Dan Coman: Stable algebras of entire functions

Abstract: Two entire functions f and g on \mathbb{C}^n are algebraically dependent over \mathbb{C} if there is a non-zero polynomial P in $\mathbb{C}[x, y]$ such that P(f, g) = 0. It is easy to show that in this case there exists an entire function h so that $f, g \in \mathbb{C}[h]$ or $f, g \in \mathbb{C}[e^h, e^{-h}]$. A similar description holds in the case when f, g are meromorphic on \mathbb{C}^n .

The problem of characterizing when entire functions f, g are algebraically dependent over the ring \mathcal{P}^n of polynomials on \mathbb{C}^n seems difficult. The simple dependence relation $P(f,g) = P_1(f)g + P_0(f) = 0$, $P_1, P_0 \in \mathcal{P}^n[x]$, leads to the question of when the ratio $P_0(f)/P_1(f)$ is entire.

In general, a subalgebra \mathcal{B} of an algebra \mathcal{A} is called *stable in* \mathcal{A} if $g, h \in \mathcal{B}$ and $h/g \in \mathcal{A}$ imply that $h/g \in \mathcal{B}$. Let \mathcal{A} be the algebra of meromorphic functions on \mathbb{C}^n which have algebraic polar variety, $\mathcal{R}^n \subset \mathcal{A}$ be the field of rational functions, and $\mathcal{B} = \mathcal{R}^n[f]$, where f is an entire function of finite order on \mathbb{C}^n . We show that either \mathcal{B} is stable in \mathcal{A} or $f = q_1 e^p + q_2$, where $p \in \mathcal{P}^n$ and $q_1, q_2 \in \mathcal{R}^n$. In the latter case, the algebra $\mathcal{R}^n[e^p, e^{-p}]$ is stable in \mathcal{A} .

The results are joint with Evgeny Poletsky.