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Abstract

Simplicial multicomplexes are a very natural generalization of simplicial com-
plexes. Indeed, instead to see a simplicial complex as a subset ∆ ⊂ P([n]) we can
think ∆ as a subset of vectors in {0, 1}n, which satisfy the property: (∗) For any
F ∈ ∆ and any G ∈ {0, 1}n such that G ≤ F it follows that G ∈ ∆. Nothing can
stop us to consider subsets Γ ⊂ Nn which have the property (∗). Such a set is called
a simplicial multicomplex.

In this paper I will focus on the case of finite multicomplexes. More precisely, I
will exploit the relation between a monomial ideal (which will correspond to a finite
multicomplex) and its polarized ideal (which will correspond to a simplicial com-
plex). Using this connexion, we can extend many construction and definitions in the
category of simplicial complexes to the category of finite simplicial multicomplexes,
as: homology, shellability, duality theories etc.

In the first section I introduce the main definitions and constructions of multi-
complexes. In the second section, I present what I understand by a homology theory
of multicomplexes. In the third section I extend the notion of shellability for sim-
plicial multicomplexes and I prove a criterion of shellability (similar to the case of
simplicial complexes) which allows us to see the duality with the case of ideals with
linear quotients. This observation give us the idea to introduce the notion of co-
shellable (multi)complexes. In the 5th I define the base ring and the Erhart ring of
a multicomplex. In the 6th section I give some dual constructions in the category of
multicomplexes and some results, which extends the case of simplicial complexes.

I wish to thank to my Professor Dorin Popescu for his support, encouragement
and valuables observations on the contents of this paper...
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1 Finite simplicial multicomplexes

First of all, let us fix some notations:

• k is an arbitrary field and S = k[x1, . . . , xn] is the ring of polynomials over k. For
any monomial ideal I ⊂ S, we denote by G(I) the set of minimal generators of I.

• A vector u ∈ Nn it will be written as u = (u(1), . . . , u(n)). The module of u is the
number |u| := u(1) + · · ·+ u(n).

• If u, v ∈ Nn, we say that u ≤ v if u(i) ≤ v(i) for all i = 1, . . . , n. Obvious, ” ≤ ” is a
partial order on Nn.

• We denote by ei = (0, . . . , 1, 0, . . . , 0) the canonical base of Nn.

• If u ∈ Nn, xu is the monomial x
u(1)
1 x

u(2)
2 · · ·xu(n)

n ∈ S.

Definition 1.1. A finite subset Γ ⊂ Nn is called a finite simplicial multicomplex if for all
a ∈ Γ and all b ∈ Nn with b ≤ a, it follows that b ∈ Γ. The elements of Γ are called faces.

An element m ∈ Γ is called a maximal facet if there exists no a ∈ Γ with a > m. In
other words, if m is maximal with respect to ”≤”. We denote M(Γ) the set of maximal
facets of Γ.

If a ∈ Γ is a face, the dimension of a is the number dim(a) = |a| − 1. The dimension
of Γ is the number dim(Γ) = max{dim(u)|u ∈ Γ}. A multicomplex Γ is called pure if all
the maximal facets have the same dimension, equal to dim(Γ).

Remark 1.2. An arbitrary intersection and a finite union of finite multicomplexes is again
a multicomplex. Therefore, the set of all finite multicomplexes in Nn is the family of closed
sets in a topology on Nn, called the finite-simplicial topology. The continuous function in
this topology are called finite-simplicial morphism of multicomplexes. This aspect will be
not studied in this paper.

Remark 1.3. Any finite multicomplex is determined by its maximal facets set, M(Γ) =
{u1, . . . , ur}. In fact,

Γ = {b ∈ Nn| b ≤ ui, for some i ∈ {1, . . . , r} }.

We write Γ = 〈u1, . . . , ur〉 and we say that Γ is the multicomplex spanned by the vectors
u1, . . . , ur. Obvious, Γ is the smallest multicomplex which contained u1, . . . , ur.

Definition 1.4. Let k be an arbitrary field. If Γ ⊂ Nn is a finite multicomplex, the ideal of
non-faces of Γ is the monomial ideal, denoted by IΓ, in k[x1, . . . , xn] spanned, as k-vector
space, by all monomial xa with a ∈ Nn \Γ. In particular, the monomial xa with a ∈ Γ form
a k-basis of S/IΓ.

Obvious, IΓ is an artinian ideal (i.e. S/IΓ is an artinian ring). Conversely, if I is an
artinian ideal, then ΓI = {a ∈ Nn| xa /∈ Γ} is a finite multicomplex and moreover IΓI

= I.

2



Remark 1.5. The ideal of non-faces of a simplicial multicomplex and the Stanley-Reisner
ideal of a simplicial complex are different. More precisely, if ∆ is a simplicial complexes
and I its the Stanley-Reisner ideal of ∆ and if J is the ideal of non-faces of ∆ seed as a
finite multicomplexes, then I is the ideal generated by the square-free minimal generators
of J .

For example, if ∆ = 〈{1, 2}, {2, 3}〉, then the Stanley-Reisner ideal is I = 〈x1x3〉 and
the non-faces ideal of ∆ (as a multicomplex) is J = 〈x2

1, x
2
2, x

3
3, x1x3〉.

Proposition 1.6. 1. Γ has only one maximal facet a, if and only if IΓ is an irreducible
artinian monomial ideal.

2. Let (Γj)j be a finite family of multicomplexes. Then:

IT
j(Γj) =

∑
j

IΓj
, IS

j(Γj) =
⋂
j

IΓj
.

3. Let Γ = 〈u1, . . . , ur〉 be a finite multicomplex. Then

IΓ = Pu1 ∩ Pu2 ∩ · · · ∩ Pur

is the unique irredundant irreducible decomposition of I(Γ).

Proof. 1. Since Γ = 〈a〉, it follows that IΓ = (xb|b ∈ Nn, b(i) > a(i) for some i) =

(x
a(i)+1
i |i = 1, . . . n). Conversely, if I is a irreducible monomial ideal, then I is generated by

powers of variables (i.e I =
〈
x

c(i)
1 |c(i) ≥ 1

〉
) and, thus ΓI = 〈a〉, where a = c− (1, . . . , 1).

2. It is left as an exercise to reader. 3. It is obvious from 1. and 2.

Definition 1.7. Let Γ ⊂ Nn be a finite multicomplex. The ideal of maximal facets of Γ,
denoted by I(Γ) ⊂ S = k[x1, . . . , xn] is the follow one:

I = I(Γ) = 〈xa|a is a maximal facet in Γ〉 .

Conversely, if I ⊂ S is an arbitrary monomial ideal we can asociate the multicomplex

Γ = Γ(I) = 〈a|xa is a minimal generator of I〉 .

Also, if I is a monomial ideal, we can associate the polarized ideal I0 which is a square-
free monomial ideal. The simplicial complexes of facets of I0 is called the polarized sim-
plicial complex of Γ and its denoted by ∆0(Γ). Obvious, I is Cohen-Macaulay (Gorenstein
etc.) if and only if the same property holds for I0.

Remark 1.8. If Γ = 〈u1, . . . , ur〉 is a finite multicomplex and m = ∨r
j=1uj, then ∆0(Γ)

is a simplicial complex on a set of vertices labeled {v1
1, . . . , v

1
m(1), . . . , v

n
1 , . . . , vn

m(n)}, There

is a bijection between the faces of Γ and the sorted faces of ∆ (F ∈ ∆ is called sorted, if
vj

i ∈ F ⇒ vj
i−1 ∈ F, . . . , vi

1 ∈ F ). If u ∈ Γ is a face, the corresponding face in ∆0(Γ) is
Fu = {v1

1, . . . , v
1
u(1), . . . , v

n
1 , . . . , vn

u(n)}.
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If we make any change on ∆0 (for example, if we take the complementary complex of ∆0

or the Alexander dual complex etc.) using the above correspondence and renumbering the
vertices, we can write down a new multicomplex which it will be called the complementar
multicomplex of Γ (the Alexander dual of Γ etc.). This idea it will be explained later, in
the section 3. Anyway, such a multicomplex is called the multicomplex of sorted faces of
the corresponding simplicial complex.

Definition 1.9. We say that the multicomplex Γ′ ⊂ Nm is a subcomplex of Γ ⊂ Nn if there
exists a ordering inclusion of Nm in Nn such that Γ′ ⊂ Γ ∩ Nm. In particular, if n = m
we demand that Γ′ ⊂ Γ. Obvious, any subcomplex of Γ′ in Nm for m < n correspond to a
subcomplex of Γ in Nn but it can be more of such that subcomplexes.

For example, if Γ = 〈(1, 2, 2), (2, 1, 2)〉 and Γ′ = 〈(1, 1), (0, 2)〉 then Γ′ is a subcomplex
of Γ via the inclusions (a, b) 7→ (a, 0, b) and (a, b) 7→ (b, a, 0) of N2 in N3 (There are still
more 3 posibilities. Find them!)

Definition 1.10. Let Γ ⊂ Nn be a simplicial multicomplex and a ∈ Γ. The link of a in Γ
is the set

lkΓ(a) = {b ∈ Γ|a + b ∈ Γ}.

Obvious, lkΓ(a) is also an simplicial multicomplex and a subcomplex of Γ.
The star of Γ is the set

starΓ(a) = {b ∈ Γ|a ∨ b ∈ Γ}.

which is also an subcomplex of Γ. Obvious, lkΓ(a) ⊂ starΓ(a).
Let Γ ⊂ Nn Γ′ ⊂ Nn be two finite multicomplexes. The join of Γ with Γ′, denoted by

Γ ∗ Γ′, is the multicomplex:

Γ ∗ Γ′ = {u + v| u ∈ Γ, v ∈ Γ′}.

Note that it is not necessary that Γ and Γ′ to be in the same Nn. In general case, if
Γ ⊂ Nn and Γ ⊂ Nm it is enough to choose two ordering inclusions Nn ⊂ NN and Nm ⊂ NN

and to consider Γ and Γ′ as multicomplexes in NN . Obvious, in that case, Γ∗Γ′ depends on
the choosed inclusions. How well, there is a canonical way to compute Γ ∗ Γ′: It is suffice
to take N = n + m and Nn ⊂ Nn+m to be (a(1), . . . , a(n)) 7→ (a(1), . . . , a(n), 0, . . . , 0),
respectively Nm ⊂ Nn+m to be (b(1), . . . , b(m)) 7→ (0, . . . , 0, b(1), . . . , b(m)).

In particular, if Γ ⊂ Nn is a multicomplex and Γ′ = {0, 1} ⊂ N, then Γ ∗Γ′ in the sense
of the last construction, is called the cone over Γ.

Example 1.11. Let Γ = 〈(3, 1, 2), (2, 1, 3), (3, 2, 1)〉. Then

lkΓ(2, 0, 0) = 〈(1, 1, 2), (0, 1, 3), (1, 2, 1)〉 .

Also, lkΓ(3, 0, 0) = 〈(0, 1, 2), (0, 2, 1)〉 and starΓ(3, 0, 0) = 〈(3, 1, 2), (3, 2, 1)〉.
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Proposition 1.12. Let Γ be a finite multicomplex, u ∈ Γ and v ∈ lkΓ(u). Then:

1. dim(Γ) = dim(lkΓ(u)) + |u|. If Γ is pure then lkΓ(u) is also pure.

2. u ∈ lkΓ(v) and lklkΓ(u)(v) = lklkΓ(v)(u) = lkΓ(u + v).

3. 〈v〉 ∗ lklkv(Γ)(u) ⊂ lkstarΓ(v)(u).

4. If Γ = 〈u1, . . . , ur〉 and u ∈ Γ and a ∈ Nn then:

starΓ(u) = 〈ui|u ≤ ui〉 , lkΓ(u) = 〈ui − u|u ≤ ui〉 〈a〉 ∗ Γ = 〈u1 + a, . . . , ur + a〉 .

Proof. 1.This is obvious.
2.v ∈ lkΓ(u) ⇒ v + u ∈ Γ ⇔ u ∈ lkΓ(v). Let w ∈ lklkΓ(u)(v). Then w + v ∈ lkΓ(u) so

w + v + u ∈ Γ which is equivalent to the fact that w ∈ lkΓ(u + v).
We can rewrite this proof, easier, as follows: lklkΓ(u)(v) = {w ∈ Nn|v + w ∈ lkΓ(u)} =

{w ∈ Nn|v + w + u ∈ Γ} = lkΓ(u + v). Analog, lklkΓ(v)(u) = lkΓ(u + v).
3. Let suppose that w ∈ 〈v〉 ∗ lklkΓ(v)(u). Then w = w′ + w′′ with w′ ≤ v and η =

w′′ + u + v ∈ Γ. We have to proof that (w + u) ∨ v ∈ Γ. Since w′ ≤ w ∧ v ≤ v and
w−w∧v ≤ w′′, we can assume that w′ = w∧v and w′′ = w−w′. Let η := w−w∧v+u ∈ Γ.
It is enough to show that (w + u) ∨ v ∈ Γ. We have

η(i) =

{
v(i) + u(i), v(i) > w(i)

w(i) + u(i), v(i) ≤ w(i)
.

Let ξ := (w + u)∨ v. If v(i) ≤ w(i) then v(i) ≤ w(i) + u(i), thus ξ(i) = w(i) + u(i). When
v(i) > w(i) we cannot say that v(i) ≥ w(i) + u(i) but, anyway, ξ(i) ≤ v(i) + u(i). The
conclusion is that ξ ≤ η ∈ Γ, therefore ξ ∈ Γ as required.

4.The proof is left as an exercise for reader.

Example 1.13. Let Γ = 〈(3, 4, 4), (4, 2, 5)〉, u = (3, 2, 1) and v = (0, 1, 2). Obvious,
starΓ(v) = Γ. Then lkstarΓ(v)(u) = lkΓ(u) = 〈(0, 2, 3), (1, 0, 4)〉. Since lklkΓ(v)(u) = lkΓ(u +
v) = lkΓ(3, 3, 3) = 〈(0, 1, 1)〉 we have 〈v〉 ∗ lklkΓ(v)(u) = 〈(0, 2, 3)〉. This example show us
that the inclusion 〈v〉 ∗ lklkv(Γ)(u) ⊂ lkstarΓ(v)(u) can be strictly (in the case of simplicial
complexes, allways, we have the equality).
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2 Geometrically description and homology of multi-

complexes.

Definition 2.1. Let Γ = 〈u1, . . . , ur〉 be an finite simplicial multicomplexes. Let ∆0 =
∆0(Γ) be the polarized complex associate to Γ. Let |∆0| be the underlying topological space
of ∆0. As we already have seen, ∆0 is a simplicial complex on a set of vertices labeled by
{v1

1, . . . , v
1
m(1), . . . , v

n
1 , . . . , v1

m(n)}.
The topological space associate to Γ, denoted by |Γ| is the quotient topological space of

|∆0| obtained by gluing the vertices {v1
1, . . . , v

1
m(1)}, . . . , respectively {vn

1 , . . . , v1
m(n)}.

Exercise 2.2. If Γ = 〈a〉 with a ≥ (1, . . . 1) then |Γ| ∼ ∨s
i=1S

1 where s = |a| − n. (Hint,
use induction on |a|.)

Example 2.3. Let Γ = 〈(2, 1), (1, 2)〉 ⊂ N2. The polarized simplicial complex of ∆ is
∆0 = 〈{v1

1, v
1
2, v

2
1}, {v1

1, v
2
1, v

2
2}〉. (In other language, I = IΓ = 〈x2y, xy2〉 and the polarized

ideal of I is I0 = 〈x1x2y1, x1y1y2〉). For reasons of comprehensibility, we rewrite as ∆0 =
〈{1, 2, 3}, {2, 3, 4}〉.

Note that |∆0| consist in two triangles with the common edge {2, 3}. Therefore, |Γ|
is the topological space obtained from |∆0| by gluing the vertices 1 with 2 and 3 with 4
respectivelly. The topological space obtained |Γ| is homotophic equivalent with S1 ∨ S1.

In algebraic speak, the gluing ”corresponds” to the factorizations with x1−x2 and y1−y2

which gives the isomorphism:

K[x1, x2, y1, y2]

(x1x2y1, x1y1y2, x1 − x2, y1 − y2)
∼=

k[x, y]

(x2y, xy2)
.

Definition 2.4. Let Γ ⊂ Nn be a finite simplicial multicomplex with ei ∈ Γ, (∀)i = 1, . . . , n.
Let A be an arbitrary comutative ring with unity. Let ∆0 the polarized simplicial complexul
associate to Γ, and let {v1

1, . . . , v
1
m(1), . . . , v

n
1 , . . . , vn

m(n)} be its vertices. Let Ci(∆
0, A) be the

free A-module spanned by the set of i-faces of ∆. (This is the A-modules complex which is
used to compute the simplicial homology of ∆0).

Let Ci(Γ, A) := Ci(∆
0, A) for i ≥ 1 and let C0(Γ, A) := C0(∆

0, A)/(ei
j − ei

k), where ei
j

is the base of C0(Γ, A) (more precisely, ei
j correspond to the vertix vi

j). It is obvious that
C0(Γ, A) ∼= An.

Let ∂i : Ci(Γ, A) → Ci−1(Γ, A), for i ≥ 2 be the usual differentials and let ∂1 :
C1(Γ, A) → C0(Γ, A) be the composed map C1(Γ, A) = C1(∆

0, A) → C0(∆
0, A) → C0(Γ, A).

Let ∂0 := 0. Obvious ∂i−1 ◦ ∂i = 0 for all i ≥ 1.
The homology of C∗(Γ, A) is the simplicial homology of the simplicial multicomplex Γ

and we denote it by H∗(Γ, A). This means that Hi(Γ, A) = Ker(∂i)/Im(∂i+1).

6



Remark 2.5. Let Γ be a finite simplicial multicomplex. The i-skeleton of Γ, is the sub-
complexul Γ(i) = {a ∈ Γ| |a| ≤ i}.

Let Γ be a simplicial multicomplex. Then |Γ(i+1)| is obtained, topological means, by at-
aching some i+1-cells over |Γ(i)|. Moreover, this gluing is compatible with the differentials
∂i. In conclusion, |Γ| has a structure of cellular complex which is identically with is sim-
plicial structure. I.e. the complex C∗(Γ, A) is exactly the cell complex of A-module which
compute the homology for a cellular complex.

Therefore, we obtain the following corollary:

Corollary 2.6. For any multicomplex Γ, H∗(Γ, A) = H∗(|Γ|, A).

Example 2.7. • Let Γ = 〈(3)〉 ⊂ N. ∆0(Γ) is the 2-simplex, thus |∆0| is a triangle.
Therefore, |Γ| is obtained from the triangle by gluing its vertices. (|Γ| looks as an
”parachute”!). Obvious, |Γ| ∼ S1 ∨ S1. Let explained the structure of cell complex
of |Γ|. 0-skeleton consist in a point. 1-skeleton consist in three circles glued in that
point. (that means that we have atached three 1-cell over the 0-skeleton). At last, we
atached one 2-cell over that three circles to obtain |Γ|. Let write down the simplicial
homology (which is identically with the cell homology) of Γ:

0 −→ A
∂2−→ A3 ∂2−→ A

∂0−→ 0.

Let denote C2(Γ, A) = e123A, C1(Γ, A) = e12A + e13A + e23A, C0(∆
0, A) = e1A +

e2A + e3A and C0(Γ, A) = C0(∆
0, A)/(e1 − e2, e1 − e3) = eA, where e123 corresponds

to the face {1, 2, 3} of ∆0 etc.

We have ∂2(e123) = e23 − e13 + e12. Also, ∂1(eij) = êj − êi = e− e = 0. Thus ∂1 = 0.
Since ∂2 is injective, H2(Γ, A) = 0. Also, H1(Γ, A) = Ker(∂1)/Im(∂2) = A3/A = A2

and H0(Γ, A) = Ker(∂0)/Im(∂1) = A3/A2 = A. This is the well known homology of
S1 ∨ S1!

• Let Γ = 〈(2, 1), (1, 2)〉 the multicomplex from the example 1.17. We have already seen
that ∆0 = 〈{1, 2, 3}, {2, 3, 4}〉 and that |Γ| ∼ S1∨S1. Write down the homology of Γ.
We have C2(Γ, A) = A2, C1(Γ, A) = A5, C0(Γ, A) = A2, so:

0 −→ A2 ∂2−→ A5 ∂2−→ A2 ∂1−→ 0.

The matrix of ∂2 is


1 0
−1 0
1 1
0 −1
0 1

 and the matrix of ∂1 is

(
−1 0 1 0 1
1 0 −1 0 −1

)

Obvious, rank(∂2) = 2 and rank(∂0) = 0. Then H2(Γ, A) = 0, because ∂2 is injective.
H1(Γ, A) = Ker(∂1)/Im(∂2) = A4/A2 = A2 and, ofcourse H1(Γ, A) = A. Exercise:
Write down the structure of cell complex for Γ.
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Remark 2.8. (The reduced homology of a simplicial multicomplex) As in the case of the
simplicial complexes, we can define the reduced homology for a multicomplex, to be the
homology of the following A-module complex:

· · · → Ci(Γ, A) → Ci−1(Γ, A) → · · · → C0(Γ, A) → C−1(Γ, A) = A → 0,

where the last map ∂0 is given by the matrix (1, . . . , 1). Obvious, we thing C−1(Γ, A) as
the free A-module generated by the −1-faces of Γ, (i.e. by the (0,. . . ,0)!). We denote by

H̃∗(Γ, A) the reduced homology of Γ. Of course, H̃(Γ, A) = H̃(|Γ|, A).

Exercise 2.9. Prove that for any multicomplex Γ, the cone over Γ is acyclic. I.e. H̃∗(Γ, A) =
0.

Definition 2.10. Let Γ ∈ Nn be a finite simplicial multicomplex and let A be an arbitrary
comutative ring with unity. We consider the chains complex:

· · · → Ci(Γ, A) → Ci−1(Γ, A) → · · · → C0(Γ, A) → 0.

Using the functor Hom(−, A) on this complex, we obtained a cochains complex:

0 → Hom(C0(Γ, A), A) → Hom(C0(Γ, A), A) → · · · → Hom(Ci−1(Γ, A), A) → Hom(Ci(Γ, A), A) → · · · .

Let Ci(Γ, A) := Hom(Ci(Γ, A), A). We define the differentials δi : Ci(Γ, A) → Ci+1(Γ, A)
by δi(f)(x) := (−1)if(∂i+1(x)), for any x ∈ Ci+1(Γ, A).

The simplicial cohomology of Γ is, by definition, the cohomology of the cochain complex
above, i.e. H i(Γ, A) := Ker(δi)/Im(δi−1). Moreover, H∗(Γ, A) has a structure of a graded
A-algebra with the cup-product.

Of course, H∗(Γ, A) = H∗(|Γ|, A) and, as in the homological case, we can define, simi-
larly, the reduced cohomology of |Γ|.

Remark 2.11. It would be interesting to compute the Euler characteristic χ(|Γ|) using
only the combinatorial structure of Γ = 〈u1, . . . , ur〉. Of course, it is obvious that χ(|Γ|) =
χ(∆0(Γ)) + n − |sup(Γ)|, where sup(Γ) = ∨r

i=1ui. So, the problem is to compute fi(∆
0)

using the combinatorial structure of Γ...
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3 Shellable finite multicomplexes

Let us recall that a simplicial complexes ∆ is said to be connected if there exists a ordering
on the facets set of ∆, {F1, . . . , Fr}, such that Fi ∩ Fi+1 6= ∅. Obvious, ∆ is connected if
and only if |∆| is a connected space. In the case of multicomplexes, we have the following
generalization:

Definition 3.1. A finite simplicial multicomplex Γ is said to be connected, if there exists a
ordering on M(Γ) = {u1, . . . , ur} such that ui ∧ ui+1 > (0, . . . , 0) for any i = 1, . . . , r − 1.
Obvious, Γ is connected, if and only if its topological underlying space is connected.

Proposition 3.2. Let ∆ be a connected, pure simplicial complex. Let F1, . . . , Fr be a fixed
orderion of the set of facets of ∆. The, the following assertions are equivalent:

1. ∆ is shellable whit the ordering F1, . . . , Fr: i.e 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is generated by a
set o proper maximal faces of 〈Fi〉.

2. The set Si = {F |F ∈ 〈F1, . . . , Fi〉 , F /∈ 〈F1, . . . , Fi−1〉} have only one minimal ele-
ment, for any i = 2, . . . , r.

3. For any j < i, there exists a vertix v ∈ Fi \ Fj and there exists k < i such that
Fi \ Fk = {v}.

Definition 3.3. Let Γ ⊂ Nn be a finite multicomplex. Let b, a ∈ Γ. We call a a lower
neighbour of b if there exists an integer k such that a(k)+1 = b(k) and a(i) = b(i) for any
i 6= k. Equivalent, a is a lower neighbour of b if a < b and |a| = |b| − 1.

For example, (4, 3, 0, 2) is a lower neighbour of (4, 3, 1, 2).

Definition 3.4. Let Γ be a finite connected pure multicomplex. We say that Γ is shellable
as a finite multicomplex, if there is a order on the set of maximal facets of Γ, u1, . . . , ur

such that 〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by a set of lower neighbours of ui.

Our first aim is to give a characterization of shellability for a multicomplex using the
scheme of the above proprosition.

Proposition 3.5. Let Γ be a finite connected pure multicomplex. The following assertions
are equivalents:

1. Γ is shellable with the order u1, . . . , ur on M(Γ).

2. The set Si = {v ∈ Nn|v ≤ ui, v � uj for j < i} has only one minimal element v,
which, moreover has the property v(j) = ui(j) or v(j) = 0, (∀)j ∈ [n].

3. For any j < i, there exists an m ∈ [n] with ui(m) > uj(m) and a k < i such that
ui(m) = uk(m) + 1, and ui(s) ≤ uk(s) for s 6= m ∈ [n].
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Proof. (1 ⇒ 2). Let suppose that 〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by the following lower

neighbours ofui, ui − ei1 , . . . , ui − eik . Let v :=

{
ui(j), j ∈ {i1, . . . , ik}
0, j /∈ {i1, . . . , ik}

. It is enough to

prove that v is a minimal element of Si = {a ∈ Nn|a ≤ ui, a � uj pentru j < i}. Obvious,
v ≤ ui. Also, from its definition, v � uj for j < i (because each uj for j ∈ {i1, . . . , ik} has
at least one of its components ” < ” than ui(j).)

Let suppose now that there exists a v′ with v′ ≤ ui and v′ � uj for j < i. We have to
show that v ≤ v′.

Let notice that the maximal facets of 〈u1, . . . , ui−1〉∩〈ui〉 are among ui∩u1, . . . , ui∩ui−1.
Also, since Γ is shellable, it folows that the maximal facets have the dimension, dim(ui)−1.

For any j /∈ {i1, . . . , ik}, we have 0 = v(j) ≤ v′(j). Let suppose that v′(i1) < v(i1) =
ui(i1). I choose j such that uj ∧ui = ui− ei1 . We have uj(i1) = ui(i1)−1 and uj(t) ≥ ui(t),
for any t 6= i1. But then v′ ≤ uj which is a contradiction.

(2 ⇒ 3). Before giving the proof in the general case, let study some particular cases. If
i = 1 there is nothing to prove. If i = 2, I claim that there is only one nonzero component
of f . Indeed, let suppose v(1) = u2(1) > 0,. . . ,v(e) = u2(e) > 0. Obvious, there is an index
such that v(k) > u1(k), or else v ≤ u1 which is absurd. Let suppose v(1) > u1(1). But
then it is obvious that v′ = (v(1), 0, . . . , 0) ∈ S2! This force e = 1. From the uniqueness of
v if follows that u1(k) ≥ u2(k) for any k > 1. Indeed, if u1(2) < u2(2) for example, then
v′ = (0, u2(2), 0, . . . , 0) ∈ S2 and this in a contradiction! I claim that u1(1) = u2(1) − 1.
Indeed, if u1(1) ≤ u2(1)− 1 then v′ = (u2(1)− 1, 0, . . . , 0) ∈ S2 and v′ < v which is again
absurd. Since |u1| = |u2|, u1(1) = u2(1)−1 and u1(k) ≥ u2(k) for any k > 1, it follows that
there exists a m > 1 such that u1(m) = u2(m) − 1 and u1(k) = u2(k) for any k 6= 1, m.
The assertion 3 is now trivial.

The case i = 3 is more complicated. In the romanian version of this paper I’ll give the
proof, but since it is not need it at all, I prefere to skip it. Before get to the general case,
we make some remarks:

• The condition 3 of the proposition can be replaced as follows: For any j < i there
exists a k < i such that uj ∧ ui ≤ uk ∧ ui şi d(ui, uk) = 1.

• If v ∈ Si is the unique minimal element of Si by reordering of vertices, we can assume
that v(1) = u1(1) > 0,. . . ,v(e) = ui(e) > 0,v(e + 1) = · · · = v(n) = 0.

• For any m > e there exists a j < i such that ui(m) ≤ uj(m). Indeed, on contrary, the
vector (0, . . . , ui(m), . . . , 0) will be in Si which is a contradiction whit the uniqueness
of v.

• Also, I cannot have simultaneous v(1) > max{u1(1), . . . , ui−1(1)} and
v(2) > max{u1(2), . . . , ui−1(2)} because in this case there are two minimal vector
in Si.

• Last but not least, let’s notice that the vector uj, for j < i are obtained from a previ-
ous one be adding +1 to a component and substracting +1 to another. A posteriori,
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this is clear from the definition of shellability. Anyway, this fact it is not use in the
proof below.

Suppose v = (ui(1), . . . , ui(e), 0, . . . , 0) is the unique minimal element of Si. First of all,
we want to prove that for any j < i, we have:

uj ∧ ui ≤ (ui(1)− 1, ui(2), . . . , ui(n)), or uj ∧ ui ≤ (ui(1), ui(2)− 1, ui(2), . . . , ui(n)) or

or · · · or uj ∧ ui ≤ (ui(1), . . . , ui(e− 1), ui(e)− 1, ui(e + 1), . . . , ui(n)).

But this is almost obvious! Indeed, if the above condition fails for some j, if follows imme-
diately that v ≤ uj.

Moreover, each inequality holds for some j. If, for example, uj∧ui � (ui(1)−1, ui(2), . . . , ui(n))
for any j < i it follows that (0, ui(2), . . . , ui(e), 0, . . . , 0) ∈ Si which is a contradiction with
the minimality of v.

Let j < i with uj ∧ ui ≤ (ui(1) − 1, ui(2), . . . , ui(n)). I shall prove that there is a
k < i such that uk ∧ ui = (ui(1) − 1, ui(2), . . . , ui(n)) and this, obvious, complete the
proof. Let suppose that uj ∧ ui 6= (ui(1) − 1, ui(2), . . . , ui(n)), for any j < i. Let v′ =
(ui(1) − 1, ui(2), . . . , ui(n)). Obvious, v′ ≤ ui. If there exists a k < i such that v′ ≤ uk it
follows that uk ∧ ui = (ui(1) − 1, ui(2), . . . , ui(n)), a contradiction. On the other hand, if
v′ � uj for any j < i it follows that v′ ∈ Si, and this is again a contradiction, because
v � v′!

(3 ⇒ 1). Let v ∈ 〈u1, . . . , ui−1〉 ∩ 〈ui〉. Then v ≤ ui ∧ uj for some j < i. Let m as in
assertion 3. Then, there exists an k such that ui(m) = uk(m) + 1 and ui(s) ≤ uk(s) for
s 6= m. Obvious v ≤ uk, because v ≤ ui (and then v(s) ≤ ui(s) ≤ uk(s) for s 6= m) and
v(m) ≤ uj(m) ≤ uk(m). Thus v ≤ ui ∧ uk. Also, it is clear that |ui ∧ uk| = |ui| − 1. Then
ui − em is a lower neighbour for ui in 〈u1, . . . , ui−1〉 ∩ 〈ui〉 cu v ≤ ui − em. But that means
Γ is shellable.

Example 3.6. Let Γ = (2, 1, 0), (1, 2, 0), (0, 2, 1). Then Γ is shellable. Indeed, 〈(1, 2, 0)〉 ∩
〈(2, 1, 0)〉 = (1, 1, 0) and 〈(0, 2, 1)〉 ∩ 〈(2, 1, 0), (1, 2, 0)〉 = (0, 2, 0).

The minimal element of S2 = {v|v ≤ u1, v � u2 is v = (0, 2, 0) and the minimal element
of S3 is w = (0, 0, 1). Obvious, v and w satisfies condition 2 of the proposition.

Remark 3.7. Let Γ be a simplicial multicomplex and let I(Γ) be the ideal of maximal
facets of Γ. Suppose that Γ is shellable. From the assertion 3 of the proposition, we have:
for any j < i there exists k < i such that uj ∧ ui ≤ uk ∧ ui şi d(ui, uk) = 1. The translation
of this assertion in algebraic language is:

For any j < i, there exists k < i such that Evident I(Γ) = 〈m1 = xu1 , . . . ,mr = xur〉.
Traducerea sună astfel: Pentru fiecare 1 ≤ j < i ≤ r, există un k < i astfel ı̂ncât
gcd(mi, mj)|gcd(mi, mk) şi mi/gcd(mi, mk) = xt for some t.

Note the similarity, but not coincidence, with the ideals with linear quotients!

11



Proposition 3.8. Let Γ be a finite connected pure multicomplex. Then Γ is shellable if
and only if ∆0 = ∆0(Γ) is shellable.

Proof. Suppose Γ = 〈u1, . . . , ur〉. Then ∆0 = 〈F1, . . . , Fr〉, unde

Fi = {v1
1, . . . , v

1
ui(1)

, v2
1, . . . , x

2
ui(2)

, . . . , xn
1 , . . . , x

n
ui(n)}.

Obvious Γ is pure, if and only if ∆0 is pure. Assume that Γ is shellable. Using the above
proposition, if follows that for any j < i, there exists m with ui(m) > uj(m) and k < i
such that ui(m) = uk(m) + 1 and ui(s) ≤ uk(s) for s 6= m.

In terms of facets of ∆0, the above fact is equivalent with the following one: For any
j < i there exists m with xm

ui(m) ∈ Fi \ Fj and k < i such that Fi \ Fk = {xm
ui(m)}. But this

means that ∆0 is shellable, as required.

A well known property of shellable pure simplicial complexes is the following one:

Proposition 3.9. If ∆ is a pure shellable simplicial complex, then |∆| has the homotopy
type of a wedge of spheres of dimension d.

Corollary 3.10. If Γ is a pure shellable multicomplex, then |Γ| has the homotopy type of
a topological space obtained by a wedge of spheres of dimension d by gluing some points
and therefore, it is a wedge of spheres of dimension d and 1.

We can extend the notion of shellability for the simplicial complexes which are not
pure, as follows:

Definition 3.11. Let ∆ be a simplicial complex. ∆ is called shellable if there exists a
ordering of facets of ∆, F1, . . . , Fr such that 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is pure of dimension
dim(∆)− 1.

Obvious, this definition can be extended for multicomplexes:

Definition 3.12. Let Γ be a finite multicomplex. Γ is called shellable if there exists a
ordering of maximal facets of Γ, u1, . . . , ur such that 〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by a
set of lower neighbors of ui.

Lemma 3.13. If ∆ is shellable with the order F1, . . . , Fr, then: |F1| ≥ |F2|, · · · |F1| ≥ |Fr|.
In particular, dim(∆) = dim(F1).

Proof. We argue by induction on i. For i = 2, since 〈F1〉∩ 〈F2〉 has dimension dim(F2)−1,
it follows that |F1| > |F2| − 1 and therefore |F1| ≥ |F2|. Suppose i > 2. Then, by induction
hypothesis, we have: |F1| ≥ |F2|, · · · |F1| ≥ |Fr−1|. Since 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 has the
dimension dim(Fi)− 1, it follows that there exists a k < i, such that |Fk ∩ Fi| = |Fi| − 1.
But then |Fk| > |Fi| − 1 ⇒ |Fk| ≥ |Fi|, and ”a fortiori” |F1| ≥ |Fi|.

This lemma can be written in language of multicomplexes:
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Lemma 3.14. If Γ is shellable with order u1, . . . , ur, then: |u1| ≥ |u2|, · · · , |u1| ≥ |ur|.

Proof. We argue by induction on i. For i = 2, since 〈u1〉 ∩ 〈u2〉 has dimension dim(u2) −
1, it follows that |u1| > |u2| − 1 and therefore |u1| ≥ |u2|. Suppose i > 2. Then, by
induction hypothesis, we have: |u1| ≥ |u2|, · · · |u1| ≥ |ur−1|. Since 〈u1, . . . , ui−1〉 ∩ 〈ui〉 has
the dimension dim(ui)−1, it follows that there exists a k < i, such that |uk∧ui| = |ui|−1.
But then |uk| > |ui| − 1 ⇒ |uk| ≥ |ui|, and ”a fortiori” |u1| ≥ |ui|.

Proposition 3.15. Let ∆ a shellable simplicial complex. Then there exists a shelling order
F1, . . . , Fr such that |F1| ≥ |F2| ≥ · · · ≥ |Fr|. Such a shelling is called a ”good shelling”.

Proof. We use induction on r. For r = 1, 2 the assertion is obvious. Let us first prove
the case r = 3. Suppose F1, F2, F3 is a shelling with |F1| > |F2| and |F3| > |F2|. From
definition of shellability, it follows that F3 ∩ F2 ( F1 ∩ F3 and |F1 ∩ F3| = |F3| − 1. I claim
that F1, F3, F2 is a good shelling.

Indeed, F1, F3 satisfy the definition of shellability. But we have F2 ∩ F3 ⊂ F1 ∩ F3.
Taking ∩F2, we get: F2 ∩ F3 ⊂ F1 ∩ F3 ∩ F2, and therefore F2 ∩ F3 ⊂ F1 ∩ F2.

In general case, let suppose that we have a shelling such that |F1| ≥ |F2| ≥ · · · ≥ |Fr−1|
and |Fr| > |Fr−1|. We choose the greatest j such that |Fj| ≥ |Fr| (i.e. |Fj+1| < |Fr|).
I claim that F1, . . . , Fj, Fr, Fj+1, . . . , Fr−1 is a good shelling ∆. Ofcourse, the condition
of shellability is satisfy from 1 to j. Let us show that 〈F1, . . . , Fj〉 ∩ 〈Fr〉 is generated by
dim(Fr)−1-facets. But this is almost obvious: From hypothesis, I know that 〈F1, . . . , Fr−1〉∩
〈Fr〉 is generated by dim(Fr)− 1-facets. Those facets are between F1 ∩ Fr, . . . , Fr−1 ∩ Fr.
But Fj+1 ∩ Fr,. . . ,Fr−1 ∩ Fr have at most dimension |Fr| − 2!

Let us show that 〈F1, . . . , Fj, Fr〉 ∩ 〈Fj+1〉 is generated by dim(Fj+1) − 1-facets. It is
suffice to prove that Fj+1 ∩ Fr is a subface of Fj+1 ∩ Ft for some t ≤ j. From the initial
hypothesis (F1, . . . , Fr i̧s a shelling), this is obvious, because Fr ∩Fj+1 cannot be a subface
of Fr ∩ Fj+s, s > 1 because it have to be included in a dim(Fr)− 1-face.

Similary, we prove the remains conditions.

This lemma can be written in language of multicomplexes:

Proposition 3.16. Let Γ be a shellable multicomplex. Then there exists a ”good” shelling
(i.e. a shelling with |u1| ≥ |u2| ≥ · · · ≥ |ur|).

Proof. As is the case of simplicial complexeles, we argue by induction on r, the cases
r = 1, 2 being trivial. Let suppose r = 3. I suppose |u1| > |u2| and |u2| < |u3|. I claim that
u1, u3, u2 is a good shelling.

From definition of shellability, it follows that F3∩F2 ( F1∩F3 and |F1∩F3| = |F3|−1.
I claim that F1, F3, F2 is a good shelling. Indeed, u1, u3 satisfy the definition of shellability.
But we have u2 ∧ u3 ≤ u1 ∩ u3. Taking ∧u2, we get: u2 ∧ u3 ⊂ u1 ∩ u3 ∩ u2, and therefore
u2 ∩ u3 ⊂ u1 ∩ u2.

In general case, let suppose that we have a shelling such that |u1| ≥ |u2| ≥ · · · ≥ |ur−1|
and |ur| > |ur−1|. We choose the greatest j such that |uj| ≥ |ur| (i.e. |uj+1| < |ur|). I
claim that u1, . . . , uj, ur, uj+1, . . . , ur−1 is a good shelling on Γ. Ofcourse, the condition
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of shellability is satisfy from 1 to j. Let us show that 〈u1, . . . , uj〉 ∩ 〈ur〉 is generated by
dim(ur) − 1-maximal facets. But this is almost obvious: From hypothesis, I know that
〈u1, . . . , ur−1〉 ∩ 〈ur〉 is generated by dim(ur)− 1-facets. Those facets are between u1 ∩ ur,
. . . , ur−1 ∩ ur. But uj+1 ∩ ur,. . . ,ur−1 ∩ ur have at most dimension |ur| − 2!

Let us show that 〈u1, . . . , uj, ur〉 ∩ 〈uj+1〉 is generated by dim(uj+1) − 1-facets. It is
suffice to prove that uj+1 ∩ ur is a subface of uj+1 ∩ ut for some t ≤ j. From the initial
hypothesis (u1, . . . , ur i̧s a shelling), this is obvious, because ur ∩ uj+1 cannot be a subface
of ur ∩ uj+s, s > 1 because it have to be included in a dim(ur)− 1-face.

Similary, we prove the remains conditions.
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4 Co-shellable multicomplexes

In this section, all the complexes and multicomplexes are supposed pure.

Definition 4.1. A simplicial complex ∆ is called co-shellable, if there exists a order of
facets of ∆, F1, . . . , Fr such that:

(∗)(∀)j < i, (∃)v ∈ Fj \ Fi, si k < i cu Fk \ Fi = {v}.

Proposition 4.2. Let ∆ be a simplicial complex on the vertex set [n] and let I = I(∆) be
the facets ideal of ∆. Then I have linear quotient if and only if ∆ is co-shellable.

Since the ideal of the basis of a matroid have linear quotients, it follows that any matroid
is a pure co-shellable simplicial complex.

Proof. Let I = (m1, . . . ,mr) be a square-free monomial ideal. Let ∆ = 〈F1, . . . , Fr〉 be
the correspondig simplicial complex (i.e. Fi = supp(mi) ⊂ [n]). I want to prove that ∆ is
co-shellable with that gived order. Let j < i and let v = mj/gcd(mi, mj). Obvious, v is a
square-free monomial. Since v ·mi = lcm(mi, mj), which is a multiple of mj, it follows that
v ∈ (m1, . . . ,mi−1) : mi. But I have linear quotient, and therefore, there exists a variable
xt|v such that xt ∈ (m1, . . . ,mi−1) : mi. But that means there exists a monomial mk with
mk|xtmi. Thus Fk \ Fi = {t}, and t ∈ Fj \ Fi. This complete the proof. The converse
implication have a similar proof.

Example 4.3. • There exists shellable complexes which are not co-shellable. This is
the case, for example, when we give a shelling F1, . . . , Fr such that Fi∩Fj = ∅ for some
j < i. For instance, let ∆ be the complex of facets of the ideal I = (abc, bcd, def, efg).
Obvious, ∆ is shellable, but I does not have linear quotients: (abc, bcd, def) : efg =
(d, abc).

• Even if we demand that ∆ is strong connected (i.e. for any two facets Fi and Fj

we have Fi ∩ Fj 6= ∅) which is a very restrictive condition, there are shellable com-
plexes which are not co-shellable. For example, if ∆ is the facets complex of the ideal
I = (abc, bcd, cde, cef), then ∆ is shellable but I does not have linear quotients:
(abc, bcd, cde) : cef = (d, ab).

• Also, there are co-shellable complexes which are not shellable. For instance, if
∆ = 〈abc, bcd, acd, ade, bce〉. It is easy to see that I(∆) has linear quotients, but,
also, ∆ is not shellable since 〈bce〉 ∩ 〈abc, bcd, acd, ade〉 is not pure.

The above definition can be extend for simplicial multicomplexes.

Definition 4.4. A finite multicomplex Γ is called co-shellable if there exists a order of
maximal facets of Γ such that for any j < i there is a m and a k < i such that uj(m) >
ui(m), uk(m) = ui(m) + 1 and uk(s) ≤ ui(s) pentru s 6= m.
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Proposition 4.5. Any monomial ideal I, generated by monomial at the same degree, have
linear quotients if and only if the simplicial multicomplex of maximal facets of I is co-
shellable.

In particular, any discrete polymatroid is a co-shellable finite multicomplex.

Proof. The proof is the same as in the square-free case. Let I = (m1, . . . ,mr) be a monomial
ideal and let Γ = 〈u1, . . . , ur〉 be the corresponding simplicial complex (i.e. mi = xui).
I want to prove that Γ is co-shellable with that given order. Let j < i and let v =
mj/gcd(mi, mj). Since v · mi = lcm(mi, mj), which is a multiple of mj, it follows that
v ∈ (m1, . . . ,mi−1) : mi. But I have linear quotient, and therefore, there exists a variable
xt|v such that xt ∈ (m1, . . . ,mi−1) : mi. But that means there exists a monomial mk

with mk|xtmi. Thus uk(t) = ui(t) + 1 and uk(s) ≤ ui(s) for s 6= t. Also, since xt|v =
mj/GCM(mi, mj) ⇒ uj(t) > ui(t). But this proves that Γ is co=shellable.

The converse implication have a similar proof.

Proposition 4.6. Let ∆ be a simplicial complex. Then ∆ is shellable if and only if ∆c is
co-shellable. (where ∆c is the complementary simplicial complex of ∆)

Proof. Suppose ∆ is shellable, i.e. there exists a order F1, . . . , Fr on the set of facets of
∆ such that: For each j < i, there exists a v ∈ Fi \ Fj and there exists k < i such that
Fi \ Fk = {v}. I claim that F c

1 , . . . , F c
1 is a co-shelling on ∆c. But this is obvious, for the

same choice of k < i and v, since F c
j \ F c

i = Fi \ Fj and F c
k \ F c

i = Fi \ Fk!

Later, we will extend this property to multicomplexes.

5 The base ring and the Erhart ring of a multicomplex

Let Γ be a finite multicomplex with the maximal facets set MΓ = {u1, . . . , ur}. The base
ring of Γ is the monomial subalgebra

K[M(Γ)] := k[xu1 , . . . , xur ] ⊂ k[x1, . . . , xn].

The Erhart ring of Γ is the monomial subalgebra:

K[Γ] := k[xut|u ∈ Γ] ⊂ k[x1, . . . , xn, t].

Obvious, K[Γ] is the semigroup ring of the cone over Γ, C(Γ) = 〈(u1, 1), . . . , (ur, 1)〉.
Obvious, we have a natural epimorphism ϕ : B = k[t1, . . . , tr] → K[M(Γ)], defined

by ϕ(ti) := xui . If we take on B the grading, deg(ti) := deg(mi), where mi = xui , then
ϕ became a graded morphism. The kernel Ker(ϕ) := PM(Γ) is called the toric ideal of
K[M(Γ)]. As well known, PM(Γ) is a graded prime ideal generated by a finite set of bino-
mial. Of course, the same construction can be made for the Erhart ring.

It would be a great interest to find combinatorial condition on Γ such that the base
ring or the Erhart ring are normal, Cohen-Macaulay, Gorenstein etc. For example, if Γ is
shellable, what can we say about k[M(Γ)] or k[Γ]?
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6 Dual multicomplexes

Definition 6.1. Let ∆ be a simplicial complex. We called the complementary complex of
∆, and we denoted by ∆c, the complex

∆c = 〈[n] \ F |F is a facet of ∆ 〉 .

Obvious, if we thing ∆ as a subset of {0, 1}n, then

∆c = 〈(1, 1, . . . , 1)− F |F ∈ ∆ facet〉 .

We can, therefore, give the following generalization.

Definition 6.2. Let Γ ⊂ Nn be a finite simplicial multicomplex with the set of maximal
facets M(Γ) = {u1, . . . , ur}. If u ∈ Nn is a ”majorant” of Γ (i.e. u ≥ a, for any a ∈ Γ; or
equivalent: Γ ⊂ 〈u〉 ) the the complementary multicomplex of Γ with respect to u, denoted
by Γc

u is the following one:
Γc

u = 〈u− ui|ui ∈M(Γ)〉 .
Obvious Γc

u depends on the choose of u ∈ Nn. Of course, the minimal ”majorant” of Γ,
which will be denoted by sup(Γ), is sup(Γ) = ∨r

i=1ui, where Γ = 〈u1, . . . , ur〉. We denoted
Γc

sup(Γ) = Γc.

Remark 6.3. Let Γ be a simplicial multicomplex and let ∆ = ∆0(Γ) be the polarized
simplicial complex of Γ. Let us consider ∆c the complementary complex of ∆. Then, the
multicomplex of ordered faces (see section 1) of ∆c is Γc itself. The proof is left as an
exercise, since it is obvious.

Proposition 6.4. If Γ = 〈u1, . . . , ur〉 is a simplicial multicomplex, and u ∈ Nn is a
majorant of Γ, then u is a majorant of Γc

u too, and:

(Γc
u)

c
u = Γ.

Proof. If Γ = 〈u1〉 and u ≥ u1, the assertion is obvious, even in the case u = u1. Let
suppose Γ = 〈u1, . . . , ur〉 with r ≥ 2. I claim that the only thing we have to prove is: if
a, b ∈ Nn are two incomparable vectors, and u ∈ Nn u > a, u > b then u − a,u − b are
incomparable. If the claim is true, then it follows that Γc

u have the exactly r maximal facets
u− u1, . . . u− ur (and it is obvious that each of them is ≤ u!) and therefore (Γc

u)
c
u has the

maximal facets u1, . . . , ur. Thus (Γc
u)

c
u = Γ, as required.

The claim is almost clear: Indeed, if u− a ≥ u− b it follows u(i)− a(i) ≥ u(i)− b(i) for
any i = 1, . . . , n, so a(i) ≤ b(i) for any i so a ≤ b, which is a contradiction. b(i) ≤ a(i)

In monomial language, we can write down the following definition:

Definition 6.5. Let I = (m1, . . . ,mr) be a monomial ideal and let Γ = Γ(I) = 〈u1, . . . , ur〉
be the multicomplex of maximal facets of I. Let u ∈ Nn be a majorant of Γ. (i.e. lcm(m1, . . . ,mr)|xu).
The complementary ideal of I, with respect to xu is the ideal Ic

u := 〈xu/mi|i = 1, . . . , n〉.
Obvious, Ic

u is the ideal of maximal facets of Γc
u.
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Example 6.6. If Γ = 〈(2, 1, 3), (1, 2, 3), (3, 2, 2)〉 and u = (4, 4, 3), then

Γc
u = 〈(2, 3, 0), (3, 2, 0), (1, 2, 1)〉 .

In algebraic language, if I = (x2yz, xy2z3, x3y2z2) and m = x4y4z3, then

Ic
m = (x2y3, x3y2, xy2z).

Exercise 6.7. If Γ is a multicomplex and v ≥ u ≥ sup(Γ) are two vectors in Nn, then
Γc

v = 〈v − u〉 ∗ Γc
u.

Proposition 6.8. Let Γ be a pure multicomplex and u ≥ sup(Γ). Then Γ is shellable if
and only if Γc

u is co-shellable.

Proof. The case Γ = 〈u〉 is trivial. Since Γ shellable, there exists a ordering of maximal
facets of Γ, u1, . . . , ur such that: for any j < i, there exists a m and a k < i such that:
ui(m) > uj(m) and ui(m) = uk(m) + 1 and ui(s) ≤ uk(s) for s 6= m. I claim that Γc

u is
co-shellable with the ordering of maximal facets: u−u1, . . . , u−ur. Indeed, if we take m and
k < i as above, it is obvious that (u−ui)(m) = u(m)−ui(m) < (u−uj)(m) = u(m)−uj(m)
and (u − ui)(m) = (u − uk)(m) − 1 and (u − ui)(s) ≥ (u − uk)(s) for any s 6= m, as
required.

We will discuse now on the very important notion of Alexander duality. First of all,
lets see what is the Alexander dual for a simplicial complexes and how we can extend this
concept in the case of multicomplexes.

Definition 6.9. Let ∆ be a simplicial complex. The Alexander dual of ∆, is the complex

∆∨ = {[n] \ F |F /∈ ∆}.

Thinking ∆ as a subset of {0, 1}n, we observe that ∆∨ = {(1, . . . , 1)−F | F ∈ {0, 1}n \∆}.
This give us the idea of the following generalization:

Definition 6.10. Let Γ be a simplcial multicomplex and let u ∈ Nn be a majorant of Γ.
The Alexander dual of Γ, w.r.t. u is the following multicomplex:

Γ∨u = {u− v|v ≤ u si v /∈ Γ}.

If u = sup(Γ), we denote Γ∨u =: Γ∨.

Let us remember some results on Alexander dual (in the case of simplicial complexes)
which we will generalize in the case of multicomplexes.
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Theorem 6.11. Let ∆ be a simplicial complex on the set of vertices [n]. Let I∆ be the
Stanley-Reisner ideal of ∆ and I(∆) be the ideal of facets of ∆. Then:

1. (∆∨)∨ = ∆.

2. I∆∨ = I(∆c).

3. ∆ is shellable if and only if I∆∨ has linear quotients.

Proposition 6.12. If Γ is a multicomplex and u ∈ Nn is a majorant for Γ then (Γ∨u)∨u = Γ.

Proof. Let us first observe that we have a anti-ordering bijection between Γ∨u and the set
{v ∈ Nn|v ≤ u, and v /∈ Γ}. That means that we have a bijection between (Γ∨u)∨u and
{v ∈ Nn|v ≤ u, and v /∈ Γ∨u}. But this last set is obvious in bijection with Γ. Thus,
(Γ∨u)∨u = Γ as required.

Proposition 6.13. If Γ is a multicomplex and u ∈ Nn is a majorant for Γ then IΓ =
I(Γ∨u)c

u, where u = sup(Γ) + (1, . . . , 1). In particular, IΓ∨u = I(Γc
u).

Proof. Let us notice that Γ∨u is generated by u − v, where v is a minimal non-face of Γ.
But the minimal non-faces of Γ are exactly the minimal generators of the ideal IΓ. Writing
this facts in algebraic language, we get: IΓ = 〈xv|v is a minimal non− face of Γ〉. Also,
I(Γ∨u) = 〈xu−v|v is a minimal non− face of Γ〉, and therefore IΓ = I(Γ∨u)c

u, as required.
The last identity is clear when we replace Γ by Γ∨u .

Example 6.14. If Γ = 〈(1, 3), (4, 2)〉 and u = (5, 4) = sup(Γ) + (1, 1), then

Γ∨(5,4) = 〈(5, 0), (0, 4), (3, 1)〉 .

(This is easy to compute if we figure Γ and Γ∨(5,4) on the same picture) Also,

(Γ∨(5,4))
c
(5,4) = 〈(5, 0), (0, 4), (2, 3)〉 .

IΓ = (x5, y4, x2y3). Obvious, I(Γ∨(5,4))
c
(5,4)) = IΓ.

Corollary 6.15. Let Γ be a multicomplex. Then Γ is shellable if and only if IΓ∨u has linear
quotients, where u = sup(Γ) + (1, . . . , 1).

Proof. If is obvious from proposition 5.8 and proposition 5.13.
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