip(v) = Vip(w),v —w)x > my;,|lv— wl|% for all v,w € X.

Let us state the following regularized problem.

Problem 6.3. Given p >0 and f,h € X, find (u,,\,) € X XY such that \, € A CY and, for
allve X, upe A,

a(ty, v —up) + jp(v) = Jo(up) +b(v —u, A,) = (f; v —u,)x (6.5)
b(up, = Ap) < b(hop—Ap). (6.6)

Lemma 6.1. [Lemma 2 in [110]] A pair (u,, \,) € X x A verifies (6.5) if and only if it verifies
a(uy,v) + (Vjp(u,),v)x +b(v,\,) = (f,v)x  forall ve X. (6.7)

Let us introduce the following notation:

Ml (1Sl + L) | MEIAR M
a o? ’

M=|flx+L*+
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Proposition 6.2. [Proposition 8 in [110]] Let p > 0. If Assumption 6.1, Assumptions 6.3-6.6
hold true, then Problem 6.3 has a unique solution (u,, \,). Moreover,
2M1/2

gl < =

Y A2 (6.8)
Ifllx + L+ 2 M

Polly < .

Corollary 6.2. [Corollary 2 in [110]] Let (u,, A,), be a sequence of solutions corresponding to a
sequence of reqularized problems. There exists (uy, \y), @ subsequence of the sequence (u,, \,),,
and @ € X, \ € A such that,

uy = ain X asp'— 0

and
Ay = A inY as p' — 0.

Assumption 6.7. There exists F : R, — R such that:
e F(p) — 0 as p— 0;
o for each p >0, |j,(v) —j(v)| < F(p) for allv e X.

Lemma 6.2. [Lemma 3 in [110]] Let u, be the first component of the unique pair solution of
Problem 6.3. Then
u, —uwm X as p— 0,

where u is the unique first component of a pair solution of Problem 6.1.

Corollary 6.3 (Corollary 3 in [110]). The whole sequence (u,), converges strongly to @ = u.

Lemma 6.3. [Lemma 4 in [110]] Let (u,, \,), be a sequence of solutions of a sequence of regu-
larized problems. Then

J(u,) = j(u) as p — 0; (6.9)
Jp(u,) = j(u) as p— 0. (6.10)

Proposition 6.3. [Proposition 4 in [110]] The pair (@i, \) is a solution of Problem 6.1.
For the proofs we send to [110].

Remark 6.1. We can compute the unique first component of a pair solution of Problem 6.1 by
computing the strong limit of the sequence (u,),.
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6.1.2 3D contact models

In this subsection we discuss two contact models. The first model is mathematically described
as follows.

Problem 6.4. Findu :Q — R? and o : Q — S® such that

Dive + f, =0 in Q, (6.11)

o =¢E¢e(u) in €, (6.12)

u=0 on I'y, (6.13)

ov=7F, on Iy, (6.14)

-0, =F, ||lo|| < klo,|, 0, = —k]al,]”g—:” ifu, #0 onTj, (6.15)
0,=0,0,<0, u,—9g<0, 0,(u,—g)=0 on Iy, (6.16)

where £ is the elastic tensor, F' : I's — R, denotes the prescribed normal stress, k : I's — R,
denotes the coefficient of friction and ¢ : I'y — R denotes the gap.
Let us make the following assumptions.

Assumption 6.8. £ : Q x S® — S? is a fourth order tensor such that:
o (i1) Eijut = Eriij = Ejim € L=(Q), 1 < 4,4,k 1 < d;
o (iy) there exists mg > 0: ET -1 > me|7||* forall T €S?, a.e. in Q.

Assumption 6.9. The density of the volume forces verifies fo € L*(Q2)* and the density of
traction verifies fy € L?(T'y)3.

Assumption 6.10. There exists geyr : 2 — R such that g, € Hl(Q), YGezt = 0 almost
everywhere on ', Ygez > 0 almost everywhere on T'\ T'1 g = Ygexr almost everywhere on Ty,

Assumption 6.11. The prescribed normal stress verifies F € L>(I's) and F(x) >0 a.e. © €
Is.

Assumption 6.12. The coefficient of friction verifies k € L>*(I's) and k(x) >0 a.e. © € I's.
Assumption 6.13. The unit outward normal to I'y is a constant vector.

Let us introduce the space
Vi={vec H(Q)? : yv=0ae. onT.}. (6.17)
We define a bilinear form a; : V; x V4 — R such that

ai(u, v) = /Qc‘fs(u(ac)) -e(v(x)) dx for all u,v € V;. (6.18)
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Next, we define f; € V; such that, for all v € Vj,

(f1, v / Jolz) - v(z)de + 5 faox) - yo(zx)dl — /F3 F(x)v,(x)dl.
Besides, we introduce a functional j; as follows:
iR @) = [ F@) k@) lo@)] (6.19)
3
Let D; be the dual of the space
M, ={v= Uylp, VE Vit

We define A € D, such that

(N, w) = —/ o (x)w(x)dl for all w € My,
Iy

where (-,-) denotes the duality pairing between D; and M;. Furthermore, we define a bilinear
form as follows,

by : Vi x Dy =R, bi(v, p) = <,LL,UV|F4> forallv € Vi, p € D;. (6.20)
Let us introduce the following subset of Dy,
A= {u € Dy : {p, UV|F4> <0 forallwe ICl}, (6.21)

where
Ki={veV,:v, <0 almost everywhere on I'y}.

We are led to the following weak formulation of Problem 6.4.
Problem 6.5. Find uw € Vi and A\ € Ay such that, for allv € Vi, p € Ay,
ar(u, v —w) +j1(v) = ji(w) + (v —u,A) = (f1, v —u)y,
bl(u7 m—= >\> S bl(QextV4a m—= )\>

A solution of Problem 6.5 is called a weak solution to Problem 6.4. The well-posedness of
Problem 6.5 is given by the following theorem.

Theorem 6.2 (Theorem 3 in [110]). If Assumptions 6.8-6.13 hold true, then Problem 6.5 has a
bounded solution (u,\) € Vi X Ay, unique in its first argument.

Let p > 0. We consider the following regularized problem.
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Problem 6.6. Find u, € Vi and A\, € Ay such that, for allv € Vi, p € Ay,

a1 (up, v —up) + j1p(v) = Jip(u,) + bi(v —u,, A,) (f1, v —up)n,

>
bi(up, pp—Ap) < bi(GeatVa, 1t — Ap)

where
Jipi ViR (o) = / F(a)k(e)(v/o,@)]F 1 7 — p)dT.

Notice that, according to [147], the functional j;, is Gateaux differentiable and denoting by
Vji, its Gateaux differential we have:

o Vip: Vi = Vi (Vip(w), v)y, :/F F(z)k(z) \/T;Ex()w')t(!;(—f),ﬂ ;

d ijlp(lv> - v]1P<w>||V1 = Sup ( 1P< ) lp( ) ) 1
2V, 270y, HZ||V1
< 2} ||k F || poory)
P

where ¢, is a positive constant which fulfills the following inequality

|lv —wlly, forall w,v e Vi,

|zr|l22(rg) < cirl|Z]ly,  forall z € V5. (6.22)

In addition, for all v € V4,

() = 1(0)| < Flp).  where (o) =p | Fla)h(e)dr.

I's

On the other hand, for all v, w € V; we have

710(0) = G1p(w)| < o[ F K| 2oy [lv — w0, (6.23)

It is worth to emphasize that (u,, A,) € V4 x A; is a solution of Problem 6.6 if and only if it
verifies

(A1pu,, vy, +bi(v,A,) = (f1, v)n for all v € V7, (6.24)
bi(wp, bt — Ap) < b1(GeatVa, pt — Ap) for all pu e Ay, (6.25)
where Ay, : Vi — Vi, (A0, w)y, = a1(v, w) + (Vii,(v), w)y,.

Remark 6.2. The first component of a solution of Problem 6.5 (which is unique in the first

argument), is the strong limit of the sequence (u,),, u, being the first component of the solution
of the problem (6.24)-(6.25).
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For details see [110].
Let us proceed with the second model we are interested on.

Problem 6.7. Findu :Q — R? and o : Q — S® such that

Dive + f, = 0 in Q, (6.26)

o= Ee(u) in (6.27)

u=0 on I'y, (6.28)

ov=Ff, on L'y, (6.29)

0, ool ¢ o = —C U, fu, £0  onTy, (6.30)
0.,=0,0,<0, u,—¢g<0, 0,(u,—g)=0 onTy, (6.31)

where & is the elastic tensor, ( : I's — R, denotes the friction bound and ¢ : I'y — R, denotes
the gap. We keep Assumptions 6.8-6.10 and Assumption 6.13. In addition, we made the following
assumption.

Assumption 6.14. The friction bound verifies ¢ € L>®(I's) and ((x) >0 a.e. « € I's.

Let us introduce the space
sz{ve‘/ﬂvl,:()a.e. onfg}

which is a closed subspace of the space V; defined in (6.17).
We define a bilinear form ay : V5 x V5 — R such that

as(u, v) = / Ee(u(x)) -e(v(x))dx for all u,v € V5. (6.32)
Q
Next, we define f, € V5 such that,

(fo v /fo x)dx + fg(w) - ~yv(z) dl for all v € V5.

Besides, we introduce a functional j, as follows:

g2 Va = Ry go(v) = | ((@) [lv. ()] dT" (6.33)

T's

Let Dy be the dual of the space
My ={v=uv,,, vel}

We define A € Dy such that

(A, w) = —/ oy (x)w(x)dl for all w € My,
Ty
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where (-,-) denotes the duality pairing between Dy and Ms. Furthermore, we define a bilinear
form as follows,

by : Vo X Dy = R, by(v, p) = <u,vl,|r4> for all v € Vo, p € Ds.
Let us introduce the following subset of D,
AQZ{M€D2:<M,M>§O foralle/C},

where
K={weM,:w<0 almost everywhere on I'y}.

Notice that A € Ay. Moreover,

bz(U, /\) = bQ(ge:BtV47 )\)
bo(w, 1) < bo(gewta, ) for all p € As.
We have the following weak formulation of Problem 6.7.
Problem 6.8. Find u € Vo and X\ € Ay such that, for all v € Vs, p € Ay,
as(u, v —u) + jo(v) — jo(u) + bo(v — u, A)
bg(’u,, o — )\)

(f27 )V27

>
S b2(geazt’/4a H = )‘)

A solution of Problem 6.8 is called a weak solution of Problem 6.7.
The well-posedness of Problem 6.8 is given by the following theorem.

Theorem 6.3. [Theorem 4 in [110]] Assumptions 6.8-6.10, and Assumptions 6.13-6.14 hold
true. Then, Problem 6.8 has a bounded solution (u,\) € Vo X Ao, unique in its first argument.

Let p > 0. We consider the following regularized problem.

Problem 6.9. Let p > 0. Find u, € Vo and A\, € Ay such that for allv € Vs, p € Ay,

a2(upv U= up) + j2p<v) - jQp(up) + ba(v — Uy, )‘p) > (fgv— up)Vzv
bg(’U,p, w—= )‘p) S bQ(gea}tV4a w—= /\p)
where jo, : Vo = R, jap(v) = [1, ((®)(\/[lv-(2)[|* + p* — p) dT.

Notice that the funct1onal Jop 18 Gateaux differentiable and denoting by Vjs, its Gateaux
differential, we have

v, ()

2+p

Y

« Vis: Vs>V (Viny(w /< ”w -
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' ’ Viizp (V)= Vo, (W), Z
o |Viny(v) = Vinp(w)lh, = sup 2L >”Zﬁ3( ) 2)v,
Z€Va,Z2#0v, 2

2 ¢? 00
< Ctr”CHL (FS)“,U

< —wlly, forallw,ve Vs
p

Furthermore, for all v € V5,
[J2p(v) — j2(v)| < F(p) where F(p) =p [ ((x)dD
I's

and, for all v, w € V5,

(HUTH |w- ) (|- || + [[w-])
o2 + p? + /]|w-]|? + p?

J2p(V) — Jop(w) = Q(

Moreover,
|j2p(v) _jQﬂ(w>| < Lj2p||v - w||V2; Lj2p = CtTHCHLZ(Fs)'
It is worth to emphasize that (u,, A,) € V5 X A, is a solution of Problem 6.8 if and only if it
verifies

(Agpu,, vy, +b2(v, X)) = (fa V)1 for all v € V4, (6.34)
bo(wp, pr — Ap) < bo(GeatVas pp — Ap) for all p € As, (6.35)

where Ay, : Vo — Vo, (Agyv, w)y, = ax(v, w) + (Vi2,(v), w)y,.

Remark 6.3. The unique first component of a pair solution of Problem 6.8 is the strong limit
of the sequence (u,),, u, being the first component of the solution of the problem (6.34)-(6.35).

For details see [110].

6.2 The case of nonlinear elastic operators

This section is based on Section 2 and on a part of Section 4 of the paper [113]. In this section
we firstly focus on an abstract problem governed by two convex functionals. Based on a saddle
point technique, we deliver existence and uniqueness results. To illustrate the applicability of
the abstract results we have got, two contact models are solved.

6.2.1 Abstract results
In this subsection we consider the following mixed variational problem.

Problem 6.10. Given f € X, find (u,\) € X XY such that \ € A CY and

J) = J(u) +b(v —u,\) +p(v) —pu) > (fv—u)x  foralvelX,
b(u, p— ) < 0 for all 1€ A.
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We made the following assumptions.
Assumption 6.15. (X, (-,-)x, || - [lx) and (Y, (-,-)v, || - ||y) are two Hilbert spaces.

Assumption 6.16. J : X — [0,00) is a convezr lower semicontinuous functional. In addition,
there exist my, my > 0 such that my||v||3% > J(v) > ma||v||% for allv € X.

Assumption 6.17. b: X x Y — R is a bilinear form such that
o there exists My > 0 : |b(v, u)| < Mp||v||x |||y for allv e X, p ey,

b(v, 1)

o there exists a > 0: inf sup ———— > Q.
neVuAy vexoox [|Vllxllplly

Assumption 6.18. A is a closed conver subset of Y that contains Oy

Assumption 6.19. ¢ : X — [0,00) is a convex lower semicontinuous functional. In addition,
there exists g1 > 0 such that, for allv € X, o(v) < q1]|v||x-

Theorem 6.4. [An existence result/[Theorem 3 in [113]] If Assumptions 6.15-6.19 hold true,
then Problem 6.10 has at least one solution.

The proof of Theorem 6.4 can be found in [113].
In order to establish the uniqueness of the solution, additional assumptions are necessary.

Assumption 6.20. J : X — [0,00) is a Gdteauz differentiable functional. In addition:
o there exists m > 0 such that

(VJ(u) = VJW),u —v)x >mlu—o|5% foraluveX.
o there exists L > 0 such that
IVJ(u) = VJ(W)||x < Llju—v|x for all u,v € X.

Assumption 6.21. ¢ : X — [0,00) is a Gateaux differentiable functional.

Let us define
J:X = [0,00) J=J+¢. (6.36)

We consider the following auxiliary problem.
Problem 1. Find v € X and \ € A such that
(VJ(u),v)x +bv,\) = (f,v)x for all v € X,
bu,p—A) <0 for all € A.

According to Lemma 2 in [113], the set of the solutions of Problem 6.10 coincides with the
set of the solutions of Problem 1.

Theorem 6.5. [An uniqueness result/[Theorem 4 in [113]] If Assumptions 6.15-6.21 hold true,
then Problem 6.10 has a unique solution.

For the proof of Theorem 6.5 we send the reader to [113].
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6.2.2 3D contact models

To illustrate the applicability of the previous abstract results, two contact models are discussed
in this subsection. Each model involves a deformable body which occupies a bounded domain
Q) C R? with Lipschitz continuous boundary I' partitioned in four parts. In order to describe the
behavior of the material, we use a nonlinear constitutive law expressed by the subdifferential of
a proper, convex, lower semicontinuous functional.

Problem 6.11. [The First Model] Find u : Q — R? and o : Q — S?, such that

Dive(x)+ fo(x) =0 in Q,  (6.37)
o(x) € dw(e(u(x))) inQ, (6.38)
u(x) =0 on Ty, (6.39)
ov(x) = f(x) on Ty, (6.40)
o.(x) =0, u,(x) <0,0,(x) <0,0,(x)u,(x) =0 onT's, (6.41)
—o,(x) = F(=),
o (@)l < K(@)loy ()], (@) = —K (@)]0y (@) 2B if ur(x) £0 onTy (6.42)

where I'1, I's, I's and I'4 is a partition of I' such that the Lebesgue measure of I'; is positive. Note
that (6.37) is the equilibrium equation, (6.38) is the constitutive law, (6.39) is the displacement
boundary condition, and (6.40) is the traction boundary condition. Finally, (6.41) is a frictionless
unilateral contact condition with zero gap and (6.42) is a frictional contact condition with
prescribed normal stress. The coefficient of friction K as well as the prescribed normal stress F
are given functions. Details on the boundary contact conditions we use here can be found for
instance in [59, 147].
In order to give a weak formulation we make the following assumptions.

Assumption 6.22. f, € L*(Q)* f, € L*(I'y)®.

Assumption 6.23. w : S* — [0,00) is a convex lower semicontinuous functional. In addition,
there exist aq, as > 0 such that

arlle])? > w(e) > ayllel|*  for alle € SP.
Assumption 6.24. F € L3(Ty), F(x) > 0 a.e. onTy; K € L3(Ty), K(x) >0 a.e. onTy.
The functional setting is as follows.

X = {veH'(Q)? : yv=0ae. onIl}. (6.43)
S = {w=uv,, veX} (6.44)
Yy = 9. (6.45)



Next, we define the functional

J: X —1[0,00), J(v)= /Qw(e(v(a:)))dx.

In addition, using Riesz’s representation theorem we define f € X as follows,

(f, v)x —/fo x)dr+ fl(m)-'yv(w) dF—/F F(x)v,(x)dl' forall v e X.

Furthermore, we can introduce the following convex and continuous functional.

p: X —=[0,00) p(v)= /P F(z) K(z) ||v-(x)|| dT".
We define A € Y such that

Do) = — / oo(z) w(z)dl  for all w € S,
s

where (-, -) denotes the duality pairing between Y and S.
Moreover, we define a bilinear form as follows,

b: X xY =R, b, p) = () forallveX, pey.
Let us introduce the following subset of Y,
A:{,MEY (s Uyp,) <0 for all’uE/C},

where
K={veX:wv, <0 almost everywhere on T's}.

This first contact model is related to Problem 6.10 for unbounded subset A.

According to Theorem 6.4, Problem 6.11 has at least one weak solution.

Problem 6.12. [The Second Model] Find u : Q — R?® and o : Q — S3, such that

Diveo(x) + fo(x) =0
o(z) € dw(e(u(x)))

u(x) =0
ov(z) = fi(z)
wl() =0, oy (@) < (@), or(@) = —C(a) B ifu, () £ 0

—o,(x) = F(z),
o

lo(@)]| < K(=)[o,(@)], 0. (@) = — K (@)|o, (@)| L2 if u,(2) # 0
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where 'y, I'y, I's and I'y is a partition of I' such that the Lebesgue measure of I'; is positive, as

in the previous example. Recall that (6.52) is the equilibrium equation, (6.53) is the constitutive
law, (6.54) is the displacement boundary condition and (6.55) is the traction boundary condition.
Herein (6.56) is a bilateral frictional contact condition with friction bound ¢. Finally, (6.57) is a
frictional contact condition with prescribed normal stress. The functions ¢, K and F' are given

functions. For details on the boundary contact conditions written here see for instance [147] and

the references therein.

In order to analyze this second example we adopt Assumptions 6.22-6.24. In addition, we

make the following assumption.
Assumption 6.25. ¢ € L*(T3), ((x) >0 a.e. on 3.
Let us introduce the spaces
X = {v c H'(Q)? : yv=0ae only, v, =0ae. on Fg};

S {z =yw|r, |w € X};
Yy = 9.

We define J, f and ¢ as in the previous subsection, see (6.46)-(6.48).
Next we introduce the following subset:

A= {,J,ey A, 2) < [ C@)|z(@)|dT for all z s},
s

(-,+) being the duality pairing between Y and S.
Let us define XA € Y,

(A, z) = —/ o.(x) z(x)dl' forall zeS.
T's
We also define a bilinear form b(-, -),

b: X xY =R b(”?“‘) = <:U’>7IU’FS>'

This second model is related to Problem 6.10 for bounded subset A.

(6.58)

(6.59)

(6.60)

According to Theorem 6.4, Problem 6.12 has at least one weak solution. More details can

be found in [113].



Chapter 7

Unilateral frictional contact problems

This chapter, based on some results we have got in the paper [113], draws the attention to an
abstract mixed variational problem governed by a convex functional and a bifunctional which
depends on a Lagrange multiplier in the first argument and is convex in the second argument.
After we discuss the existence and the uniqueness of the solution of the abstract problem, we
illustrate the applicability of the abstract result to the weakly solvability of a unilateral frictional
contact problem.

7.1 Abstract results

In this section, based on Section 3 of the paper [113], we present the results in the study of the
following mixed variational problem.

Problem 7.1. Given f € X, find (u,\) € X XY such that \€ A CY and

Jw)—=Jw) +bv—u,N)+7i\v)—jANuw) > (f,v—u)x  forall veX,
b(u, pp— A) < 0 for all ue A.

In order to study Problem 7.1 we adopt Assumptions 6.15-6.18 and 6.20 from the previous
chapter. In addition we made the following assumptions.

Assumption 7.1. j: A x X — [0,00) is a bifunctional such that:
e ji) forallm e A, j(n,-): X —[0,00) is a convexr Gateaux differentiable functional;

e jo) for allm € A, there exists ¢ > 0 (q1 independent of n) such that

jm,v) < qljvllx  for allv € X;

e j3) foralln e A, (Voj(n,u),u)x >0  for allu € X;
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e j,) forallm e A, Vaj(n,0x) = 0x;

o js) for alln € A, there exists L; > 0 (L; independent of n) such that

IVai(n,u) = Vaj(n,v)llx < Ljllu=vllx  for all u,v € X.

e jo) if (un)n C X and (n,), CY are two sequences such that u, — u in X as n — oo and
Ny — 1 inY asn — oo, then limsup,,_, .. (M, v) — j(n, un) < j(n,v) — j(n,u).

Notice that for each (u,n) € X x A, Voj(n,u) denotes the Gateaux differential of j in w.

Assumption 7.2. If (u,), C X and (1,), C Y are two sequences such that u, — @ in X as
n—oo and 7, =T inY asn — oo, then limsup,,_, . b(u,, 7,) = b(1, 7).

Theorem 7.1. [An ezistence result/[Theorem 5 in [113]] If Assumptions 6.15-6.18, 6.20, 7.1-7.2
hold true, then Problem 7.1 has at least one solution.

The proof of Theorem 7.1 can be found in [113]. The key of the proof was the construction
of the following operator.
T:AN—=>A T(n) =X\, (7.1)

which is a weakly sequentially continuous map. In addition, it is worth to mention that 7|, has
a fixed point, where

Ifllx (L Lj)”f”X}
a ma

Thus, there exists n* € £ C A such that T'(n*) = A;» = n*. The pair (u,-,\y) € X x Ais a

solution of Problem 7.1.

£=A{peAMully <

In order to investigate the uniqueness of the solution, we made a new assumption.

Assumption 7.3. For all iy, ps € A, v1, v9 € X there exists G > 0 such that

g, v2) — j(pr, vr) + jpe, v1) — j(pe, v2) < Gllog — vo| x.

Theorem 7.2. [An uniqueness result][Theorem 6 in [1153]] If Assumptions 6.15-6.18, 6.20, 7.1-
7.3 hold true, then Problem 7.1 has a solution, unique in its first argument.

The proof of Theorem 7.2 was given in [113].

7.2 A 3D contact model

To illustrate the applicability of the abstract results presented in Section 7.1, we consider the
following 3D model (the third example in Section 4 of the paper [113]).
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Problem 7.2. Given p > 0, find u: Q — R? and o : Q — S3, such that

Divo(x) + fo(x) =0 in Q, (7.2)
o(x) € dw(e(u(x))) in €, (7.3)
u(x) =0 on I'y, (7.4)
ov(x) = f,(x) on Iy, (7.5)
u, () <0,0,(x) <0,0,(x)u,(x) =0
o.(x) = %@»(@% on I, (7.6)

where I', 'y and I'5 is a partition of I' such that the Lebesgue measure of I'; is positive. Recall
that (7.2) is the equilibrium equation, (7.3) is the constitutive law, (7.4) is the displacement
boundary condition and (7.5) is the traction boundary condition. Herein (7.6) is a unilateral
contact condition with regularized Coulomb-type friction law. The friction law we use describes
a situation when slip appears even for small tangential shears, which is the case when the surfaces
are lubricated by a thin layer of non-Newtonian fluid, see [147] and the references therein.

In order to analyze the model, we adopt Assumptions 6.22 and 6.23 made in the previous
chapter. Moreover, herein we consider

w:S*—=1[0,00), w(e)= %Ae €+ gHs — Pgel? (7.7)

where A is a fourth order symmetric tensor satisfying the ellipticity condition, § is a strictly
positive constant, K C S? denotes a closed, convex set containing the element Ogs and Py : S* —
K is the projection operator. Notice that the function w fulfills the following property.

Property 7.1. w is a Gateaux differentiable functional. In addition:

e wy) there exists L, > 0 such that

[Vw(e) — Vw(T)|| < Lulle — 7| for alle, T € S%

e wy) there exists m,, > 0 such that
(Vw(e) = Vw(T)) - (e = T) > mylle = 7||> foralle,T €S

where
Vw(e) -7 =Ae -7+ (e — Pxe) - T.
We keep the definitions for X in (6.43), J in (6.46), S in (6.44), Y in (6.45), A in (6.49),
b(+,-) in (6.50) and A in (6.51). Notice that A = —0,,. .
Herein we consider a coefficient of friction as follows:

(Ro,,)()]

ko) - Ts = 0,00) kew)(w) = 03 e 55




where ¥ > 0 and R : Y — L?*(T'3) is a linear and compact operator.
In addition, we define f € X as follows:

(f,v)x = /Qfo(az) ~v(x) dr + A fi(x) -vyv(x)dl' forall v e X.

Finally, we define

JiAXX =R jnv)= [ K)(Vllv-(2)]?+ p* = p)dT,

s

where K : A — L>(T'3),
__9I(Rn)(z)|
KO = T R )l
Notice that K(u) = —k(—p) for all p € A.
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(7.9)

(7.10)

According to Theorem 7.2, Problem 7.2 has a solution (u, A), unique in its first argument.

For details see [113].



Part 11

A variational approach via bipotentials
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Chapter 8

Unilateral frictionless contact problems

This chapter is based on the paper [106]. We consider a unilateral contact model for nonlinearly
elastic materials, under the small deformations hypothesis, for static processes. The contact is
modeled with Signorini’s condition with zero gap and the friction is neglected on the poten-
tial contact zone. The behavior of the material is modeled by a subdifferential inclusion, the
constitutive map being proper, convex, and lower semicontinuous. After describing the model,
we give a weak formulation using a bipotential which depends on the constitutive map and its
Fenchel conjugate. We look for the unknown into a Cartesian product of two nonempty, convex,
closed, unbounded subsets of two Hilbert spaces. We prove the existence and the uniqueness of
the weak solution based on minimization arguments for appropriate functionals associated with
the variational system. How the proposed variational approach is related to previous variational
approaches, is discussed too.

8.1 The model and its weak solvability via bipotentials

In this section we discuss the weak solvability via bipotentials theory for a unilateral frictionless
contact model in the following physical setting. A body occupies a bounded domain 2 C R3
with Lipschitz continuous boundary, partitioned in three measurable parts, I'y, I'; and I's, such
that the Lebesgue measure of I'y is positive. The body 2 is clamped on I'y, body forces of
density f, act on ) and surface tractions of density f, act on I';. On I's the body can be in
contact with a rigid foundation. According to this physical setting we formulate the following
boundary value problem.

Problem 8.1. Findu:Q — R3 and o : Q — S?, such that

Dive(x) + fo(x) =0 inQ, (8.1)
o(z) € dw(e(u(z)) inQ, (8.2)

106
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u(x) =0 on I'y,
on I'sy,

8.3
) 8.4
o.(x)=0,u,(x) <0, 0,(x) <0, o,(x)u,(x) =0 onls. 8.5

~~ I~ —~

Problem 8.1 has the following structure: (8.1) represents the equilibrium equation, (8.2
represents the constitutive law, (8.3) represents the displacements boundary condition, (8.

represents the traction boundary condition and (8.5) represents the frictionless unilateral contact

)
)
)
)
4)

condition.

Assumption 8.1. The constitutive function w : S* — R is convex and lower semicontinuous.
In addition, there exist o, 3 such that 1 > 3> a > 0 and Blle||* > w(e) > alle||* for all e € S3.

Assumption 8.2. The densities of the volume forces and traction verify
Fo € L*(Q)? and £, € L*(Ty)>.
Let us introduce the space
V={veH(Q)? : yv =0a.. on I}
Let f € V be such that
(f,v)v = (fo,v)r2op + g fola) - yo(x)dl'  forallveV.
2
We introduce a subset of V' as follows,

U={veV : v, <0ae only}.

Lemma 8.1. [Lemma 1 in [100]] Let o, 3 be the constants in Assumption 8.1. Then
1
1 =B 7|I* < w*(r) < 4—HTH2 for all T € SP. (8.6)
a

The proof of this lemma can be found in [106]. We associate with the constitutive map w
the bipotential B : §* x §* — R,

B(t,pn) = w(T) +w*(n) forall 7, pu€S? (8.7)

where w* is Fenchel’s conjugate of the function w.
Notice that there exists C' = C(a, ) > 0 such that

B(r,pu) > O(|7]* +[lp]?*) forall 7, p €S (8.8)
We introduce the Hilbert space

L§(9)3X3 = {[L (MU) N c LQ(Q), Hij = Hjs for all Z,j c {1,2,3}}
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It is worth to note that
B(e(v(+),7(:)) € L*(Q) forallw €V, T € L*(Q)**.
We define now the form

b:V x L2(Q)** - R b(v,u) = /QB(s(v(a:)),u(a:)) dx. (8.9)

Consider the following subset of L(€2)3*3,
A={p e L2(0)>° : (m,e(v))2pxs > (f,v)y for all v € Up}. (8.10)

We have the following weak formulation of Problem 8.1.

Problem 8.2. Findu € Uy CV and o € A C L2(Q)**3 such that

,2o—u)y  forallv e U

b(v,0) —blu,o) > (
o)>0 for all p € A.

b(“v l’l’) - b(ua
Each solution (u, o) € Uy x A of Problem 8.2 is called a weak solution of Problem 8.1.

Theorem 8.1. (An existence result)[Theorem 3 in [106]] If Assumptions 8.1-8.2 hold true, then
Problem 8.2 has at least one solution (u, o) € Uy x A.

In order to get the uniqueness, additional assumptions were needed.
Assumption 8.3. The constitutive function w and its Fenchel’s conjugate w* are strictly convex.

Theorem 8.2. (An uniqueness result)[Theorem 4 in [106]] If Assumptions 8.1-8.3 hold true,
then Problem 8.2 has a unique solution.

The proofs of Theorems 8.1 and 8.2 can be found in [106].

8.2 New approach versus previous approaches

In this section we discuss Problem 8.1 for a special class of nonlinear materials, such that the
following additional assumption holds true.

Assumption 8.4. The constitutive function w is Gateaux differentiable and its gradient Vw
verifies:

there exists L > 0 such that |[Vw(e1) — Vw(es)|| < Lller — €| for all €1, €2 € S?;

there exists m > 0 such that (Vw(e;) — Vw(ey)) - (€1 — €2) > m||le; — &a]? for all €1, g5 € S3.
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In this special case, the constitutive law (8.2) becomes o(x) = Vw(e(u(x))) in Q, the
literature offering us two variational approaches: the primal variational formulation and the dual
variational formulation. More precisely, Problem 8.1 has the following variational formulation
in displacements.

Primal variational formulation. Find uw € U, such that

(Au,v —u)y > (f,v—u)y for all v € U,.

Herein the operator A : V' — V is defined as follows: for each w € V, Au is the element of V'
that satisfies

(Au, v)y = /Q Vo(e(u(@))) - e(v(@)) d

for all v € V. The primal variational formulation has a unique solution u € Uy, see e.g. Theorem
5.10 in [147].

On the other hand, Problem 8.1 has the following weak formulation in terms of stress.
The dual variational formulation. Find o € A such that

(Vw) o, 7 — o) r2qpxs >0 forall T € A.

The dual variational formulation has a unique solution o € A, see e.g. Theorem 5.12 in [147].
Let us state the following auxiliary result.

Theorem 8.3. [Theorem 5 in [106]] Assumptions 8.1-8.2 and Assumption 8.4 hold true.

1) If @ is the solution of the primal variational formulation and & is the function given by
o = Vw(e(u)) then & is the unique solution of the dual variational formulation.

2) If & is the solution of the dual variational formulation then & = Vw(e(@)) where @ is the
solution of the primal variational formulation.

The proof of this theorem is a straightforward consequence of Theorem 5.13 in [147].
The main result of this section is the following theorem.

Theorem 8.4. [Theorem 6 in [106]] Assumptions 8.1-8.2 and Assumption 8.4 hold true.

i) If @ is the unique solution of the primal variational formulation and & is the unique
solution of the dual variational formulation, then the pair (u, &) is a solution of Problem 8.2.

ii) If (u, o) is a solution of Problem 8.2, then the first component w is the unique solution
of the primal variational formulation.

iii) If, in addition, w is strictly convez then the unique solution of Problem 8.2, (u, o), coin-
cides with the pair (&, ) consisting of the unique solution of the primal variational formulation
and the unique solution of the dual variational formulation.

We underline that, if the constitutive function w fulfills Assumptions 8.1, Assumption 8.4
and, in addition is strictly convex, then the unique solution of Problem 8.2 coincides with the pair
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consisting of the unique solution of the primal variational formulation and the unique solution
of the dual variational formulation. Let us give an example of such a constitutive function w:

1
w:S* =R, w(r) = 55T~T—|—%HT—PKTH2, (8.11)

where £ : S* — 83, £ = (5ijk:l), 52']‘]91 = )\51‘]‘5/“ + /L((Sikéjl + 5i15jk)7 1 <id,5,k 1 <3, A\, pand
¢ being positive coefficients of the material, small enough (e.g. %)\ +pu+ % <1),KcCcS¥isa
nonempty, closed and convex set and Py : S® — K represents the projection operator on K.

In order to study the properties of the functional w a very helpful reference was [139].



Chapter 9

Frictional contact problems

This chapter is based on the paper [108]. The frictional contact model we investigate in the
present paper is a 3D nonlinearly elastostatic model, under the small deformation hypothesis.
Mathematically, we describe it as a boundary value problem consisting of a system of a partial
differential vectorial equation (equilibrium equation) and a subdifferential inclusion (constitu-
tive law), associated with a homogeneous displacement boundary condition, a traction boundary
condition and a frictional contact condition. The constitutive law indicates us that the stress
belongs to the subdifferential of a proper, convex, lower semicontinuous functional. In order to
model the frictional contact we use a static version of Coulomb’s law of dry friction with pre-
scribed normal stress. Based on minimization arguments for appropriate functionals associated
with the variational system, the existence and the uniqueness of the weak solution of this model
it was proved. In addition to prove the existence and the uniqueness of the weak solution as
a "global” solution, allowing to compute simultaneously the displacement field and the Cauchy
stress tensor, another relevant aspect of this approach it was discussed for a particular class of
constitutive functions: the weak solution in the new approach coincides with the pair consist-
ing of the unique solution of the primal variational formulation and the unique solution of the
dual variational formulation. Due to the particular feature of the mechanical model we treat in
this chapter, the weak formulation herein is more complex than those presented in the previous
chapter; it involves not only a bipotential function but also a potential which depends on the
prescribed normal stress and on the coefficient of friction.

9.1 The model and its weak solvability via bipotentials

We consider a body that occupies a bounded domain 0 C R?, with smooth boundary, partitioned
in three measurable parts, I', I's and I's, such that the Lebesgue measure of I'y is positive. The
body €2 is clamped on I';, body forces of density f, act on €2 and surface tractions of density
fo act on I'y. On I's the body is in frictional contact with a foundation, the normal stress
being prescribed. According to this physical setting we formulate the following boundary value
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problem.

Problem 9.1. Findu: Q — R? and o : Q — S3, such that

Dive(z) + folx) =0 in Q, B-1)
o(@) € dule(ux)) i 62)
u(x) =0 on I'y, (9.3)

ov(x) = fy(x) on Iy, 5-4)
—o,(w)=F(z)  onTy 59)

o ()| < k(x)|o, ()], on Ts. (9.6)

o.(x) = —k(z)|o, ()] 2E if w,(z) £0

| Tty
- ()|l

Problem 9.1 has the following structure: (9.1) represents the equilibrium equation, (9.2)
represents the constitutive law, (9.3) represents the homogeneous displacements boundary con-
dition, (9.4) represents the traction boundary condition and (9.5)-(9.6) model the frictional
contact with prescribed normal stress.

In order to study Problem 9.1 we keep Assumption 8.1 on the constitutive function w and
Assumption 8.2 for the density of the volume forces f, and the density of the traction f,.

In addition we made the following assumptions.

Assumption 9.1. The prescribed normal stress verifies F € L*(T'3) and F(x) >0 a.e. © € 3.
Assumption 9.2. The coefficient of friction verifies k € L>*(I's) and k(x) >0 a.e. © € ['s.
On the other hand, we introduce the space
V={veH(Q)? : yv=0ae onl}

and define f € V,
(fiv)v = (fo. V)2 + | faolx) -vov(z)dl forallveV.
s
Notice that k() F(-) ||v,(-)|| € L'(T'3). This allows us to consider the following functional

j:V—=Ry jv)= / k(x) F(x) |v.(x)]| dl'  for all v e V. (9.7)

I's

As in the previous chapter, we associate with the constitutive map w the bipotential B :
S? x §? = R,
B(T,p1) = w(T) +w*(n) forall 7, pueS? (9.8)
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and we introduce a form b(-,-) as follows,

b:V x LA(Q)** - R b(v,u) = /QB(e(v(a:)),u(:L')) dz. (9.9)

Consider now the following subset of L2(€)3*3,
A= {[J, € Lg(Q)?)x?) . (/.L,&'('U))LQ(Q)SXS —|—](’U) > (f,'l))v for all v € V} (910)

Lemma 9.1. [Lemma 2 in [108]] The subset A is an unbounded, closed, convexr subset of
LA (@)

The proof of Lemma 9.1 was given in [108].
Problem 9.1 has the following weak formulation.

Problem 9.2. Findu € V and o € A C L?(2)3*3 such that

b(v,0) = b(u, o) + j(v) - j(u)
b(u, ) — b(u, o)

(fiv—u)y foralveV
0 for all p € A.

This is a new variational system governed by the functional j.
Each solution (u, o) of Problem 9.2 is called a weak solution of Problem 9.1.
We define a functional £ as follows,

L:VxA—=>R L(v,p)=>0bv,p)+jv)—(f v)y.
Let us consider the following minimization problem.

L(u,0)= (vfglel‘l/mﬁ(v, ). (9.11)

Theorem 9.1. (An existence result)[Theorem 3 in [108]] If Assumptions 8.1, 8.2, 9.1 and 9.2
hold true, then Problem 9.2 has at least one solution (u,o) € V x A which is a solution of the
minimaization problem (9.11).

The study of the uniqueness of the solution was made under the following additional assump-
tion.

Assumption 9.3. The constitutive function w and its Fenchel’s conjugate w* are strictly convex.

Theorem 9.2. (An uniqueness result)[Theorem 4 in [106]] If Assumptions 8.1, 8.2, 9.1, 9.2 and
9.3 hold true, then Problem 9.2 has a unique solution.

The proofs of Theorems 9.1 and 9.2 were given in [108].
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9.2 New approach versus previous approaches

In this section we discuss Problem 9.1 adopting Assumption 8.4 for the constitutive function w.
In this special case, Problem 9.1 has the following variational formulation in displacements, see
[147].

Primal variational formulation. Find w € V such that

(Au,v —u)y +j(v) — j(u) > (f,v—u)y forallveV.

The primal variational formulation has a unique solution u € V', see for example Theorem 5.21
in [147].

Also, in the special case we treat in this section, Problem 9.1 has the following variational
formulation in terms of stress.
The dual variational formulation. Find o € A such that

(Vw) o, 7 —o)r2qpxs >0 forall T € A.

The dual variational formulation has a unique solution o € A, see Theorem 5.32 in [147].
A straightforward consequence of Theorem 5.34 in [147] is the following theorem.

Theorem 9.3. [Theorem 5 in [108]] Assumptions 8.1, 8.2, 9.1, 9.2 and Assumption 8.4 hold
true.

1) If u is the solution of the primal variational formulation and o is the function given by
o = Vw(e(u)) then o is the unique solution of the dual variational formulation.

2) If o is the solution of the dual variational formulation then o = Vw(e(u)) where w is the
solution of the primal variational formulation.

The main result of this section is the following theorem.

Theorem 9.4. [Theorem 6 in [108]] Assumptions 8.1, 8.2, 9.1, 9.2 and Assumption 8.4 hold
true.

i) If w is the unique solution of the primal variational formulation and o is the unique
solution of the dual variational formulation, then the pair (w, o) is a solution of Problem 9.2.

ii) If (u, o) is a solution of Problem 9.2, then the first component w is the unique solution
of the primal variational formulation.

iii) If, in addition, w is strictly convex then the unique solution of Problem 9.2, (u, o), coin-
cides with the pair (w, ) consisting of the unique solution of the primal variational formulation
and the unique solution of the dual variational formulation.

The proof of Theorem 9.4 was given in [108].
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Chapter 10

Preliminaries

In this chapter we present some preliminaries. Firstly we recall an abstract fixed point result for
operators defined on the Fréchet space of continuous functions on Ry = [0, 00) with values on a
real Banach space (X, || - ||x), denoted C(R, X). Then, we recall an existence and uniqueness
result of the solution for an abstract history-dependent quasivariational inequality formulated
on the unbounded time interval [0, c0).

10.1 A fixed point result

Let (X, ||-]|x) be a real Banach space, N* represents the set of positive integers and R, = [0, 00).
We consider the functional space of continuous functions defined on R, with values on X, that

is
CRy;X)={2z:Ry - X | xis continuous }.

Let us present some preliminaries on the space C(R,;X); details on the Fréchet space
C(R,, X) including some basic properties can be found in [39, 96].

For all n € N*, we denote by C([0,n]; X) the space of continuous functions defined on [0, n]
with values on X, that is

C([0,n]; X)={x:[0,n] - X | zis continuous }.
The space C(]0,n]; X) is a real Banach space with the norm

llln = max [l (#)]|x (10.1)
€[0,n]

and, moreover, for any A > 0 the norm (10.1) is equivalent with Bielecki’s norm,

el = max {e=l(t)]x ). (102
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Consider now two sequences of real numbers (A, ),en+ and (B, )nen+ such that

D<A <A< <A\ <., (10.3)
Bn>0 VneN, Y B, <oo. (10.4)
n=1
For any =,y € C(Ry; X) define
- 7 = Yln
d(z,y) = , ——————— 10.5
) =D (10,5
where, for all n € N*,

%] = |Z[rn = max {e7 Nl (®)llx }- (10.6)

It is well known that d is a distance on C'(Ry; X)) and the metric space (C'(R4; X), d) is complete,
i.e. is a Fréchet space.

We note that, for all n € N*, |- |, and || - ||,, are equivalent norms on the space C([0,n]; X).
Also, we recall that the convergence of a sequence (x,),en C C(Ry;X) to the element z €
C(Ry; X), is characterized by the following equivalences:

d(zp,z) =0 as p— oo & lim |z, — [, =0 VneN (10.7)
p—00

& lim ||z, — 2], =0 VneN.
p—00

According to (10.7), the convergence in the metric space (C(Ry; X),d) does not depend on the
choice of sequences (A, )nen< and (5, )nen+ which satisfy (10.3) and (10.4). For this reason, we
write C'(R; X) instead of (C(Ry; X),d) and we refer to C(R,; X) as to a Fréchet space. Also,
note that:

(zp)pen+ C C(R4; X) is a Cauchy sequence if and only if (10.8)
Ve>0,Vne N3N = N(e,n) such that |z, —z,, <ec Vp,¢> N.

Theorem 10.1. [Theorem 2.1 in [144]] Let A : C(Ry; X) — C(Ry; X) be a nonlinear operator.
Assume that there exists m € N* with the following property: for all n € N* there exist two
constants ¢, > 0 and k,, € [0,1) such that

[Az(t) = Ay(D[% < knllz(t) = y(OI% + Cn/o lz(s) = y(s)lx ds (10.9)

for all x, y € C(Ry; X) and for any t € [0,n]. Then the operator A has a unique fized point
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Corollary 10.1. [Corollary 2.5 in [144]] Let A : C(Ry; X) — C(Ry; X) be a nonlinear operator.
Assume that there exist m € N*, o € [0,1) and a continuous function v : Ry — R, such that

[Az(t) = Ay@)x < afle@) —y@Ol% + v(t)/o lz(s) = y(s)[| ds

for all x,y € C(Ry; X) and for any t € Ry. Then the operator A has a unique fized point

The proofs of Theorem 10.1 and Corollary 10.1 can be found in [144].

10.2 An abstract history-dependent quasivariational in-
equality

Let X be a real Hilbert space with inner product (-,-)x and associated norm || - ||x. Let also
Y be a normed space with the norm denoted || - ||y and let £(X,Y’) denote the space of linear
continuous operators from X to Y with the usual norm || - [|z(x,y). Finally, for n € N* we denote
by C([0,n]; L(X,Y)) the space of continuous functions defined on the bounded interval [0, n]
with values in £(X,Y).

Let K be a subset of X and consider the operators A: K — X, §: C(Ry; X) — C(R4;Y)
and the functionals ¢ : ¥ x X — R, 7 : X x X — R. Moreover, let f : R, — X. Then we
consider the problem of finding a function u € C(R; X), such that for all ¢ € R, , the inequality
below holds:

u(t) € K,  (Au(t),v —u(t))x + ¢(Su(t),v) — o(Su(t), u(t)) (10.10)
+j(u(t),v) — j(u(t),u(t)) > (f(t),v —u(t))x for all v € K.

Note that (10.10) represents a time-dependent variational inequality governed by two func-
tionals ¢ and j which depend on the solution and, therefore, we refer to (10.10) as a quasi-
variational inequality. Also, to avoid any confusion, we note that here and below the notation
Au(t) and Su(t) are short hand notation for A(u(t)) and (Su)(t), i.e. Au(t) = A(u(t)) and
Su(t) = (Su)(t), for all t € R,.

In the study of (10.10) were used the following assumptions.

Assumption 10.1. K is a closed, convex, nonempty subset of X.

Assumption 10.2.
There exists m > 0 such that (Au; — Aug, uy — us)x > m||uy — us||% for all uy,us € K.
There exists L > 0 such that ||Au; — Aus||x < L||uy — uz||x for all uy,us € K.
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Assumption 10.3. For ally € Y, ¢(y,-) is convex and lower semicontinuous on X. There exists

a > 0 such that ©(y1, u2) — @(y1,ur) + (Y, u1) — (Y2, u2) < allyr — yelly ||l — us||x for all
Y1, Y2 €Y, up, ug € X.

Assumption 10.4. For all z € X, j(u,-) is convex and lower semicontinuous on X. There exists
B > 0 such that j(ui,v2) — j(ur,v1) + j(uz, v1) — juz,v2) < Bllur — uallx [lvr — val[x for all
Uy, U2, V1, V2 € X.

Assumption 10.5. 5 < m.

Assumption 10.6. S : C(R,; X) — C(R,;Y); for all n € N* there exists r,, > 0 such that
t
|Sui(t) — Susz(t)|ly < rn/ |lui(s) — ua(s)||x ds for all uy, us € C(R4; X), t € [0,n].
0

Assumption 10.7. f € C(R,; X).

Assumption 10.6 is satisfied for the operator S : C(R;; X) — C(R,;Y) given by
t
Su(t) = R(/ v(s)ds + vo> forall v e C(R4; X), t € Ry, (10.11)
0

where R : X — Y is a Lipschitz continuous operator and vy € X. It is also satisfied for the
Volterra operator S : C(Ry; X) — C(R4;Y) given by

t
Su(t) = / R(t—s)v(s)ds forallve C(Ry;X), teR,, (10.12)
0

where now R € C(Ry;£(X,Y)). In the case of the operator (10.11), inequality (10.6) holds
with ¢, being the Lipschitz constant of the operator R, for all n € N*, and in the case of the
operator (10.12) it holds with

Tn = HRHC([O,H];C(XQ/)) maﬁ] ”R(t)”g()gy) for all n € N*.

- telo,

Clearly, in the case of the operators (10.11) and (10.12) the current value Sv(t) at the moment
t depends on the history of the values of v at the moments 0 < s < t and, therefore, we refer
the operators of the form (10.11) or (10.12) as history-dependent operators. We extend this
definition to all operators S : C(Ry; X) — C(R,;Y) satisfying condition (10.6) and, for this
reason, we say that the quasivariational inequalities of the form (10.10) are history-dependent
quasivariational inequalities. Their main feature consists in the fact that, at any moment t € R
the functional ¢ depends on the history of the solution up to the moment ¢, Su(t). This feature
makes the difference with respect to the quasivariational inequalities studied in literature in
which, usually, ¢ was assumed to depend on the current value of the solution, u(t).

Based on arguments of monotonicity and convexity, combined with the fixed point result,
Corollary 10.1, we have the following result.
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Theorem 10.2. [Theorem 2 in [146]] If Assumptions 10.1-10.7 hold true, then the variational
inequality (10.10) has a unique solution u € C(Ry; X).

The proof of Theorem 10.2 can be found in [146].



Chapter 11

Viscoplastic problems

This chapter is based on the paper [10]. We consider two quasistatic problems which describe
the contact between a viscoplastic body and an obstacle, the so-called foundation. The contact
is frictionless and is modelled with normal compliance of such a type that the penetration is not
restricted in the first problem, but is restricted with unilateral constraint, in the second one. For
each problem we derive a variational formulation, then we prove its unique solvability. Next,
we prove the convergence of the weak solution of the first problem to the weak solution of the
second problem, as the stiffness coefficient of the foundation converges to infinity.

11.1 Mechanical models and their weak solvability

In this section we discuss the weak solvability of two viscoplastic contact models in the following
physical setting. A viscoplastic body occupies a bounded domain Q C R?, (d € {2,3}) with
a Lipschitz continuous boundary I', divided into three measurable parts I';, I'; and I'3, such
that meas(I';) > 0. The body is subject to the action of body forces of density f,. We also
assume that it is fixed on I'; and surface tractions of density f, act on I';. On I's, the body is
in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the
process is quasistatic, and we study the contact process in the interval of time R, = [0, 00).

In the first problem the contact is modeled with normal compliance in such a way that the
penetration is not limited. Under these conditions, the classical formulation of the problem is
the following.

Problem 11.1. Find a displacement field u : Q x R, — R? and a stress field o : Q x R, — S¢
such that

o=C8e(u)+G(o,e(u) in Qx(0,00), (11.1)
Dive+ f,=0 in §x(0,00), (11.2)
(11.3)
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u=0 on Ty x(0,00), (11.4)

ov=1Ff, on I'yx(0,00), (11.5)

-0, = p(uy,) on T'3x (0,00), (11.6)

o.=0 on I'3x(0,00), (11.7)

u(0) = up, o(0) = oy in . (11.8)

In order to simplify the notation, we do not indicate explicitly the dependence of various
functions on the variables @ or t. Equation (11.1) represents the viscoplastic constitutive law of
the material; equation (11.2) is the equilibrium equation; conditions (11.4) and (11.5) are the
displacement and traction boundary conditions, respectively, and condition (11.7) shows that
the tangential stress on the contact surface, denoted o,, vanishes. We use it here since we
assume that the contact process is frictionless. Finally, (11.8) represents the initial conditions
in which uy and o denote the initial displacement and the initial stress field, respectively. The
function p involved in the contact condition (11.6) verifies the following assumption.

Assumption 11.1. p: R — R, such that
There ezists L, > 0 such that |p(r1) — p(r2)| < Lylri — 12| for all i, ro € R.
(p(r1) = p(re))(r1 —re) >0 for all r, ro € R.
p(r) =0 forallrT <O.

Condition (11.6) combined with Assumption 11.1 shows that when there is separation between
the body and the obstacle (i.e. when u, < 0), then the reaction of the foundation vanishes
(since o, = 0); also, when there is penetration (i.e. when wu, > 0), then the reaction of the
foundation is towards the body (since o, < 0) and it is increasing with the penetration (since p
is an increasing function). Finally, we note that in this condition the penetration is not restricted
and the normal stress is uniquely determined by the normal displacement.

Condition (11.6) was first introduced by Oden and Martin, see [95, 127], in the study of
dynamic contact problems with elastic and viscoelastic materials. The term normal compliance
for this condition was first used by Klarbring, Mikeli¢ and Shillor, see [84, 85]. A first example
of normal compliance function p which satisfies condition (11.6) is

p(r) = e,y (11.9)

where ¢, is a positive constant. In this case condition (11.6) shows that the reaction of the
foundation is proportional to the penetration. A second example of normal compliance function
p which satisfies condition (11.6) is given by

cry i r<a,
py(r) =
ca if r>a,
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where « is a positive coefficient related to the wear and hardness of the surface and, again, ¢, > 0.
In this case the contact condition (11.6) means that when the penetration is too large, i.e. when
it exceeds «, the obstacle backs off and offers no additional resistance to the penetration. We
conclude that in this case the foundation has an elastic-perfectly plastic behavior.

In the second problem the contact is again modeled with normal compliance but in such
a way that the penetration is limited and associated to a unilateral constraint. The classical
formulation of the problem is the following.

Problem 11.2. Find a displacement field u : Q x R, — R? and a stress field o : Q x R, — S¢
such that

o=C8e(u)+G(o,e(u)) in  Qx(0,00),
Dive + f, =0 in Qx(0,00),
u=0 on I'1 x(0,00),

ov=Ff, on T'y x (0,00),

u, < g, 0, +p(u,) <0,

on I's x (0,00), (11.14)

(ul/ - g)(au +p(uu>> =0
o.=0 on T3 x (0,00), (11.15)
u(0) = ug, o(0) =0y in Q. (11.16)

Here g > 0 is given and p is a function which satisfies the following assumption.

Assumption 11.2. p:] — 00, g] — R, is a given function such that:

There exists L, > 0: |p(r1) — p(ra)| < Lp|ri — | for all ry, r2 < g.

(p(r1) —p(re))(ry —re) >0 forallry, my < g.

p(r) =0 forallr <O.

Recall that condition (11.14) was first introduced in [78]. Combined with Assumption 11.2
it shows that when there is separation between the body and the obstacle (i.e. when u, < 0),
then the reaction of the foundation vanishes (since o, = 0); moreover, the penetration is limited
(since u, < g) and g represents its maximum value. When 0 < w, < g then the reaction of
the foundation is uniquely determined by the normal displacement (since —o, = p(u,)) and,
when u, = ¢, the normal stress is not uniquely determined but is submitted to the restriction
—0o, > p(g). Such a condition shows that the contact follows a normal compliance condition
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of the form (11.6) but up to the limit g and then, when this limit is reached, the contact
follows a Signorini-type unilateral condition with the gap ¢g. For this reason we refer to the
contact condition (11.14) as a normal compliance contact condition with finite penetration and
unilateral constraint or, for simplicity, a normal compliance condition with finite penetration.
We conclude from above that this case models an elastic-rigid behavior of the foundation. Also,
note that when g = 0 condition (11.14) becomes the classical Signorini contact condition in a
form with a zero gap function,

u, <0, o, <0, o,u, =0 on I'3 x (0, 00).

Moreover, when g > 0 and p = 0, condition (11.6) becomes the Signorini contact condition in a
form with a gap function,

u, < g, o, <0, o (u, —g) =0 on I'3 x (0,00).

The last two conditions model the contact with a perfectly rigid foundation.
We made the following assumptions.

Assumption 11.3. & = (Eju) : X x ST = S% Eijp = Erij = Ejim € L(Q), 1 <4,5,k,1 < d.
There exists mg > 0 such that E7 -7 > me||7||> for all 7 €S9, ae. in Q.

Assumption 11.4. G:Q x S% x S — S%

There exists Lg > 0 such that ||G(x,01,€1) — G(x,09,€9)|| < Lg (||o1 — 02| + |le1 — &2]])
for all o1,04,€1,65 €S, a.e. & € Q.

The mapping @ — G(x, 0, €) is measurable on €, for any o, & € S%.

The mapping x — G(x,0,0) belongs to Q.

Assumption 11.5. f, € C(R,; L*(Q)Y), f,€ C(Ry; L*(Ty)9).
Assumption 11.6. ug €V, oy € Q.
Assumption 11.7. uo € U, oy € Q,

In Assumption 11.7, U denotes the set of admissible displacements defined by
U={veV:y,<gonly} (11.17)

We define the operator P : V' — V and the function f: R, — V by equalities

(Pu,v)y = / p(u,)v, dl' for all w, v €V, (11.18)
I's

(f(t),v)y = /Qfo(t) ~vdr —i—/F fot) -vdll forall veV, teRy. (11.19)

We have the following variational formulation of Problem 11.1.
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Problem 11.3. Find a displacement field u : R, — V and a stress field o : Ry — @, such that

() = Ee(u(t)) +/0 G(o(s), e(u(s))) ds + oo — Ee(uo) (11.20)

and
(o(t),e(v))g + (Pu(t),v)y = (f(t),v)y foral veV (11.21)
forallt e Ry.

We have the following variational formulation for Problem 11.2.

Problem 11.4. Find a displacement field w : R, — U and a stress field o : Ry — @, such that

o(t) =Ee(ult)) + /0 G(o(s),e(u(s)))ds+ oo — Ee(uy) (11.22)
and
(o(t),e(v) —e(u(t)))g + (Pu(t),v —u(t))y > (f(t),v —u(t)y foral velU (11.23)
hold, for allt € R,.

In the study of the Problem 11.3 we obtained the following results.
Lemma 11.1. [Lemma 4.3 in [10]] Assumptions 11.3, 11.4 and 11.6 hold. Then, for each
function w € C(Ry; V) there exists a unique function Su € C(Ry; Q) such that
t
Su(t) = / G(Su(s) + Ee(u(s)),e(u(s))) ds + o9 — Ee(uy) Vit € R, (11.24)
0

Moreover, the operator S : C(Ry; V) — C(Ry; Q) satisfies the following property: for every
n € N there exists r,, > 0 such that

t
[Sui(t) — Sus(t)llo < 7w / [wi(s) — ua(s)l|v ds (11.25)
0
Vuy, us € C(Ry; V), Vit €[0,n].

Next, using the operator S : C(R;; V) — C(R,; Q) defined in Lemma 11.1 we obtained the
following equivalence result.

Lemma 11.2. [Lemma 4.4 in [10]] Assumptions 11.1 and 11.3-11.6 hold and let (u,o) be a
couple of functions such that uw € C(Ry; V) and o € C(Ry;Q). Then, (u,o0) is a solution of
Problem 11.3 if and only if for all t € R, the following equalities hold:

o(t) = Ee(ult)) + Sult), (11.26)
(Ce(u(t)), e(v))q + (Su(t). e(v))q + (Pu(t),v)y = (f(t),v)y YvoeV.  (11.27)
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Let us define the operator A : V' — V and the functional ¢ : Q x V' — R by equalities

(Av,w)y = (Ee(v),e(w))g + (Pv,w)y Yo, weV, (11.28)
o(T,v) =(T,e(v))g VTe€Q, vel. (11.29)

With this notation we consider the problem of finding a function w : Ry — V such that, for all
t € Ry, the following inequality holds:

(Au(t), v —u(t))v + ¢(Su(t),v) — o(Sult), u(t)) (11.30)
(ft),v—u(t))y VoeV

v

Applying Theorem 10.2, we have got the following result.

Theorem 11.1. [Theorem 4.1 in [10]] If Assumptions 11.1 and 11.3-11.6 hold true, then Prob-
lem 11.3 has a unique solution, which satisfies

u e C(R;; V), ocCR;Q). (11.31)

The proof of Theorem 11.1 can be found in [10].
In the study of the Problem 11.4 we obtained the following results.

Lemma 11.3. [Lemma 4.5 in [10]] Assumptions 11.2-11.5 and 11.7 hold and let (u,o) be a
couple of functions such that w € C(Ry;U) and o € C(Ry;Q). Then, (u,o0) is a solution of
Problem 11.4 if and only if for all t € Ry, the equality and the inequality below hold:

o(t) = Ee(u(t)) + Su(t), (11.32)
(Ee(u(t), e(v) —e(u(t))q + (Su(t), e(v) —e(u(t)))q (11.33)
+(Pu(t),v —u(t))y > (f(t),v —u(t))y Vvel.

Using similar arguments with those used to prove the previous theorem we have got the
following result.

Theorem 11.2. [Theorem 4.2 in [10]] If Assumptions 11.2-11.5 and 11.7 hold true, then Prob-
lem 11.4 has a unique solution, which satisfies

u e C(R;U), occCR;Q). (11.34)

The proof of Theorem 11.2 was given in [10].
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11.2 A convergence result

Everywhere in this section we assume that the function p satisfies Assumption 11.2 and let g be
a function which satisfies the following assumption.

Assumption 11.8. ¢ : [g, +00) = R, is a given function such that:
There exists Ly > 0 |q(r1) — q(r2)| < Lg|ry — 2| for all ri, 79 > g.
(q(r1) —q(r2))(r1 —1re) >0 for all ry, r9 > g, r1 # 2.

q(g) = 0.

Let p > 0 and consider the function p, defined by

(r) = o L (11.35)
BT ey 4pte) i r> g |

Using Assumptions 11.2 and 11.8 it follows that the function p, satisfies:

(

pu . R — R+
There exists L,, > 0 such that
1Pu(r1) = pulra)| < Ly, |ri —ro|  for all v, ry € R.

(pu(r1) = pu(r2))(r1 —re) >0 for all rq, ro € R.

pu(r) =0 for all r <0.

This allows us to consider the operator P, : V' — V defined by
(Pu,v)y = / pu(uy)v,da for all u, v eV (11.36)
I's

We note that P, is a monotone, Lipschitz continuous operator.
We also consider the contact problem with normal compliance and infinite penetration when
the contact condition (11.6) is replaced with

-0, = pu(uy) on I'y x (0, 00). (11.37)

In this condition p represents a penalization parameter which may be interpreted as a deforma-
bility of the foundation, and then % is the surface stiffness coefficient. Indeed, when p is smaller
the reaction force of the foundation to penetration is larger and so the same force will result in
a smaller penetration, which means that the foundation is less deformable. When p is larger the
reaction force of the foundation to penetration is smaller, and so the foundation is less stiff and
more deformable.
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The variational formulation of the problem with normal compliance and finite penetration
associated to function p,, is as follows.

Problem 11.5. Find a displacement field w, : Ry — V and a stress field o, : Ry — Q such
that, for allt € Ry, the following equalities hold:

o,(t) =Ee(u,(t)) + /0 G(o,u(s),e(uu(s)))ds+ o9 — Ee(uy),
(0u(t),2(0)0 + (Pasy(t). v)y = (F(1),0)y  for all v € V.

It follows from Theorem 11.1 that Problem 11.5 has a unique solution (w,, o) which satisfies
(11.31). In addition, according to Theorem 11.2, Problem 11.4 has a unique solution (u, o) which
satisfies (11.34). The behavior of the solution (u,,o,) as yt — 0 is given in the following result.

Theorem 11.3. [Theorem 5.1 in [10]] If Assumptions 11.1-11.8 hold, then the solution (u,, o)
of Problem 11.5 converges to the solution (w,o) of Problem 11.4, that is

[wn(®) —u(@)llv + llou(t) —at)llq =0 (11.38)
as i — 0, for allt € R,.

For the proof of Theorem 11.3 we refer to [10].

In addition to the mathematical interest in the result above, this result is important from
the mechanical point of view, since it shows that the weak solution of the viscoplastic contact
problem with normal compliance and finite penetration may be approached as closely as one
wishes by the solution of the viscoplastic contact problem with normal compliance and infinite
penetration, with a sufficiently small deformability coefficient.

Remark 11.1. A numerical validation of this convergence result can be found in Section 6 of the
paper [10]. Fully discrete schemes for the numerical approzimation of the contact problems were
introduced and implemented. Finally, numerical simulations in the study of a two-dimensional
example were presented.



Chapter 12

Electro-elasto-viscoplastic contact
problems

This chapter is based on the paper [20]. We consider a mathematical model which describes
the quasistatic frictionless contact between a piezoelectric body and a foundation. The novelty
of the model consists in the fact that the foundation is assumed to be electrically conductive,
the material’s behavior is described with an electro-elastic-visco-plastic constitutive law, the
contact is modelled with normal compliance and finite penetration and the problem is studied
on unbounded time interval. We derive a variational formulation of the problem and prove
existence, uniqueness and regularity results.

12.1 The mechanical model

In this section we describe an electro-elastic-visco-plastic model in the following physical setting.
An electro-elasto-viscoplastic body occupies a bounded domain Q@ C R? (d = 1,2,3) with a
Lipschitz continuous boundary I'. The body is subject to the action of body forces of density f,
and volume electric charges of density go. The boundary of the body is subjected to mechanical
and electrical constraints. To describe the mechanical constraints we consider a partition of '
into three measurable parts I'y, I'y and I'3 such that meas(I'y) > 0. We assume that the body is
fixed on I'y and surface tractions of density f, act on I';. On I's, the body is in contact with an
electrically conductive obstacle. The contact is frictionless and is modelled with a version of the
normal compliance condition with finite penetration, which takes into account the conductivity
of the foundation. To describe the electrical constraints we consider a partition of I'; U I'y into
two measurable sets I', and I', such that meas(I',) > 0. We assume that the electrical potential
vanishes on I', and the surface electric charges of density ¢, are prescribed on I'y. Also, during
the process, there may be electrical charges on the part of the body which is in contact with the
foundation and which vanish when contact is lost. We assume that the problem is quasistatic,
and we study the problem in the interval of time R, = [0, 00).
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The classical formulation of the contact problem defined above, is as follows.

Problem 12.1. Find a displacement field u : Q x Ry — R%, a stress field o : Q x R, — S¢,
an electric potential field ¢ : Q x Ry — R, and an electric displacement field D : Q x R, — R?
such that

oc=Ae(u) —E'E($)+G(o,e(u),D,E(p)) in Qx(0,00), (12.1)
D = BE(¢) + Ee(u) + G(D, E(p),0,e(uw))  in Qx (0,00), (12.2)
Dive+ f,=0 in € x(0,00), (12.3)
divD = q in £ x(0,00), (12.4)
u=0 on T;x(0,00), (12.5)
ov=Ff, on Ty x (0,00), (12.6)
=0 on I,x(0,00), (12.7)
D-v=¢qg on TI},x(0,00), (12.8)
e 9, 0v ¥ bl = oripun) <0, on I's x (0,00), (12.9)
(U,/ - g)(alf + hu(SD - SOF)pV(ul/)) = 07
o, =0 on TI'3x(0,00), (12.10)
D v =p.(u,)he(p — ¢Fr) on I's x (0,00), (12.11)
u(0) = up, o(0) =00, ©(0) =y, D(0) =D, in S (12.12)

In order to simplify the notation, we do not indicate explicitly the dependence of various
functions on the variables € QU T and ¢ € R;. Equations (12.1) and (12.2) represent the
electro-elasto-viscoplastic constitutive law of the material. Equations (12.3) and (12.4) are the
equilibrium equations for the stress and the electric displacement fields, respectively. Conditions
(12.5) and (12.6) are the displacement and traction boundary conditions, and conditions (12.7)—
(12.8) represent the electric boundary conditions. Also, (12.12) represents the initial conditions
in which ug, o, o, and D denote the initial displacement, the initial stress, the initial electric
potential field and the initial electric displacement field, respectively.

We turn to the boundary conditions (12.9)—(12.11) which describe the mechanical and elec-
trical conditions on the potential contact surface I's; there, g > 0 is a given bound for the normal
displacement and ¢ denotes the electric potential of the foundation.

First, (12.9) represents the normal compliance contact condition with finite penetration in
which p, is a prescribed nonnegative function which vanishes when its argument is negative and
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h, is a positive function, the stiffness coefficient. Recall that this condition, first introduced in
[78] in the study of a purely mechanic contact problem, contains as particular cases both the
Signorini contact condition and the classical normal compliance contact condition described,
see for instance [59, 138]. We note that (12.9) shows that when there is no contact (i.e. when
u, < 0) then o, = 0 and, therefore, the normal pressure vanishes; when there is contact (i.e.
when u,, > 0) then 0, < 0 and, therefore, the reaction of the foundation is towards the body. The
function g represents the maximum interpenetration of body’s and foundations’s asperities. Note
also that the stiffness coefficient is assumed to depend on the difference between the potential
of the foundation and the body’s surface which is one of the novelties of the model.

Next, condition (12.10) shows that the tangential stress on the contact surface vanishes. We
use it here since we assume that the contact process is frictionless. An important extension
of the results in this paper would take into consideration frictional conditions on the contact
surface I's.

Finally, (12.11) is a regularized electrical contact condition on I's, similar to that used in
[8, 9, 90]. Here p. represents the electrical conductivity coefficient, which vanishes when its
argument is negative, and h, is a given function. Condition (12.11) shows that when there is no
contact at a point on the surface (i.e. when u, < 0), then the normal component of the electric
displacement field vanishes, and when there is contact (i.e. when u, > 0) then there may be
electrical charges which depend on the difference between the potential of the foundation and
the body’s surface. Note also that if the foundation is assumed to be insulated then there are
no charges on I's during the process and, therefore, D -v = 0 on I's x (0,00). This condition
can be recovered from (12.11) by taking p. = 0.

Note that in (12.1)—(12.12) the coupling between the mechanical unknowns (u, o) and the
electrical unknowns (¢, D) arises both in the constitutive equations (12.1)—(12.2) and the contact
conditions (12.9)—(12.11). This feature of the problem (12.1)-(12.12) is a consequence of the
assumption that the foundation is conductive. It represents one of the differences with respect
to the model treated in [60] and leads to additional mathematical difficulties.

12.2 Weak formulation and main results

In this section we discuss the weak solvability of the electro-elastic-visco-plastic model (12.1)-
(12.12). We assume that the elasticity tensor, the piezoelectric tensor and the electric permit-
tivity tensor satisfy the following conditions.

Assumption 12.1. A= (A;p): Q x S* — S%
Aijir = Apiij = Ajim € L=(Q), 1 <14,5,k,1 < d.
There exists my > 0 such that AT -7 > mu||T||> for all 7 €S¢, ae. in Q.

Assumption 12.2. & = (e;;) : Q@ x S — R%
Cijk = €ikj € LOO(Q), 1< 1,7, k<d.
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Assumption 12.3. 8= (§;;) : @ x R? = R%,
Bij = Bji € L=(Q), 1 <4,5 <d.
There exists mg > 0 such that BE - E > mg||E|* for all E € RY, a.e. x € Q.

Assumption 12.4. G:Q xS? x S% x RY x R? — S%.

There exists Lg > 0 such that

1G(x, 01,61, D1, E1) — G(x, 02,82, D2, Bs)|| < Lg (lo1 — 02| + [le1 — &2 + | D1 — Dy +
|E| — Esl|) for all 01,05,€1,60 €S, Dy, Dy, E|, E; € R, ae. x € Q.

The mapping © — G(x,0,e, D, E) is measurable on Q, for any 0,6 € S and D, E €
R¢.

The mapping « — G(x,0,0,0,0) belongs to Q.

Assumption 12.5. G :Q x R% x R? x §% x S — R9,

There exists Lg > 0 such that

|G(x, D1, E1,01,€1) — G(x, Dy, By, 03,63)|| < Lg (| D1 — D3| +||E1 — Es| + |loy — 02| +
ler — e2f])

for all D1,Dy,E,,Ey € R, 01,09,€1,65 €S?, ae. ¢ €.

The mapping « — G(x, D, E,0,€) is measurable on ), for any D, E € R? and o,¢ €
Se.

The mapping x — G(x,0,0,0,0) belongs to L?(2)<.

These assumptions are reasonable from physical point of view, see for instance [45, 59, 73,
138, 150]. In some applications, G and G are linear functions.
The functions p, and h,. (for r = v, €) are such that the following assumptions hold true.

Assumption 12.6. p,:I's x R — R.
There exists L, > 0 such that
|pr (2, u1) — pr(@, ug)| < Ly|ug —ug| for all up, uy € R, a.e. x € T's.
There exists p, > 0 such that 0 < p.(x,u) <p, forall u e R, a.e x € I};.
The mapping x — p,.(x,u) is measurable on I's, for any u € R.
pr(x,u) =0 forall u<0, ae x €l

Assumption 12.7. h, :I's xR — R.
There exists [, > 0 such that
| (22, 1) — hr_(a:, ©2)| < l|1 — ol for all P1, P2 € R, ae. x €T}5.
There exists h, > 0 such that 0 < h,(x,p) < h, for all p € R, a.e. x € I's.
There exists he > 0 such that |he(x, )| < he for all p € R, ae. x € Ts.
The mapping @ +— h,.(x,u) is measurable on I's, for any ¢ € R.

We also assume that the bound of the normal displacement and the electrical potential of
the foundation are as follows.
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Assumption 12.8. g € L*(T'3), g >0 a.e. on I's.
Assumption 12.9. pp € L*(T'3).

Moreover, the density of the body forces and tractions, the volume and surface electric charge
densities have the following regularity.

Assumption 12.10. f, € C(Ry; L*(Q)%), f, € C(Ry; L*(Ty)%),

Assumption 12.11. ¢y € C(R;; L*(Q)), ¢ € C(Ry; L*(Ty)).
Finally, the initial data satisfy the following assumptions.

Assumption 12.12. uqg € U, o€ Qq,

Assumption 12.13. ¢y € W, Dy e W;.
Notice that U denotes the set of admissible displacements defined by

U={veV:v,<gonly}. (12.13)

Alternatively, we assume that there exists p € [1, 00| such that

Assumption 12.14. f, € W P(Ry; L2(Q)Y),  f, € WEP(R,; L2 (T9)?),

Assumption 12.15. ¢y € WL (R,; L2(Q)), g, € WP (Ry; LA(T)).

Besides Assumptions 12.12-12.13, the initial data satisfy the following compatibility condi-
tions:

Assumption 12.16. (o, e(v) —e(ug))g+ o (o, wo, v—ug) > (f(0),v—uo)y  for all v e U,
(DOJ V¢)L2(Q)d + (Q<O>7 ¢>W = Je<u07 o, w) fOT all 1/} ew.

Here and below J, : W xV xV — Rand J. : V x W x W — R denote the functionals given by

Ju(p,u,v) —/F hu (o = ¢r)py(u,)v, da (12.14)
Je(u, ¢, 9) —/F Pe(tn)he(p — p) da, (12.15)

forallu, veV, o, e W.
We consider the functions f : R, — V and ¢ : R, — W defined by

(f(t),v)vz/ﬂfo(t)-vdan [ fut)-vda foralveV.teR., (1210

(q(), ) = /qu(tw dx—/ wbda  forall ¥ € W, t e R,. (12.17)

Iy

We have the following variational formulation of Problem 12.1.
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Problem 12.2. Find a displacement field uw : R, — U, a stress field o : Ry — @)1, an electric
potential field p : R, — W and an electric displacement field D : R, — W, such that

o(t) = Ae(u(t)) — / G(o u(s)), D(s), E(g(s))) ds (12.18)
+0'0—./4€(’U,0)+5 E SDO
D(t) = BE(p(t)) + Ee(u / G(D (p(s)),0(s),e(u(s)))ds (12.19)

+D, — 5E(900) Ee(uyo)
and

(a(t),e(v) —e(u(t))q + Ju(p(t), ult), v) = J(p(t), u(t), u(t)) (12.20)
> (f(t),v —u(t))y foral vel,

(D(t)a Vw)LQ(Q)d + (Q(t)v 7wb)W = Je(u(t>7 @(t)v w) fO?“ all ¢ € VV, (12'21)

forallt € Ry.

We consider the spaces X =V x W, Y = Q x L?(Q)4, together with the canonical inner
products (-, +)x, (+,-)y and the associated norms || - ||x, || - ||v, respectively. In addition, for the
convenience of the reader we shall use the short hand notation

g:(u, p,0,D) =G (Ae(u) - E"E(p) + 0,¢(u), E(p), BE(p) + £€(u) + D),
G(u,p,0,D) =G (BE(p) — Ee(u) + D, E(p),e(u), Ae(u) — EXE(p) + o).

Lemma 12.1. [Lemma 5.1 in [20]] For all (u,p) € C(Ry; X) there exists a unique couple of
functions (' (u, @), D (u,p)) € CYR,;Y) such that, for all t € Ry, the following equalities
hold:

—/0 g(u(s),cp(s),O'I(u,go)(s),DI(u,cp)(s))ds (12.22)
+oo — Ae(ug) + E E(po),
:/0 G(u(s), o(s), o' (u, 0)(s), D' (u,¢)(s)) ds (12.23)

+Do — BE(po) — Ee(uo).
Lemma 12.1 allows us to consider the operator S : C(R,, X) — C' (R,,Y) defined by
S(CL’) = (UI(U’7 (10)7 _DI(’U” 90)) Vo= (’U,, 90) S O(R+7 X) (1224)

Moreover, it leads to the following equivalence result.
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Lemma 12.2. [Lemma 5.2 in [20]] A quadruple of functions (u,o, D, ) which satisfy u €
C(Ry;U), 0 € C(Ry;Q1), p € C(Ry; W), D e C(Ri; W) is a solution of Problem 12.2 if and
only if

o(t) = Ae(u(t)) + EVo(t) + ( ©)(t), (12.25)
D(t) = —BVy(t) + Ee(u(t)) + D! (u, p)(t), (12.26)
(Ae(u(t)),e(v) —e(u(t)))q + (E"Ve(l),e(v) — e(u(t)))q (12.27)

o (. 0) (1) £(0) — e(u(t)g + (o(1). u(t).v) — J, (p(). ult), u(t)

> (F(t)w —u(t)y Yvel
(BYo(t), Vo) 2y — (E(u(t)), Vi) poaps — (D' (w, 9) (8, V) oy (1228)
I (u(t), (). 4) = (at) D VW,

forallt e Ry.

To proceed, we consider the set K = U x W, the operator A : X — X, the functionals
p: Y xX —=Randj: X x X — R, and the function f : R, — X defined by

(Az,y)x = (Ae(u),e(v))q + (£'Vp,e(v))q (12.29)
—(Ee(u), V) 2ya + (BV 0, V) 12(q)a

p(z,x) = (0,e(u)q + (D, Vo) r20)a, (12.30)

i(z,y) = J(e,u,v) + Je(u, @, 1), (12.31)

f=(f:q), (12.32)

for all x = (u, ¢), y = (v,9) € X and z = (o, D) € Y. Note that the definition of the operator
A follows by using Riesz’s representation theorem.
The next step is provided by the following result.

Lemma 12.3. [Lemma 5.8 in [20]] Let t € Ry, u € C(R,U), ¢ € C(Ry, W) and denote

r=(u,p) € C(Ry,K). Then (12.27)—(12.28) hold if and only if x(t) satisfies the inequality
(Az(t),y — x(t))x + (S2(t),y) — (S (1), (1)) (12.33)

+i(@(t),y) = j(=(t), (1) = (f(8), (1) —y)x Vye K.

We continue with the following existence and uniqueness result.

Lemma 12.4. [Lemma 5.4 in [20]] There exists Ly > 0 which depends on 2, T'y, T's, A and 3
such that there ezists a unique function v € C(R,, K) which satisfies the inequality (12.33) for
allt € Ry, if hyLy, + heL. +p,l, + Pl < Lo.

Based on these preliminaries steps, we have got the following results in the study of Problem
12.2.
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Theorem 12.1. [Theorem 4.1 in [20]] If Assumptions 12.1-12.13 hold true, then there exists
Lo > 0 which depends on 2, I't, I's, A and 3 such that Problem 12.2 has a unique solution, if

hyLy, +heLe + D0, + Dl < Lo. (12.34)
Moreover, the solution satisfies
u € C(R,;U), oeCRy;Q1), ¢eCRyW), DeC(R;W. (12.35)

Theorem 12.2. [Theorem 4.2 in [20]] If the inequality (12.34) and Assumptions 12.1-12.13 hold
true, denoting by (u, o, p, D) the solution of Problem 12.2 obtained in Theorem 12.1, then:
1) Under Assumptions 12.14-12.15, the solution has the reqularity
u e WrP(R;U), o € WEP(R:Q1), v € WP(Ry; W), D€ WEP(R, W) (12.36)

loc loc loc loc

and the following equalities hold, for almost anyt € Ry :

o (t) = Ae(u(t)) — E"E(p(t) + G(o (1), e(u(t), D(t), E(e(1))), (12.37)
D(t) = BE(&(t)) + Ee(u(t)) + G(D(t), E(o(t)), o (1), e(u(1))). (12.38)

2) Under Assumption 12.16, the solution satisfies the initial conditions

u(0) = ug, o(0) =00, ©(0) =y, D(0) = D,. (12.39)

A quadruple of functions (u, o, ¢, D) which satisfies (12.18)—(12.21) for all ¢t € R is called
a weak solution to the piezoelectric contact Problem 12.1. We conclude that Theorem 12.1
provides the unique weak solvability of Problem 12.1 and Theorem 12.2 provides a regularity
result of its weak solution.

Note that condition (12.34) represents a smallness assumption on the functions involved in
the boundary conditions of Problem 12.1. It is satisfied if, for instance, either the quantities p,,,
hy, Doy he, or the quantities L,, L, l,, l. are small enough. And, this means that either the
range of the functions p,, pe, h,, he, or the range of their derivatives with respect the second
variable (which exists, a.e.), is small enough. We conclude that the result in Theorem 12.1 works
in the case when either the normal compliance function, the stiffness coefficient, the electrical
conductivity coefficient and the electric charge function are small enough, or their variation is
small enough.

The proofs of Theorems 12.1 and 12.2, given in [20], are based on the abstract result, Theorem
10.2.
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Chapter 13

Further research directions

The overall goal is to improve the understanding of real-world problems governed by Partial
Differential Equations. The mathematical modeling via partial differential equations is founda-
tional to the field of mechanical engineering; it provides necessary information for efficient design
of technical systems. In particular, the contact models are used to analyze and test complex
industrial systems. Since it is not possible to find strong solutions for complex problems, a good
alternative is the weak solvability which allows to built efficient numerical approximations for
the weak solutions. This is a motivation for the candidate to continue to do research on the
direction of calculus of variations with applications in contact mechanics.

The most relevant further research directions envisaged from the candidate are the following:

e Qualitative and numerical analysis in the study of mized variational problems The candi-
date intend to improve and extend the results in the papers [11, 68, 69, 70, 98, 99, 100, 101,
104, 105, 107, 111, 113]. Delivering uniqueness/multiplicity results, is one of the targets;
the following references can be helpful, [33, 120]. How we can approximate the solutions is
also of great interest. Regularization or perturbation techniques are envisaged. Also the
candidate is interested to the solvability of a class of mixed variational problems via hemi-
variational inequalities theory. The notion of hemivariational inequality was introduced in
[128] based on the properties of generalized gradient introduced and studied in [37, 38].
During the last two decades, a large number of works were devoted to the hemivariational
inequalities theory related to contact models; for a contribution of the candidate in the
field see the papers [4, 40, 41]. One target of the candidate is to extend and improve the
results obtained in the paper [107], by replacing into the mixed variational system the
variational inequality with a hemivariational inequality. Such a study allows to investigate
contact models with non-convex potentials via calculus of variations with Lagrange mul-
tipliers. The analysis of contact problems with adhesion or damage, via mixed variational
formulations, is also under attention; the following references can be helpful [140, 141, 142].

e Qualitative and numerical analysis in the study of variational systems via bipotentials The
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candidate intends to improve and extend the results in [102, 106, 108] to more com-
plex variational systems via bipotentials (possibly non-separated). In particular time-
dependent /evolutionary models are envisaged. Numerical algorithms are also of interest
for the candidate.

Variational formulations/ weak solutions via weighted Sobolev spaces in contact mechanics
A first step was already done, see [19]; see also [56, 89] for some fundamental mathematical
tools. The next steps will be related to the weak solvability of complex contact models for
various kind of materials; e.g. piezoelectric problems with singularities and degeneracies
(the following references can be helpful: [6, 9, 14, 17, 58, 60, 90, 123]).

Variational formulations/ weak solutions via Lebesgue spaces with variable exponent, in
contact mechanics A first step was made in [21] for regularized antiplane contact problems
governed by nonlinearly elastic materials of Henky type. The candidate intends to improve
and extends the previous study to the non-regularized case. Also, the study of a class of
non-newtonian fluids is of interest for the candidate. The references [47, 51, 52, 53, 54, 86]
can be useful.

Variational formulations/ weak solutions in contact mechanics, for materials with dry
porosity. The study of the behavior of non-classical materials (like materials with voids,
porous materials with dry porosity) is a challenging topic. To start, the candidate intends
to consult the following works [34, 35, 43, 71, 77, 126]. In the future the candidate envis-
ages to investigate the behavior of poro-therm materials, such a study being motivated by
the large applicability of such kind of materials.

Optimal control problems in contact mechanics For the optimal control of variational in-
equalities we can refer for instance to [12, 18, 55, 91, 118, 119, 149]. Moreover, the recent
book [125] is devoted to the optimal control of linear or nonlinear elliptic problems, includ-
ing variational inequalities. Despite their mechanical relevance, optimal control problems
for contact models are not so frequent in the literature, the contact problems being strongly
nonlinear problems. The main aim of the candidate is to study optimal control problems
which consists of leading the stress tensor as close as possible to a given target, by acting
with a control on the boundary of the body. In the paper [103] a first step was already
done. Moreover, the candidate intends to study the optimal control for abstract variational
problems related to contact models, such as variational problems with Lagrange multipliers
and variational systems via bipotentials.

Mathematical study for dissipative dynamic contact problems At this item, the main interest
lies in existence and uniqueness results for dynamic contact problems in elasticity, which
are dissipative. To give an example, we can consider a rod which is connected to a dashpot
at its left end and, at its right end it can come in contact with an obstacle; the obstacle
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can be deformable (in such a case we have to use a normal compliance contact condition)
or rigid ( in this case we have to use the unilateral Signorini’s contact condition. The
techniques in the paper [82] and the references therein can be helpful. A first step was
already done, see the conference paper [46].

Asymptotic analysis in contact mechanics We can found in the literature some stability
results for displacement-traction problems, see for example [73]; but not for contact prob-
lems. Due to their nonlinearity, the contact problems are difficult to be investigated from
the point of view of the asymptotic analysis. However there are some premises. For in-
stance, the papers [10, 20, 144, 146] were devoted to the existence and the uniqueness of
the solution of a class of contact problems on the unbounded time interval [0, c0). Using
the weak solutions at all moments t € [0, 00), one idea is to define a dynamical system, to
seek for it the equilibrium points and to use a technique via Lyapunov functionals in order
to study the asymptotic behavior.

Regularity results There are very few regularity results for contact problems. The field
is wide open and progress is likely to be slow. Let us give an example of a regularity
result we focus on. It is known that in the mixed variational approach, the weak solutions
of contact problems are pairs (u,\), A € D where D is a dual space, see e.g. D = 5,
S = {y|r,|v € HY(Q), yv = 0 a.e. on I';} in Section 2.2 of the present manuscript.
However, the numerical analysis requires L?(T'3)-regularity for A and, currently, this is an
open problem. The techniques in the book [49] and the references therein can be helpful.

Convergence results Using similar techniques with those used in [11], the candidate intends
to investigate the convergence of the solutions of some regularized or perturbed problem
to the solution of the originate problem.

Viscoelastic problems via fractional differential operators Fractional order operators are
suitable to model memory effects of various materials and systems of technical interest. In
particular, they can help to model viscoelastic materials, see e.g. [7, 31]. We also refer to
[2] for an efficient numerical method to integrate the constitutive law of fractional order
viscoelasticity. The fractional order derivatives were used to conceive a new component
spring-pot that interpolates between pure elastic and viscous behaviors. In [44] the authors
modified a standard linear solid model replacing a dashpot with a spring-pot of order «;
the fractional model was tested in human arterial segments. The candidate intends to
explore the weak formulations/weak solvability for spring-pot models.

More general, the candidate will focus on fractional calculus of variations, including weak
solutions of fractional partial differential equations. This topic began to be developed start-
ing with 1996 in order to better describe non-conservative mechanical systems. Currently,
the list of applications includes material sciences and mechanics of fractal and complex
media, see e.g. [32, 93, 94], just to mention a few.
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Let us pick up a few open problems.

e In Section 7.1 it was discussed the following abstract problem: given f € X, find (u, \) €
X x Y such that A € A CY and

J() = J(u) +b(v —u, \) + (A, v) — j(\ u)
b(u, pp— N)

(fyv—u)x  forall veX,

>
< 0 for all € A.

According to Theorem 7.2, this problem has a solution, unique in its first argument.

Let us draw the attention on a few points of interest.

1. Under the assumptions made in Section 7.1 the uniqueness/the multiplicity of the
solution in the second argument is an open question.

2. Let us focus on Assumptions 6.20 and 7.1 in the present manuscript; herein J : X —
[0,00) is a Gateaux differentiable functional and for all n € A, j(n,-) : X — [0,00) is
a convex Gateaux differentiable functional. The approach adopted in previous work
essentially relies on this two hypotheses. The proof of the existence of the solutions
(u, \) for a non-differential functional J and a non-differential, in the second argument,
bifunctional j is of great interest from the mathematical point of view as well as
from the applications point of view, such a mathematical problem being connected
to more complex models with a better physical significance. The uniqueness/the
multiplicity of the solution in the second argument in a "non-differential framework”
is also interesting.

3. to write an efficient approximating algorithm is also an unsolved problem at this

moment.

e In Subsection 5.1.2 it was formulated the following mixed problem: find (u, ¢, A) € X x
Y x A such that

a(u,v) +e(v,p) +b(v,\) = (f,v)x, veX,
c(p,¥) —e(u, ) + i\ p, ) = (¢ ¥)v, P ey,
b(“’a n—= )‘) § 07 1% € A.

This variational formulation correspond to a frictionless unilateral contact model for electro-
elastic material. Let us mention a few points of interest here:
1. a better regularity of \ (L*regularity)

2. to consider the frictional case; in this case existence, uniqueness, stability results are
expected and a numerical approach is also envisaged.
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e In Part II of the present manuscript we discussed the weak solvability for a class of contact
problems via bipotentials theory. The following two variational problems were formulated.

(1) Find w € Uy CV and o € A C L?(2)3*3 such that
b(v,o) —b(u,o) > (f,v—u)y forallvel
b(u, ) —b(u, o) >0 for all p € A,
see Problem 8.2, and
(2) Find w € V and o € A C L%(Q)**? such that
b(v,0) —blu,o)+ j(v)—ju) > (f,v—u)y forallveV
b(u, ) —b(u,o) >0 for all p € A,
see Problem 9.2 in the present manuscript.
To solve such kind of variational problems in an abstract framework for ”non-separated”

forms b is of great interest in the next period.

e In Section 12.1 it was discussed the following model: find a displacement field u : Q@ xR, —
R?, a stress field o : Q x R. — S? an electric potential field ¢ : @ x R, — R, and an
electric displacement field D : Q x R, — R? such that

o =Ae(u) — E'E(¢)+G(o,e(u), D, E(p)) in Qx(0,00),
D = BE(p) + (i) + G(D,E(p),0,e(u)) in  Qx(0,00),

Dive+ f,=0 in Qx(0,00),
divD=¢qy, in € x(0,00),

u=0 on I x(0,00),

ov=yf, on Iyx(0,00),

=0 on I,x(0,00),
D-v=¢qg, on TI},x(0,00),

uy < g, 0y + hy( — op)pu(u) <0, on Ts x (0,00)
(uy = 9)(o0 + hu (@ — pr)pu(uy)) = 0,
o.=0 on TI'3x(0,00),
D v = p.(u,)he(¢ — ¢F) on I's x (0,00),
u(0) = up, o(0) = ag, ¢(0) = ¢y, D(0) = D in Q.
We emphasize that this is a frictionless problem. To study the frictional case is an inter-

esting continuation of the present work.
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e In Chapter 1 of the present thesis (Subsections 1.1.2 and 1.2.3), a priori error estimates
were presented for a class of piezoelectric contact problems, see [69, 68| for details; also,
in [69, 68|, efficient algorithms to approximate the weak solutions were described. Such
kind of results are welcome in order to continue the study of the generalized saddle point
problems described in Chapters 2-7 of the present manuscript, firstly for the stationary
problems and nextly for the time-dependent or evolutionary problems.

e In the paper [4] it was studied the following mathematical model: find u, ¢ : Q — R such
that

(

div (u(@)Vu(z) + e(z) V() + fo(z) = 0 in Q,
div (e(z)Vu(z) — B(z)Vo(z)) = go(T) in €,
u(x) =0 on Iy,

) 1 p(x) =0 on Iy,
n(x)d,u(x) + e(x)0,p(x) = f2() on I'y,
e(x)yu(x) — B(x)0yp(x) = qp(x) on I',
—p(x)dyu(x) — e(w)yp(x) € h(z, u(x))0j(x, u(x)) onTs,
e(z)d,u(x) — B(x)dyp(x) € dp(x, p(x) — r(x))  onTs.

\

This model describes the antiplane shear deformation of a piezoelectric cylinder in fric-
tional contact with a conductive foundation. The study was made under the following
assumptions.

(H1): p e L>™(Q), B € L*(Q), e e L>*(). There exist §*, u* € R such that
B(x) > f* >0 and pu(x) > p* > 0 almost everywhere in €.

(H2): fo € L*(Q), q € L*(Q), foe L*(Iy), g¢pe€ L*(T'p), ¢re€ L>(T3).

(H3): h:T3 xR — R is a Carathéodory function (i.e. h(-,t) : I's — R is measurable,
for all t € R, and h(x, ) : R — R is continuous, a.e. on I's). There exists a positive
constant hg such that 0 < h(x,t) < ho, for all t € R, a.e. on I's.

(H4): j:I's xR — R is a function which is measurable with respect to the first variable,
and there exists k& € L?*(I'3) such that a.e. on I'; and for all ¢1,t, € R we have

(@, t1) — j(z, t2)| < k(zx)|t: — taf.

(H5): ¢ :T's x R — R is a functional such that ¢(-,¢) : I's — R is measurable for each
t € R and ¢p(x, ) : R — R is convex and lower semicontinuous a.e. on I's.
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Theorem 13.1 (Theorem 2 in [4]). Assume conditions (H1)-(H5) are fulfilled. Then
there ezists at least one weak solution for problem (P ).

An interesting continuation of the previous work is related to the case of piezoelectric
materials having some ”perfect” insulators or ” perfect” conductors points. Such anisotropic
media lead to degenerate and singular mathematical problems. Notice that the presence of
some " perfect” insulators or ”perfect” conductors points imposes, from the mathematical
point of view, some changes in the hypothesis (H1). In particular, we have to assume that
infg 8 = 0, supg 8 = co. Solving such a problem is an open question.

e In [103] the optimal control for an antiplane model it was investigated. Let us sketch
below the framework and the results. Let Q C R? be an open, bounded, connected set,
with Lipschitz continuous boundary I' partitioned in three measurable parts I'y, I'y, T'3
such that the Lebesgue measures of IT'; is strictly positive, for each i € {1,2,3}.

We consider the following mechanical problem: find a displacement field u :  — R such
that

div (u(z) Vu(z)) + folx) = 0 in Q, (13.1)
u(z) = 0 on I'y, (13.2)
plx)ou(z) = falx) on I'y, (13.3)

on I's. (13.4)
() Byu(z) = —g(o, [u(@)]) 12 it u(w) £0
Let us assume that

e L®(Q), wplx)>p">0ae in Q,u" big enough, (13.5)
fo € L*(Q), fo€ L*(Ty), (13.6)
g:T's x Ry — R, such that there exists Ly, > 0: (13.7)
lg(z,7m1) — g(z,12)| < Ly |ry —re| Vi, ro € Ry, ae. x € I; (13.8)
the mapping x +— g(z, r) is Lebesgue measurable on I's, Vr € R,;  (13.9)
the mapping « — g(z,0) belongs to L*(I's). (13.10)

Furthermore, we consider the Hilbert space

V={ve H(Q)|yv=0aeonT i}
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We are led to the following weak formulation of the problem (13.1)-(13.4): Given fy €
L*(Q) and fo € L*(Ty), find uw € V such that

(Au,v — )y + j(u,0) — j(uw) = (fv—u)y Vo eV, (13.11)
where
AV SV (Auwv)y = /g)u(x)Vu(x) Vo(z)dz Yu,veV, (13.12)
SV XV SR v) = /Fgg(x, (@) (@) ds  Yu, v eV, (13.13)
(. 0)y = /Q f@) ) e+ [ ftr) o dr voev (13.14)

Theorem 13.2. [Theorem 3.6 in [103]] Assume (13.5), (13.6) and (13.7). Then, the
problem (13.11) has a unique solution w € V' which depends Lipschitz continuously on f.

For a fixed function fy € L*(€2), we consider the following state problem.

(PS1) Let fo € L*(T'y) (called control) be given. Find uw € V' such that

(Au,v —w)y +j(u,v) = j(u,u) = / Jo(w) (v(z) —u(z)) de
° (13.15)
+ A fo(z)(yv(x) — yu(x))dl' YoveV.

For every control f, € L?*(T'y), the state problem (PS1) has a unique solution u € V,
u = u(fa).

Now, we would like to act a control on I's such that the resulting stress o be as close as
possible to a given target

aud
0 0 —
2 gwl
Uq
= 0 0 —_=
7d a 3:1:2
8ud 6ud 0
a 8[)31 H 81'2

where uy is a given function. Note that, since
lo = oall ey = V2l (1 — w0l 2@y < V2plzenllu — wally,

o and o, will be close one from another if the difference between the functions v and uy
is small in the sense of V—norm. To give an example of a target of interest, ugy, we can
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consider uy = 0. In this situation, by acting a control f; on I's, the tension o is small in
the sense of L?— norm, even if f, don’t vanishes in €.

Let a, B > 0 be two positive constants and let us define the following functional

8}
L:L2(0) %V 5B Lifow) = Su—udd+ D olagy.  (13.16)

Furthermore, we denote
Vaa = {[u, fo] | [u, fo] € V x L*(T3), such that (13.15) is verified}
and we introduce the following optimal control problem,

(POC1) Find [u*, f§] € Vaa such that L(f;,u*) = min {L(fg,u)}.
[uva]evad

Theorem 13.3. [Theorem 3.7 in [103]] Assume (13.5), (13.6), (13.7). Then, (POC1) has
at least one solution (u*, f).

Let p > 0. We define a functional j, : V' x V' — R as follows,
o, v) = / 9w, U@+ 2 = p) (@) + 2 = p)dl Vu,veV.  (13.17)
I's

Let us state the following problem: Given p > 0, fo € L*(Q) and fy € L*(T'y), find the
displacement field u? € V' such that

(Au’, v = uP)y + jp(u, v) = Jp(u’, u”) = / fo(x) (v(z) —w’(2)) dx
@ (13.18)
—|—/F fo(z)(yv(z) — yul(x))dl Vo e V.

Theorem 13.4. [Theorem in 4.11 [103]] Assume (13.5), (13.6), (13.7). Then, problem
(13.18) has a unique solution u? € V which depends Lipschitz continuously on f.

Let us fix p > 0 and fy € L?(Q). We introduce the following regularized problem
(PS2) Let f, € L*(T'y) (called control). Find w € V such that

(Au,v — w)y + jp(u,v) = jplu,u) > (fo,v — ) r2() (13.19)
Hfo W = )rawy) VU EV |

Let us define the following admissible set,

Ve ={[u, fa] | [u, fo] € V x L*(Ty), such that (13.19) is verified}.

(POC2) Find [a, fo] € V", such that L(fy,@) = min {L(fg,u)}.

[uva}Evgd
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Theorem 13.5 (Theorem 4.13 in [103]). Assume (13.5), (13.6), (13.7). Then, (POC2)
has at least one solution (u, fa).

Let us replace the hypotheses (b) and (d) in (13.7), with the following stronger ones,
g(z,-) € Ct ae. x €T,
Org(, )

there exists M > 0 : |g(z,7)| < M Vr e Ry, a.e. xz €T;.

there exists L, > 0 : <L,VreR,, aexels, (13.20)

Theorem 13.6. (Optimality condition)[Theorem 4.14 in [103]] Any optimal control fo of
the state problem (PS2) verifies

1

f2 Bv(p(fz)), (13.21)
where p(fz) is the unique solution of the variational equation
a( —ug, w)y = (p(f2), Aw + Dyjp(@, Ww)y  Yw €V, (13.22)
and, for allv €V,
2 - (va(z))?
(Dagp(w, wyw, v)y = - Oag(, \/ (vu())? + p* — p)mvw(ﬂﬁ)w(%)df

= p
—l—/gac, yu(x))? + p? — p)— ~yw(x)yv(z)dl,
[ oo /G sy e e R
u = u(fy) being the solution of (PS2) with fy = f,.
Under the hypotheses (13.5), (13.6), (a) and (c) of (13.7) and (13.20), we have two con-

vergence results.
Theorem 13.7. [Theorem 5.16 in [103]] Let p > 0, fo € L*(Q) and fo € L*(T3) be given.
If u?; uw € V are the solutions of problems (PS2) and (PS1), respectively, then,
u’ —uinV as p — 0. (13.23)
Theorem 13.8. [Theorem 5.17 in [103]] Let [a?, f5”] be a solution of the problem (POC2).
Then, there ezists a solution of the problem (POC1), [u*, f3] , such that
u’ —=u"inV as p—0,

_ 13.24
f2 — f5 in L*(T'y) as p — 0. ( )

Following such a technique, the following questions are under attention in the future:

1. an extension of this study to the general case 3D;

2. to study the optimal control for 3D models taking into account various contact con-
ditions; to start, a contact condition with normal compliance is envisaged.



Chapter 14

Further plans

14.1 On the scientific and professional career

After obtaining the Ph.D. degree in Mathematics, the candidate published in internationally
recognized journals such as SIAM Journal on Scientific Computing, Zeitschrift fiir Angewandte
Mathematik und Mechanik, Nonlinear Analysis -Theory, Methods and Applications, Nonlinear
Analysis: Real World Applications, Journal of Mathematical Analysis and Applications, Math-
ematics and Mechanics of Solids, Communications on Pure and Applied Analysis, Journal of
Global Optimization, Proceedings of The Royal Society of Edinburgh, Section: A Mathematics,
The Quarterly Journal of Mechanics and Applied Mathematics, European Journal of Applied
Mathematics, The Australian and New Zealand Industrial and Applied Mathematical Journal,
Acta Applicandae Mathematicae, Quarterly of Applied Mathematics, Advanced Nonlinear Stud-
ies. In the future the candidate intends to do a research activity allowing to continue to publish
in international journals of hight level.

The dissemination of the results is also under attention. During the years the candidate
attended several international conferences. In the future the candidate intend to participate to
prestigious international meetings in order to disseminate the best results. Also the candidate
intends to be involved in the organization of scientific meetings.

The research activity of the candidate was realized mainly at the Department of Mathematics
of the University of Craiova, where the author has a permanent position, but also at some De-
partments of Mathematics from other universities in Europe: Stuttgart University, Technische
University of Munchen, University of Perpignan, where the candidate has had research collabo-
rations concretized in the publication of some scientific papers with colleagues from abroad. In
the future the candidate wishes to continue the collaborations started in the past and to establish
new contacts.

In recent years the candidate was reviewer at several journals. In the future the candidate
intends to extend the editorial activities for scientific journals.

The candidate intend to apply for national/international/interdisciplinary research projects
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as manager or member of teams. A few steps were already made: director of a GRANT PN-
I[I-RU-TE CNCS-UEFISCDI; responsible of the Romanian side for a French-Romanian research
project LEA Math Mode CNRS-IMAR; member of several teams for national, international or
interdisciplinary research projects.

14.2 On the academical career

The teaching activities of the candidate were realized at the University of Craiova where along
the years his activity has concretized in teaching seminars or courses on different topics: Theo-
retical Mechanics (seminar); Real Analysis (seminar); PDE’s (seminar); Applied Nonlinear Anal-
ysis (course and seminar for MASTER); Control Theory (course and seminar for MASTER),
Mathematical Modeling by Differential Equations (course and laboratory for MASTER), Math-
ematical Modeling in Contact Mechanics (course and seminar for MASTER); Singular Problems
in Mathematical Physics (course and seminar for MASTER), Special Chapters of PDE’s (course
and seminar), Evolution Equations (course and seminar for MASTER), Numerical Analysis for
PDE’s (laborator for MASTER), etc. The candidate was co-author of two monographs pub-
lished at Springer and Cambridge University Press. These monographs can be found in several
libraries such as: Cornell University Library, McGill University Library, Stanford University,
Mathematics and Statistics Library, The University of Arizona, Denver University Libraries,
UCLA Library (University of California, Los Angeles Library), The University of Manchester,
University of Colorado, Eastern Michigan University Library, to give a few examples. In the
future, the candidate plans to publish Lecture Notes and new monographs addressed to students
or researchers.

During the last 10 years the candidate advised several bachelor’s degree or dissertation theses;
also, in recent years the candidate has collaborated with PH.D. students who became co-authors
and collaborators of the candidate (Ionica Andrei, Maria-Magdalena Boureanu, Raluca Ciurcea,
Nicugor Costea). By obtaining this habilitation the candidate plans to extend her advising
activity to Ph.D. theses.
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