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7.1 Introduction

From macroscopic point of view the Portevin - Le Chatelier effect is an oscillatory
plastic flow, resulting in inhomogeneous and discontinuous deformation that may
be observed in metallic alloys subjected to load- or displacement-controlled exper-
iments in a certain range of strain, strain-rate and temperature. From microscopic
point of view the PLC effect is usually explained by a model called dynamic strain
ageing (DSA) which characterizes the interaction between moving dislocations and
between dislocations and diffusing solute atoms. The concept of DSA, first intro-
duced by Cottrell and Bilby [Cot1949] in the frame of the dislocation theory (see
Cottrell [Cot1953]), generalized by Louat [Lou1981] and later developed by others
(see for instance Rizzi and Hähner [Riz2004] and the references therein) is based
on the pinning and unpinning of dislocations by impurity clouds.

In the present work, after reminding the main experimental and physical as-
pects of this phenomenon we introduce the principal ideas for incorporating the
microstructural processes specific to the DSA into the phenomenological constitu-
tive modelling. Our goal is to focus on macroscopic constitutive equations appropri-
ate from the point of view of continuum mechanics. One way to realize this bridge
from the microstructural aspects to the macroscopic mechanical behavior associated
with the PLC instabilities can be achieved by using the theory of flow localization
due to the DSA proposed by McCormick [McC1988]. In this framework, we survey
the literature related with such macroscopic phenomenological approaches able to
describe both the global responses, as observed typically in the stress-strain curves,
but also the spontaneous appearance of strain localization.

In Sect. 7.2, following a line developed by Mesarovics [Mes1995], Zhang et al.
[Zha2001] and Böhlke et al. [Böh2009] we give a detailed description of an elastic-
viscoplastic model of McCormick type incorporating DSA and negative strain-rate
sensitivity.

Starting from the idea that the PLC effect as well as all phenomena related with
strain localization and band propagation are characterized by deformation which is
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inhomogeneous both in space and time, we consider that the appropriate framework
for a phenomenological approach is the field theory approach. That means, in order
to establish the predictions of a constitutive set of relations we have to add the
general law of mechanics, for instance, the balance of momentum, the balance of
mass and to investigate the resulting set of partial differential equations (PDEs) for
initial-boundary value problems which simulate laboratory experiments.

In order to outline the basic ideas we consider for simplicity in Sect. 7.3 the
case of a bar subjected to a one-dimensional stress state. We show that the field
theory approach leads in this case to a hyperbolic semilinear PDEs system with
source terms. The hyperbolic character of the system is due to the fact that we do
not neglect the inertial term in the balance of momentum, although the PLC effect
manifests only for strain-rate ranging between 10−6 s−1−10−2 s−1, which usually
are considered as static tests.

We accurately formulate initial-boundary value problems corresponding to strain-
and stress-controlled tests. Moreover, we do not add as usual a machine equation in
order to describe the machine effect, but we formulate in a new way mixed stress-
and strain-controlled boundary conditions which include a parameter describing the
influence of the testing machine.

A numerical investigation of uniaxial tensile tests is done using an explicit finite
difference scheme based on the method of characteristics described in Appendix 7.5.
It is shown that, without introduction of a geometric defect or other heterogeneity,
the PDEs system is able to describe quantitatively the remarkable features of the
PLC effect, that is, the staircase response for a soft testing device, the jerky flow
for the hard device depending on the imposed strain-rate, but also strain localization
phenomena and pattern formation.

In the mathematical framework developed, we consider in Sect. 7.4.1 a spatial
homogeneous process in stress, strain and ageing time, as the solution of an ideal
initial-boundary value problem. That corresponds to a constant cross-head veloc-
ity controlled experiment having a linear distribution of the velocity in the bar at
the initial moment. A linear stability analysis of this homogeneous solution allows
to determine a critical condition on some material parameters for the PLC effect.
Moreover, one determines the range of strain-rates and mechanical parameters for
which there exists a jerky flow. One shows that the boundaries of the unstable PLC
domain correspond to a Hopf bifurcation with limit cycle behavior. Section 7.4.2
concerns the calibration and verification of the constitutive model.

7.1.1 Experimental and physical aspects

The phenomenon of discontinuous deformation in tensile tests had already been
observed in the first part of the 19th century in dead weight tests. By adding suc-
cessively weights to the end of copper strips, the French physicist Félix Savart
[Sav1837] observed that the deformation does not increase continuously, but by
sudden jumps, feature known now as ”staircase” like stress-strain behavior. He was
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the first to consider this phenomenon as an intrinsic material property of plastic
deformation. More careful and systematic tests have been considered by his stu-
dent Antoine Philibert Masson [Mas1841] who performed tests on different alloys
at different temperatures. That is way sometimes this phenomenon is referred as
Savart - Masson effect (see the historical comments in Bell [Bell1973], Scott et al.
[Sco2000] and Rizzi and Hähner [Riz2004]). The use of ”hard” testing machines,
i.e. of strain-controlled experiments, at the beginning of 20th century, had allowed
Albert Portevin and François Le Chatelier [Por1923] to investigate in a systemati-
cally manner the serrated yielding in aluminium alloys at different elongation rates
and to definitively remove a common belief that such irregularities and discontinu-
ous deformation are only a machine-produced effect of little importance. In recog-
nition of their results, starting with the work of Cottrell [Cot1953], this phenomenon
of discontinuous deformation of metals, in quasi-static tests, bears their name.

Thus, the PLC effect is an unstable, irregular plastic flow resulting in an inho-
mogeneous deformation that may be observed in some dilute metallic alloys. These
are, for example, steels and aluminium alloys which are important industrial mate-
rials used for car bodies, aircraft fuselage and different type of casing. The localized
deformation associated with the PLC effect leads to the formation of narrow bands
of intense plastic deformation that leaves undesirable traces on the surface of the
final product. Moreover, it affects most materials properties by increasing: the flow
stress, the ultimate tensile strength and the work hardening rate and by decreasing:
the ductility of metals, the strain-rate sensitivity coefficient and the fracture tough-
ness (see [Ylm2011]).

From macroscopic point of view the PLC effect is characterized by the follow-
ing aspects. In constant strain-rate tensile experiments, i.e. when the end of the
test specimen is subjected to a constant velocity motion, the PLC effect appears in
certain ranges of temperature and strain-rate and manifests by a discontinuous de-
formation, which corresponds to serrated stress - strain curves (”jerky flow”). The
most distinct feature is the localization of strain in the form of visible bands, appar-
ently moving along the surface of the specimen gauge. The apparition of each strain
band corresponds to a burst of plastic activity.

While for most metallic alloys the stress-strain curves obtained in tensile tests
moves up when the strain-rate increases, for the alloys which show the PLC ef-
fect the reverse phenomenon happens, that is, they move down. This behavior is
known as negative strain-rate sensitivity (NSRS) of the flow stress. It is illustrated
in Fig. 7.1 where one can see that the highest strength and the highest stress-strain
curve is obtained for the lowest strain-rate, i.e. for 6× 10−4 s−1. As the strain-rate
increases to 6×10−3 s−1 and ultimately to 6×10−2 s−1 the two stress-strain curves
are lower, thereby indicating a negative strain-rate effect. At constant strain-rate, the
amplitude of the serrations increases gradually with strain and then finally saturates
at large strains. Moreover, the amplitude of serrations decreases with increasing
strain-rate.

Experimental observations have shown that different types of serrations corre-
spond to different ways the PLC bands nucleate and move along the specimen lead-
ing finally to specific band patterns. These are designated as type A, type B and
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Fig. 7.1 True stress-strain
curves of AA5754 alloy
at various strain-rates and
temperatures (reproduced
with permission from Halim
et al. [Hal2007] ©Elsevier
Ltd.)

type C, serrations and correspondingly as type A, type B and type C, PLC bands
(see for instance Chihab et al. [Chi1987]). They are illustrated in Fig. 7.2. The tran-
sition between band types or, equivalently, serration types may occur upon changes
in strain-rate and temperature. Usually, higher strain-rates are associated with type
A bands, lower strain-rates with type C bands and intermediate levels with type B
bands.

Type C bands nucleate randomly and appear as hopping bands throughout the
specimen gauge and the corresponding serrations have a relative constant ampli-
tude and frequency. Type B bands propagate in a gauge in an intermittent manner
with approximately equal intervals having amplitudes and frequencies somewhat
irregular and smaller than those of a type C curve. Type A bands propagate appar-
ently continuously in a gauge resembling a longitudinal wave (see Ait-Amokhtar
and Fressengeas [Ait2010]), with arbitrarily located small stress drops embedded in
the regular flow in the tensile test curve.

Different optical methods, laser scanning extensometry, infrared thermographic
techniques, or digital image correlation methods, (see for instance [Chihab et al.
[Chi1987], Neuhäuser et al. [Neu2004], Ait-Amokhtar et al. [Ait2008], Benallal et
al. [Ben2008a, Ben2008b], Zdunek et al. [Zdu2008], Ait-Amokhtar and Fressengeas
[Ait2010] and the references therein) have allowed to correlate the spatio-temporal
characteristics of the PLC effect with the associated serrations observed in conven-
tional tensile tests.
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Fig. 7.2 Stress-time curves
for an Al–Mg alloy at
T = 300◦K showing the
change from type C to type B,
and then to type A serrations
with increasing strain-rate.
(a) Type C; 5×10−6 s−1, (b)
type B; 5× 10−4 s−1 and (c)
type A; 5× 10−3 s−1 (repro-
duced with permission from
[Chi1987] and [Ylm2011]
©Elsevier Ltd.)

Fig. 7.3 Correlation between stress drops and pattern formation: strain band localization during a
stress drop and no change in strain distribution during the stress increase (reproduced from Zdunek
et al. [Zdu2008] ©Elsevier Ltd.)

Thus, if one looks at a zoom of the ”saw teeth” stress - strain curve of a con-
stant strain-rate test (see Fig. 7.3) obtained using Digital Image Correlation tech-
nique by Zdunek et al. [Zdu2008] one observes that it is composed by a rapid stress
drop followed by a slow reloading part and this process runs almost cyclically. One
notes also that each stress drop accompanies a local dynamic event evidenced by
the nucleation of a strain band and the subsequent strain band buildup (see the strain
distribution in images 3–4 and 7–8). On the other side, when the stress increases
quasistatically there is no strain nucleation and the bands remain unchanged (see
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the strain distribution in images 1–2 and 5–6). In this way, cyclic strain accumula-
tion occurs leading to a strain pattern formation along the specimen. In other words,
the plastic flow appears as ”strain bursts-and-arrests” and the strain band propaga-
tion can be of type ”go-and-stop”.

The experimental effort on the PLC effect has been mainly devoted to constant
strain-rate tests and the atypical load-extension curves obtained have led to the ac-
ceptance of the term ”serrated flow” as a synonym for the expression ”Portevin-Le
Chatelier effect”.

Considerably less attention has been paid to constant stress-rate tests. In these
experiments the PLC effect manifests by stress-strain curves which are no longer
”serrated”, but exhibit ”staircase steps”. As it is described by Fellner et al. [Fel1991]
there are two ways to conduct a constant-σ̇ test. The first modality is to perform
dead-load experiments using a creep machine by programmed addition of water,
for example, which allow a careful control of the loading rate. This is a so-called
dead-load tensile machine and the experiment is called a true constant-σ̇ test. In this
case ”almost perfect” steps can be obtained as it is illustrated in Fig. 7.4. The second
way, but the most common in laboratory experiments, is to use a conventional tensile
testing machine with electronic control systems. Such a machine is used as a hard
testing machine for constant extension-rate tests, but when one inserts a spring of
weak stiffness between the specimen and the grips of the machine it is used as a soft
testing machine for constant loading-rate tests. In this case, the steps of the staircase
present always a decrease of the stress and even successive ”oscillations” (see Figs.
3 - 4 in Fellner et al. [Fel1991]). The machine effect on the ”staircase shape” is not
negligible as it can be seen from the physical experiments in Fig. 7.5 obtained using
a Zwick testing machine equipped with digital recording. This experiment can be
considered a ”pseudoconstant-σ̇” test.

It is important to note that, unlike the constant strain-rate tensile experiments in
which the serrations on the stress-strain curves are accompanied by the appearance
of visible localized deformations bands along the gauge length, in true constant
stress-rate experiments no well defined stretcher-strain markings can be revealed on
the surface of the specimen (Fellner et al. [Fel1991]).

However, Cuddy and Leslie [Cud1972], testing several alloys of iron, by means
of a creep tensile test machine, with an incrementally increased stress, have put into
evidence that deformation bands can be detected by the oscilloscope traces of the
outputs of a double extensometer. These bands spread immediately over the entire
gauge length of the specimen while the stress remains constant and large strain
increments are recorded.

More sophisticated experiments at constant stress-rate have been performed by
Neuhäuser et al. [Neu2004] and Chmelı́k et al. [Chm2007] using acoustic emission
and laser extensometry techniques in order to detect the movement of a deformation
band. It has been shown that the deformation band movement is characterized most
appropriately by a repeated nucleation of bands. This appears as a piecewise contin-
uous propagation at higher and strongly scattered values of propagation velocity as
compared to the A-type in strain-rate controlled tests. They claim that ”in fact there
is a new generic type of PLC bands at the stress-rate controlled deformation”.
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Fig. 7.4 Strain bursts in a
dead-load tensile machine
with constant stress-rate for
annealed AlMg3 (reproduced
from Fellner et al. [Fel1991]
©Elsevier Ltd.)

Fig. 7.5 Strain bursts in a Zwick testing machine in a nearly constant stress-rate test σ̇ ≈
0.076 MPa/s for a 5182H28 alloy (reproduced with permission from Făciu et al. [Făc1998] ©EDP
Sciences)

From microscopic point of view the plastic flow in metals can be explained
by using the theory of dislocations (see for instance Cottrell [Cot1953], Nabarro
[Nab1967]). In general, when dislocations move without interacting each other, or
without interacting with point defects, the plastic flow is steady and stable. When the
motion of dislocations is disturbed by different kind of interactions the plastic flow
becomes unstable as it happens in the case of PLC effect. This phenomenon is usu-
ally explained by a model called dynamic strain ageing (DSA) which characterizes
the interaction between moving dislocations and between dislocations and diffus-
ing solute atoms (see Cottrell and Bilby [Cot1949]). It is considered that when the
dislocations meet obstacles like solute atoms, or interstitial particles, they are tem-
porary arrested for a certain time. If sufficient stress is applied these dislocations
will overcome these obstacles and will quickly move to the next obstacle where
they are stopped again and the process is repeated. This microscopic mechanism,
referred to as dislocation pinning by solutes (Cottrell [Cot1953]), is believed to be
the main factor controlling instabilities in plastic flow and in particularly the PLC
effect. The dynamic strain ageing as micro mechanism of plastic instability phe-
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nomenon described by dislocation–solute and dislocation–dislocation interactions is
in agreement with the experimental macroscopic correlation of the spatio-temporal
characteristics of the PLC effect, obtained by different imaging techniques, as it is
illustrated, for example, in Fig. 7.3. The idea of DSA has been further developed
by van den Beukel [van1975], Mulford and Kocks [Mul1979], Louat [Lou1981],
McCormick[McC1988], Springer et al. [Spr1998], Rizzi and Hähner [Riz2004].

7.1.2 Main ideas for the constitutive modelling of the PLC effect

Phenomenological viscoplastic models used to describe the PLC effect are mainly
based on two directions. One is motivated by the empirical material law adopted
by Penning [Pen1972] in his analysis of the tension tests for materials with negative
strain-rate sensitivity. This relay on the assumption that in uniaxial tension, the stress
σ is defined as a function of plastic strain ε p and plastic strain-rate ε̇ p in the form

σ = σY +σH(ε
p)+σV (ε̇

p), (7.1)

where σY is the yield stress, σH is the strain hardening variable, and σV is the viscous
stress governing the strain-rate sensitivity of the flow stress. It is assumed that the
viscous stress is non-negative, but in order to include negative strain-rate sensitivity,
σH is taken as a decreasing function of ε̇ p in a bounded region of the plastic strain-
rate, i.e. there is a N-shaped relationship between the plastic strain-rate and flow
stress. This model has been extended by Kubin and Estrin [Kub1985] by adding the
so-called ”machine equation”

σ(t)
M

=
V ∗

L
t− 1

L

∫ L

0
ε(x, t)dx, (7.2)

where M is the combined elastic modulus of the specimen and the testing machine, L
is the length of the specimen and V ∗ is the imposed end velocity. This approach has
led to a nonlinear integro differential system involving a spatial variable x and a tem-
poral variable t which allowed to model constant stress-rate experiments. Penning’s
constitutive equation has been modified by Hähner [Häh1993] by incorporating sec-
ond order strain-gradients ∂ 2ε p/∂x2 to capture a spatial coupling of the PLC effect.
A generalization of the material law (7.1) for a three dimensional viscoplastic model
has been considered by Benallal et al. [Ben2003, Ben2006].

The second direction is based on the constitutive relations introduced by Mc-
Cormick [McC1988] to describe the dynamic strain ageing. The model assumes
that the plastic flow occurs as a result of thermally activated escape of dislocations
that have been pinned by solute atoms and can be described by an Arrhenius-type
law. This implies that the plastic strain-rate ε̇ p is related to the stress σ and the
average local solute concentration near dislocations C by relation
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ε̇
p = ε̇0 exp

(
σ −σH(ε

p)

S
−HC(ta)

)
⇔ σ = σH(ε

p)+S H C(ta)+S ln
(

ε̇ p

ε̇0

)
,

(7.3)
where ε̇0 is a characteristic strain-rate, S and H are material constants controlling
the instantaneous and steady-state strain-rate sensitivity of the solid. Here σH(ε

p)
describes the stress hardening part of the flow stress. The solute concentration C,
according to the original model proposed by Cottrell and Bilby [Cot1949] and mod-
ified by Louat [Lou1981], depends on average age of dislocations according to re-
lation

C(ta) = 1− exp
(
−
(

ta
tD

)n)
, (7.4)

where tD is the characteristic time for solute diffusion across dislocations, n is a
phenomenological material constant and ta is the time that a representative mobile
dislocation is pinned by obstacles. The age of dislocations ta evolves according to a
phenomenological kinetic law which will be described bellow.

An obvious inconvenience of the Arrhenius-type relation (7.3) is that when it is
coupled with an elastic unloading condition, and σ is lower than the flow stress, it
yields a finite plastic strain-rate (see Estrin [Est1996]). Therefore, a different flow
rule has been proposed by Böhlke et al. [Böh2009], whereby the plastic strain-rate
ε̇ p is related to the stress σ not by an exponential function as in (7.3), but by a power
law, coupled with an unloading condition, i.e.

ε̇
p = ε̇0

(
σ −σH(ε

p)

S
−HC(ta)

)m

, (7.5)

where m > 0 is a material constant which describes the strain-rate sensitivity of
the material. By using this flow rule a geometrically non-linear elastic–viscoplastic
constitutive model has been used for simulation of material response under various
applied strain-rates.

For steady-state conditions the ageing time ta may be taken to be equal to the
waiting time of dislocations, tw, as given by the Orowan equation, which relates
the plastic strain-rate to dislocation densities and the average velocity of mobile
dislocations, vD = l

tw
, by relations

tw =
ρmbl
ε̇ p =

ρmbρ
−1/2
i

ε̇ p =
Ω

ε̇ p (7.6)

where ρm is the mobile dislocation density, ρi is the immobile dislocation density,
l is the effective obstacle spacing, that is, the effective mean free path between ob-
stacles, and b is the length of the Burgers vector. Ω is in fact the strain produced by
all mobile dislocations moving to the next obstacle on their path. Since according
to (7.6), Ω varies with the dislocation densities it follows that from phenomenolog-
ical point of view it varies with the plastic strain, that is, Ω = Ω(ε p). The strain
dependence of Ω can be can be calculated using a dislocation model (see Zhang et
al. [Zha2001]) and taken as
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Ω = ω1 +ω2(ε
p)β (7.7)

where ω1, ω2 and β are constants.
Relation (7.5) reflects the generally accepted fact that a decrease in plastic strain-

rate causes an increase in the waiting time spent by dislocations at obstacles, which
in turn will increase the magnitude of the stress drop in a jerky flow.

According to McCormick and Ling [McC1995], measurements of transient be-
havior following abrupt changes in ε̇ p or σ indicate that ta is not an instantaneous
function of ε̇ p, but rather may be approximated by a first order relaxation kinetics
law (see Ling and McCormick [Lin1993]). That means, the effective ageing time ta
is not identical to the the average waiting time tw a dislocation is arrested at local-
ized obstacles. The fundamental assumption proposed by McCormick [McC1988]
is that the effective ageing time ta ”relaxes” towards tw with time t according to the
evolution law

dta
dt

=
tw− ta

τ
, (7.8)

where the characteristic relaxation time τ is taken to be equal to tw.
Therefore, from (7.8) and (7.6) the age of dislocations ta evolves with time, plas-

tic strain and plastic strain-rate according to the phenomenological kinetic law

dta
dt

= 1− ta
tw
, where tw =

Ω(ε p)

ε̇ p . (7.9)

Let us note that if tw� ta, then from (7.9) it follows that dta
dt
∼= 1, in agreement with

the fact that the solute concentration at arrested dislocations cannot increase faster
than that allowed by the passage of time (McCormick [McC1988]).

McCormick’s model has been used in a large number of theoretical and numer-
ical studies. It has been extended to the three-dimensional case by interpreting re-
lation (7.3) as a relation between the von Mises equivalent deviatoric stress and the
equivalent plastic strain. Analytical and numerical stability and bifurcation analysis
have been done by Mesarovics [Mes1995]. There are several studies in the literature
in which such kind of three-dimensional constitutive approaches have been investi-
gated numerically by using the finite element method. The first numerical study in
a 3D context has been done in McCormick and Ling [McC1995] by discretizing the
tensile specimen into a number of axisymmetric sections and simultaneously solv-
ing the constitutive equations for dynamic strain ageing in each section. A reference
approach is that in Zhang et al. [Zha2001] where finite element simulations of dy-
namic strain ageing in flat and notably round specimens have been implemented by
using the ABAQUS code. The model has been also used by Graff et al. [Gra2004]
and investigated in a finite element code for strain localization phenomena asso-
ciated with static and dynamic strain ageing in notched specimens. In Jiang et al.
[Jia2007] a phenomenological model that includes spatial coupling is developed
on the basis of McCormick’s constitutive assumptions. In this case the specimen
is numerically divided into N sections with equal width, perpendicular to the ax-
ial direction and coupled through the acting load. An experimental and numerical
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investigation of the PLC effect in the aluminium alloy AA5083-H116 was carried
out by Benallal et al. [Ben2008a] using the explicit non-linear finite element code
LS-DYNA for different specimen geometries. In Zhang et al. [Zha2012] a simple
modification of McCormick’s model has been made by introducing a power law
dependence in the right part of equation (7.9)1 to modify the transient kinetics of
the strain-rate response of the material. Numerical simulations of PLC band for-
mation and necking in a tensile specimen have been performed using the explicit
dynamic finite element code ABAQUS. By using the flow rule (7.5), Böhlke et al.
[Böh2009] have considered a geometrically non-linear elastic-viscoplastic constitu-
tive model for simulation of material response under various applied strain-rates. A
related elastic-viscoplastic approach with that proposed by Böhlke et al. [Böh2009]
has been used by Mazière and Dierke [Maz2012] to investigate the PLC critical
strain in an aluminum alloy.

More complex constitutive laws derived from a depth analysis of physical mech-
anisms have been developed and are suitable, but more difficult to implement. For
instance, Rizzi and Hähner [Riz2004] have introduced two intrinsic time scales in
the evolution equations and a characteristic length scale through a diffusion-like
term with spatial second-order gradient. Soare and Curtin [Soa2008a, Soa2008b]
have developed a different kinetic model of dynamic strain ageing. Picu [Pic2004]
has introduced a new mechanism leading to negative strain-rate sensitivity in dilute
solid solutions.

7.2 An elastic-viscoplastic model with ”negative strain-rate
sensitivity” of McCormick type

We consider in the following a phenomenological three dimensional elastic-visco-
plastic constitutive model, of ”overstress” type, that accounts for negative strain-rate
sensitivity. The model formulation is motivated by McCormick’s ideas presented in
the previous section.

For simplicity reasons the formulation of the problem and its analysis is limited
here to small strains and isotropic materials. We denote by εεε the small strain tensor
and by σσσ the stress tensor, and by

eee = εεε− 1
3

tr(εεε)III and sss = σσσ − 1
3

tr(σσσ)III, (7.10)

their deviatoric parts, respectively. III is the second-order identity tensor.
We consider the additive decomposition of the strain tensor εεε into an elastic and

inelastic part, i.e.
εεε = εεε

el + εεε
in. (7.11)

With the classical assumption of purely isochoric inelasticity of metals, i.e.
tr(εεε in) = 0, it follows that the inelastic strain tensor is a deviatoric one and εεε in = eeein.
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One assumes that the volume deforms only elastically, i.e. the mean strain and
the mean stress satisfies the linear relation

tr(σσσ) = 3K tr(εεε), (7.12)

where K is the bulk modulus. By assuming that in the elastic domain we have an
isotropic Hookean elastic material response, the relation between the stress deviator
and the deviatoric part of the elastic strain read as

sss = 2µeeeel , (7.13)

where µ is the shear modulus.
Therefore, the stress tensor can be written as

σσσ = sss+
1
3

tr(σσσ)III = 2µeeeel +K tr(εεε)III = 2µεεε
el +λ tr(εεεel)III, (7.14)

where µ and λ are the Lamé coefficients and K = (2µ +3λ )/3.
The inelastic strain tensor is expressed in the fairly general form of the Lévy -

von Mises type equation by which its rate is proportional with the deviatoric part of
the stress tensor as

ε̇εε
in =

3
2

ε̇ p

σeq
sss, (7.15)

where

σeq ≡
√

3
2

sss · sss, (7.16)

and

ε̇
p ≡

√
2
3

ε̇εε
in · ε̇εε in. (7.17)

denote the equivalent von Mises stress and the equivalent inelastic strain-rate. Here
and in the following the over-dot denotes the derivative with respect to time t.

The use of the von Mises equivalent quantities implies plastic isotropy of the
material. The specificity of the constitutive model is introduced through a particu-
lar form of a kinetic equation relating the equivalent stress σeq and the equivalent
inelastic strain-rate ε̇ p. To describe the PLC effect we choose here as a flow rule a
power law of type (7.5), i.e.

ε̇
p = ε̇0

〈
σeq−Y (ε p, ta)

σD

〉m

, (7.18)

The angle brackets < ·> means as usual < x >= max(0,x) and allow to character-
ize both the elastic and viscoplastic domains and the loading/unloading conditions.
The quantities ε̇0, m and σD are material parameters influencing the kinetics of the
viscoplastic processes. The factor ε̇0, which is proportional to the density of mobile
dislocations, is considered constant, m > 0 is a constant rate sensitivity parameter
and σD is a characteristic stress for a dimensionless quantity inside the bracket.
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The function Y = Y (ε p, ta) represents the flow stress, which depends on the ac-
cumulated plastic strain ε p defined as,

ε
p =

∫ t

0

√
2
3

ε̇εε
in · ε̇εε indt̃, (7.19)

and on an internal variable ta, called dynamic ageing time. It is obvious that the rate
of the accumulated plastic strain coincides with the equivalent inelastic strain-rate.

The accumulated plastic strain satisfies ε p(0) = 0, i.e. the body is initially in
a virgin state and ε p(t) ≥ 0 increases with time in any elastic-viscoplastic process.
One can view ε p as a macroscopic measure of dislocations stored in the microscopic
structure.

Since the expression σeq−Y (ep, ta) is called overstress function, as it character-
izes the deviation of the equivalent stress with respect to the flow stress, one says
that this elastic-viscoplastic constitutive approach is of overstress type. It is obvious,
according to (7.18), that the temporal changes in the accumulated plastic strain ε p

are due to the variation of the overstress function and are associated with dissipative
effects.

By combining relations (7.11), (7.13), (7.15) and (7.18) one can write the con-
stitutive rate-type equation in terms of the rate of the deviatoric parts of total strain
tensor and stress tensor as

ėee =
ṡss

2µ
+

3
2

ε̇0

σeq

〈
σeq−Y (ε p, ta)

σD

〉m

sss. (7.20)

From this expression one can see that we have obtained an elastic-viscoplastic rate-
type model with linear instantaneous response between the total strain deviator eee
and the stress deviator sss. For this class of constitutive relations see also Cristescu
and Suliciu [Cri1982, Chap. VIII].

We assume that the flow stress can be decomposed in two additive parts

Y (ε p, ta) = σH(ε
p)+σB(ε

p, ta), (7.21)

where the first term σH(ε
p) describes the hardening of the material and the second

one σB(ε
p, ta) takes the dynamic strain ageing into account.

One can assume for σH(ε
p) a strain dependence obeying a Voce-type equation

(see Ling et al. [Lin1993], Böhlke et al. [Böh2009]) as

σH(ε
p) = σ0 +(σ∞−σ0)

(
1− exp

(
−
(

Θ0ε p

σ∞−σ0

)))
, (7.22)

where σ0 and σ∞ denote the initial and the saturation values of the stress and Θ0 is
a hardening parameter.

Motivated by relations (7.3) and (7.4), based on the generalization made by Louat
[Lou1981] of the relation proposed by Cottrell and Bilby [Cot1949] for the time
variation of the solute concentration around dislocations, one can take, according to
Böhlke et al. [Böh2009], the part of the stress accounting for the PLC effect as
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σB(ε
p, ta) =

(
σ1 +σ2ε

p
)(

1− exp
(
−
(

ta
tD

)n))
, (7.23)

where tD is the characteristic time for solute diffusion across dislocations and n > 0
is a material parameter.

Let us note that, if one takes the ageing time ta equal to the waiting time of
dislocations tw, then according to (7.6), one can write relation (7.23) as

σB(ε
p, tw) =

(
σ1 +σ2ε

p
)(

1− exp
(
−
(

Ω(ε p)

tDε̇ p

)n))
. (7.24)

It is obvious that when the rate of the accumulated plastic strain ε̇ p increases, then
the waiting time tw decreases and the stress σB also decreases, pointing out in this
way a negative strain-rate sensitivity of the flow stress.

Taking into account the relaxation law (7.9), introduced by McCormick [McC1988],
and by using a linear relation of type (7.7) one obtains the following form of the evo-
lution equation for the dynamic ageing time ta

ṫa =−
ε̇ p

ω1 +ω2ε p ta +1, (7.25)

where ε̇ p is the equivalent inelastic strain-rate (7.18), ε p is the accumulated plastic
strain (7.19) and ω1 and ω2 are constant material parameters.

By using expression (7.18), relation (7.25) can be written as

ṫa =−
ε̇0

ω1 +ω2ε p

〈
σeq−Y (ε p, ta)

σD

〉m

ta + 1. (7.26)

Therefore, the constitutive relations relating the unknowns quantities: the stress
σσσ , the strain εεε , and the internal variable ta are given by the evolution equations
(7.20) and (7.26) completed with relations (7.11 - 7.17) and (7.19).

These constitutive relations have to be supplemented with the balance of momen-
tum law

ρ
∂vvv
∂ t

= divσσσ , ρ
∂vi

∂ t
=

∂σi j

∂x j
(7.27)

where ρ is the mass density of the material and vvv = vvv(x, t) denotes the velocity field
and div is the divergence operator with respect to the actual coordinates, written in
a Cartesian system in relation (7.27)2.

Let us note that, although the PLC effect manifests only in almost static tests
ranging, in general, between 10−6 s−1 and 10−2 s−1, the inertial term in the balance
of momentum (7.27) must not be neglected in order to capture the phenomena of
strain nucleation and strain localization which accompany the PLC effect as local
dynamic events.
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7.3 One-dimensional stress state

Let us consider a thin bar with uniform cross-section and length L in an undeformed
and free-stress state. In studying uniaxial load, or straining, of the bar it is common
to make a one-dimensional approximation in which the only non-vanishing stress
component is the longitudinal one which is assumed to be uniform in a cross-section.
That means, the stress tensor and its deviator in a Cartesian system of coordinate
having one of its axes directed along the bar read as

σσσ =

σ11 0 0
0 0 0
0 0 0

 , sss =

 2
3 σ11 0 0

0 − 1
3 σ11 0

0 0 − 1
3 σ11

 , (7.28)

and the strain tensor and its deviator as

εεε =

 ε11 0 0
0 ε22 0
0 0 ε22

 , eee=

 2
3 (ε11− ε22) 0 0

0 − 1
3 (ε11− ε22) 0

0 0 − 1
3 (ε11− ε22)

 . (7.29)

One assumes also that all the mechanical quantities intervening in the constitutive
description depends only on time t and on the spatial variable X corresponding to
the axis of the bar.

7.3.1 Constitutive relations

In this case we denote for simplicity σ = σ11 and ε = ε11. The elastic deformation
of volume (7.11) allows to determine the transversal strain as

ε22 =−
ε

2
+

σ

6K
. (7.30)

Relations (7.11) - (7.13) describing the linear elastic response of the material lead
to

ε
el
11 =

(λ +µ)σ

µ(2µ +3λ )
=

σ

E
, ε

el
22 =−

λ

2µ(2µ +3λ )
σ , (7.31)

where E = µ(3λ+2µ)
λ+µ

is the Young modulus.
By using the additive decomposition of the strain tensor in its elastic and inelastic

part, and the fact that the inelastic part is a deviatoric tensor one gets

ε
in
11 = ε− σ

E
, and ε

in
22 =−

1
2

ε
in
11. (7.32)

The equivalent von Mises stress (7.16), the equivalent inelastic strain-rate (7.17)
and relation (7.15) read as
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σeq = |σ |, ε̇
p = |ε̇ in

11|=
∣∣∣∣ε̇− σ̇

E

∣∣∣∣ , ε̇− σ̇

E
=

σ

|σ |

∣∣∣∣ε̇− σ̇

E

∣∣∣∣ . (7.33)

The accumulated plastic strain (7.19) becomes

ε
p(t) =

∫ t

0

∣∣ε̇ in
11(s)

∣∣ds =
∫ t

0

∣∣∣ε̇(s)− σ̇(s)
E

∣∣∣ds≥ 0. (7.34)

Then, the tensorial viscoplastic constitutive relation (7.20) reduces to a single
equation

ε̇ =
σ̇

E
+ ε̇0

〈
|σ |−Y (ε p, ta)

σD

〉m
σ

|σ |
. (7.35)

Let us consider the case of a tensile test, that is σ > 0. Then, according to (7.33)3,
|ε̇−σ̇/E|= ε̇−σ̇/E > 0, and the accumulated plastic strain (7.34) becomes ε p(t)=
ε(t)−σ(t)/E, if the bar at the initial moment is undeformed, i.e. ε(0)−σ(0)/E =
0. Then, the constitutive equation (7.35) can be written as

σ̇ = E ε̇−E ε̇0

〈
σ −Y

(
ε− σ

E , ta
)

σD

〉m

. (7.36)

For the compressive case, that is when σ < 0, according to (7.33)3, we have
|ε̇ − σ̇/E| = −ε̇ + σ̇/E > 0, and the accumulated plastic strain (7.34) is ε p(t) =
−ε(t)+σ(t)/E, if the bar at the initial moment is undeformed, i.e. ε(0)−σ(0)/E =
0. Then, the constitutive equation (7.35) can be written as

σ̇ = E ε̇−E ε̇0

〈
−σ −Y

(
− ε + σ

E , ta
)

σD

〉m

. (7.37)

By combining relations (7.36) and (7.37) we can write the constitutive equation
(7.35) in the form

∂σ

∂ t
−E

∂ε

∂ t
= G(ε,σ , ta), (7.38)

where

G(ε,σ , ta) =−
E ε̇0

σ
m
D


(

σ −Y
(
ε− σ

E , ta
))m

, if σ > Y
(
ε− σ

E , ta
)

0, if −Y
(
− ε + σ

E , ta
)
≤ σ ≤ Y

(
ε− σ

E , ta
)(

−σ −Y
(
− ε + σ

E , ta
))m

, if σ <−Y
(
− ε + σ

E , ta
)
.

The evolution equation for the dynamic ageing time (7.25) can then be written as

∂ ta
∂ t

= H(ε,σ , ta), (7.39)

where
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H(ε,σ , ta) =


G(ε,σ , ta)

E
(
ω1 +ω2

(
ε−σ

E
)) ta +1, if σ > Y

(
ε− σ

E , ta
)

1, if −Y
(
− ε + σ

E , ta
)
≤ σ ≤ Y

(
ε− σ

E , ta
)

G(ε,σ , ta)
E
(
ω1 +ω2

(
−ε+σ

E
)) ta +1, if σ <−Y

(
− ε + σ

E , ta
)
.

Here function Y = Y (ε p, ta) is given by relations (7.21) - (7.23).

7.3.2 Field equations and initial-boundary value problems

To investigate the predictions of the model we have to consider besides the con-
stitutive relations (7.38) and (7.39) the partial differential equations governing the
longitudinal motion of a thin bar with constant mass density ρ in the reference
configuration. These are the balance of momentum and the compatibility equation
between strain and velocity

ρ
∂v
∂ t
− ∂σ

∂X
= 0,

∂ε

∂ t
− ∂v

∂X
= 0, (7.40)

where t is time, X ∈ [0,L] is the (Lagrangian) spatial coordinate along the bar and v
is the particle velocity. Once more, the inertial term is not neglected in order to be
able to capture the local dynamic events.

Hence, the complet PDEs system in the unknown σ = σ(X , t), ε = ε(X , t), ta =
ta(X , t) and v = v(X , t) composed by the equations (7.38), (7.39) and (7.40) can be
written as

∂

∂ t


v
ε

σ

ta

+


0 0 −1/ρ 0
1 0 0 0
−E 0 0 0
0 0 0 0

 ∂

∂X


v
ε

σ

ta

=


0
0

G(ε,σ , ta)
H(ε,σ , ta)

 . (7.41)

The type of the system is given by its characteristic directions dX/dt = r which
are defined as the eigenvalues of the 4× 4 matrix in (7.41). These are (dX/dt)2 =

E/ρ > 0 and (dX/dt)2 = 0. They are real and positive and consequently the system
is hyperbolic. Moreover, it is semilinear with source terms since all the nonlinear
terms, i.e. G and H, are among the free terms of the system.

As we have seen in Sect. 7.1.1 the PLC phenomenon is usually investigated
by two kind of experiments: either a tensile testing at constant applied strain-rate
(”hard testing machine experiment”), or a tensile testing at constant applied stress-
rate (”soft testing machine experiment”).

To simulate such kind of uniaxial quasi-static experiments we have to consider a
bar initially at rest, in its natural state of strain and stress, with one of its end fixed.
The other end is subjected to one of the following conditions.
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A) Strain-controlled experiment – cross-head velocity controlled experiment.

The left-end of the bar in this tensile test is moved with a constant negative velocity
V ∗. Thus, we have to find the solution of the system (7.41) which satisfies the initial
and boundary conditions

ε(X ,0) = 0, σ(X ,0) = 0, ta(X ,0) = 0, v(X ,0) = 0, for X ∈ [0,L],
v(0, t) =V ∗, v(L, t) = 0 for any t > 0. (7.42)

This experiment corresponds to an engineering constant strain-rate ε̇e = |V ∗|/L.

B) Stress-controlled experiment – true constant stress-rate experiment.

The end of the bar is submitted to a constant increase of the load. Thus, we have
to find the solution of the system (7.41) which satisfies the initial and boundary
conditions

ε(X ,0) = 0, σ(X ,0) = 0, ta(X ,0) = 0, v(X ,0) = 0, for X ∈ [0,L],
σ(0, t) = σ̇et, v(L, t) = 0 for any t > 0. (7.43)

where the applied stress-rate σ̇e =const.> 0.

C) Mixed stress- and strain-controlled experiment – pseudoconstant stress-rate
experiment.

As we have seen in the comments from Sect. 7.1.1 related with Figs 7.4 – 7.5 a true
constant stress-rate test is very difficult to be conducted in laboratory experiments by
conventional testing machines due to the elastic interaction between specimen and
the testing machine which is caused by the spring introduced between the specimen
and the grips of the machine. In order to take into account the influence of the
testing machine we consider that in fact the left-end condition is a mixture between
a perfect hard testing-machine and a pure soft-testing machine by considering the
following mixed initial-boundary value problem

ε(X ,0) = 0, σ(X ,0) = 0, ta(X ,0) = 0, v(X ,0) = 0, for X ∈ [0,L], (7.44)
βσ(0, t)− (1−β )

√
ρEv(0, t) = βσ̇et− (1−β )

√
ρEV ∗, v(L, t) = 0 for any t > 0.

where σ̇e =const.> 0, V ∗ =const.< 0 and β is a parameter with the property that
β ∈ [0,1].

It is obvious that when β = 1 we simulate a constant stress-rate test, while when
β = 0 we simulate a constant strain-rate test (ε̇e =V ∗/L). For β ∈ (0,1) we have a
mixed boundary condition. If β is near 1, this boundary condition should correspond
to a ”pseudoconstant” stress-rate experiment.

To solve these initial - boundary value problems for the system of PDEs (7.41),
and see what the model predicts, we built an explicit second order finite difference
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numerical scheme based on the method of characteristics. This is described in Ap-
pendix 7.5.

7.3.3 A numerical investigation

The mechanical parameters of the model are listed in the fifth column of Tables 7.1–
7.2 and are chosen in agreement with similar parameters in the literature, but so as to
ensure the fulfillment of critical conditions for the emergence of typical instability
phenomena for the PLC effect. These conditions are investigated in Sect. 7.4.

We consider here a bar of length L = 20 mm discretized by using 161 nodes,
that means a space integration step h = 0.125mm and a time integration step τ =
3.44× 10−8 s satisfying condition (7.71) for the Courant number ν = 0.9. Since
the numerical experiments simulate laboratory tests at extremely low strain-rates an
important computation time was necessary.

The numerical results show that the constitutive model is able to reproduce with
reasonable accuracy most of the experimentally observed phenomena which accom-
pany the PLC effect.

7.3.3.1 Strain-controlled experiments

We first consider the constant strain-rate experiment (7.42) where the free-end of
the bar is moved with the constant velocity V ∗ = 0.2mm/s, which corresponds to
the engineering strain-rate ε̇e = 10−3 s−1.

The computed stress - engineering strain curve, i.e. the end-stress σ(0, t) ver-
sus εe(t) = 1

L
∫ L

0 ε(X , t)dX = (l(t)−L)/L, where l(t) is the actual length of the bar,
is illustrated in Fig. 7.6. One obtains a serrated curve, with sudden stress drops
(”jerky flow”) and with a changes of the serrated plateaus. The emergence of differ-
ent serrated yielding plateaus in a constant strain-rate experiment is often reported
in laboratory tests on alloys which present the PLC effect as it is shown in Fig. 7.7.
No geometric defect, or other heterogeneity was introduced in the PDEs system to
initiate the unstable behavior of the solution.

The same as in the laboratory experiments, the serrations accompany the forma-
tion of bands of localized deformation in the bar. Indeed, the numerical experiment
clearly illustrates how the strain bands nucleate, localize and propagate along the
specimen. For instance, if one focuses on the zoom in Fig. 7.6 one can follow in
Fig. 7.8 the evolution of the strain and strain-rate distribution in bar during the stress
oscillations. Thus, between the points A and B the stress rises elastically and when
it reaches a critical value it suddenly drops. During this slowly and almost elastic
process the strain band distribution in the bar remains unchanged and there is no
significant plastic activity. Only at point B, just before the stress drop, the plastic
activity begins to activate and the strain-rate in the bar locally overcomes the value
of the imposed strain-rate announcing the apparition of a new localization of strain.
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During the stress drop, at the level of point C, a new strain band appears and inside
this band it is observed that the strain-rate is six hundred times larger than the ap-
plied strain-rate. At the end of the stress drop, the new band is already buildup and
the plastic activity goes out at the point D.

Fig. 7.6 Serrated stress-strain curve for numerical simulation of a hard-testing machine experiment
with engineering strain-rate ε̇e = 10−3 s−1. Insert: zoom of a portion and the position of points A,
B, C, D, E, F, G where are recorded the distribution of strain ε and strain-rate ε̇ in bar, illustrated
in Fig. 7.8

Fig. 7.7 Nominal stress vs. engineering strain in constant strain-rate test at ε̇e = 10−5 s−1 in
5182H28 alloy. Serrated flow with change of plateaus (reproduced with permission from [Făciu
et al. [Făc1998] ©EDP Sciences)
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a) b)

Fig. 7.8 The distribution of strain ε and strain-rate ε̇ in bar at the moments A, B, C, D, E, F, G in
Fig. 7.6. Note the different scales used for the strain-rate distribution
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Once the stress starts to rise again elastically, between the points D and E, the
strain band distribution remains unchanged and the process is quasistatic (compare
the strain and the strain-rate distribution at the points C, D and E in Fig. 7.8). Only
at point E, just before a new stress drop, the strain-rate starts to increase locally
marking the new nucleation zones. Two new dynamic events follow. A stress drop
to the point F, which leads to the localization of the strain near the fixed end of the
bar, followed immediately by a sudden stress decay at the point G which leads to the
apparition of a new localization of strain. These two strain bursts are accompanied
by an important increase of the strain-rate inside the new bands, which becomes at
the point G more than four thousand times higher than the imposed strain-rate. This
behavior is in agreement with the laboratory experiment illustrated in Fig. 7.3. The
process continues in this way in a manner almost cyclic.

a)

b)

Fig. 7.9 Overall picture of the strain evolution in the bar during the cross-head velocity controlled
experiment in Fig. 7.6. a) Spatial representation of ε = ε(X , t). b) Its plane projection
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It is obvious that the stress drop occurs in a time interval much smaller than that
required for the new increase of the stress. Therefore, the sawtooth appearance of
the stress-strain curve reflects an alternation between dynamic and quasi-static pro-
cesses. Thus, Fig. 7.8 also illustrates how the stress drop is accompanied by local
dynamic events followed by quasi-static ones. This behavior explains the mecha-
nism of ”go-and-stop” propagation of strain bands which is recorded in laboratory
experiments.

An overview of the PLC band propagation in the numerical simulation in Fig. 7.6
is illustrated in Fig. 7.9. One can see that the strain bands nucleate in a way specif-
ically to the type B bands, which appear as hopping bands propagating discontinu-
ously, in an intermittent manner.

Let us also note that each plateau of the serrated curve corresponds to a new stage
of the strain growth in bar during the plastic deformation. Thus, for the numerical
simulation illustrated in Fig 7.6 there are four plateaus which lead to four stages of
strain increase as can be seen in Fig. 7.9.

One observes that the increase of the local strain along a plateau, in general, is
not larger than the maximal value of the engineering strain of the corresponding
plateau. Indeed, see for instance the size of the strain bursts in Fig. 7.8 and compare
with the value of the engineering strain at the end of the corresponding plateau.

Therefore, such numerical simulations could clarify the relation between the
strain magnitude of a serrated yielding plateau and the way the strain increases in-
side a band during a stress drop. Thus, one could explain, depending on the ”jerky”
flow structure of the serrated curve, the possible occurrence of visible strain mark-
ings on the surface of a specimen during its unstable viscoplastic flow.

The 3D Fig. 7.10 illustrates how the plastic strain-rate is locally activated in a
spectacular way in the process of band formation during each stress drop. Since
these simulations are demanding not only with respect to the computation time, but
also to the data storage it is possible to not capture here the largest strain-rates of
the numerical simulation.

Fig. 7.10 Overall picture of the strain-rate ε̇ = ε̇(X , t) in the bar during the cross-head velocity
controlled experiment in Fig. 7.6
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The evolution of the ageing time variable ta describes the dynamic ageing pro-
cess in which dislocations are alternately pinned by solute and released, or newly
generated, when the stress attains some critical value.

This behavior is illustrated in Fig. 7.11. According to the evolution equation
(7.26) when a particle of the bar suffers an elastic quasi-static process one has
dta
dt = 1, that is, one has a linear increase of ta with constant slope 1. This behav-

ior can be clearly seen appearing regularly in Fig. 7.11. The increase of the ageing
time during the slow elastic stress growth describes in fact the process of ageing
of dislocations when the band front is pinned. Afterwards, the ageing time of the
particles which enter the viscoplastic domain starts to decay.

Fig. 7.11 Overall picture of the evolution of the ageing time ta = ta(X , t) in the bar during the
cross-head velocity controlled experiment in Fig. 7.6

Fig. 7.12 The distribution of
the ageing time ta in bar dur-
ing a stress drop - moments B
and C in Fig. 7.6

During the nucleation and localization process, when the stress sharply decreases
and the strain-rate bursts leading to localized bands, the ageing time ta decreases
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rapidly to the waiting time tw ≈Ω/ε̇e = 3.5×10−2 s in the corresponding zones, as
can be seen in Fig. 7.12 (compare the ageing time distribution in the bar at points
B and C). This behavior is in agreement with Schwarz [Sch1985] assertion that the
propagation and localization occur at the position of less aged dislocations. This can
be also observed globally in Fig. 7.11 where ta decreases for short periods of time
in the neighborhood of the new localized front bands.

Thus, the prediction of the model is in agreement with the observation made by
Cuddy and Leslie [Cud1972] that, as the bands appear along the gauge length, pro-
ducing regular serrations on the load-extension curve, and surface markings on the
specimen, there is an alternation between the ageing and breakaway of the disloca-
tions.

Fig. 7.13 Influence of the imposed engineering strain-rate ε̇e on the serrated yielding

We end the comments on strain-controlled experiments with Fig. 7.13 which
illustrates how the strain-rate influences the yielding curve. One observes that, as
the engineering strain-rate ε̇e decreases, the stress-strain curves, in general, move
up pointing out the way the constitutive equations describe the negative strain-rate
sensitivity of the flow stress. For ε̇e = 10−1 s−1 there is only a first drop, but no
jerky flow appears. The reason is that at this ”high” strain-rate we are outside the
region of instability predicted by the analytical results in Sect. 7.4 for the material
parameters in Tabels 7.1–7.2. As we have already seen, the numerical simulation
performed at ε̇e = 10−3 s−1 presents the characteristics of type B serrations and
PLC bands propagation, with regular alternation of stress increases and decreases.
For the increasing engineering strain-rate ε̇e = 10−2 s−1, which according to the
stability analysis in the next section, lies in the intermediate range of stable/unstable
flow, the stress-strain curve presents the characteristics of a transition from type A
to type B serrations with more irregular humps and valleys.

The stress drop amplitudes also show a slight strain dependence, in agreement
with laboratory experiments, which points out a gradual increase of the serrations
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with strain (see Fig. 7.1). Thus, the overall agreement of the numerical simulations
with experiments is found to be reasonable.

7.3.3.2 Stress-controlled experiments

We first consider a numerical simulation of the true constant stress-rate test (7.43)
(or equivalently, (7.44) for β = 1) with σ̇e = 10 MPa/s. The computed end-stress
σ(0, t) vs. engineering strain εe(t) illustrates in Fig. 7.14 how the model is able to
predict a staircase structure with five steps, each one corresponding to a strain burst.

Fig. 7.14 Staircase type stress-strain curves in the numerical simulation of a soft-testing machine
experiment. β = 1 corresponds to a true constant stress-rate test (7.43) at σ̇e = 10MPa/s. β = 0.95
and β = 0.9 correspond to the mixed boundary condition (7.44) where σ̇e = 10MPa/s and V ∗ =
2.85×10−3 mm/s (ε̇e = 1.4×10−3 s−1, i.e. σ̇e = E ε̇e)

At the scale of the 3D picture in Fig. 7.15 the specimen appears to deform in
a homogeneous manner along the almost horizontal treads, but also on the vertical
risers where the sudden strain bursts occurs leading to the increase of deformation
by steps. The transition from one strain burst plateau in Fig. 7.14 to the next one
is a quasistatic process with practically no plastic activity. The alternation between
these quasistatic and dynamic events is illustrated in Fig. 7.16 where it is depicted
the evolution of the strain-rate for the first four plateaus in Fig. 7.14. The prediction
of the model for this ideal testing case is in agreement with the remark by Cuddy
and Leslie [Cud1972] according to which ”in a soft machine where the applied load
remains constant, the band spreads immediately over the entire gauge length.”

The evolution of the ageing time variable ta is illustrated in Fig. 7.17. One has
a homogeneous and linear increase of the ageing time with constant slope 1 during
the quasi-static elastic deformation of the bar. This corresponds to the ageing of
dislocations when they are arrested at local obstacles.



7.3 One-dimensional stress state 41

Fig. 7.15 Overall picture of
the strain ε = ε(X , t) in the
bar during the true constant
stress-rate experiment (β = 1)
in Fig. 7.14

Fig. 7.16 Overall picture of
the strain-rate ε̇ = ε̇(X , t) in
the bar during the true con-
stant stress-rate experiment
(β = 1) in Fig. 7.14

Fig. 7.17 Overall picture of
the ageing time ta = ta(X , t)
in the bar during the true con-
stant stress-rate experiment
(β = 1) in Fig. 7.14
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Afterwards, when the stress attains some critical value, a decay of ta in the vis-
coplastic domain starts and is followed, during the strain burst, by a sudden drop
near zero. This behavior corresponds to the moment when the dislocations become
unlocked, start to move, accelerate rapidly and advance to the next obstacles. At the
end, when the strain reaches a certain level, the advancing of the deformation front
stops and the process is restarted.

As we have seen in the Sect. 7.1.1, the experimental literature points out that
macroscopic features of the PLC effect, like the stress-engineering strain curves,
depend strongly on the testing machine. In order to examine the sensitivity of the
model to a perturbation of the mode of testing we considered the mixed initial-
boundary value problem (7.44) to simulate the so called pseudoconstant-σ̇e exper-
iments. The way the model is able to simulate the influence of the machine ef-
fects is illustrated in Fig. 7.14 where the computed stress-strain curves obtained for
β = 0.95 and β = 0.9 are represented. These numerical simulations with mixed
boundary conditions are closer to the laboratory experiments of pseudoconstant
stress-rate experiments illustrated in Fig. 7.5, or reported in Fellner et al. [Fel1991,
Figs. 3 – 4]. Indeed, one gets numerically, the same as in the experiments men-
tioned earlier that, instead of a horizontal plateau during the strain burst, we firstly
have a stress decay followed by an increase to the level of the horizontal plateau.
The decrease is more important as the parameter β has a smaller value than 1. Much
more than that, one observes, for β = 0.9 and for large strain, that the decrease of the
stress is accompanied by oscillations. This behavior is in agreement with the remark
made in Fellner et al. [Fel1991] that when ’constant-σ̇e’ tests are carried out on
electronically controlled tensile machines, it is not completely possible to avoid an
initial stress drop and successive ’oscillations’. Moreover, for such pseudoconstant-
σ̇e simulations like in Fig. 7.14 it is expected that the strain will no longer propagate
in a homogeneous manner and some localization phenomena will appear during the
strain burst.

7.4 A methodology for investigating mechanical parameters for
critical conditions on PLC effect

The question which arises is how one can identify the range of boundary conditions
and the range of mechanical parameters of the model described in Sect. 7.2 for
which the main characteristics of the PLC effect occur and how one can fit the
numerical simulations with experimental tests.

In this section we give a partial answer to this problem. For instance, in order
to determine for which input data, that is, for which mechanical parameters and
imposed engineering strain-rate, there exists a jerky flow, we consider a stability
analysis of a particular solution of the PDEs system (7.41). This allows the calibra-
tion and verification of the constitutive model. A stability and bifurcation analysis
for investigating the PLC effect has been also used by Mesarovics [Mes1995] and
Rizzi and Hähner [Riz2004].
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7.4.1 Temporal stability analysis of serrated curves

We analyze in the following the nature of temporal instabilities and, as a conse-
quence, the existence or non-existence of serrations on the stress - engineering strain
curve. For doing this, we consider instead of the strain-controlled problem (7.42) the
following related initial-boundary value problem

ε(X ,0) = ε
∗, σ(X ,0) = σ

∗, ta(X ,0) = ta∗, v(X ,0) =
V ∗

L
(L−X), for X ∈ [0,L],

v(0, t) =V ∗ =−Lε̇e < 0, v(L, t) = 0, for any t > 0. (7.45)

That means, at the initial moment the bar is not at rest, but the velocity field is linear
with respect to the spatial variable and satisfies the boundary conditions correspond-
ing to a strain-controlled experiment.

In this special case the PDEs system (7.41) admits the following spatial homo-
geneous solution in the variables ε , σ and ta, i.e.

ε = ε(t) =−V ∗

L
t = ε̇et, σ = σ(t), ta = ta(t), v = v(X) =

V ∗

L
(L−X),

(7.46)
where σ(t) and ta(t) are determined as solution of an ordinary differential equations
(ODE) system. Taking into account that between ε and t there is a linear relation we
can express the variable σ and ta as function of ε . Functions σ =σ(ε) and ta = ta(ε)
have to be solution of the Cauchy problem for the non-linear and non-autonomous
system 

dσ
dε

= E + 1
ε̇e

G(ε,σ(ε), ta(ε)), σ(ε∗) = σ∗,

dta
dε

= 1
ε̇e

H(ε,σ(ε), ta(ε)), ta(ε∗) = ta∗.
(7.47)

To simplify the stability analysis of the system (7.47) we consider the case when
the constitutive functions σH , σB in (7.21) and Ω in (7.7) do not depend on ε p,
i.e. when the ODE system is autonomous. That means σ∞ = 0, Θ0 = 0, σ2 = 0 and
ω2 = 0, i.e.

σH(ε
p) = σ0, σB(ε

p, ta) = σ1

(
1− exp

(
− ta

tD

)n)
, Ω(ε p) = ω1. (7.48)

Thus, the solution of the system (7.47) satisfies the Cauchy problem
dσ
dε

= E, σ(ε∗) = 0,

dta
dε

= 1
ε̇e
, ta(ε∗) = 0,

(7.49)

if it lies in the elastic domain, that is, for

|σ | ≤ σ0 +σ1
(
1− exp

(
−
(
ta/tD

)n)
,
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and, it satisfies the Cauchy problem

dσ
dε

= f (σ , ta)≡ E−E ε̇0
ε̇e

[
σ −σ0−σ1

(
1− exp

(
−
(
ta/tD

)n)
σD

]m

,

σ(ε∗) = σ∗,

dta
dε

= g(σ , ta)≡− ε̇0
ω1ε̇e

[
σ −σ0−σ1

(
1− exp

(
−
(
ta/tD

)n)
σD

]m

ta + 1
ε̇e
,

ta(ε∗) = ta∗.
(7.50)

if the solution belongs to the viscoplastic domain in tension, that is, for

σ > σ0 +σ1
(
1− exp

(
−
(
ta/tD

)n)
.

First, we investigate only the behavior of a homogeneous process in the vis-
coplastic domain, i.e. the solutions of the non-linear autonomous system (7.50).
Thus, we do not consider at this moment the case when the homogeneous solution
could enter in the elastic domain and has to satisfy the system (7.49). The com-
bined elastic-viscoplastic homogeneous solution for the non-autonomous system is
considered later and illustrated numerically for the mechanical parameters in Tables
7.1–7.2 in Fig. 7.24.

To sketch the phase portrait of a dynamical system it is useful to plot the null-
clines, defined as the curve where dσ

dε
= 0 and dta

dε
= 0. The equilibrium points, or

the fixed points of the system are defined as the intersection points of the curves
f (σ , ta) = 0 and g(σ , ta) = 0. The system (7.50) has a unique fixed point

t f x
a =

ω1

ε̇e
, σ

f x = σ0 +σ1

[
1− exp

(
−
(

ω1

tDε̇e

)n)]
+σD

(
ε̇e

ε̇0

)1/m
. (7.51)

Let us note that the ageing time component of the fixed point is just the waiting time
of dislocations defined in (7.6).

To study the behavior of the prototypical autonomous system (7.50), we linearize
the system around its equilibrium point. Let (δσ ,δ ta) be the components of a small
disturbance of the fixed point. One shows that the disturbance evolves according to

d
dε

[
δσ

δ ta

]
=

 ∂ f
∂σ

∂ f
∂ ta

∂g
∂σ

∂g
∂ ta


(σ f x,t f x

a )

[
δσ

δ ta

]
+ quadratic terms. (7.52)

The matrix of this linearized system is called the Jacobian matrix at the fixed point.
The type and the stability of the equilibrium points depends on the eigenvalues λ1
and λ2 of the Jacobian matrix and can be characterized through the values of its
trace, determinant and discriminant of the characteristic equation, (see for instance
Strogatz [Str1994]) i.e.

Tr = λ1 +λ2 =−
1

ω1
− m

σD

(
ε̇0

ε̇e

)1/m
[

E− nσ1

ω1

(
ω1

tDε̇e

)n
exp
(
−
(

ω1

tDε̇e

)n)]
,
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Det = λ1λ2 =
mE

σDω1

(
ε̇0

ε̇e

)1/m
, (7.53)

∆ = (λ1 +λ2)
2−4λ1λ2 = ∆(ε̇e, ε̇0,σ1,σ0,ω1, tD,σD,E,n,m).

The positive value of the determinant rules out the possibility of having a saddle
point. Hence the stability of the fixed point can be established just by looking at the
sign of trace. Therefore, the equilibrium point can be only

• a stable node if Tr < 0 and ∆ > 0,
• a stable focus if Tr < 0 and ∆ < 0,
• an unstable focus if Tr > 0 and ∆ < 0,
• an unstable node if Tr > 0 and ∆ > 0.

In this case the linearized system gives a qualitatively correct picture of the phase
portrait near the equilibrium point (σ f x, t f x

a ). Usually, if the phase portrait changes
its topological structure as a parameter is varied, one says that a bifurcation occurs.
From (7.53)3 one sees that the phase portrait depends on the following 10 mechani-
cal parameters which correspond to:

• boundary condition (7.45): ε̇e,
• kinetic parameters of viscoplastic constitutive equation (7.20): ε̇0, σD, m,
•McCormick’s law (7.25) and flow stress due to ageing (7.23): ω1, σ1, tD, n,
• flow stress due to plastic deformation (7.22): σ0.
• elastic Young modulus E.

We consider, for instance, that only the characteristic strain-rate factor ε̇0,
(or, equivalently the characteristic time of the viscoplastic constitutive equation
τ = 1/ε̇0 ) and the engineering strain-rate ε̇e vary, while the other parameters are
fixed. Then, the corresponding bifurcation plane, is characterized by the curves
across which the trace Tr and the discriminant ∆ change their signs (see Fig. 7.18).

We show that instability phenomena for the autonomous system (7.50) can
occur if and only if the mechanical parameters satisfy the following condition

A≡ nσ1

ω1E
> e, (7.54)

where e is Euler’s number.

The fulfillment of this relation will also explain the existence of serrated curves
for the non-homogeneous case considered in Sect. 7.3.3, i.e. for the strain-controlled
initial-boundary value problems (7.42) for the PDEs system (7.41) (see Fig. 7.13).

To prove this statement let us introduce the notations

B≡ mω1E
σD

, Z(ε̇e)≡
(

ω1

tDε̇e

)n

. (7.55)
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First of all, observe that, if A ≤ e, then 1− Azexp(−z) ≥ 0, for any z > 0, and
consequently, from (7.53)1, it follows that Tr(ε̇0, ε̇e)≤ 0, for any ε̇0 > 0 and ε̇e > 0.
Therefore, in this case a fixed point can not be unstable.

Fig. 7.18 Case A > e. Plane
of bifurcation of the fixed
point (7.51) corresponding
to parameters τ = 1/ε̇0 and
ε̇e. SN - stable node region
(Tr < 0, ∆ > 0); SF - stable
focus region (Tr < 0, ∆ < 0);
UF - unstable focus region
(Tr > 0, ∆ < 0); UN - unstable
node region (Tr > 0, ∆ > 0)

If A > e, then Tr(ε̇0, ε̇e)> 0 if and only if 0 < τ = 1
ε̇0

< τtr(ε̇e), where

τtr(ε̇e) =
1
ε̇e

Bm [AZ(ε̇e)exp(−Z(ε̇e))−1]m , for ε̇e ∈ (ε̇1
e , ε̇

2
e ), (7.56)

and

ε̇
1
e = ε̇

1
e (A,ω1, tD) =

ω1

tD(x1)1/n <
ω1

tD
< ε̇

2
e = ε̇

2
e (A,ω1, tD) =

ω1

tD(x2)1/n . (7.57)

Here x1, x2 are the two solutions of the transcendental equation exp(x) = Ax with
the property that x2(A)< 1 < x1(A).

An approximative solution of this equation, obtained using Newton’s method, is

x1 ∼=
(1−A)exp(1/A)
A(exp(1/A)−A)

, x2 ∼=
√

A√
A−1

(3ln(
√

A−A)). (7.58)

thus,

ε̇
1
e
∼=

ω1

tD

( √
A−1√

A(3ln
√

A−1)

)1/n

, ε̇
2
e
∼=

ω1

tD

(
A(exp(1/A)−A)
exp(1/A)(1−A)

)1/n

. (7.59)

Thus, for A > e, τ = τtr(ε̇e), is the unique positive curve in the bifurcation plane
across which the trace changes its sign, i.e. across which the fixed point (7.51)
switches from stable to unstable (see Fig. 7.18). ε̇1

e and ε̇2
e denote the intersection

points of this curve with the axis τ = 0. Therefore, the interval (ε̇1
e , ε̇

2
e ) represents

the maximal interval for the applied strain-rate ε̇e in which a temporal instability
can appear when ε̇0→ ∞. Formulas (7.59) may give a direct hint about the way the
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mechanical parameters influence the range of the imposed engineering strain-rate ε̇e
for which a jerky flow can occur.

Furthermore, one can show that

∂ ε̇e
1

∂A
< 0 and

∂ ε̇e
2

∂A
> 0,

∂ ε̇e
1

∂ω1
> 0 and

∂ ε̇e
2

∂ω1
< 0,

∂ ε̇e
1

∂ tD
< 0 and

∂ ε̇e
2

∂ tD
< 0, (7.60)

which lead to the following conclusions.

Remark 1. If the parameter A, A > e, increases, then the interval (ε̇1
e , ε̇

2
e ) expands,

while in the opposite case shrinks.
Remark 2. If the parameter ω1 increases, then the interval (ε̇1

e , ε̇
2
e ) shrinks, while

in the opposite case expands.
Remark 3. If the parameter tD decreases both the values of ε̇1

e and ε̇2
e increase.

The curve τ = τtr(ε̇e) has a maximum at

ε̇
3
e = ε̇

3
e (A,ω1, tD,m,n) =

ω1

tD(x3)1/n ∈
(

ω1

tD(1+1/m/n)1/n ,
ω1

tD

)
, (7.61)

where x3 is the solution of the equation exp(x) = Ax(1+mn(1− x)) in the inter-
val (x2,x1) and 1 < x3 < 1+ 1/(mn) < x1. Indeed, this follows by analyzing its
derivative,

dτtr(ε̇e)

dε̇e
=

Bm

(ε̇e)
2

[
−1+AZ(ε̇e)exp

(
−Z(ε̇e)

)]m−1

[
1−AZ(ε̇e)

(
1+mn(1−Z(ε̇e))

)
exp
(
−Z(ε̇e)

)]
. (7.62)

The maximum value at this point τmax
tr = τtr(ε̇

3
e ) determines the maximum value of

the characteristic time τ , or equivalently, the minimum value of the characteristic
strain-rate factor ε̇0 for which the fixed point (7.51) can become an unstable focus.
This global maximum point is denoted by t=t(ε̇3

e ,τ
max
tr ) in Fig. 7.18.

Let us note that there are two positive curves across which the discriminant ∆

change its sign, i.e. the eigenvalues change from real to complex (see Fig. 7.18).
These are

τ = τ
±
∆
(ε̇e) =

1
ε̇e

Bm
(

1±
√

AZ(ε̇e)exp
(
−Z(ε̇e)

))2m

. (7.63)

The graph of the function τ = τ
−
∆
(ε̇e) intersects the axis τ = 0 at the points ε̇1

e and
ε̇2

e defined by (7.57), where it reaches its minimum value. There are also two local
maxima at the points

ε̇
4
e ≡

ω1

tD(x4)1/n ∈
(
ε̇

3
e ,

ω1

tD

)
, and ε̇

5
e ≡

ω1

tD(x5)1/n ∈ (ε̇2
e ,∞), (7.64)

where x5 and x4 are the two solutions of the equation exp(x) = Ax(1+mn(1− x))2,
with the property that x5 ∈ (0,x2) and x4 ∈ (1,x3). Indeed, this follows by analyzing
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the expression of the derivative of this function, i.e.

dτ
−
∆
(ε̇e)

dε̇e
=

Bm

(ε̇e)
2

[
−1+

√
AZ(ε̇e)exp

(
−Z(ε̇e)

)]2m−1

×
[
−1+

√
AZ(ε̇e)exp

(
−Z(ε̇e)

)(
1+mn(1−Z(ε̇e))

)]
. (7.65)

The maximum value of the function τ∆− at the point ε̇4
e determines the maxi-

mum value of the characteristic time τ , or equivalently, the minimum value of the
characteristic strain-rate factor ε̇0 for which the fixed point (7.51) can become an
unstable node. These local maximum points are denoted by p=p(ε̇4

e ,τ∆−(ε̇
4
e )) and

q=q(ε̇5
e ,τ∆−(ε̇

5
e )) in the bifurcation plane from Fig. 7.18.

7.4.2 Calibration of mechanical parameters

We analyze in the following the mechanical parameters of the model of dynamic
strain ageing (DSA) presented in Sect. 7.2 and the way their values lead to the
appearance of the PLC effect. Among these parameters we distinguish a first set,
summarized in Table 7.1 which is related mainly to the classical elastic-viscoplastic
approach used, and a second set, responsible for the evolution of the ageing time,
i.e. of the DSA effect, which is shown in Table 7.2.

Material characterization and parameter identification from tension tests at a ref-
erence strain-rate for elastic-viscoplastic constitutive models of McCormick type
has been considered, for instance, by Zhang et al. [Zha2001] (for AlMgSi alloy),
Benallal et al. [Ben2008a] (for AA5083-H116 alloy plates), Böhlke et al. [Böh2009]
(for aluminium alloy 2024).

The term σH(ε
p) which describes the effect of stress hardening associated with

the dislocation density evolution in the stress flow (7.21) is given by a Voce-type
equation in Zhang et al. [Zha2001] and Böhlke et al. [Böh2009], by an extended
Voce-rule in Benallal et al. [Ben2008a, Ben2008b], or by a power law in Zhang et
al. [Zha2012]. This part of the constitutive approach does not influence the way the
temporal instabilities related with the PLC effect manifests. We adopt here the same
Voce-type equation as in Böhlke et al. [Böh2009] (see Table 7.1), but we consider
different values for the parameters m, σD and ε̇0. These latter quantities affect the
stress component of the equilibrium point (7.51) and the kinetics of the viscoplastic
processes in general. Only the elastic Young modulus E from Table 7.1, which is
present in condition (7.54), influences the range of unstable PLC behavior.

The effect of DSA is accounted for by the additive term σB(ε
p, ta) in the flow

stress, given by relation (7.23), and includes the material parameters tD and n of the
Cottrell - Bilby - Louat ageing kinetics. The maximum value of this contribution to
the flow stress, i.e. σ1 + ε pσ2, corresponds to the saturation of the local solute con-
centration on dislocations temporarily arrested at localized obstacles. This saturation
value of the DSA related stress term is often considered constant (see Table 7.2). A
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linear plastic strain dependence has been introduced by Böhlke et al. [Böh2009],
instead of a plastic strain dependence introduced in the argument of the exponential
function of the Cottrell - Bilby - Louat relation in Zhang et al. [Zha2001].

Table 7.1 Mechanical parameters for classical part of elastic-viscoplastic relations (7.20) - (7.22)

Parameters [Zha2001] [Ben2008a, Ben2008b] [Böh2009] This paper Units
[Zha2012]

E 70. 70. 70. 70. GPa
ρ - - - 6550 kg/m3

ε̇0 2.3×10−7 10−8 3.5×10−5 3.5×10−6 s−1

σD (0.41,1.7) 2.23 15. 30. MPa
m exponential (7.3) exponential (7.3) 28 15
σ0 38.3 78.7 123. 123. MPa
σ∞ 67.9 power law 343. 343. MPa
Θ0 534.6 2800. 2800. MPa

Table 7.2 Mechanical parameters for the DSA model described by (7.26) and (7.23)

Parameters [Zha2001] [Ben2008a, Ben2008b] [Böh2009] This paper Units
[Zha2012]

σ1 (7.92,30.6) 62.22 18.9 62.22 MPa
σ2 - 0 189.26 622.2 MPa
tD (0.126,0.03) 0.02 0.125 0.125 s
n 1/3 1/3 1/3 1/3
ω1 (3.6×10−5,7.9×10−4) 10−4 6.81×10−4 3.6×10−5

ω2 - 0 3.6×10−4 0

A = nσ1
ω1E (0.23,1.05) 2.96 > e 0.132 < e 8.23 > e

Temporal No Yes No Yes
instability

Let us note that, parameter tD, i.e. the characteristic time for solute diffusion
across dislocations, intervenes only in formula of the stress component of the equi-
librium point (7.51) and does not affect condition (7.54), that is, it does not influence
the appearance of PLC effect. A discussion on how tD is temperature dependent is
done in Mesarovics [Mes1995]. We choose here for tD the same value as in Böhlke
et al. [Böh2009].

According to the strain ageing kinetics proposed by Cottrell and Bilby [Cot1949]
the exponent n is 2/3. Starting with the paper by Springer and Schwink [Spr1991]
an exponent of 1/3 has been used. Indeed, Ling and McCormick [Lin1993] found
that, for the Al-Mg-Si alloy, the exponent 1/3 is more appropriate to describe their
results of strain-rate sensitivity measurements and this value is now accepted in the



50 7 The PLC effect – A study on plastic instabilities and pattern formation

literature (see Table 7.2). Moreover, Ling et al. [Lin1993] claim that the 1/3 value
reflects pipe diffusion controlled strain ageing kinetics.

The evolution of the ageing time ta in the DSA process is governed by the evo-
lution equation (7.25) which includes essentially the material function Ω(ε p) =
ω1 +ε pω2. Its value represents a strain increment produced when all arrested dislo-
cations overcome localized obstacles and advance to the next pinned configuration.
Mesarovics [Mes1995] has evaluated by using the Orowan law (7.6) and some es-
timations of the densities of mobile and immobile dislocations that Ω ∼= 10−4. The
value of parameter Ω appears as essential in condition (7.54). Concerning the way
Ω varies with the plastic strain Zhang et al. [Zha2001] assumed the non-linear ex-
pression (7.7) while Böhlke et al. [Böh2009] the linear one.

From Table 7.2 we see that for the mechanical parameters used by Zhang et al.
[Zha2001] and Böhlke et al. [Böh2009] condition (7.54) is not satisfied. Therefore,
there is no engineering strain-rate ε̇e and no characteristic strain-rate factor ε̇0 for
which the stress-strain curve of a homogeneous process, i.e. solution of the system
(7.47), can be serrated. In other words, for these mechanical parameters the PLC
effect can not occur. That is why, we used in this paper a larger value for σ1, just as in
Benallal et al. [Ben2008a] and a lower value for ω1, like in Zhang et al. [Zha2001].
With this choice condition (7.54) is fulfilled for A = 8.23 which is much larger than
Euler’s number e. We show in what follows how, under these circumstances, the
unstable behavior specific for the PLC effect is captured.

We also notice that for the mechanical parameters used by Benallal et al.
[Ben2008a, Ben2008b] and Zhang et al. [Zha2012] condition (7.54) is satisfied for
a value of A slightly larger than e.

Further we illustrate how the stability/instability domains described by the curves
(7.56) and (7.63) allow identification of the ranges of variation of the characteristic
time τ = 1/ε̇0 and of the engineering strain ε̇e for which the PLC effect can appear.
A similar bifurcation analysis can be done if one varies other material parameters of
the model which are responsible for the PLC effect i.e., ω1, tD, σ1, σD, m.

For the mechanical parameters in the fifth column in Tables 7.1 - 7.2 we have
determined the main features of the bifurcation plane represented in Fig. 7.18 and
we have summarized the corresponding results in Table 7.3.

Thus, if we choose the characteristic strain-rate factor ε̇∗0 = 3.5×10−6 s−1 then
the intersection points of the horizontal line τ∗ = 1/ε̇∗0 with the curves which
delimitate the domains of stability/unstability of the equilibrium point show that
the range of the engineering strain-rate ε̇e for which a jerky flow can appear is
(2.37×10−5 s−1,3.91×10−3 s−1). Indeed, this interval corresponds to the line seg-
ment (b,e) in Fig. 7.18 for which the fixed point is an unstable focus. This result is
in agreement with the fact that the PLC effect can occur only for a range of engi-
neering strain-rate and the numerical values obtained are appropriate to the ranges
found experimentally.

According to the properties of the curves (7.56) and (7.63) in the bifurcation
plane, if τ∗ increases (i.e. ε̇∗0 = 1/τ∗ decreases), but without exceeding the value
corresponding to the maximum point t, then the corresponding unstable focus inter-
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Table 7.3 Type of equilibrium point (7.51) for parameters in Tables 7.1 - 7.2 and coordinates of
the points in bifurcation plane from Fig. 7.18.

Stability/Unstability intervals Point on Fig. 7.18 ε̇e (s−1) τ (s) ε̇0 = 1/τ (s−1)

Stable node interval ↑ ↑
a 5.99×10−7 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇1

e 7.99×10−6 0 ∞

Stable focus interval ↑ ↑
b 2.37×10−5 2.85×105 3.5×10−6

Unstable focus interval ↓ ↓
c # # #

Unstable focus interval l l
t 1.97×10−4 5.40×109 1.85×10−10

Unstable focus interval l l
p 2.25×10−4 14.93 6.69×10−2

Unstable focus interval l l
d # # #

Unstable focus interval ↑ ↑
e 3.91×10−3 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇2

e 1.05×10−1 0 ∞

Stable focus interval ↑ ↑
f 12.8 2.85×105 3.5×10−6

Stable node interval ↓ ↓

# There is no intersection between the graph of τ = τ∆− (ε̇e) and τ∗ = 1/ε̇∗0 = 2.85×105 s.

val for ε̇e shrinks. For τ∗ = 5.40×109 s (i.e. for ε̇∗0 = 1.85×10−10 s−1) the unstable
interval reduces to the point ε̇e = 1.97×10−4 s−1.

If τ∗ decreases (i.e., if ε̇∗0 = 1/τ∗ increases) then the corresponding interval of
ε̇e for which the fixed point is an unstable focus expands. The maximum interval
is attained when τ∗ → 0, that is ε̇e ∈ (ε̇1

e = 7.99×10−6 s−1, ε̇2
e = 1.05×10−1 s−1)

(see Table 7.3 and Fig. 7.18). Therefore, we can adjust the interval of the imposed
strain-rate ε̇e for which serrated curves appear with that found in laboratory tests
for which the PLC effect manifests by an appropriate choice of the characteristic
strain-rate factor ε̇0.

Moreover, the range of ε̇e for which the equilibrium point (7.51) is an unstable
point can be adapted, according to Remark 1 - Remark 3 in Sect. 7.4.1, by increasing
or decreasing the values of A, or ω1, or tD. We can also show that when m increases
then the maximum values of the functions τ = τtr(ε̇e) and τ = τ∆−(ε̇e) attained at
the points t, p and q increase.

In order to exemplify how the prediction of this bifurcation analysis is in agree-
ment with the behavior of the solution of the autonomous nonlinear ODE system
(7.50) we have considered for a fixed characteristic strain-rate factor ε̇∗0 , or equiva-
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lently a fixed τ∗ (see Table 7.3), different increasing values of the imposed strain-
rate ε̇e, which covers in a successive manner the stable/unstable zones in Fig. 7.18.

If the pair (τ∗, ε̇e) lies in the stable node region, for instance below τ = τ∆−(ε̇e),
for ε̇e < ε̇1

e (see Fig. 7.18) then the homogeneous solution in the viscoplastic domain
is represented in Fig. 7.19. The process starts at the boundary between the elastic
and viscoplastic domain, i.e. the initial condition (σ , ta) satisfies relations σ = Eε =
σ0 +σ1 (1− exp(−(ε/ε̇e/tD)n) and ta = ε/ε̇e.

. a) b)

Fig. 7.19 Stable Node Interval: ε̇e = 5×10−7 s−1 and ε̇∗0 = 3.5×10−6 s−1 (τ∗ = 2.85×105 s).
Homogeneous process described by (7.50) a) Phase portrait b) Stress and ageing time vs. strain

. a) b)

Fig. 7.20 Stable Focus Interval: ε̇e = 10−5 s−1 and ε̇∗0 = 3.5×10−6 s−1 (τ∗ = 2.85×105 s).
Homogeneous process described by (7.50) a) Phase portrait. b) Stress and ageing time vs. strain

One can see that there is no stress decay and the ageing time increases as long
as the stress increases to its equilibrium value σ

f x
eq = 211.5MPa, and afterwards the

ageing time decays at the value of the waiting time t f x
a = ω1/ε̇e = 72s.

If the pair (τ∗, ε̇e) lies in the stable focus area, that is, between the points a and
b in Fig. 7.18, then the homogeneous solution in the viscoplastic domain is illus-
trated in Fig. 7.20. One observes the appearance of a first stress decay followed by
some small oscillations before to reach the equilibrium stress σ

f x
eq = 214.4MPa.

The ageing time behaves in the same manner, although the oscillations are not
visible at the scale of the figure, and it stabilizes at the value of the waiting time
t f x
a = ω1/ε̇e = 3.6s.
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When the imposed strain-rate ε̇e enters the estimated range of instability, that is,
when the pair (τ∗, ε̇e) lies in the unstable focus area between the points b and e in
Fig. 7.18, then the homogeneous solution in the viscoplastic domain is represented
in Fig. 7.21. After a first drop of the stress and of the ageing time large oscillations,
almost periodic, around the equilibrium point (σ f x = 196.8MPa, t f x

a = 0.036s) ap-
pear. The amplitude of the stress drop is around 23 MPa.

In this case the trajectories of the solutions in the phase plane spiral toward a
stable limit cycle. This behavior illustrates that the nonlinear system is able to de-
scribe self-sustained oscillations. It is worth noting that the limit cycle shows a slow
dynamics during one part of the cycle followed by a fast dynamics during the re-
maining part of the cycle. Indeed, one sees that the periodic oscillations consist of a
slow increase of the stress which is followed by an abrupt fall in stress. This slow-
fast dynamic process is in agreement with the characteristics of the PLC effect.

. a) b)

Fig. 7.21 Unstable Focus Interval: ε̇e = 10−3 s−1 and ε̇∗0 = 3.5×10−6 s−1 (τ∗ = 2.85×105 s).
Homogeneous process described by (7.50) a) Phase portrait. b) Stress and ageing time vs. strain

Oscillations of this type resemble with the so called ”relaxation oscillations”
of dynamical systems containing a small parameter which lead to singular pertur-
bation. The prototype of this behavior is the van der Pol oscillator (see Strogatz
[Str1994]). Characteristic of the relaxation oscillations is the presence of phases in
the cycle with different time scales: a phase of slow change followed by a short
phase of rapid change in which the system practically jumps to the next stage of
slow variation. In general, the specificity of these relaxation oscillations is that in a
single period the solution describes two slow-fast alternation accompanied by two
discontinuities, while for our nonlinear system (7.50) the solution experiences in a
single period only one slow-fast alternation.

When, by increasing the imposed strain-rate, the pair (τ∗, ε̇e) enters again into a
stable focus region, that is, it lies between the points e and f in Fig. 7.18, then the
homogeneous process in the viscoplastic domain is represented in Fig. 7.22. The
behavior of the solution is similar with that in Fig. 7.20, with the difference that the
first stress drop is much more important and the oscillations are more visible before
the solution reachs the equilibrium point (σ f x = 190.4MPa, t f x

a = 0.0036s).
We have also considered the case when the pair (τ, ε̇e) belongs to the unstable

node area, that is, it lies below the curve τ = τ∆−(ε̇e), for ε̇e ∈ (ε̇1
e , ε̇

2
e ) in Fig. 7.18.



54 7 The PLC effect – A study on plastic instabilities and pattern formation

For instance, if we choose ε̇e = 2.25×10−4 s−1, which corresponds to the local
maximum point p, it follows that in order to be in the unstable area, according to
Table 7.3, it is necessary that τ be less than 14.93s, or equivalently ε̇0 be greater than
6.69×10−2 s−1. Such a situation is illustrated in Fig. 7.23. The same as in the case
of the unstable focus fixed point the trajectories in the phase plane have the property
that they approach a stable limit cycle. Numerical solutions illustrated in Fig. 7.23a
show stable spirals giving rise to a limit cycle and to almost ”periodic” oscillations.
In this case both the stress and the ageing time show much larger oscillations around
the equilibrium point (σ f x = 179.5MPa, t f x

a = 0.1636s). The amplitude of the stress
drop increases to 50 MPa.

. a) b)

Fig. 7.22 Stable Focus Interval: ε̇e = 10−2 s−1 and ε̇∗0 = 3.5×10−6 s−1 (τ∗ = 2.85×105 s). Ho-
mogeneous process described by (7.50) a) Phase portrait. b) Stress and ageing time vs. strain

. a) b)

Fig. 7.23 Unstable Node Area: ε̇e = 2.2×10−4 s−1 and ε̇0 = 6. s−1 (τ = 0.16s). Homogeneous
process described by (7.50) a) Phase portrait. b) Stress and and ageing time vs. strain

During a single period we record a slow and two fast variations of the solution.
Indeed, the limit cycle consists of an extremely slow increase of the stress followed
by a sudden discharge and a sudden rise of the stress. During the stress drop the
ageing time reaches its minimum value, while it suffers a sudden increases during
the sudden rise of the stress. This behavior is not typical to the PLC effect, but
illustrates how the nonlinear ODE system describes self-sustained oscillations for a
large value of ε̇0.
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The serrated stress-strain curves obtained in Figs. 7.21b and 7.23b show two
important characteristic features: they are ”horizontal” and have constant amplitude.
The first is due to the fact that the strain hardening is neglected, while the second
is a consequence of the assumption that the stress accounting for the PLC effect
σB does not depend on ε p, according to the constitutive relations (7.48) used in the
bifurcation analysis.

Let us consider now the general case of the elastic-viscoplastic model with
the strain hardening term σH(ε

p) described by the Voce rule (7.22) and the term
σB(ta,ε p), responsible for the DSA effect, described by (7.23). The mechanical pa-
rameters are given in the fifth column in Tables 7.1 and 7.2.

In this case, the homogeneous process is described by the non-autonomous sys-
tem (7.47) which includes both the elastic and the viscoplastic case. The numerical
solutions obtained for three imposed engineering strain-rates ε̇e are illustrated in
Fig. 7.24.

Fig. 7.24 Elastic-viscoplastic homogeneous process with strain hardening described by the non-
autonomous system (7.47) for three imposed engineering strain-rates: ε̇e = 10−3 s−1, ε̇e = 10−2 s−1

and ε̇e = 10−1 s−1 when ε̇0 = 3.5×10−6 s−1 (τ = 2.85×105 s)

The solution obtained for ε̇e = 10−3 s−1 has to be compared with the solution ob-
tained in Fig. 7.21 when the fixed point is an unstable focus. One observes how the
hardening rule leads to an increasing stress-strain serrated curve. Like in Fig. 7.21b
there is an initial large stress drop, followed by large oscillations, but having now
an increasing amplitude which ranges from 25.6 MPa to 49.5 MPa. That is due to
the fact that in the viscoplastic deformation process the term σ0 +ε pσ1 which char-
acterizes the saturation value of the DSA related stress term increases with plastic
strain. This gradually increasing amplitude is in agreement with experimental facts
(see for instance Fig. 7.1).



56 7 The PLC effect – A study on plastic instabilities and pattern formation

Moreover, it should be noted that a sawtooth is composed by a stress drop, which
is a fast viscoplastic and dissipative process, while the reloading part, having the
slope of the elastic Young modulus E, is a slow elastic process.

In the case of the higher strain-rate ε̇e = 10−2 s−1 the bifurcation analysis has
predicted for the autonomous system, according to Fig. 7.22b, a stress-strain curve
which is not serrated, since in this case we are outside the interval of instability
described in Table 7.3. In the general case of the non-autonomous system (7.47)
we see in Fig. 7.24 that the stress-strain curve preserves the same features as in the
stable focus case for lower values of the engineering strain εe. Indeed, there is in
the beginning a large stress drop followed by small oscillations which are damped
and continued with a nice increasing smooth curve. If the strain becomes larger one
can see that a serrated curve appears reflecting an unstable behavior of PLC type.
This behavior is in agreement with the remarks in Sect. 7.4.1 that by increasing the
value of the parameter A = nσ1

ω1E the range of imposed strain-rate ε̇e for which the
autonomous ODE system (7.50) has an unstable behavior expands. Indeed, in this
case, if we consider the non-autonomous system (7.47) with frozen coefficients at
ε p then the parameter which characterizes the instability read as A(ε p) = n(σ1+σ2ε p)

ω1E
and is increasing with the plastic strain. This explains the appearance of oscillations
at this strain-rate for large value of the engineering strain εe.

If the strain-rate increases again by an order of magnitude, i.e. to 10−1 s−1, one
sees that the solution does not show unstable behavior for the range of strain in the
figure, behavior which is in agreement with the stability/instability analysis.

Thus, the graphs obtained in Fig. 7.24 correspond to spatially homogeneous pro-
cesses whose initial data are (7.45)1 which is an ideal case since from the beginning
we have supposed a linear distribution of the velocity in the bar. The real process
corresponds to the initial-boundary value problem (7.42) which introduces from the
start a small shock perturbation. This perturbation leads to spatial inhomogeneous
solutions which have been analyzed in Sect. 7.3.3.1.

Therefore, the graphs in Fig. 7.24 have to be compared with those obtained in
Fig. 7.13 for the non-homogeneous case. The similarities between the stress-strain
curves confirm the bifurcation analysis performed and their differences highlight the
influence of localization phenomena.

7.5 Conclusions and outlook

The analyzed constitutive model for dynamic strain ageing provides a macroscopic
description of the temporal and spatial features of the Portevin-Le Chatelier plas-
tic instabilities in satisfactory agreement with experimental results. We have shown
that, depending on the tensile testing conditions, the model describes both the ser-
rated yielding and the staircase response. The sensitivity of the model to the bound-
ary conditions can capture the influence of the testing machine on the stress - engi-
neering strain curves as it is met in practice.
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In order to improve the calibration of the mechanical parameters for critical con-
ditions on PLC effect two directions require further analysis. The first one concerns
the properties of the solutions of the autonomous dynamical system (7.50). We have
seen that the appearance of a serrated stress-strain curve, i.e. of the unstable PLC
behavior, is related to a Hopf bifurcation and that the emerging solution is a limit
cycle in the phase plane. The shape and size of the limit cycle allows to estimate the
amplitude of the periodic stress drops. But to find analytically the shape of the limit
cycle for a dynamical system based on its equations is a tough problem. Therefore,
in order to determine how the mechanical parameters of the model influence the
serrations of a stress - strain curve one need to find a good estimate of a trapping
region for the trajectories. That means to find a closed connected set in which all
trajectories are confined (see Strogatz [Str1994]).

A second direction is to investigate the influence of the parameters of the model
on the localization phenomena which may develop in the dynamic strain ageing
process. That means to perform a spatial stability analysis of the solutions of the
PDEs system (7.41). For doing this we have to analyze the stability of spatially
homogeneous solutions to infinitesimal perturbations which is a necessary condition
for the nucleation and propagation of strain bands.

Acknowledgements The author acknowledges support from the Romanian Ministry of Education
and Research through Project PCCE ID-100/2010.

Appendix - Numerical scheme

The numerical scheme used to solve the initial - boundary value problems (7.42)
- (7.44) for the hyperbolic semilinear system of PDEs (7.41) is a variant of the
standard method of characteristic (see for instance Mihăilescu-Suliciu and Suliciu
[Mih1985]). A time integration step condition is used to ensure the numerical sta-
bility.

Let us note that by introducing the notations

p = σ +
√

ρEv, q = σ −
√

ρEv, r = σ −Eε, (7.66)

we can write the system (7.41) in its characteristic form

∂ p
∂ t
−C

∂ p
∂X

= G̃(p,q,r, ta),
∂q
∂ t

+C
∂q
∂X

= G̃(p,q,r, ta), (7.67)

∂ r
∂ t

= G̃(p,q,r, ta),
∂ ta
∂ t

= H̃(p,q,r, ta), (7.68)

where C =
√

E/ρ is the longitudinal wave speed and

(G̃, H̃)(p,q,r, ta) = (G,H)(ε,σ , ta) = (G,H)
( 1

E

( p+q
2
− r
)
,

p+q
2

, ta
)
.
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Along the constant characteristic directions of the system the following relations
are satisfied

dp = G̃(p,q,r, ta)dt on dX =−Cdt,

dq = G̃(p,q,r, ta)dt on dX =Cdt, (7.69)
dr = G̃(p,q,r, ta)dt on dX = 0,
dta = H̃(p,q,r, ta)dt on dX = 0.

Fig. 7.25 Stencil for the
method of characteristics.

The numerical solution is build in agreement to the stencil in Fig. 7.25. We parti-
tion the domain in space using a mesh X0, ..., Xi,..., XN and in time using a mesh t0,
...., t j, ... . We assume a uniform partition both in space and in time, so the difference
between two consecutive space points will be h and between two consecutive time
points will be τ . We denote by u(Xi, t j) = u j

i the values of a generic function u at the
mesh points.

The first order numerical approximation is a set of four function (p,q,r, ta) de-
fined on the above mesh and satisfying the following iterative relations

p j+1
i − p j

i
τ

− C
h

(
p j

i+1− p j
i

)
= (1−ν)G̃ j

i +νG̃ j
i+1,

q j+1
i −q j

i
τ

+
C
h

(
q j

i −q j
i−1

)
= (1−ν)G̃ j

i +νG̃ j
i−1, (7.70)

r j+1
i = r j

i + τG̃ j
i , ta

j+1
i = ta

j
i + τH̃ j

i ,

where the Courant number ν has to satisfy condition

ν ≡C
τ

h
≤ 1, (7.71)

in order to ensure the numerical stability of the scheme (see Richtmyer and Morton
[Ric1967]).

The iterative relations for this explicit scheme can be written as

p j+1
i = (1−ν)

(
p j

i + τG̃ j
i

)
+ν
(

p j
i+1 + τG̃ j

i+1

)
,

q j+1
i = (1−ν)

(
q j

i + τG̃ j
i

)
+ν
(
q j

i−1 + τG̃ j
i−1

)
, (7.72)

r j+1
i = r j

i + τG̃ j
i , ta

j+1
i = ta

j
i + τH̃ j

i ,

or in terms of initial variables σ , ε , v, ta the first approximation becomes
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σ
j+1

i = (1−ν)σ j
i +

ν

2
(
σ

j
i+1 +σ

j
i−1

)
+

ν

2

√
ρE
(
v j

i+1− v j
i−1

)
+τ

(
(1−ν)G j

i +
ν

2
(
G j

i+1 +G j
i

))
,

v j+1
i = (1−ν)v j

i +
ν

2
(
v j

i+1 + v j
i−1

)
+

ν

2
1√
ρE

(
σ

j
i+1−σ

j
i−1

)
(7.73)

+τ
ν

2
1√
ρE

(
G j

i+1−G j
i−1

)
,

ε
j+1

i = ε
j

i +
1
E

(
σ

j+1
i −σ

j
i

)
− τ

1
E

G j
i , ta

j+1
i = ta

j
i + τH j

i .

The second order numerical approximation is a set of four function (
(2)
p ,

(2)
q ,

(2)
r ,

(2)
t a)

defined on the mesh and satisfying the following iterative relations

(2)
p j+1

i − p j
i

τ
− C

h

(
p j

i+1− p j
i

)
=

(1−ν)

2

(
G̃ j

i +
(1)
Gj+1

i

)
+

ν

2

(
G̃ j

i+1 +
(1)
Gj+1

i

)
,

(2)
q j+1

i −q j
i

τ
+

C
h

(
q j

i −q j
i−1

)
=

(1−ν)

2

(
G̃ j

i +
(1)
Gj+1

i

)
+

ν

2

(
G̃ j
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(1)
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)
, (7.74)

(2)
r j+1

i = r j
i +

τ

2

(
G̃ j

i +
(1)
Gj+1

i

)
,

(2)
ta

j+1
i = ta

j
i +

τ

2
(H̃ j

i +
(1)
H j+1

i

)
,

where
(1)
Gj+1

i = G̃(p j+1
i ,q j+1

i ,r j+1
i , ta

j+1
i ) and

(1)
H j+1

i = H̃(p j+1
i ,q j+1

i ,r j+1
i , ta

j+1
i ) are

computed using the first approximation (7.72).
The second order numerical approximation in terms of initial variables σ , ε , v,

ta becomes

(2)
σ

j+1
i = (1−ν)

(
σ

j
i +

τ

2
(G j

i +
(1)
Gj+1
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ν
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)
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+ν
τ
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ρE
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G j
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)
,
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ε
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1
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where
(1)
Gj+1

i = G(ε j+1
i ,σ j+1

i , ta
j+1
i ) and

(1)
H j+1

i = H(ε j+1
i ,σ j+1

i , ta
j+1
i ) are computed

using the first approximation (7.73).
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Boundary conditions

The left boundary condition v(0, t)=V ∗, or equivalently, p(0, t)−q(0, t)= 2
√

ρEV ∗,
for the strain controlled experiment (7.42), leads to the following iterative relations.

The first order approximation at the node X0 read as

σ
j+1

0 = (1−ν)
(
σ

j
0 +
√

ρEV ∗+ τG j
0

)
+ν
(
σ

j
1 +
√

ρEv j
1 + τG j

1

)
−
√

ρEV ∗,

v j+1
0 = V ∗, (7.76)

ε
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0 = ε
j

0 +
1
E

(
σ

j+1
0 −σ

j
0

)
− τ

E
G j

0, ta
j+1
0 = ta

j
0 + τH j

0 .

and the second order approximation is

(2)
σ

j+1
0 = (1−ν)
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σ

j
0 +
√
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2
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0

))
+ν

(
σ

j
1 +
√
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0 = V ∗, (7.77)

(2)
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.

where
(1)
Gj+1

0 = G(ε j+1
0 ,σ j+1

0 , ta
j+1
0 ) and

(1)
H j+1

0 = H(ε j+1
0 ,σ j+1

0 , ta
j+1
0 ) are computed

using the first approximation given by relations (7.76).
The left boundary condition σ(0, t) = S∗(t), or equivalently, p(0, t)+ q(0, t) =

2S∗(t), for the stress controlled experiment (7.42), leads to the following iterative
relations.

The first order approximation at the node X0 read as
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(2)
σ

j+1
0 = S∗(( j+1)τ)

(2)
v j+1

0 = (1−ν)
(

v j
0 +

S∗( jτ)√
ρE

+
τ

2
√

ρE

(
G j

0 +
(1)
Gj+1

0

))
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+ν

(
v j

1 +
σ

j
1√

ρE
+

τ

2
√

ρE

(
G j

1 +
(1)
Gj+1

0

))
− S∗(( j+1)τ)√

ρE
, (7.79)

(2)
ε

j+1
0 = ε

j
0 +

1
E

((2)
σ0 j+1−σ

j
0

)
− τ

2E

(
G j

0 +
(1)
Gj+1

0

)
,

(2)
ta

j+1
0 = ta

j
0 +

τ

2

(
H j

0 +
(1)
H j+1

0

)
.

where
(1)
Gj+1

0 = G(ε j+1
0 ,σ j+1

0 , ta
j+1
0 ) and

(1)
H j+1

0 = H(ε j+1
0 ,σ j+1

0 , ta
j+1
0 ) are computed

using the first approximation given by relations (7.78).
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